Categorical Semantics of Reversible Pattern-Matching

Louis Lemonnier, Benoît Valiron, Kostia Chardonnet

November 4th, 2021

SCALP 2021
Reversible programming
Reversibility

- Reversible computation: only apply bijections.

Reversibility

- Reversible computation: only apply bijections.
- Application in low-consumption hardware \(^1\).

Reversibility

- Reversible computation: only apply bijections.
- Application in low-consumption hardware \(^1\).
- Application in quantum computing, where operations (except measurement) are reversible.

Reversibility

- Reversible computation: only apply bijections.
- Application in low-consumption hardware \(^1\).
- Application in quantum computing, where operations (except measurement) are reversible.

What we are focusing on today:

Reversibility

- Reversible computation: only apply bijections.
- Application in low-consumption hardware \(^1\).
- Application in quantum computing, where operations (except measurement) are reversible.

What we are focusing on today:

- Reversible programming language

Reversibility

- Reversible computation: only apply bijections.
- Application in low-consumption hardware \(^1\).
- Application in quantum computing, where operations (except measurement) are reversible.

What we are focusing on today:

- Reversible programming language
- Detailed denotational semantics

Terms and types

(Value types) \(a, b ::= \alpha | a \oplus b | a \otimes b \)

(Iso types) \(T ::= a \leftrightarrow b \)

(Values) \(v ::= c_\alpha | x | \text{inj}_l v | \text{inj}_r v | \langle v_1, v_2 \rangle \)

(Functions) \(\omega ::= \{ | v_1 \leftrightarrow v'_1 | \ldots | v_n \leftrightarrow v'_n \} \)

(Terms) \(t ::= v | \omega t \)
Terms and types

(Value types) \(a, b \) ::= \(\alpha \mid a \oplus b \mid a \otimes b \)

(Iso types) \(T \) ::= \(a \leftrightarrow b \)

(Values) \(v \) ::= \(c_\alpha \mid x \mid \text{inj}_l v \mid \text{inj}_r v \mid \langle v_1, v_2 \rangle \)

(Functions) \(\omega \) ::= \{ \mid v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \}

(Terms) \(t \) ::= \(v \mid \omega t \)

\{ \mid \text{inj}_l x \leftrightarrow \text{inj}_r x \mid \text{inj}_r x \leftrightarrow \text{inj}_l x \}
Terms and types

(Value types) \[a, b ::= \alpha \mid a \oplus b \mid a \otimes b \]

(Iso types) \[T ::= a \leftrightarrow b \]

(Values) \[v ::= c_{\alpha} \mid x \mid \text{inj}_l v \mid \text{inj}_r v \mid \langle v_1, v_2 \rangle \]

(Functions) \[\omega ::= \{ \mid v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \} \]

(Terms) \[t ::= v \mid \omega t \]

\[
\{ \mid \text{inj}_l x \leftrightarrow \text{inj}_r x \mid \text{inj}_r x \leftrightarrow \text{inj}_l x \}
\]

- Two partial morphisms joined
Terms and types

(Value types) \(a, b ::= \alpha | a \oplus b | a \otimes b \)

(Iso types) \(T ::= a \leftrightarrow b \)

(Values) \(v ::= c_{\alpha} | x | \text{inj}_l v | \text{inj}_r v | \langle v_1, v_2 \rangle \)

(Functions) \(\omega ::= \{ | v_1 \leftrightarrow v'_1 | \ldots | v_n \leftrightarrow v'_n \} \)

(Terms) \(t ::= v | \omega t \)

\[
\{ | \text{inj}_l x \leftrightarrow \text{inj}_r x | \text{inj}_r x \leftrightarrow \text{inj}_l x \}
\]

- Two partial morphisms \textit{joined}
- With compatible domains
Terms and types

(Value types) \(a, b ::= \alpha \mid a \oplus b \mid a \otimes b \)

(Iso types) \(T ::= a \leftrightarrow b \)

(Values) \(v ::= c_\alpha \mid x \mid \text{inj}_l v \mid \text{inj}_r v \mid \langle v_1, v_2 \rangle \)

(Functions) \(\omega ::= \{ \mid v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \} \)

(Terms) \(t ::= v \mid \omega t \)

\[
\{ \mid \text{inj}_l x \leftrightarrow \text{inj}_r x \mid \text{inj}_r x \leftrightarrow \text{inj}_l x \}
\]

- Two partial morphisms \textit{joined}
- With compatible domains
- Which inverses have compatible domains
Terms and types

(Value types) \(a, b ::= \alpha | a \oplus b | a \otimes b \)

(Iso types) \(T ::= a \leftrightarrow b \)

(Values) \(v ::= c_\alpha | x | \text{inj}_l v | \text{inj}_r v | \langle v_1, v_2 \rangle \)

(Functions) \(\omega ::= \{ | v_1 \leftrightarrow v_1' | \ldots | v_n \leftrightarrow v_n' \} \)

(Terms) \(t ::= v | \omega t \)

Two partial morphisms joined
- With compatible domains
- Which inverses have compatible domains

Operational semantics:
\[\{ | \text{inj}_l x \leftrightarrow \text{inj}_r x | \text{inj}_r x \leftrightarrow \text{inj}_l x \} (\text{inj}_r \ast) \longrightarrow \text{inj}_l \ast \]
Categorical model
Restriction and inverse category

Domain and partiality

Partial inverse

Compatibility

Union of partial isos
Restriction and inverse category

Domain and partiality

Restriction category: $f \mapsto \tilde{f}$.

Partial inverse

Compatibility

Union of partial isos
Restriction and inverse category

Domain and partiality

Restriction category: $f \mapsto \bar{f}$.

\[
\begin{align*}
 f \circ \bar{f} &= f, \\
 \bar{f} \circ \bar{g} &= \bar{g} \circ \bar{f}, \\
 \bar{f} \circ \bar{g} &= \bar{f} \circ \bar{g}, \\
 \bar{h} \circ f &= f \circ h \circ f.
\end{align*}
\]

Partial inverse

Compatibility

Union of partial isos
Restriction and inverse category

Domain and partiality

Restriction category: \(f \mapsto \overline{f} \).

\[
\begin{align*}
 f \circ \overline{f} &= f, \\
 \overline{f} \circ \overline{g} &= \overline{g} \circ \overline{f}, \\
 f \circ \overline{g} &= \overline{f} \circ \overline{g}, \\
 \overline{h} \circ f &= f \circ h \circ f.
\end{align*}
\]

Partial inverse

Compatibility

Union of partial isos
Restriction and inverse category

Domain and partiality

Restriction category: $f \mapsto \bar{f}$.

$\bar{f} \circ \bar{g} = \bar{g} \circ \bar{f}$, $\bar{f} \circ \bar{g} = \bar{f} \circ \bar{g}$, $\bar{h} \circ f = f \circ \bar{h} \circ f$.

Partial inverse

Inverse category: $f \mapsto f^\circ$. $f^\circ \circ f = \bar{f}$ and $f \circ f^\circ = \bar{f}$.

Compatibility

Union of partial isos
Restriction and inverse category

Domain and partiality

Restriction category: \(f \mapsto \tilde{f} \).

\[f \circ \tilde{f} = f, \quad \tilde{f} \circ g = g \circ \tilde{f}, \quad \tilde{f} \circ \tilde{g} = \tilde{f} \circ g, \quad \tilde{h} \circ f = f \circ \tilde{h} \circ f. \]

Partial inverse

Inverse category: \(f \mapsto f^\circ \).

\[f^\circ \circ f = f, \quad f \circ f^\circ = f^\circ \circ f. \]

Compatibility

Union of partial isos
Restriction and inverse category

Domain and partiality

Restriction category: \(f \mapsto \overline{f} \).

\[
f \circ \overline{f} = f, \quad \overline{f} \circ g = \overline{g} \circ \overline{f}, \quad f \circ \overline{g} = \overline{f} \circ \overline{g}, \quad \overline{h} \circ f = f \circ \overline{h} \circ f.
\]

<table>
<thead>
<tr>
<th>Domain</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h):</td>
<td>(b)</td>
<td>(c)</td>
<td>(a)</td>
</tr>
<tr>
<td>(\overline{h}):</td>
<td>(b)</td>
<td>(c)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

Partial inverse

Inverse category: \(f \mapsto f^\circ \). \(f^\circ \circ f = \overline{f} \) and \(f \circ f^\circ = \overline{f} \).

<table>
<thead>
<tr>
<th>Domain</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h^\circ):</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

Compatibility

Restriction compatible:

\(f \bowtie g : f g = g f, \quad f \bowtie g : f \bowtie g \) and \(f^\circ \bowtie g^\circ \).

Union of partial isos

Partial order:

\(f \leq g : g f = f \).

<table>
<thead>
<tr>
<th>Domain</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k):</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lor):</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

if \(s \leq t \), then \(s \leq \lor s \in S \lor t \leq t \), \(\lor s \in S \lor t \leq t \), \(\lor s \in S \lor t = \lor s \in S \lor t \), \(f \circ (\lor s \in S \lor t) = \lor s \in S f \), \((\lor s \in S \lor t) \circ g = \lor s \in S sg \).
Restriction and inverse category

Domain and partiality

Restriction category: \(f \mapsto \bar{f} \).

\(f \circ \bar{f} = f, \quad \bar{f} \circ \bar{g} = \bar{g} \circ \bar{f}, \quad \bar{f} \circ \bar{g} = \bar{f} \circ \bar{g}, \quad \overline{h \circ f} = f \circ \overline{h \circ f}. \)

Partial inverse

Inverse category: \(f \mapsto f^\circ \). \(f^\circ \circ f = \bar{f} \) and \(f \circ f^\circ = \bar{f}. \)

Compatibility

Restriction compatible:

\(f \bowtie g : f \bar{g} = g \bar{f}, \quad f \bowtie g : f \bowtie g \) and \(f^\circ \bowtie g^\circ \).

Union of partial isos
Restriction and inverse category

Domain and partiality

Restriction category: \(f \mapsto \tilde{f} \).

\[
\begin{align*}
f \circ \tilde{f} &= f, & f \circ \bar{g} &= \bar{g} \circ \bar{f}, & f \circ \bar{g} &= \tilde{f} \circ \bar{g}, & h \circ f &= f \circ h \circ f.
\end{align*}
\]

\[
\begin{array}{c}
h : \begin{array}{ccc}
a & \to & a \\
b & \to & b \\
c & \to & c \\
\end{array} & \quad \quad \quad \quad \quad \quad \quad
\bar{h} : \begin{array}{ccc}
a & \to & a \\
b & \to & b \\
c & \to & c \\
\end{array}
\end{array}
\]

Partial inverse

Inverse category: \(f \mapsto f^\circ \). \(f^\circ \circ f = \tilde{f} \) and \(f \circ f^\circ = \bar{f} \).

\[
\begin{array}{c}
h^\circ : \begin{array}{ccc}
a & \to & a \\
b & \to & b \\
c & \to & c \\
\end{array}
\end{array}
\]

Compatibility

Restriction compatible:

\[
f \bowtie g : f g = g \tilde{f}, \quad f \bowtie g : f \bowtie g \quad \text{and} \quad f^\circ \bowtie g^\circ.
\]

\[
\begin{array}{c}
f : \begin{array}{ccc}
a & \to & a \\
b & \to & b \\
c & \to & c \\
\end{array} & \quad \quad \quad \quad \quad \quad \quad
f : \begin{array}{ccc}
a & \to & a \\
b & \to & b \\
c & \to & c \\
\end{array} & \quad \quad \quad \quad \quad \quad \quad
f : \begin{array}{ccc}
a & \to & a \\
b & \to & b \\
c & \to & c \\
\end{array}
\end{array}
\]

Union of partial isos

Partial order: \(f \leq g : g \tilde{f} = f \).
Restriction and inverse category

Domain and partiality

Restriction category: \(f \mapsto \bar{f}. \)

\[
f \circ \bar{f} = f, \quad \bar{f} \circ g = g \circ \bar{f}, \quad \bar{f} \circ g = \bar{f} \circ \bar{g}, \quad \bar{h} \circ f = f \circ \bar{h} \circ f.
\]

Partial inverse

Inverse category: \(f \mapsto f^\circ. \quad f^\circ \circ f = \bar{f} \) and \(f \circ f^\circ = \bar{f}. \)

Partial inverse

Compatibility

Restriction compatible:

\[
f \leadsto g : f g = g f, \quad f \leadsto g : f \leadsto g \text{ and } f^\circ \leadsto g^\circ.
\]

Union of partial isos

Partial order: \(f \leq g : g \bar{f} = f. \)

Union of partial isos

- \(f: a \rightarrow b, \quad b \rightarrow c, \quad g: a \rightarrow b, \quad b \rightarrow c \)
- \(k: b \rightarrow b, \quad c \rightarrow c \)
Restriction and inverse category

Domain and partiality

Restriction category: \(f \mapsto \tilde{f} \).

\[
\begin{align*}
 \tilde{f} \circ \tilde{f} &= \tilde{f}, & \tilde{f} \circ \tilde{g} &= \tilde{g} \circ \tilde{f}, & \tilde{f} \circ \tilde{g} &= \tilde{f} \circ \tilde{g}, & \tilde{h} \circ \tilde{f} &= \tilde{f} \circ \tilde{h} \circ \tilde{f}.
\end{align*}
\]

Partial inverse

Inverse category: \(f \mapsto f^\circ \). \(f^\circ \circ f = \tilde{f} \) and \(f \circ f^\circ = \tilde{f} \).

Compatibility

Restriction compatible:

\[
\begin{align*}
f \sim g : f \tilde{g} = g \tilde{f}, & \quad f \sim g : f \sim g \text{ and } f^\circ \sim g^\circ.
\end{align*}
\]

Union of partial isos

Partial order: \(f \leq g : g \tilde{f} = f \).

Join:

\[
\begin{align*}
 \bigvee_{s \in S} s.
\end{align*}
\]

if \(s \leq t \), then \(s \leq \bigvee_{s \in S} s, \bigvee_{s \in S} s \leq t, \bigvee_{s \in S} s = \bigvee_{s \in S} \tilde{s}, \)
Restriction and inverse category

Domain and partiality

Restriction category: $f \mapsto \bar{f}$.

\[
\begin{align*}
f \circ \bar{f} &= f, & f \circ \bar{g} &= \bar{g} \circ \bar{f}, & f \circ \bar{g} &= \bar{f} \circ \bar{g}, & h \circ f &= f \circ h \circ f. \\
h: \quad a & \rightarrow b & a & \rightarrow b & a & \rightarrow a \\
& \downarrow & & \downarrow & & \\
& b & \rightarrow c & b & \rightarrow c & b & \rightarrow b \\
\end{align*}
\]

Partial inverse

Inverse category: $f \mapsto f^\circ$. $f^\circ \circ f = \bar{f}$ and $f \circ f^\circ = \bar{f}$.

\[
\begin{align*}
h^\circ: \quad a & \rightarrow b & a & \rightarrow a \\
& \downarrow & & \downarrow & & \\
& b & \rightarrow c & b & \rightarrow b \\
\end{align*}
\]

Compatibility

Restriction compatible:

\[
\begin{align*}
f \bowtie g: f \bar{g} = g \bar{f}, & \quad f \bowtie g : f \bowtie g & \quad \text{and} & \quad f^\circ \bowtie g^\circ. \\
f: \quad a & \rightarrow a & a & \rightarrow a \\
& \downarrow & \downarrow & \\
b & \rightarrow b & c & \rightarrow c \\
g: \quad a & \rightarrow a & a & \rightarrow a \\
& \downarrow & \downarrow & \\
b & \rightarrow b & c & \rightarrow c \\
\end{align*}
\]

Union of partial isos

Partial order: $f \leq g : g \bar{f} = f$.

\[
\begin{align*}
k: \quad a & \rightarrow a & a & \rightarrow a \\
& \downarrow & \downarrow & \\
b & \rightarrow b & c & \rightarrow c \\
\end{align*}
\]

Join: $\bigvee_{s \in S} s$.

\[
\text{if } s \leq t, \text{ then } s \leq \bigvee_{s \in S} s, \bigvee_{s \in S} s \leq t, \bigvee_{s \in S} s = \bigvee_{s \in S} \bar{s},
\]

\[
f \circ \left(\bigvee_{s \in S} s \right) = \bigvee_{s \in S} fs, \quad \left(\bigvee_{s \in S} s \right) \circ g = \bigvee_{s \in S} sg.
\]
Restriction and inverse category

Domain and partiality

Restriction category: \(f \mapsto \bar{f} \).

\[
\begin{align*}
 f \circ \bar{f} &= f, & f \circ \bar{g} &= \bar{g} \circ \bar{f}, & \bar{f} \circ \bar{g} &= f \circ \bar{g}, & \bar{h} \circ f &= f \circ h \circ f.
\end{align*}
\]

Partial inverse

Inverse category: \(f \mapsto \bar{f} \circ \bar{f} \). \(\circ \bar{f} = \bar{f} \) and \(f \circ \bar{f} = \bar{f} \circ f \).

Compatibility

Restriction compatible:

\[
\begin{align*}
 f \rightleftharpoons g : f \bar{g} &= g \bar{f}, & f \rightleftharpoons g : f \rightleftharpoons g \quad \text{and} \\
 f \circ \rightleftharpoons g &\circ \rightleftharpoons g\circ.
\end{align*}
\]

Union of partial isos

Partial order: \(f \leq g : g \bar{f} = f \).

Join:

\[
\bigvee_{s \in S} s.
\]

if \(s \leq t \), then \(s \leq \bigvee_{s \in S} s \), \(\bigvee_{s \in S} s \leq t \), \(\overline{\bigvee_{s \in S} s} = \bigvee_{s \in S} \overline{s} \),

\[
\begin{align*}
 f \circ \left(\bigvee_{s \in S} s \right) &= \bigvee_{s \in S} f s, & \left(\bigvee_{s \in S} s \right) \circ g &= \bigvee_{s \in S} s g.
\end{align*}
\]

Id:

\[
\begin{align*}
 a &\rightarrow a, & b &\rightarrow b, & c &\rightarrow c
\end{align*}
\]
Example

S a set. PId_S category with one object \ast and morphisms $Y \subseteq S$.

- Composition: intersection
- Identity: S
- Restriction of Y: Y
- Partial inverse of Y: Y
- Join: union.
Denotational semantics
Terms and values

\[
[\Delta] = [a_1] \otimes \cdots \otimes [a_n] \text{ whenever } \Delta \vdash x_1 : a_1, \ldots, x_n : a_n.
\]

\[
[\Delta \vdash \text{inj}_I, \nu : a \oplus b] \doteq \iota_I \circ f, \text{ whenever } f = [\Delta \vdash \nu : a],
\]
and similarly for the right-projection.

If \(f = [\Delta_1 \vdash \nu_1 : a_1] \) and \(g = [\Delta_2 \vdash \nu_2 : a_2] \),
\[
[\Delta_1, \Delta_2 \vdash \langle \nu_1, \nu_2 \rangle : a_1 \otimes a_2] \doteq f \otimes g.
\]
An iso: \[\{ v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \} : a \leftrightarrow b. \]
An iso: \(\{ v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \} : a \leftrightarrow b. \)

The situation:

\[
\begin{array}{c}
\Delta_i \\
\downarrow \omega \\
\n\end{array}
\quad
\begin{array}{c}
v_i \\
\downarrow \omega \\
v'_i \\
\end{array}
\quad
\begin{array}{c}
av \\
\rightarrow \\
\downarrow \omega \\
\rightarrow \\
\end{array}
\quad
\begin{array}{c}
b \\
\rightarrow \\
\downarrow \omega \\
\rightarrow \\
\end{array}
\]
An iso: \(\{ v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \} : a \leftrightarrow b. \)

The situation:

![Diagram of the situation](image)

What we’d like to build:

![Diagram of what we’d like to build](image)

Careful: this diagram does not commute!
Lemma

If $v_1 \perp v_2$ and $v'_1 \perp v'_2$, then $[v'_1] \circ [v_1]^\circ \simeq [v'_2] \circ [v_2]^\circ$.
Lemma

If $v_1 \perp v_2$ and $v_1' \perp v_2'$, then $[v_1'] \circ [v_1]^\circ \simeq [v_2'] \circ [v_2]^\circ$.

The definition of isos in the language involves these orthogonalities, thus all $[v_i'] \circ [v_i]^\circ$ form a compatible set.
Lemma

If \(v_1 \perp v_2 \) and \(v'_1 \perp v'_2 \), then \([v'_1] \circ [v_1]^\circ \asymp [v'_2] \circ [v_2]^\circ \).

The definition of isos in the language involves these orthogonalities, thus all \([v'_i] \circ [v_i]^\circ \) form a compatible set.

Definition

\[[\{ \vdash \omega \{ v_1 \leftrightarrow v'_1 \mid v_2 \leftrightarrow v'_2 \ldots \} : a \leftrightarrow b \} = \bigvee_i [v'_i] \circ [v_i]^\circ : [a] \rightarrow [b]] . \]
What we would like to have thus

The language is based is pattern-matching:

\[\vdash_\omega \{ \mid v_1 \leftrightarrow v'_1 \mid v_2 \leftrightarrow v'_2 \ldots \} \]

decidable which pattern a term \(u \) fits.

It should also be in the denotational semantics:

\[
\left(([v_1] \circ [v_1]) \land ([v_2] \circ [v_2]) \right) \circ [u] = [v'_i] \circ [v_i] \circ [u]
\]

for some \(i \).
The language is based is pattern-matching:

$$\vdash_\omega \{ \quad \nu_1 \leftrightarrow \nu_1' \mid \nu_2 \leftrightarrow \nu_2' \quad \cdots \}$$

decidable which pattern a term \(u \) fits.

It should also be in the denotational semantics:

$$((\nu_1' \circ [\nu_1]) \lor (\nu_2' \circ [\nu_2])) \circ [u] = [\nu_i'] \circ [\nu_i] \circ [u]$$

for some \(i \).

Usually, it relies on disjointness (\(\oplus \)).
Pattern-matching and consistency
In \((f \vee g)h\), we want \(h\) to choose:

\[
fh \vee gh = fh \text{ or } fh \vee gh = gh
\]

A join inverse category with this property will be called *pattern-matching* category.
The origin of consistency

In \((f \lor g)h\), we want \(h\) to choose:

\[fh \lor gh = fh \text{ or } fh \lor gh = gh \]

A join inverse category with this property will be called \textit{pattern-matching} category. With disjointness \((\oplus)\), rather \(fh = 0\) or \(gh = 0\).
The origin of consistency

In \((f \lor g)h\), we want \(h\) to choose:

\[
fh \lor gh = fh \text{ or } fh \lor gh = gh
\]

A join inverse category with this property will be called *pattern-matching* category. With disjointness \((\oplus)\), rather \(fh = 0\) or \(gh = 0\).

The idea: translate it as a notion of *non decomposability*, to have \(fh \lor gh\) not decomposable.

For this, we need \(h\) to be *not decomposable* either.
The origin of consistency

In \((f \lor g)h\), we want \(h\) to choose:

\[fh \lor gh = fh \text{ or } fh \lor gh = gh \]

A join inverse category with this property will be called \textit{pattern-matching} category. With disjointness \((\oplus)\), rather \(fh = 0\) or \(gh = 0\).

The idea: translate it as a notion of \textit{non decomposability}, to have \(fh \lor gh\) not decomposable.

For this, we need \(h\) to be \textit{not decomposable} either.

Consistency: for any morphism \(k\), if \(h\) is \textit{non decomposable}, so is \(kh\).

A join inverse category with this property will be called \textit{consistent} category.
In \((f \lor g)h\), we want \(h\) to choose:

\[fh \lor gh = fh \text{ or } fh \lor gh = gh \]

A join inverse category with this property will be called \textit{pattern-matching} category. With disjointness \((\oplus)\), rather \(fh = 0\) or \(gh = 0\).

\textbf{The idea:} translate it as a notion of \textit{non decomposability}, to have \(fh \lor gh\) not decomposable.

For this, we need \(h\) to be \textit{not decomposable} either.

\textbf{Consistency:} for any morphism \(k\), if \(h\) is \textit{non decomposable}, so is \(kh\).

A join inverse category with this property will be called \textit{consistent} category.

Consistency implies pattern-matching.
The origin of consistency

In \((f \lor g)h\), we want \(h\) to choose:

\[
fh \lor gh = fh \text{ or } fh \lor gh = gh
\]

A join inverse category with this property will be called \textit{pattern-matching} category. With disjointness \((\oplus)\), rather \(fh = 0\) or \(gh = 0\).

The idea: translate it as a notion of \textit{non decomposability}, to have \(fh \lor gh\) not decomposable.

For this, we need \(h\) to be \textit{not decomposable} either.

Consistency: for any morphism \(k\), if \(h\) is \textit{non decomposable}, so is \(kh\).

A join inverse category with this property will be called \textit{consistent} category.

Consistency implies pattern-matching.

What about the other way around?
The different kinds

Definition (Strongly non decomposable)

\[
0 \quad \longrightarrow \quad m
\]

Thus \(m = u \lor v \Rightarrow u = 0 \) or \(v = 0 \)
The different kinds

<table>
<thead>
<tr>
<th>Definition (Strongly non decomposable)</th>
<th>0 —— m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thus $m = u \lor v \Rightarrow u = 0$ or $v = 0$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Linearly non decomposable)</th>
<th>0 —····— f — m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thus $m = u \lor v \Rightarrow u \leq v$ or $v \leq u$</td>
<td></td>
</tr>
</tbody>
</table>
The different kinds

Definition (Strongly non decomposable)

\[0 \rightarrow m \]

Thus \(m = u \vee v \Rightarrow u = 0 \) or \(v = 0 \)

Definition (Linearly non decomposable)

\[0 \rightarrow \cdots \rightarrow f \rightarrow m \]

Thus \(m = u \vee v \Rightarrow u \leq v \) or \(v \leq u \)

Definition (Weakly non decomposable)

Thus \(m = u \vee v \Rightarrow u = m \) or \(v = m \)
The different kinds

Definition (Strongly non decomposable)

\[0 \rightarrow m \]

Thus \(m = u \lor v \Rightarrow u = 0 \) or \(v = 0 \)

Definition (Linearly non decomposable)

\[0 \rightarrow \cdots \rightarrow f \rightarrow m \]

Thus \(m = u \lor v \Rightarrow u \leq v \) or \(v \leq u \)

Definition (Weakly non decomposable)

\[\begin{array}{c}
 0 \\
 \quad f \\
 \quad m \\
 \quad h
\end{array} \]

Thus \(m = u \lor v \Rightarrow u = m \) or \(v = m \)

strongly \(\Rightarrow \) linearly \(\Rightarrow \) weakly
The results

Theorem

A weakly pattern-matching category is weakly consistent.
Theorem

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.
The results

<table>
<thead>
<tr>
<th>Theorem</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A weakly pattern-matching category is weakly consistent.</td>
<td></td>
</tr>
<tr>
<td>Theorem</td>
<td></td>
</tr>
<tr>
<td>A join inverse category is strongly consistent.</td>
<td></td>
</tr>
<tr>
<td>Theorem</td>
<td></td>
</tr>
<tr>
<td>A join inverse category is linearly consistent.</td>
<td></td>
</tr>
</tbody>
</table>
The results

Theorem

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

This allows to not rely on a disjointness (\oplus) structure. And to use a category like PId_S as a sound and adequate denotation.
The results

Theorem

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

This allows to not rely on a disjointness (\oplus) structure.
And to use a category like PlId$_S$ as a sound and adequate denotation.
The results

Theorem

A *weakly pattern-matching category is weakly consistent.*

Theorem

A *join inverse category is strongly consistent.*

Theorem

A *join inverse category is linearly consistent.*

This allows to not rely on a disjointness (\oplus) structure.
And to use a category like ΠId_S as a sound and adequate denotation.
Going further

Recursion

C a join inverse category.

For any A, B objects of C, $\text{Hom}_C(A, B)$ is a DCPO.

Quantum programming language

Patterns are vectors in a basis of a Hilbert space.

Work in progress.
Thank you