
Categorical Semantics of Reversible
Pattern-Matching

Louis Lemonnier, Benoît Valiron, Kostia Chardonnet

November 4th, 2021

SCALP 2021

Reversible programming

Reversibility

• Reversible computation: only apply bijections.

• Application in low-consumption hardware 1.
• Application in quantum computing, where operations (except

measurement) are reversible.

What we are focusing on today:

• Reversible programming language
• Detailed denotational semantics

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183–191,
doi:10.1147/rd.53.0183.

1

Reversibility

• Reversible computation: only apply bijections.
• Application in low-consumption hardware 1.

• Application in quantum computing, where operations (except
measurement) are reversible.

What we are focusing on today:

• Reversible programming language
• Detailed denotational semantics

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183–191,
doi:10.1147/rd.53.0183.

1

Reversibility

• Reversible computation: only apply bijections.
• Application in low-consumption hardware 1.
• Application in quantum computing, where operations (except

measurement) are reversible.

What we are focusing on today:

• Reversible programming language
• Detailed denotational semantics

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183–191,
doi:10.1147/rd.53.0183.

1

Reversibility

• Reversible computation: only apply bijections.
• Application in low-consumption hardware 1.
• Application in quantum computing, where operations (except

measurement) are reversible.

What we are focusing on today:

• Reversible programming language
• Detailed denotational semantics

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183–191,
doi:10.1147/rd.53.0183.

1

Reversibility

• Reversible computation: only apply bijections.
• Application in low-consumption hardware 1.
• Application in quantum computing, where operations (except

measurement) are reversible.

What we are focusing on today:

• Reversible programming language

• Detailed denotational semantics

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183–191,
doi:10.1147/rd.53.0183.

1

Reversibility

• Reversible computation: only apply bijections.
• Application in low-consumption hardware 1.
• Application in quantum computing, where operations (except

measurement) are reversible.

What we are focusing on today:

• Reversible programming language
• Detailed denotational semantics

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183–191,
doi:10.1147/rd.53.0183.

1

Terms and types

(Value types) a, b ::= α | a ⊕ b | a ⊗ b
(Iso types) T ::= a ↔ b

(Values) v ::= cα | x | injl v | injr v | 〈v1, v2〉
(Functions) ω ::= { | v1 ↔ v′1 | . . . | vn ↔ v′n }
(Terms) t ::= v | ω t

{ | injl x ↔ injr x | injr x ↔ injl x }

• Two partial morphisms joined
• With compatible domains
• Which inverses have compatible domains

Operational semantics:

{ | injl x ↔ injr x | injr x ↔ injl x } (injr ⋆) −→ injl ⋆

2

Terms and types

(Value types) a, b ::= α | a ⊕ b | a ⊗ b
(Iso types) T ::= a ↔ b

(Values) v ::= cα | x | injl v | injr v | 〈v1, v2〉
(Functions) ω ::= { | v1 ↔ v′1 | . . . | vn ↔ v′n }
(Terms) t ::= v | ω t

{ | injl x ↔ injr x | injr x ↔ injl x }

• Two partial morphisms joined
• With compatible domains
• Which inverses have compatible domains

Operational semantics:

{ | injl x ↔ injr x | injr x ↔ injl x } (injr ⋆) −→ injl ⋆

2

Terms and types

(Value types) a, b ::= α | a ⊕ b | a ⊗ b
(Iso types) T ::= a ↔ b

(Values) v ::= cα | x | injl v | injr v | 〈v1, v2〉
(Functions) ω ::= { | v1 ↔ v′1 | . . . | vn ↔ v′n }
(Terms) t ::= v | ω t

{ | injl x ↔ injr x | injr x ↔ injl x }

• Two partial morphisms joined

• With compatible domains
• Which inverses have compatible domains

Operational semantics:

{ | injl x ↔ injr x | injr x ↔ injl x } (injr ⋆) −→ injl ⋆

2

Terms and types

(Value types) a, b ::= α | a ⊕ b | a ⊗ b
(Iso types) T ::= a ↔ b

(Values) v ::= cα | x | injl v | injr v | 〈v1, v2〉
(Functions) ω ::= { | v1 ↔ v′1 | . . . | vn ↔ v′n }
(Terms) t ::= v | ω t

{ | injl x ↔ injr x | injr x ↔ injl x }

• Two partial morphisms joined
• With compatible domains

• Which inverses have compatible domains

Operational semantics:

{ | injl x ↔ injr x | injr x ↔ injl x } (injr ⋆) −→ injl ⋆

2

Terms and types

(Value types) a, b ::= α | a ⊕ b | a ⊗ b
(Iso types) T ::= a ↔ b

(Values) v ::= cα | x | injl v | injr v | 〈v1, v2〉
(Functions) ω ::= { | v1 ↔ v′1 | . . . | vn ↔ v′n }
(Terms) t ::= v | ω t

{ | injl x ↔ injr x | injr x ↔ injl x }

• Two partial morphisms joined
• With compatible domains
• Which inverses have compatible domains

Operational semantics:

{ | injl x ↔ injr x | injr x ↔ injl x } (injr ⋆) −→ injl ⋆

2

Terms and types

(Value types) a, b ::= α | a ⊕ b | a ⊗ b
(Iso types) T ::= a ↔ b

(Values) v ::= cα | x | injl v | injr v | 〈v1, v2〉
(Functions) ω ::= { | v1 ↔ v′1 | . . . | vn ↔ v′n }
(Terms) t ::= v | ω t

{ | injl x ↔ injr x | injr x ↔ injl x }

• Two partial morphisms joined
• With compatible domains
• Which inverses have compatible domains

Operational semantics:

{ | injl x ↔ injr x | injr x ↔ injl x } (injr ⋆) −→ injl ⋆
2

Categorical model

Restriction and inverse category

Domain and partiality

Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse

Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility

Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos

Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.

f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.
a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse

Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility

Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos

Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse

Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility

Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos

Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse

Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility

Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos

Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.

a
b
c

a
b
c

h◦ :

Compatibility

Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos

Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility

Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos

Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos

Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos

Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos Partial order: f ≤ g : gf = f.

a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

Restriction and inverse category

Domain and partiality Restriction category: f 7→ f.
f ◦ f = f, f ◦ g = g ◦ f, f ◦ g = f ◦ g, h ◦ f = f ◦ h ◦ f.

a
b
c

a
b
c

h :
a
b
c

a
b
ch :

Partial inverse Inverse category: f 7→ f◦. f◦ ◦ f = f and f ◦ f◦ = f◦.
a
b
c

a
b
c

h◦ :

Compatibility Restriction compatible:
f ⌣ g : fg = gf, f ≍ g : f ⌣ g and f◦ ⌣ g◦.

a
b
c

a
b
c

f :
a
b
c

a
b
c

g :

Union of partial isos Partial order: f ≤ g : gf = f.
a
b
c

a
b
c

k :

Join:
∨

s∈S
s.

if s ≤ t, then s ≤
∨

s∈S
s,
∨

s∈S
s ≤ t,

∨
s∈S

s =
∨

s∈S
s,

f ◦
(∨

s∈S
s
)

=
∨

s∈S
fs,
(∨

s∈S
s
)

◦ g =
∨

s∈S
sg.

a
b
c

a
b
c

Id :

3

PId

Example
S a set. PIdS category with one object ∗ and morphisms Y ⊆ S.

• Composition: intersection
• Identity: S
• Restriction of Y: Y
• Partial inverse of Y: Y
• Join: union.

4

Denotational semantics

Terms and values

J∆K = Ja1K ⊗ · · · ⊗ JanK whenever ∆ .
= x1 : a1, . . . , xn : an.

J∆ ` injl v : a ⊕ bK .
= ιl ◦ f, whenever f = J∆ ` v : aK,

and similarly for the right-projection.

If f = J∆1 ` v1 : a1K and g = J∆2 ` v2 : a2K,J∆1,∆2 ` 〈v1, v2〉 : a1 ⊗ a2K .
= f ⊗ g.

5

Isos

An iso: { | v1 ↔ v′1 | . . . | vn ↔ v′n } : a ↔ b.

The situation:

∆i

a

b

vi

v′i

ω

What we’d like to build:

J∆iK
JaK

JbK

JviK◦

Jv′iK
JωK

Careful: this diagram does not commute!

6

Isos

An iso: { | v1 ↔ v′1 | . . . | vn ↔ v′n } : a ↔ b.

The situation:

∆i

a

b

vi

v′i

ω

What we’d like to build:

J∆iK
JaK

JbK

JviK◦

Jv′iK
JωK

Careful: this diagram does not commute!

6

Isos

An iso: { | v1 ↔ v′1 | . . . | vn ↔ v′n } : a ↔ b.

The situation:

∆i

a

b

vi

v′i

ω

What we’d like to build:

J∆iK
JaK

JbK

JviK◦

Jv′iK
JωK

Careful: this diagram does not commute!

6

Isos

Lemma
If v1 ⊥ v2 and v′1 ⊥ v′2, then Jv′1K ◦ Jv1K◦ � Jv′2K ◦ Jv2K◦.

The definition of isos in the language involves these orthogonalities, thus
all Jv′iK ◦ JviK◦ form a compatible set.

Definition

J`ω { | v1 ↔ v′1 | v2 ↔ v′2 . . . } : a ↔ bK = ∨
i

Jv′iK ◦ JviK◦ : JaK → JbK .

7

Isos

Lemma
If v1 ⊥ v2 and v′1 ⊥ v′2, then Jv′1K ◦ Jv1K◦ � Jv′2K ◦ Jv2K◦.

The definition of isos in the language involves these orthogonalities, thus
all Jv′iK ◦ JviK◦ form a compatible set.

Definition

J`ω { | v1 ↔ v′1 | v2 ↔ v′2 . . . } : a ↔ bK = ∨
i

Jv′iK ◦ JviK◦ : JaK → JbK .

7

Isos

Lemma
If v1 ⊥ v2 and v′1 ⊥ v′2, then Jv′1K ◦ Jv1K◦ � Jv′2K ◦ Jv2K◦.

The definition of isos in the language involves these orthogonalities, thus
all Jv′iK ◦ JviK◦ form a compatible set.

Definition

J`ω { | v1 ↔ v′1 | v2 ↔ v′2 . . . } : a ↔ bK = ∨
i

Jv′iK ◦ JviK◦ : JaK → JbK .

7

What we would like to have thus

The language is based is pattern-matching:

`ω { | v1 ↔ v′1 | v2 ↔ v′2 . . . }

decidable which pattern a term u fits.
It should also be in the denotational semantics:(

(Jv′1K ◦ Jv1K◦) ∨ (Jv′2K ◦ Jv2K◦)) ◦ JuK = Jv′iK ◦ JviK◦ ◦ JuK
for some i.

Usually, it relies on disjointness (⊕).

8

What we would like to have thus

The language is based is pattern-matching:

`ω { | v1 ↔ v′1 | v2 ↔ v′2 . . . }

decidable which pattern a term u fits.
It should also be in the denotational semantics:(

(Jv′1K ◦ Jv1K◦) ∨ (Jv′2K ◦ Jv2K◦)) ◦ JuK = Jv′iK ◦ JviK◦ ◦ JuK
for some i.
Usually, it relies on disjointness (⊕).

8

Pattern-matching and
consistency

The origin of consistency

In (f ∨ g)h, we want h to choose:

fh ∨ gh = fh or fh ∨ gh = gh

A join inverse category with this property will be called pattern-matching
category.

With disjointness (⊕), rather fh = 0 or gh = 0.
The idea: translate it as a notion of non decomposability, to have
fh ∨ gh not decomposable.
For this, we need h to be not decomposable either.
Consistency: for any morphism k, if h is non decomposable, so is kh.
A join inverse category with this property will be called consistent
category.

Consistency implies pattern-matching.

What about the other way around?

9

The origin of consistency

In (f ∨ g)h, we want h to choose:

fh ∨ gh = fh or fh ∨ gh = gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (⊕), rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have
fh ∨ gh not decomposable.
For this, we need h to be not decomposable either.
Consistency: for any morphism k, if h is non decomposable, so is kh.
A join inverse category with this property will be called consistent
category.

Consistency implies pattern-matching.

What about the other way around?

9

The origin of consistency

In (f ∨ g)h, we want h to choose:

fh ∨ gh = fh or fh ∨ gh = gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (⊕), rather fh = 0 or gh = 0.
The idea: translate it as a notion of non decomposability, to have
fh ∨ gh not decomposable.
For this, we need h to be not decomposable either.

Consistency: for any morphism k, if h is non decomposable, so is kh.
A join inverse category with this property will be called consistent
category.

Consistency implies pattern-matching.

What about the other way around?

9

The origin of consistency

In (f ∨ g)h, we want h to choose:

fh ∨ gh = fh or fh ∨ gh = gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (⊕), rather fh = 0 or gh = 0.
The idea: translate it as a notion of non decomposability, to have
fh ∨ gh not decomposable.
For this, we need h to be not decomposable either.
Consistency: for any morphism k, if h is non decomposable, so is kh.
A join inverse category with this property will be called consistent
category.

Consistency implies pattern-matching.

What about the other way around?

9

The origin of consistency

In (f ∨ g)h, we want h to choose:

fh ∨ gh = fh or fh ∨ gh = gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (⊕), rather fh = 0 or gh = 0.
The idea: translate it as a notion of non decomposability, to have
fh ∨ gh not decomposable.
For this, we need h to be not decomposable either.
Consistency: for any morphism k, if h is non decomposable, so is kh.
A join inverse category with this property will be called consistent
category.

Consistency implies pattern-matching.

What about the other way around?

9

The origin of consistency

In (f ∨ g)h, we want h to choose:

fh ∨ gh = fh or fh ∨ gh = gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (⊕), rather fh = 0 or gh = 0.
The idea: translate it as a notion of non decomposability, to have
fh ∨ gh not decomposable.
For this, we need h to be not decomposable either.
Consistency: for any morphism k, if h is non decomposable, so is kh.
A join inverse category with this property will be called consistent
category.

Consistency implies pattern-matching.

What about the other way around?
9

The different kinds

Definition (Strongly non decomposable)

m0

Thus m = u ∨ v ⇒ u = 0 or v = 0

Definition (Linearly non decomposable)

mf0 . . .

Thus m = u ∨ v ⇒ u ≤ v or v ≤ u

Definition (Weakly non decomposable)

mf

g

h
0

Thus m = u ∨ v ⇒ u = m or v = m

strongly ⇒ linearly ⇒ weakly

10

The different kinds

Definition (Strongly non decomposable)

m0

Thus m = u ∨ v ⇒ u = 0 or v = 0

Definition (Linearly non decomposable)

mf0 . . .

Thus m = u ∨ v ⇒ u ≤ v or v ≤ u

Definition (Weakly non decomposable)

mf

g

h
0

Thus m = u ∨ v ⇒ u = m or v = m

strongly ⇒ linearly ⇒ weakly

10

The different kinds

Definition (Strongly non decomposable)

m0

Thus m = u ∨ v ⇒ u = 0 or v = 0

Definition (Linearly non decomposable)

mf0 . . .

Thus m = u ∨ v ⇒ u ≤ v or v ≤ u

Definition (Weakly non decomposable)

mf

g

h
0

Thus m = u ∨ v ⇒ u = m or v = m

strongly ⇒ linearly ⇒ weakly

10

The different kinds

Definition (Strongly non decomposable)

m0

Thus m = u ∨ v ⇒ u = 0 or v = 0

Definition (Linearly non decomposable)

mf0 . . .

Thus m = u ∨ v ⇒ u ≤ v or v ≤ u

Definition (Weakly non decomposable)

mf

g

h
0

Thus m = u ∨ v ⇒ u = m or v = m

strongly ⇒ linearly ⇒ weakly 10

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem
A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

This allows to not rely on a disjointness (⊕) structure.
And to use a category like PIdS as a sound and adequate denotation.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem
A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

This allows to not rely on a disjointness (⊕) structure.
And to use a category like PIdS as a sound and adequate denotation.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem
A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

This allows to not rely on a disjointness (⊕) structure.
And to use a category like PIdS as a sound and adequate denotation.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem
A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

This allows to not rely on a disjointness (⊕) structure.
And to use a category like PIdS as a sound and adequate denotation.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem
A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

This allows to not rely on a disjointness (⊕) structure.
And to use a category like PIdS as a sound and adequate denotation.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem
A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

This allows to not rely on a disjointness (⊕) structure.
And to use a category like PIdS as a sound and adequate denotation.

11

Going further

Recursion
C a join inverse category.
For any A, B objects of C, HomC(A,B) is a DCPO.

Quantum programming language
Patterns are vectors in a basis of a Hilbert space.
Work in progress.

12

Thank you

	Reversible programming
	Categorical model
	Denotational semantics
	Pattern-matching and consistency
	Thank you

