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Reversibility

= Reversible computation: only apply bijections.
= Application in low-consumption hardware !.

= Application in quantum computing, where operations (except

measurement) are reversible.
What we are focusing on today:

= Reversible programming language

= Detailed denotational semantics
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Terms and types

(Value types) a,b a | adb | a®b

(Iso types) T = a+b

(Values) v &= ¢ | x| inj,v | inj,v | (v, v)
(Functions) w o= {|lwvuevo | e}
(Terms) t o= v | wt

{ | inj, x4 inj, x| inj, x <> inj, x }

= Two partial morphisms joined
= With compatible domains
= Which inverses have compatible domains

Operational semantics:

{ | inj, x> inj, x| inj, x<> inj, x } (inj, *) — inj, *
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Example

S a set. Plds category with one object % and morphisms Y C S.

= Composition: intersection
= |dentity: S

= Restriction of Y: Y

= Partial inverse of Y: Y

= Join: union.
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Terms and values

[A] = [a1] ® - - - @ [an] whenever A = x1 = a1,..., %, an.

[AF inj, v:a® b] =i of, whenever f=[AF v: a],
and similarly for the right-projection.

If f= [[Al H vy al]] and 8= [[AQ = Vo ! 32]},
[[Al,A2 = <V1, V2> a1 ® 82]] =f® 8.
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Aniso: { | iV |...| vp> V, }1a< b

The situation:

a/\<

What we'd like to build:
o _[a

[A] [w]

%A [5]

Careful: this diagram does not commute!
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The definition of isos in the language involves these orthogonalities, thus
all [V]] o [vi]° form a compatible set.

Definition

Fo{ | i V| e v ... }:a<—>b]]:\/[[\/,-]]0[[v,-]]o:[[a]]—>[[bﬂ.

i
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It should also be in the denotational semantics:

(Vi1 o [val®) v ([vaD © [val®)) o [l = [V] © [vi]® o [u]

for some .

Usually, it relies on disjointness (&).
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The origin of consistency

In (fV g)h, we want h to choose:

fh\V gh = fthor fh\V gh= gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (), rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have

fh VvV gh not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism k, if h is non decomposable, so is kh.

A join inverse category with this property will be called consistent
category.

Consistency implies pattern-matching.

What about the other way around?
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The different kinds

Definition (Strongly non decomposable)
0—m
Thus m=uVv=u=0o0rv=20
Definition (Linearly non decomposable)
0—-— f—m
Thus m=uVv=u<vorv<u

Definition (Weakly non decomposable)

g
PN
0 f—m
\h/

Thus m=uVv=u=morv=m

strongly = linearly = weakly 10
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Going further

Recursion

C a join inverse category.
For any A, B objects of C, Hom¢(A, B) is a DCPO.

Quantum programming language
Patterns are vectors in a basis of a Hilbert space.
Work in progress.

12
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