Categorical Semantics of Reversible
Pattern-Matching

Louis Lemonnier, Benoit Valiron, Kostia Chardonnet

°
7 Laboratoire
Méthodes
C\"‘uaCS Formelles

November 4th, 2021

SCALP 2021

Reversible programming

Reversibility

= Reversible computation: only apply bijections.

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183-191,
doi:10.1147/rd.53.0183.

Reversibility

= Reversible computation: only apply bijections.

= Application in low-consumption hardware !.

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183-191,
doi:10.1147/rd.53.0183.

Reversibility

= Reversible computation: only apply bijections.

= Application in low-consumption hardware !.

= Application in quantum computing, where operations (except

measurement) are reversible.

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183-191,
doi:10.1147/rd.53.0183.

Reversibility

= Reversible computation: only apply bijections.
= Application in low-consumption hardware !.

= Application in quantum computing, where operations (except

measurement) are reversible.

What we are focusing on today:

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183-191,
doi:10.1147/rd.53.0183.

Reversibility

= Reversible computation: only apply bijections.
= Application in low-consumption hardware !.

= Application in quantum computing, where operations (except

measurement) are reversible.
What we are focusing on today:

= Reversible programming language

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183-191,
doi:10.1147/rd.53.0183.

Reversibility

= Reversible computation: only apply bijections.
= Application in low-consumption hardware !.

= Application in quantum computing, where operations (except

measurement) are reversible.
What we are focusing on today:

= Reversible programming language

= Detailed denotational semantics

1Rolf Landauer (1961): Irreversibility and Heat Generation in the Computing Process.
IBM Journal of Research and Development. 5(3), pp. 183-191,
doi:10.1147/rd.53.0183.

Terms and types

(Value types) a,b a | adb | a®b

(Iso types) T == a+b

(Values) v &= ¢ | x| inj,v | inj,v | (v, v)
(Functions) w o= {|lwvuevo | e}
(Terms) t o= v | wt

Terms and types

(Value types) a,b == «a | a®db | a®b

(Iso types) T == a+b

(Values) v &= ¢ | x| inj,v | inj,v | (v, v)
(Functions) w o= {|lwvuevo | e}
(Terms) t o= v | wt

inj, x<4> inj, x| inj, x> inj, x
J/ Jr Jr J/

Terms and types

a | adb | a®b

(Value types) a,b

(Iso types) T == a+b

(Values) v &= ¢ | x| inj,v | inj,v | (v, v)
(Functions) w o= {|lwvuevo | e}
(Terms) t o= v | wt

{ | inj, x4 inj, x| inj, x <> inj, x }

= Two partial morphisms joined

Terms and types

a | adb | a®b

(Value types) a,b

(Iso types) T == a+b

(Values) v &= ¢ | x| inj,v | inj,v | (v, v)
(Functions) w o= {|lwvuevo | e}
(Terms) t o= v | wt

inj, x<4> inj, x| inj, x> inj, x
J/ Jr Jr J/

= Two partial morphisms joined
= With compatible domains

Terms and types

a | adb | a®b

(Value types) a,b

(Iso types) T == a+b

(Values) v &= ¢ | x| inj,v | inj,v | (v, v)
(Functions) w o= {|lwvuevo | e}
(Terms) t o= v | wt

{ | inj, x4 inj, x| inj, x <> inj, x }

= Two partial morphisms joined
= With compatible domains
= Which inverses have compatible domains

Terms and types

(Value types) a,b a | adb | a®b

(Iso types) T = a+b

(Values) v &= ¢ | x| inj,v | inj,v | (v, v)
(Functions) w o= {|lwvuevo | e}
(Terms) t o= v | wt

{ | inj, x4 inj, x| inj, x <> inj, x }

= Two partial morphisms joined
= With compatible domains
= Which inverses have compatible domains

Operational semantics:

{ | inj, x> inj, x| inj, x<> inj, x } (inj, *) — inj, *

Categorical model

Restriction and inverse category

Domain and partiality

Partial inverse

Compatibility

Union of partial isos

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.

Partial inverse

Compatibility

Union of partial isos

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.
fof=f, fog=gof, fog=~fog hof=fohof

Partial inverse

Compatibility

Union of partial isos

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.
fof=f, fog=gof, fog=~fog hof=fohof

a a a — a
h: b\b h: b— b
C\C h: z

[}

Partial inverse

Compatibility

Union of partial isos

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.

fof=f, ?OE go;‘ fog="fog hof=fohof

a —— a
h: b Ny h: b —> b
\ h 2
Partial inverse

Inverse category f|—> . Pof= fand fof =P.

Compatibility

Union of partial isos

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.

fof=f, fog=gof, fog=~fog hof=fohof

a a a —— a
h: b> b h: b—> b
(o} \ (o} h c (o}
Partial inverse

Inverse category: fi— f°. fPof=Ffand f

Compatibility

Union of partial isos

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.

fof=f, fog=gof, fog=~fog hof=fohof

a a a — a
: > b h: b b
h [c) ™~ c g c f) @ o
Partial inverse Inverse category: fi— f°. fof=Ffand fof =P,
a / a
he: b b
c — c
Compatibility Restriction compatible:

f—g:fg=gf f<g:f—gand — g°.

Union of partial isos

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.

fof=f, fog=gof, fog=~fog hof=fohof

a a a — a
h: b > b h: b b
¢ > ¢ h c f) c o
Partial inverse Inverse category: fi— f°. fof=Ffand fof =P,
a / a
R b b
c — c
Compatibility Restriction compatible:
f—g:fg=gf f<g:f—gand — g°.
a — a a a
f: b— b g b— b
C C c —> C

Union of partial isos

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.
fof=f, fog=gof, fog=~fog hof=fohof

a a a — a
h: b > b h: b b
¢ >~ ¢ h: c f) c o
Partial inverse Inverse category: fi— f°. fof=Ffand fof =P,
a / a
R b b
c — c
Compatibility Restriction compatible:
f—g:fg=gf f<g:f—gand — g°.
a — a a a
f: b— b g b— b
@ G B @ — @
Union of partial isos Partial order: f< g:gf=*

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.
fof=f, fog=gof, fog=~fog hof=fohof

a a a — a
h: b > b h: b b
¢ >~ ¢ h: c f) c o
Partial inverse Inverse category: fi— f°. fof=Ffand fof =P,
a / a
R b b
c — c
Compatibility Restriction compatible:
f—g:fg=gf f<g:f—gand — g°.
a — a a a
f: b— b g b— b
@ G B @ — @
Union of partial isos Partial order: f< g:gf=*
a —— a
k: b b
C (o}

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.
fof=f, fog=gof, fog=~fog hof=fohof

a a a — a
h: b>b h: b— b
¢ >~ ¢ h: c < o
Partial inverse Inverse category: fi— f°. fof=Ffand fof =P,
a / a
b b
c — c
Compatibility Restriction compatible:
f—g:fg=gf f<g:f—gand — g°.
a — a a a
f: b — b g8 b—b
@ G B @ — @
Union of partial isos Partial order: f< g:gf=*
a —— a
k: b b
C (o}
Join: \/ s.
seS
ifs<tthens< \Vs \Vs<t \/s=Vs5
s€S seS seS seS

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.
fof=f, fog=gof, fog=~fog hof=fohof

a a a — a
h: b>b h: b b
¢ >~ ¢ h: c f) c o
Partial inverse Inverse category: fi— f°. fof=Ffand fof =P,
1
hO
c — c
Compatibility Restriction compatible:
f—g:fg=gf f<g:f—gand — g°.
a — a a a
f: b — b g8 b—b
@ G B @ — @
Union of partial isos Partial order: f< g:gf=*
a —— a
k: b b
C (o}
Join: \/ s.
seS
ifs<tthens< \Vs \Vs<t \/s=Vs5
s€S seS seS seS
fol Vs|=Vfs|Vs|og=1V sg
s€S seS seS seS

Restriction and inverse category

Domain and partiality ~ Restriction category: fr f.
fof=f, fog=gof, fog=~fog hof=fohof

a a a — a
h: b>b h: b— b
¢ >~ ¢ h: c < o
Partial inverse Inverse category: fi— f°. fof=Ffand fof =P,
a / a
b b
c — c
Compatibility Restriction compatible:
f—g:fg=gf f<g:f—gand — g°.
a — a a a
f: b — b g8 b—b
@ G B @ — @
Union of partial isos Partial order: f< g:gf=*
a —— a
k: b b
C (o}
Join: \/ s.
seS
ifs<tthens< \Vs \Vs<t \/s=Vs5
s€S seS seS seS
fol Vs|=Vfs|Vs|og=1V sg
s€S seS seS seS
a —
Id: b— b
€ —o ©

Example

S a set. Plds category with one object % and morphisms Y C S.

= Composition: intersection
= |dentity: S

= Restriction of Y: Y

= Partial inverse of Y: Y

= Join: union.

Denotational semantics

Terms and values

[A] = [a1] ® - - - @ [an] whenever A = x1 = a1,..., %, an.

[AF inj, v:a® b] =i of, whenever f=[AF v: a],
and similarly for the right-projection.

If f= [[Al H vy al]] and 8= [[AQ = Vo ! 32]},
[[Al,A2 = <V1, V2> a1 ® 82]] =f® 8.

Aniso: { | iV |...| vp> V, }1a< b

Aniso: { | iV |...| vp> V, }1a< b

The situation:

Aniso: { | iV |...| vp> V, }1a< b

The situation:

a/\<

What we'd like to build:
o _[a

[A] [w]

%A [5]

Careful: this diagram does not commute!

Lemma
If Vi 1 V2 and \/1 1 \/2, then [[\/1]] [¢] [[Vl]]o = [[\/2ﬂ (] [[V2]]o.

Lemma
If Vi 1 V2 and \/1 1 \/2, then [[\/1]] [¢] [[Vl]]o = [[\/2ﬂ (] [[V2]]o.

The definition of isos in the language involves these orthogonalities, thus
all [V]] o [vi]° form a compatible set.

Lemma
If Vi 1 V2 and \/1 1 \/2, then [[\/1]] [¢] [[Vl]]o = [[\/2ﬂ (] [[V2]]o.

The definition of isos in the language involves these orthogonalities, thus
all [V]] o [vi]° form a compatible set.

Definition

Fo{ | i V| e v ... }:a<—>b]]:\/[[\/,-]]0[[v,-]]o:[[a]]—>[[bﬂ.

i

What we would like to have thus

The language is based is pattern-matching:

}_w{ | V1<_>‘/1‘ V2<—>\/2...}

decidable which pattern a term u fits.
It should also be in the denotational semantics:

(Vi1 o [val®) v ([vaD © [val®)) o [l = [V] © [vi]® o [u]

for some .

What we would like to have thus

The language is based is pattern-matching:
}_w{ | V1<_>\/1‘ V2<—>\/2 }

decidable which pattern a term u fits.
It should also be in the denotational semantics:

(Vi1 o [val®) v ([vaD © [val®)) o [l = [V] © [vi]® o [u]

for some .

Usually, it relies on disjointness (&).

Pattern-matching and
consistency

The origin of consistency

In (fV g)h, we want h to choose:

fh\V gh = fthor fh\V gh= gh

A join inverse category with this property will be called pattern-matching
category.

The origin of consistency

In (fV g)h, we want h to choose:

fh\V gh = fthor fh\V gh= gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (), rather fh = 0 or gh = 0.

The origin of consistency

In (fV g)h, we want h to choose:

fh\V gh = fthor fh\V gh= gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (), rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have

fh VvV gh not decomposable.

For this, we need h to be not decomposable either.

The origin of consistency

In (fV g)h, we want h to choose:

fh\V gh = fthor fh\V gh= gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (), rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have

fh VvV gh not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism k, if h is non decomposable, so is kh.

A join inverse category with this property will be called consistent
category.

The origin of consistency

In (fV g)h, we want h to choose:

fh\V gh = fthor fh\V gh= gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (), rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have

fh VvV gh not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism k, if h is non decomposable, so is kh.

A join inverse category with this property will be called consistent
category.

Consistency implies pattern-matching.

The origin of consistency

In (fV g)h, we want h to choose:

fh\V gh = fthor fh\V gh= gh

A join inverse category with this property will be called pattern-matching
category. With disjointness (), rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have

fh VvV gh not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism k, if h is non decomposable, so is kh.

A join inverse category with this property will be called consistent
category.

Consistency implies pattern-matching.

What about the other way around?

The different kinds

Definition (Strongly non decomposable)
0—m

Thus m=uVv=u=00rv=0

10

The different kinds

Definition (Strongly non decomposable)
0—m
Thus m=uVv=u=00rv=0

Definition (Linearly non decomposable)

Thus m=uVv=u<vorv<u

10

The different kinds

Definition (Strongly non decomposable)
0—m
Thus m=uVv=u=0o0rv=20
Definition (Linearly non decomposable)
0—-— f—m
Thus m=uVv=u<vorv<u

Definition (Weakly non decomposable)

g
PN
0 f—m
\h/

Thus m=uVv=u=morv=m

10

The different kinds

Definition (Strongly non decomposable)
0—m
Thus m=uVv=u=0o0rv=20
Definition (Linearly non decomposable)
0—-— f—m
Thus m=uVv=u<vorv<u

Definition (Weakly non decomposable)

g
PN
0 f—m
\h/

Thus m=uVv=u=morv=m

strongly = linearly = weakly 10

The results

Theorem

A weakly pattern-matching category is weakly consistent.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

This allows to not rely on a disjointness (®) structure.
And to use a category like Plds as a sound and adequate denotation.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

This allows to not rely on a disjointness (®) structure.
And to use a category like Plds as a sound and adequate denotation.

11

The results

Theorem
A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem
A join inverse category is linearly consistent.

This allows to not rely on a disjointness (®) structure.
And to use a category like Plds as a sound and adequate denotation.

11

Going further

Recursion

C a join inverse category.
For any A, B objects of C, Hom¢(A, B) is a DCPO.

Quantum programming language
Patterns are vectors in a basis of a Hilbert space.
Work in progress.

12

Thank you

	Reversible programming
	Categorical model
	Denotational semantics
	Pattern-matching and consistency
	Thank you

