Categorical Semantics of Reversible Pattern-Matching

Louis Lemonnier, Benoît Valiron, Kostia Chardonnet

November 4th, 2021

SCALP 2021

Reversible programming

• Reversible computation: only apply bijections.

 $^{^1} Rolf$ Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.

 $^{^1\}text{Rolf}$ Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.
- Application in quantum computing, where operations (except measurement) are reversible.

 $^{^1\}text{Rolf}$ Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.
- Application in quantum computing, where operations (except measurement) are reversible.

What we are focusing on today:

 $^{^1\}text{Rolf}$ Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.
- Application in quantum computing, where operations (except measurement) are reversible.

What we are focusing on today:

• Reversible programming language

 $^{^1\}text{Rolf}$ Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

- Reversible computation: only apply bijections.
- Application in low-consumption hardware ¹.
- Application in quantum computing, where operations (except measurement) are reversible.

What we are focusing on today:

- Reversible programming language
- Detailed denotational semantics

 $^{^1\}text{Rolf}$ Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development. 5(3), pp. 183–191, doi:10.1147/rd.53.0183.

2

```
\begin{array}{lll} \text{(Value types)} & \textit{a}, \textit{b} & ::= & \alpha \mid \textit{a} \oplus \textit{b} \mid \textit{a} \otimes \textit{b} \\ \text{(Iso types)} & \textit{T} & ::= & \textit{a} \leftrightarrow \textit{b} \\ \\ \text{(Values)} & \textit{v} & ::= & \textit{c}_{\alpha} \mid \textit{x} \mid \text{inj}_{\textit{l}} \textit{v} \mid \text{inj}_{\textit{r}} \textit{v} \mid \langle \textit{v}_{1}, \textit{v}_{2} \rangle \\ \text{(Functions)} & \omega & ::= & \left\{ \mid \textit{v}_{1} \leftrightarrow \textit{v}_{1} \mid \ldots \mid \textit{v}_{n} \leftrightarrow \textit{v}_{n} \right. \right\} \\ \text{(Terms)} & \textit{t} & ::= & \textit{v} \mid \omega \textit{t} \\ \\ & \left\{ \mid \text{inj}_{\textit{l}} \textit{x} \leftrightarrow \text{inj}_{\textit{r}} \textit{x} \mid \text{inj}_{\textit{r}} \textit{x} \leftrightarrow \text{inj}_{\textit{l}} \textit{x} \right. \right\} \end{array}
```

```
\begin{array}{lll} \text{(Value types)} & \textit{a,b} & ::= & \alpha \mid \textit{a} \oplus \textit{b} \mid \textit{a} \otimes \textit{b} \\ \\ \text{(Iso types)} & \textit{T} & ::= & \textit{a} \leftrightarrow \textit{b} \\ \\ \text{(Values)} & \textit{v} & ::= & \textit{c}_{\alpha} \mid \textit{x} \mid \text{inj}_{\textit{I}} \textit{v} \mid \text{inj}_{\textit{r}} \textit{v} \mid \langle \textit{v}_{1}, \textit{v}_{2} \rangle \\ \\ \text{(Functions)} & \omega & ::= & \left\{ \mid \textit{v}_{1} \leftrightarrow \textit{v}_{1}' \mid \ldots \mid \textit{v}_{n} \leftrightarrow \textit{v}_{n}' \right\} \\ \\ \text{(Terms)} & \textit{t} & ::= & \textit{v} \mid \omega \textit{t} \\ \\ & \left\{ \mid \text{inj}_{\textit{I}} \textit{x} \leftrightarrow \text{inj}_{\textit{r}} \textit{x} \mid \text{inj}_{\textit{r}} \textit{x} \leftrightarrow \text{inj}_{\textit{I}} \textit{x} \right\} \end{array}
```

Two partial morphisms joined

```
\begin{array}{llll} \text{(Value types)} & \textit{a,b} & ::= & \alpha \mid \textit{a} \oplus \textit{b} \mid \textit{a} \otimes \textit{b} \\ \text{(Iso types)} & \textit{T} & ::= & \textit{a} \leftrightarrow \textit{b} \\ \\ \text{(Values)} & \textit{v} & ::= & \textit{c}_{\alpha} \mid \textit{x} \mid \text{inj}_{\textit{I}} \textit{v} \mid \text{inj}_{\textit{r}} \textit{v} \mid \langle \textit{v}_{1}, \textit{v}_{2} \rangle \\ \text{(Functions)} & \omega & ::= & \left\{ \mid \textit{v}_{1} \leftrightarrow \textit{v}_{1}' \mid \ldots \mid \textit{v}_{n} \leftrightarrow \textit{v}_{n}' \right\} \\ \text{(Terms)} & \textit{t} & ::= & \textit{v} \mid \omega \textit{t} \\ \\ & \left\{ \mid \text{inj}_{\textit{I}} \textit{x} \leftrightarrow \text{inj}_{\textit{r}} \textit{x} \mid \text{inj}_{\textit{r}} \textit{x} \leftrightarrow \text{inj}_{\textit{I}} \textit{x} \right\} \end{array}
```

- Two partial morphisms joined
- With compatible domains

```
\begin{array}{llll} \text{(Value types)} & \textit{a}, \textit{b} & ::= & \alpha \mid \textit{a} \oplus \textit{b} \mid \textit{a} \otimes \textit{b} \\ \text{(Iso types)} & \textit{T} & ::= & \textit{a} \leftrightarrow \textit{b} \\ \\ \text{(Values)} & \textit{v} & ::= & \textit{c}_{\alpha} \mid \textit{x} \mid \text{inj}_{\textit{l}} \textit{v} \mid \text{inj}_{\textit{r}} \textit{v} \mid \langle \textit{v}_{1}, \textit{v}_{2} \rangle \\ \text{(Functions)} & \omega & ::= & \left\{ \mid \textit{v}_{1} \leftrightarrow \textit{v}_{1}' \mid \ldots \mid \textit{v}_{n} \leftrightarrow \textit{v}_{n}' \right\} \\ \text{(Terms)} & \textit{t} & ::= & \textit{v} \mid \omega \textit{t} \\ \\ & \left\{ \mid \text{inj}_{\textit{l}} \textit{x} \leftrightarrow \text{inj}_{\textit{r}} \textit{x} \mid \text{inj}_{\textit{r}} \textit{x} \leftrightarrow \text{inj}_{\textit{l}} \textit{x} \right\} \end{array}
```

- Two partial morphisms joined
- With compatible domains
- Which inverses have compatible domains

```
\begin{array}{llll} \text{(Value types)} & \textit{a}, \textit{b} & ::= & \alpha \mid \textit{a} \oplus \textit{b} \mid \textit{a} \otimes \textit{b} \\ \text{(Iso types)} & \textit{T} & ::= & \textit{a} \leftrightarrow \textit{b} \\ \\ \text{(Values)} & \textit{v} & ::= & \textit{c}_{\alpha} \mid \textit{x} \mid \text{inj}_{\textit{I}} \textit{v} \mid \text{inj}_{\textit{r}} \textit{v} \mid \langle \textit{v}_{1}, \textit{v}_{2} \rangle \\ \text{(Functions)} & \omega & ::= & \{ \mid \textit{v}_{1} \leftrightarrow \textit{v}_{1} \mid \ldots \mid \textit{v}_{n} \leftrightarrow \textit{v}_{n} \} \\ \text{(Terms)} & \textit{t} & ::= & \textit{v} \mid \omega \textit{t} \\ \\ & \{ \mid \text{inj}_{\textit{I}} \textit{x} \leftrightarrow \text{inj}_{\textit{r}} \textit{x} \mid \text{inj}_{\textit{r}} \textit{x} \leftrightarrow \text{inj}_{\textit{I}} \textit{x} \} \\ \end{array}
```

- Two partial morphisms joined
- With compatible domains
- Which inverses have compatible domains

Operational semantics:

```
\{ | \operatorname{inj}_{l} X \leftrightarrow \operatorname{inj}_{r} X | \operatorname{inj}_{r} X \leftrightarrow \operatorname{inj}_{l} X \} (\operatorname{inj}_{r} \star) \longrightarrow \operatorname{inj}_{l} \star \}
```

2

Categorical model

Domain and partiality

Partial inverse

Compatibility

Domain and partiality Restriction category: $f \mapsto \bar{f}$.

Partial inverse

Compatibility

Domain and partiality

Restriction category: $f \mapsto \overline{f}$.

$$f\circ \bar{f}=f,\ \bar{f}\circ \overline{g}=\overline{g}\circ \bar{f},\ \overline{f\circ \overline{g}}=\bar{f}\circ \overline{g},\ \overline{h}\circ f=f\circ \overline{h\circ f}.$$

Partial inverse

Compatibility

Domain and partiality

Restriction category: $f \mapsto \bar{f}$.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f \circ g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h \circ f}$.
 $h : \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} a \\ \overline{h} : \begin{array}{c} b \\ c \end{array} \begin{array}{c} b \\ c \end{array} \begin{array}{c} b \\ c \end{array}$

Partial inverse

Compatibility

Union of partial isos

3

Domain and partiality Restriction category: $f \mapsto \overline{f}$.

$$f \circ \overline{f} = f, \ \overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}, \ \overline{f \circ \overline{g}} = \overline{f} \circ \overline{g}, \ \overline{h} \circ f = f \circ \overline{h \circ f}.$$

Partial inverse linear linear Partial inverse category: $f \mapsto f'$. $f' \circ f = \overline{f}$ and $f \circ f' = \overline{f'}$.

Compatibility

Domain and partiality Restriction category: $f \mapsto \overline{f}$.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$.

Partial inverse linear larger larger

 $h^{\circ}: \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} a \\ b \\ c \end{array}$

Compatibility

Domain and partiality Restriction category: $f \mapsto \overline{f}$.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f \circ g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$.

$$h: \begin{array}{ccc} a & \xrightarrow{a} & \xrightarrow{b} & \overline{h}: \begin{array}{ccc} a & \longrightarrow & a \\ b & \longrightarrow & b \\ c & & c \end{array}$$

Partial inverse linear eategory: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f}^{\circ}$.

$$h^{\circ}: \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} a \\ b \\ c \end{array}$$

Compatibility Restriction compatible:

$$f \smile g : f\overline{g} = g\overline{f}, f \asymp g : f \smile g \text{ and } f^{\circ} \smile g^{\circ}.$$

Domain and partiality Restriction category: $f \mapsto f$.

Partial inverse linear larger larger

$$h^{\circ}: \stackrel{a}{b} \stackrel{a}{\nearrow} \stackrel{a}{b} \stackrel{b}{c}$$

Compatibility Restriction compatible:

$$f \smile g : f\overline{g} = g\overline{f}, f \asymp g : f \smile g \text{ and } f^{\circ} \smile g^{\circ}.$$
 $f : \begin{array}{c} a \longrightarrow a \\ b \longrightarrow b \\ c \longrightarrow c \end{array}$
 $g : \begin{array}{c} a \longrightarrow a \\ b \longrightarrow b \\ c \longrightarrow c \end{array}$

Domain and partiality Restriction category: $f \mapsto f$.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$.

Partial inverse linear larger Partial inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f}^{\circ}$.

$$h^{\circ}: \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} a \\ b \\ c \end{array}$$

Compatibility Restriction compatible:

$$f \smile g : f\overline{g} = g\overline{f}, f \asymp g : f \smile g \text{ and } f^{\circ} \smile g^{\circ}.$$

Union of partial isos Partial order: $f \le g : g\bar{f} = f$.

Domain and partiality Restriction category: $f \mapsto f$.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$.

$$h: \begin{array}{ccc} a & \xrightarrow{a} & \xrightarrow{b} & \overline{h}: \begin{array}{ccc} b & \xrightarrow{a} & \xrightarrow{a} \\ c & \xrightarrow{c} & \end{array}$$

Inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$. Partial inverse

$$h^{\circ}: \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} a \\ b \\ c \end{array}$$

Compatibility Restriction compatible:

$$f \smile g : f\overline{g} = g\overline{f}, f \asymp g : f \smile g \text{ and } f^{\circ} \smile g^{\circ}.$$

$$g: \begin{array}{ccc} a & & \\ b & \longrightarrow & \\ c & \longrightarrow & \end{array}$$

Partial order: $f \le g : g\bar{f} = f$. Union of partial isos

$$k: \begin{array}{ccc} a & \longrightarrow & a \\ b & & b \\ c & & c \end{array}$$

Domain and partiality Restriction category:
$$f \mapsto f$$
.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$.

 $h : \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} a \\ \overline{h} : \begin{array}{c} b \\ c \end{array} \begin{array}{c} a \\ \overline{h} : \begin{array}{c} b \\ c \end{array} \begin{array}{c} a \\ \overline{h} : \begin{array}{c} a \\ c \end{array} \begin{array}{c} a \\ \overline{h} : \begin{array}{c} a \\ c \end{array} \begin{array}{c} a \\ \overline{h} : \begin{array}{c} a \\ \overline{h} : \end{array} \begin{array}{c} a \\ \overline{h} : \begin{array}{c} a \\ \overline{h} : \end{array} \begin{array}{c} a \\ \overline{h} : \end{array} \begin{array}{c} a \\ \overline{h} : \begin{array}{c} a \\ \overline{h} : \end{array} \begin{array}{c} a \\$

$$h^{\circ}: \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} a \\ b \\ c \end{array}$$

Partial order:
$$f \le g : g\bar{f} = f$$
.

$$k: \begin{array}{ccc} a \longrightarrow a \\ b & b \\ c & c \end{array}$$

Join:
$$\bigvee_{s \in S} s$$
.

$$\text{if } s \leq t \text{, then } s \leq \bigvee_{s \in S} s, \bigvee_{s \in S} s \leq t, \overline{\bigvee_{s \in S} s} = \bigvee_{s \in S} \bar{s},$$

Domain and partiality Restriction category:
$$f \mapsto f$$
.

Inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f}^{\circ}$.

$$h^{\circ}: \begin{array}{c} a \\ b \\ c \end{array} \begin{array}{c} a \\ b \\ c \end{array}$$

Union of partial isos

Partial order: $f \le g : g\bar{f} = f$.

$$k: \begin{array}{ccc} a \longrightarrow a \\ b & b \\ c & c \end{array}$$

Join:
$$\bigvee_{s \in S} s$$
.

if
$$s \le t$$
, then $s \le \bigvee_{s \in S} s, \bigvee_{s \in S} s \le t, \overline{\bigvee_{s \in S} s} = \bigvee_{s \in S} \bar{s}$,

$$f \circ \left(\bigvee_{s \in S} s\right) = \bigvee_{s \in S} fs, \left(\bigvee_{s \in S} s\right) \circ g = \bigvee_{s \in S} sg.$$

Domain and partiality Restriction category: $f \mapsto f$.

$$f \circ \overline{f} = f$$
, $\overline{f} \circ \overline{g} = \overline{g} \circ \overline{f}$, $\overline{f} \circ \overline{g} = \overline{f} \circ \overline{g}$, $\overline{h} \circ f = f \circ \overline{h} \circ \overline{f}$.

 $h : \begin{array}{c} a \\ b \\ \end{array} \begin{array}{c} a \\ b \\ \end{array} \begin{array}{c} a \\ \overline{h} : \begin{array}{c} b \\ \end{array} \begin{array}{c} a \\ \end{array} \begin{array}{c} a \\ \longrightarrow b \\ \end{array} \begin{array}{c} a \\ \longrightarrow b \end{array}$

Inverse category: $f \mapsto f^{\circ}$. $f^{\circ} \circ f = \overline{f}$ and $f \circ f^{\circ} = \overline{f^{\circ}}$. Partial inverse

$$h^{\circ}: \stackrel{a}{b} \stackrel{a}{\nearrow} \stackrel{a}{b}$$

Compatibility Restriction compatible:

Union of partial isos

Partial order: $f \le g : g\bar{f} = f$.

$$k: \begin{array}{ccc} a & \longrightarrow & a \\ b & & b \\ c & & c \end{array}$$

Join:
$$\bigvee_{s \in S} s$$
.

$$\text{if } s \leq t \text{, then } s \leq \bigvee_{s \in S} s, \bigvee_{s \in S} s \leq t, \overline{\bigvee_{s \in S} s} = \bigvee_{s \in S} \overline{s},$$

$$f \circ \left(\bigvee_{s \in S} s\right) = \bigvee_{s \in S} fs, \left(\bigvee_{s \in S} s\right) \circ g = \bigvee_{s \in S} sg.$$

$$Id : b \longrightarrow b$$

$$Id: \begin{array}{c} a \longrightarrow a \\ b \longrightarrow b \\ c \longrightarrow c \end{array}$$

Example

S a set. PId_S category with one object * and morphisms $Y \subseteq S$.

- Composition: intersection
- Identity: *S*
- Restriction of Y: Y
- Partial inverse of Y: Y
- Join: union.

Denotational semantics

Terms and values

$$\llbracket \Delta \rrbracket = \llbracket a_1 \rrbracket \otimes \cdots \otimes \llbracket a_n \rrbracket$$
 whenever $\Delta \doteq x_1 : a_1, \ldots, x_n : a_n$.

 $[\![\Delta \vdash \mathtt{inj}_I \ v : a \oplus b]\!] \doteq \iota_I \circ f$, whenever $f = [\![\Delta \vdash v : a]\!]$, and similarly for the right-projection.

If
$$f = \llbracket \Delta_1 \vdash v_1 : a_1 \rrbracket$$
 and $g = \llbracket \Delta_2 \vdash v_2 : a_2 \rrbracket$, $\llbracket \Delta_1, \Delta_2 \vdash \langle v_1, v_2 \rangle : a_1 \otimes a_2 \rrbracket \doteq f \otimes g$.

Isos

 $\text{An iso: } \{ \ | \ v_1 \leftrightarrow v_1' \mid \ldots \mid \ v_n \leftrightarrow v_n' \ \} : a \leftrightarrow b.$

Isos

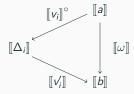
 $\text{An iso: } \{ \ | \ v_1 \leftrightarrow v_1' \mid \ldots \mid \ v_n \leftrightarrow v_n' \ \} : a \leftrightarrow b.$

The situation:

An iso:
$$\{ \mid v_1 \leftrightarrow v'_1 \mid \ldots \mid v_n \leftrightarrow v'_n \} : a \leftrightarrow b.$$

The situation:

What we'd like to build:



Careful: this diagram does not commute!

Isos

Lemma

If $v_1 \perp v_2$ and $v_1' \perp v_2'$, then $\llbracket v_1' \rrbracket \circ \llbracket v_1 \rrbracket^\circ \asymp \llbracket v_2' \rrbracket \circ \llbracket v_2 \rrbracket^\circ$.

7

Isos

Lemma

If
$$v_1 \perp v_2$$
 and $v_1' \perp v_2'$, then $\llbracket v_1' \rrbracket \circ \llbracket v_1 \rrbracket^\circ \asymp \llbracket v_2' \rrbracket \circ \llbracket v_2 \rrbracket^\circ$.

The definition of isos in the language involves these orthogonalities, thus all $\llbracket v_i^* \rrbracket \circ \llbracket v_i \rrbracket^\circ$ form a compatible set.

7

Lemma

If
$$v_1 \perp v_2$$
 and $v_1' \perp v_2'$, then $\llbracket v_1' \rrbracket \circ \llbracket v_1 \rrbracket^\circ \asymp \llbracket v_2' \rrbracket \circ \llbracket v_2 \rrbracket^\circ$.

The definition of isos in the language involves these orthogonalities, thus all $\llbracket v_i^* \rrbracket \circ \llbracket v_i \rrbracket^\circ$ form a compatible set.

Definition

$$\llbracket \vdash_{\omega} \{ \mid v_1 \leftrightarrow v'_1 \mid v_2 \leftrightarrow v'_2 \dots \} : a \leftrightarrow b \rrbracket = \bigvee_{i} \llbracket v'_i \rrbracket \circ \llbracket v_i \rrbracket^{\circ} : \llbracket a \rrbracket \rightarrow \llbracket b \rrbracket.$$

7

What we would like to have thus

The language is based is pattern-matching:

$$\vdash_{\omega} \{ \mid v_1 \leftrightarrow v_1 \mid v_2 \leftrightarrow v_2 \dots \}$$

decidable which pattern a term u fits.

It should also be in the denotational semantics:

$$\left(\left(\llbracket v_1'\rrbracket \circ \llbracket v_1\rrbracket^{\circ}\right) \vee \left(\llbracket v_2'\rrbracket \circ \llbracket v_2\rrbracket^{\circ}\right)\right) \circ \llbracket u\rrbracket = \llbracket v_i'\rrbracket \circ \llbracket v_i\rrbracket^{\circ} \circ \llbracket u\rrbracket$$

for some i.

What we would like to have thus

The language is based is pattern-matching:

$$\vdash_{\omega} \{ \mid v_1 \leftrightarrow v_1 \mid v_2 \leftrightarrow v_2 \dots \}$$

decidable which pattern a term u fits.

It should also be in the denotational semantics:

$$\left(\left(\llbracket v_1'\rrbracket \circ \llbracket v_1\rrbracket^\circ\right) \vee \left(\llbracket v_2'\rrbracket \circ \llbracket v_2\rrbracket^\circ\right)\right) \circ \llbracket u\rrbracket = \llbracket v_i'\rrbracket \circ \llbracket v_i\rrbracket^\circ \circ \llbracket u\rrbracket$$

for some i.

Usually, it relies on disjointness (\oplus) .

Pattern-matching and

consistency

In $(f \lor g)h$, we want h to choose:

$$fh \lor gh = fh \text{ or } fh \lor gh = gh$$

A join inverse category with this property will be called *pattern-matching* category.

In $(f \lor g)h$, we want h to choose:

$$fh \lor gh = fh \text{ or } fh \lor gh = gh$$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus) , rather fh = 0 or gh = 0.

9

In $(f \lor g)h$, we want h to choose:

$$fh \lor gh = fh \text{ or } fh \lor gh = gh$$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus) , rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have $fh \lor gh$ not decomposable.

For this, we need h to be not decomposable either.

In $(f \lor g)h$, we want h to choose:

$$fh \lor gh = fh \text{ or } fh \lor gh = gh$$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus) , rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have $fh \lor gh$ not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism k, if h is non decomposable, so is kh. A join inverse category with this property will be called *consistent*

category.

In $(f \lor g)h$, we want h to choose:

$$fh \lor gh = fh \text{ or } fh \lor gh = gh$$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus) , rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have $fh \lor gh$ not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism k, if h is non decomposable, so is kh. A join inverse category with this property will be called *consistent* category.

Consistency implies pattern-matching.

In $(f \lor g)h$, we want h to choose:

$$fh \lor gh = fh \text{ or } fh \lor gh = gh$$

A join inverse category with this property will be called *pattern-matching* category. With disjointness (\oplus) , rather fh = 0 or gh = 0.

The idea: translate it as a notion of non decomposability, to have $fh \lor gh$ not decomposable.

For this, we need h to be not decomposable either.

Consistency: for any morphism k, if h is non decomposable, so is kh. A join inverse category with this property will be called *consistent* category.

Consistency implies pattern-matching.

What about the other way around?

Definition (Strongly non decomposable)

Thus
$$m = u \lor v \Rightarrow u = 0$$
 or $v = 0$

Definition (Strongly non decomposable)

Thus
$$m = u \lor v \Rightarrow u = 0$$
 or $v = 0$

Definition (Linearly non decomposable)

$$0 - \cdots - f - m$$

Thus
$$m = u \lor v \Rightarrow u \le v$$
 or $v \le u$

Definition (Strongly non decomposable)

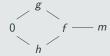
Thus
$$m = u \lor v \Rightarrow u = 0$$
 or $v = 0$

Definition (Linearly non decomposable)

$$0 - \cdots - f - m$$

Thus
$$m = u \lor v \Rightarrow u \le v$$
 or $v \le u$

Definition (Weakly non decomposable)



Thus
$$m = u \lor v \Rightarrow u = m$$
 or $v = m$

Definition (Strongly non decomposable)

0 —— m

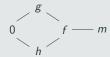
Thus $m = u \lor v \Rightarrow u = 0$ or v = 0

Definition (Linearly non decomposable)

$$0 - \cdots - f - m$$

Thus $m = u \lor v \Rightarrow u \le v$ or $v \le u$

Definition (Weakly non decomposable)



Thus $m = u \lor v \Rightarrow u = m$ or v = m

Theorem

A weakly pattern-matching category is weakly consistent.

Theorem

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

Theorem

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

This allows to not rely on a disjointness (\oplus) structure.

And to use a category like PId_S as a sound and adequate denotation.

Theorem

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

This allows to not rely on a disjointness (\oplus) structure.

And to use a category like PId_S as a sound and adequate denotation.

Theorem

A weakly pattern-matching category is weakly consistent.

Theorem

A join inverse category is strongly consistent.

Theorem

A join inverse category is linearly consistent.

This allows to not rely on a disjointness (\oplus) structure.

And to use a category like PId_S as a sound and adequate denotation.

Going further

Recursion

 ${\cal C}$ a join inverse category.

For any A, B objects of C, $Hom_{\mathcal{C}}(A, B)$ is a DCPO.

Quantum programming language

Patterns are vectors in a basis of a Hilbert space.

Work in progress.

Thank you