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Abstract (1)

Recently, we described a category-theoretic construction of abstract
syntax from a signature, mechanized in the UniMath library based on the
Coq proof assistant, cf. “From Signatures to Monads in UniMath”. J.
Autom. Reason. 63(2): 285-318 (2019).

In the present work, we describe what was necessary to generalize that
work to account for simply-typed languages.
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Abstract (2)

First, some definitions had to be generalized to account for the natural
appearance of non-endofunctors in the simply-typed case. Second, an
existing mechanized library on omega-cocontinuous functors had to be
extended by constructions and theorems necessary for constructing
multi-sorted syntax.

Third, and most excitingly, the theoretical framework for the semantical
signatures had to be generalized from a monoidal to a bicategorical
setting, again to account for non-endofunctors arising in the typed case.
This uses actions of endofunctors on functors with given source, and the
corresponding notion of strong functors between actions, all formalized in
UniMath using the recently developed library of bicategory theory.
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Abstract (3)

We explain what needed to be done to plug all of these ingredients
together, modularly. The main result of our work is a general
construction that, when fed with a signature for a simply-typed language,
returns an implementation of that language together with suitable
boilerplate code, in particular, a certified monadic substitution operation.
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Introduction

Goal: represent and reason about languages with binders using category
theory in type theory

Start with a simple notion of signature representing a language with
binders and from this construct a monad for this language
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Monads, as they fit for programming

-- A monad is a type family M with return and bind:
return : a → M a
(>>=) : M a → (a → M b) → M b

-- We can define Kleisli composition for any monad:
(>=>) : (a → M b) → (b → M c) → (a → M c)

-- The monad laws can be written as:
return a >>= σ = σ(a)
t >>= return = t
(t >>= σ1) >>= σ2 = t >>= (σ1 >=> σ2)
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The monad of terms

-- Substitution is a monad:
var : a → Tm a
_[_] : Tm a → (a → Tm b) → Tm b

-- Kleisli composition is composition of substitutions:
_;_ : (a → Tm b) → (b → Tm c) → (a → Tm c)

-- Monad laws are rules for substitution:
(var a) [σ] = σ a
t [λx → var x] = t
(t [σ1]) [σ2] = t [σ1 ; σ2]

Nothing says that substitution should commute with term constructors.
This cannot even be expressed on the abstract level of monads.
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Relation with binding

The term monad does not suppose any notion of binding, but the
concept of term monad accommodates binding well: binding changes the
parameter A that serves as “reservoir” for variable names. To represent a
λ-abstraction λx.t with free variables taken from set A, add a generic
new element to that set (thus heading for de Bruijn-style), yielding the
set optionA and represent t relative to that extended reservoir.

Example: untyped lambda calculus as an endofunctor

Inductive LC (X : Type) :=
| var : X -> LC X
| app : LC X * LC X -> LC X
| abs : LC (option X) -> LC X

This is plain Coq code and
not allowed in UniMath that
is lacking inductive types and
families.
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Relative monads?

“Monads need not be endofunctors” (Altenkirch, Chapman, Uustalu),
and there is the question why all types or all sets should be considered as
valid parameters for the reservoir of free variables. Anyway, for the sake
of λ-abstraction, only one extra variable is supposed, and we could do
with the natural numbers.
This could be expressed by monads relative to the functor
Jf : Fin→ Set. But if we already have a “normal” monad T : Set→ Set,
then T · Jf is a monad relative to Jf .

If we are able to get monads and not just relative monads, we construct
the monads.
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Overall structure

Multi-sorted binding signature
(Small) set of descriptions of term constructors with a 1-type of sorts S

Signature with strength
H : [CS, CS]→ [CS, CS] with strength θ for CS := [S, C]

Heterogeneous substitution system
(Id+H)-algebra with structure

Monad on CS

Typically, C = Set (the sets of univalent foundations, not those of Coq).
Formalized in UniMath: https://github.com/UniMath/UniMath
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A simple notion of signature for variable binding

Binding signature:
A set I (“constructors”) and
a function ar : I → [nat]

Example: untyped lambda calculus (to the left in vanilla Coq)

Inductive LC (X : Type) :=
| var : X -> LC X
| app : LC X * LC X -> LC X
| abs : LC (option X) -> LC X

I :={app, abs}
ar(app) = [0, 0]

ar(abs) = [1]

variables are special and do not enter the signature (anyway, substitution
is not homomorphic on variables)
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Simply-typed lambda-calculus

Assume two families of term constructors, both indexed over two sorts
s, t, with “arities”〈[

〈[ ], s⇒ t〉, 〈[ ], s〉
]
, t
〉

—for application〈
[〈[s], t〉] , s⇒ t

〉
—for λ-abstraction

That is, for any sorts s, t, there is an application constructor that takes
terms of sorts s⇒ t and s as arguments to yield a term of sort t. No
binding is involved in the arguments, thus the use of the empty lists [ ].

For any sorts s, t, there is a λ-abstraction constructor taking one term of
sort t with an extra potentially bound variable of sort s, which yields a
term of sort s⇒ t.
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multi-sorted binding signature

Definition
A multi-sorted binding signature is given by a (small) set I together
with a map ar : I → list(list(S)× S)× S.

STLC is obviously an instance as soon as we have a binary operation ⇒
on S:

I = S× S+ S× S

ar(inl〈s, t〉) =
〈
[〈[], s⇒ t〉, 〈[], s〉], t

〉
ar(inr〈s, t〉) =

〈
[〈[s], t〉], s⇒ t

〉
Easily extensible to PCF (with natural numbers and booleans and
operations on them).
Another example towards type theory: the two sorts of types and
elements in the presentation of the calculus of constructions in the style
of Streicher.
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A categorical notion of signature for variable binding

We have seen notions of binding signature that are syntactic descriptions
of syntactic systems—they are not the syntax itself.

A signature with strength is a more general, and more semantic notion of
signature. It consists of an endofunctor H on endofunctors (on a suitable
base category) together with extra data θ that specifies information on
“how to do substitution” on H-algebras, basically prescribing in what
sense substitution is homomorphic on all the user-defined constructors.

The untyped lambda calculus as a signature with strength:
H(F ) := F × F + F · option
θ := . . .

This assumes very little of the base category.
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How to deal with sorts

We instantiate the base category C to the functor category [S,Set] for a
given set S, seen as discrete category (and Set can be replaced by a
well-behaved other base category).
Objects of this categories are simply functions X : S→ Set. These hence
correspond to sets of sorted variables analogously to the X parameter of
the inductive STLC example seen before (for each sort s : S there is a set
X s of variables of that sort that can freely occur in a term).

We can now reuse the previous implementation in UniMath of the
framework of signatures with strength, but there is still work to do.
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From multi-sorted binding signatures to signatures with
strength: first conceptual challenge

We work with general CS instead of only [S, Set].
Let (I, ar) be a multi-sorted binding signature and i : I.
We associate with ar(i) an endofunctor on the endofunctors on CS. For
this, we have to go back and forth between C and CS via an adjunction
for each individual sort, and the addition of a variable with a given sort to
the context is dealt with by a suitable adaptation of the option functor.

options X t :≡ X t +
∐
(s=t)

1

for sorts s and t

The functor associated to the multi-sorted binding signature (I, ar) is
then obtained as the coproduct of the functors associated to each arity.
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Getting an initial algebra for the syntax described by H

The next step: construct an initial algebra for Id+H, the sum of H with
the functor constantly the identity on the base category. The summand
Id encodes “variables as terms”, whereas the functor H specifies the
constructors given via the multi-sorted binding signature.

We have done this before in general, based on ω-cocontinuity, see

https://arxiv.org/abs/1612.00693

(appeared in the Journal of Automated Reasoning in 2019)
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Substitution on the initial algebra: second conceptual
challenge—but already solved more generally

The previous step gives, in particular, an endofunctor T on CS, and a
natural transformation return : Id→ T . We complement the pair
(T, return) to a monad by constructing a suitable “substitution”
operation.

Two smaller steps:
construct a heterogeneous substitution system (M. & Uustalu 2004)
from (T, return), employing “Generalized Mendler Iteration”
apply an already defined map from substitution systems to monads
on the substitution systems thus obtained

Notice that the main benefit of the notion of substitution systems is that
they serve as intermediate goal in this approach.
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The missing piece of work

Most of the technical work in the formalization went into showing that
the functor H that we construct for a given multi-sorted binding
signature

comes with a strength θ and
is ω-cocontinuous.

This is made more difficult by the fact that the constructions are not
homogeneous: in the construction appear endofunctors on CS, but also
functors from CS to C.

On the side of strengths, this required a wider notion of strength (see the
next section on its understanding), and concerning ω-cocontinuity, this
asked for the identification of adjunctions, and also for the construction
in UniMath of exponentials in [D,Set], for any category D.
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What is strength for a functor that is not an endofunctor?

Definition (prestrength)
For categories C, D, D′ and a functor H : [C,D′]→ [C,D], a
prestrength for H is a natural transformation

θ : (H−) · U∼ → H(− · U∼)

between bifunctors [C,D′]× Ptd(C)→ [C,D].

Ptd(C) is the category of pointed endofunctors on C: its objects are
functors F : C → C together with a natural transformation from Id to F .
And U is the forgetful functor from Ptd(C) to [C, C] that forgets the
“point”.

In our construction, we do not always have that C and D are the same
category.
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Definition (strength)
Given a prestrength θ for a functor H, θ is called a strength for H if it
is “homomorphic” in the second argument ∼, in the following sense. The
source and target bifunctors applied to a pair of objects (X, (Z, e)) with
X : [C,D′] and (Z, e) : Ptd(C) (X for the argument symbolized by − and
(Z, e) for the argument symbolized by ∼) yield HX · Z and H(X · Z),
thus θX,(Z,e) : HX · Z → H(X · Z) in [C,D]. Being “homomorphic” of θ
in the second argument means satisfying the equations θX,id = idHX and

θX,(Z′·Z,e′·e) = H(α−1X,Z′,Z) ◦ θX·Z′,(Z,e) ◦ (θX,(Z′,e′) · Z) ,

using the inverse of the canonical isomorphism
αX,Y,Z : X · (Y · Z) ' (X · Y ) · Z for composable functors.

We wanted to understand better the general principle behind this
definition and in what sense this is a notion of “homomorphism”.
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action-based strength

Consider a monoidal category V with tensor product ⊗, categories A and
A′ and actions of V on both, expressed as strong monoidal functors
F : V → [A,A] and F ′ : V → [A′,A′] (where the monoidal structure on
the endofunctor categories is given by composition in diagrammatic
order).

A more elementary description of actions was suggested by Pareigis in
the 70ies (which is essentially equivalent to the present one). The
present one has been known for about 20 years.

Let G : A → A′ be a functor and let δ be a natural transformation
between functors from V to [A,A′] that are defined on objects v of V as
F ′v ·G and G · Fv, respectively. The transformation δ is a
parameterized distributivity—or a strength—for G if the following
diagrams commute.
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action-based strength laws

F ′I ·G δI // G · FI

G
ε′·G

hh

G·ε

66

F ′(v ⊗ w) ·G
δv⊗w // G · F (v ⊗ w)

F ′w · F ′v ·G
µ′v,w·G

OO

F ′w·δv **

G · Fw · Fv
G·µv,w
OO

F ′w ·G · Fv
δw·Fv

44

The authors are unaware of occurrences of this notion in the literature.
However, there is the essentially equivalent notion of Pareigis.
Do these laws express “homomorphism”? Is strength for signatures an
instance of this notion?
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Is strength for signatures an instance of this notion?
Yes, it is.
The problem to overcome is that the parameter categories C, D, D′ of
strength for signatures need not coincide. The way out is the rather
straightforward observation that the endomorphisms of a bicategory act
on any hom-category which agrees with the endos in the source type.
And this is then used for the bicategory of (small) categories, functors
and natural transformations.
Why bicategories and not 2-categories? The latter can be viewed as a
mathematical idealization of the former, and bicategories are the more
“categorical” concept. The not necessarily strict categories only form a
bicategory, and this notion has been implemented in UniMath together
with a rich library of tools for working with bicategories—where
computer help is very much appreciated given the many axioms.
Hence, we were able to prove in UniMath that strength for signatures is
an action-based strength.
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Do these laws express “homomorphism”?

This question is mostly settled, but the formalization is not complete.
The formalization efforts showed the need for some refactoring in the
library on category theory in UniMath, mainly for a better interplay
between monoidal cagories, displayed categories (probably currently a
unique feature of UniMath) and bicategories.

The main idea is to characterize parameterized distributivity by having a
strong monoidal functor into a suitable category (obtained through a
displayed category in UniMath). This extends the correspondence
between natural transformations between functors into a functor category
with functors into a suitably crafted category.

Such a strong monoidal functor is the ultimate embodiment of having
“homomorphic” laws.
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Summary

We have formalized:
Construction of a (term) monad from a multi-sorted binding
signature
Examples: simply-typed lambda calculus, PCF and CoC in the style
of Streicher
method: work in “towers” of functor categories to take into account
typed contexts

We have used function extensionality and univalence for propositions
which both had to be added as axioms to Coq. We also rely on set
quotients in UniMath and thereby on the resizing rule (for propositional
truncation).
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Future goals

Signatures dealing with type substitution
Show that the datatype together with the constructed substitution
operation is initial in a category of “algebras with substitution“
Finish our analysis of strength notions that makes precise in which
sense strength means being homomorphic (this question goes far
beyond our intended application of representation of typed syntax
with binding)—we suspect the appropriate abstraction level for this
result to be bicategories (so as to allow for an elegant formalization)

Thank you for your attention!
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