
Applicative bisimulations for lambda-calculus
with continuous probabilities

Raphaëlle Crubillé
joint work with Gilles Barthe, Francesco Gavazzo, Ugo Dal Lago

Inria Grand Est

Scalp 2021

1 / 21

Discrete randomized programs

The program can make probabilistic
choices at any point during its
execution.

Example (Random Walk)

n − 1 n n + 1

(1− p) p

Faster algorithms

e.g. Randomised sorting algorithms:

Quick-sort:
worst case time complexity
= O(n2).

Randomised Quick-sort:
Expected worst case time complexity
= O(nlogn).

In computational cryptography

Can be a necessity in order to achieve security
(e.g. secure encryption in an asymmetric setting.)

2 / 21

Continuous statistical programming
The program can:

sample from standard probability distributions (Gaussian
distribution, uniform distribution...);

modify them using a push-forward operation

Example

Build an exponential distribution from a uniform one
let x = sample in − log(x).

→
Density functions.

To describe the behaviour of systems:

with inherent uncertainty

of whom we have incomplete knowledge

3 / 21

Higher-order Probabilistic Programming

Higher-order languages extended with:

Discrete randomized algorithms (e.g. randomized sorting);

continuous probability distributions (e.g. to model physical

systems);

M ∈ Λ ::= x | λxA ·M | (MN) | (YN)

| ifz (M,N, L) | let x = M in N)

| M ⊕ N | n | succ (M) | pred (M), n ∈ N

| sample | r | f , r ∈ R, f : R→ R mesureable

4 / 21

Operational Semantics.

Discrete case

JMK : Values→ [0, 1] a discrete distribution

Continuous case

JMK : ΣValues → [0, 1] a continuous distribution where:

ΣValues ⊆ Parts(Values) a σ-algebra;

Example

Jt⊕ fK = D with D(t) = 1
2 , D(f) = 1

2 ;

Jlet x = sample in (λy .x + y)K = D with

D : A ∈ ΣValues 7→ µBorel({z ∈ [0, 1] | (λy .z + y) ∈ A})

e.g. D({λy .r + y | r ∈ [1
3 ,

2
3]}) = 1

3 .

5 / 21

Morris Context Equivalence (1969)

Comparing Two Programs

check whether two programs behaves the same no matter how the
environment interacts with them (compiler optimisation,
verification of a specification...);

When are two programs context equivalent?

Environments are modelled as contexts–i.e. terms with a
hole–thus by way of the underlying language

Two terms are context equivalent if their observable
behaviour is the same in any context.

Definition (Context Equivalence)

M ≡ctx N when ∀ context C that returns a ground type,

JC[M]K = JC[N]K as distributions.

6 / 21

Contextual Reasoning– Challenges

M 6≡ctx N ?
Find one context C able to distinguish them.

M ≡ctx N ?
all contexts should be considered.

Objective:

A characterisation of context equivalence that gets rid of the
universal quantification on contexts.

Definition

A binary relation R on programs is:

sound when M R N ⇒ M ≡ctx N

complete when M ≡ctx N ⇔ M R N.

7 / 21

Applicative Bisimilarity [Abramsky93](1)

General idea:

Expressing interactively the semantics as a Labelled Transition
System.

Obtain an equivalence on programs from the bisimulation on
this system.

Programs Values

M

N

L

...

V

W

U

...

M V
eval

λx .NN{L/x} L

8 / 21

Applicative Bisimilarity [Abramsky93](1)

General idea:

Expressing interactively the semantics as a Labelled Transition
System.

Obtain an equivalence on programs from the bisimulation on
this system.

Programs Values

M

N

L

...

V

W

U

...

M V
eval

λx .NN{L/x} L

8 / 21

Applicative Bisimilarity [Abramsky93](1)

General idea:

Expressing interactively the semantics as a Labelled Transition
System.

Obtain an equivalence on programs from the bisimulation on
this system.

Programs Values

M

N

L

...

V

W

U

...

M

V
eval

λx .NN{L/x} L

8 / 21

Applicative Bisimilarity [Abramsky93](1)

General idea:

Expressing interactively the semantics as a Labelled Transition
System.

Obtain an equivalence on programs from the bisimulation on
this system.

Programs Values

M

N

L

...

V

W

U

...

M V
eval

λx .NN{L/x} L

8 / 21

Applicative Bisimilarity [Abramsky93](1)

General idea:

Expressing interactively the semantics as a Labelled Transition
System.

Obtain an equivalence on programs from the bisimulation on
this system.

Programs Values

M

N

L

...

V

W

U

...

M V
eval

λx .N

N{L/x} L

8 / 21

Applicative Bisimilarity [Abramsky93](1)

General idea:

Expressing interactively the semantics as a Labelled Transition
System.

Obtain an equivalence on programs from the bisimulation on
this system.

Programs Values

M

N

L

...

V

W

U

...

M V
eval

λx .NN{L/x} L

8 / 21

Applicative Bisimilarity [Abramsky93] (2)

M R N

λx .L
eval

λx .Keval

L{T/x}

T

K{T/x}

T

R

Similarity: union of all simulations, denoted -;

Bisimilarity: union of all bisimulations, denoted ∼.

9 / 21

Full Abstraction results (deterministic case)

Untyped pure λ-calculus, where we observe convergence

∼ ⊆ ≡ctx ∼ = ≡ctx - ⊆ ≤ctx - = ≤ctx

CBN X X X X
CBV X X X X

[Abramsky1990,Howe1993]

10 / 21

Bisimilarity for discrete probabilistic systems (LMC)

Definition (Labelled Markov Chain)

a triple M = (S,A, {ha | a ∈ A}), where

S is a countable set of states, A a countable set of labels;

ha is a transition probability matrix, i.e., a function
ha : S × S → [0, 1] such that ∀s, a, ha(s, ·) is a
(sub)-distribution;

Definition ([Larsen-Skou’91])

A symmetric relation R on S is a bisimulation when:

s R t ⇒ ∀a ∈ L, ∀X ⊆ S R-closed, ha(s,X) = ha(t,X).

Theorem (Logical caracterisation[Breugel et al’05])

φ ::= > | < a >p ·φ | φ ∧ φ
11 / 21

A Labelled Markov Chain for Λ⊕ [Dal Lago et al’14]

Programs Values

M

...

V

W

U

...

eval 1/2

1/4

1/4

λx .NN{L/x} L

1

Theorem (Dal Lago et al’14,Crubillé et al’14)

∼ ⊆ ≡ctx ≡ctx ⊆ ∼ - ⊆ ≤ctx ≤ctx ⊆ -
CBN X × X ×
CBV X X X ×

12 / 21

The subject of this talk: the continuous case

Definition (Labelled Markov Process)

A triple (S,A, {ha | a ∈ A}), where S is measurable, A is an
arbitrary set, and for every a ∈ A the map ha : S × ΣS → [0, 1] is
a sub-probability kernel.

From the literature

Two distincts notions of bisimulations exist for LMPs:

∼state ⊆∼event =∼logic =∼test

analytical
states space

countable
labels

discrete
states

countable
labels

∼state =∼event

•
Λλ

•
∼state 6=∼event

•
∼state 6=∼event

13 / 21

State bisimulation

Definition (for Labelled Markov Chain)

A symmetric relation R on S is a bisimulation when:

s R t ⇒ ∀a ∈ L, ∀X R-closed, ha(s,X) = ha(t,X).

Proposition (Dal Lago-Gavazzo’19)

Applicative state bisimulation is sound (w.r.t. context equivalence)
for Λλ.

14 / 21

State bisimulation

Definition (for Labelled Markov Process)

A symmetric relation R on S is a bisimulation when:

s R t ⇒ ∀a ∈ L, ∀X∈ ΣS R-closed, ha(s,X) = ha(t,X).

Proposition (Dal Lago-Gavazzo’19)

Applicative state bisimulation is sound (w.r.t. context equivalence)
for Λλ.

14 / 21

Theorem

Applicative state bisimulation is not complete for Λλ.

Proof.

let x = sample in
λy .if (y == r) then 1 else 0 λx .0

λx .0
λy .if (y == r)
then 1 else 0

. . . λy .if (y == r ′)
then 1 else 0

. . .

eval
eval

01

r

r ′

r ′′

r r ′

r ′′

r ′ r
r ′′

= 0= 1

M and N are context equivalent [Staton et al’21], but not
bisimilar.

15 / 21

Event bisimulation for Λλ

Definition

An event bisimulation on a LMP
(M ,Σ, {ha :| a ∈ A}) is a sub-σ-algebra Λ of
Σ,such that (M ,Λ, {ha | a ∈ A}) is a LMP.

Proposition

logical
caracterisation
[Breugel et al’05]

Theorem

Applicative event bisimulation is complete, but not sound.

Proof.

completeness proof: uses the logical caracterisation

counter-example for soundness:

M := let x = sample in (λy .((if x == y then 1 else 0)⊕ x)),

N := let x = sample in (λy .(0⊕ x)),

C = (let z = [] in z(z1)).

M and N are event bisimilar, but not context equivalent.
16 / 21

Λλ with only continuous primitive functions

M ∈ Λλ,c ::= x | λxA ·M | (MN) | (YN)

| ifz (M,N, L) | let(x ,M,N)

| M ⊕ N | n | succ (M) | pred (M), n ∈ N

| sample | r | f , r ∈ R, f : R→ R continuous

Previous counter-examples cannot be written in this language.

Question:

Can we recover ∼event=∼context=∼state ?

17 / 21

Our demarch

Build a class of LMP with uncountable labels such that the two
bisimulations coincide.

analytical states spaces,
uncountable labels

labelwise
continuous

transition function
[Panangaden et

al’17]

Feller-
continuous

kernels

∼state =∼event

•
MΛλ

•MΛλ,c

18 / 21

Feller Continuous LMPs

Definition

X a polish space, (µn)n∈N a sequence of measures over X .
(µn)n∈N converges weakly toward µ when ∀f : X → R bounded
and continuous function:

lim
n→∞

∫
X
f .dµn =

∫
X
f .dµ.

Definition

A LMP M = (S,A, {ha | a ∈ A}) with S,A polish spaces. M is
Feller continuous when:

for every a ∈ A, the map ha : S → Distrs(S) is continuous;

for every s ∈M the map h(.)(s) : a ∈ A 7→ ha(s) ∈ Distrs(S)
is continuous.

19 / 21

Bisimulations for Feller continuous LMPs

Theorem

For Feller continuous LMPs, state bisimulation and event
bisimulation coincide.

Proof.

Uses a result from optimal transport [Villani’08].

Theorem

Λλ,c is Feller continuous, thus ∼event=∼context=∼state .

20 / 21

Conclusion:

Contribution

an extensive picture of the full abstraction problem for
applicative similarité on Λλ

the definition of a new class of LMP (Feller-continuous LMPs)
where state and event bisimilarity coincide.

Perspectives

bisimulation for a language with continuous probabilities and
bayesian reasonning...

quantitative reasonning (i.e. distances) for a continuous
language.

21 / 21

	Operational Semantics
	 Context Equivalence

