Applicative bisimulations for lambda-calculus with continuous probabilities

Raphaëlle Crubillé joint work with Gilles Barthe, Francesco Gavazzo, Ugo Dal Lago

Inria Grand Est

Scalp 2021

(日) (四) (注) (注) (正)

1/21

Discrete randomized programs

The program can make probabilistic choices at any point during its execution.

Faster algorithms

e.g. Randomised sorting algorithms:

Quick-sort:

Randomised Quick-sort:

worst case time complexity $= O(n^2).$

Expected worst case time complexity = O(nlogn).

In computational cryptography

Can be a necessity in order to achieve security (e.g. secure encryption in an asymmetric setting.)

Continuous statistical programming

The program can:

- sample from standard probability distributions (Gaussian distribution, uniform distribution...);
- modify them using a push-forward operation

Example

Build an exponential distribution from a uniform one let x = sample in $-\log(x)$.

To describe the behaviour of systems:

- with inherent uncertainty
- of whom we have incomplete knowledge

Higher-order Probabilistic Programming

Higher-order languages extended with:

- Discrete randomized algorithms (e.g. randomized sorting);
- continuous probability distributions (e.g. to model physical systems);

$$M \in \Lambda ::= x | \lambda x^{A} \cdot M | (MN) | (YN)$$

| ifz (M, N, L) | let x = M in N)
| M \oplus N | n | succ (M) | pred (M), n \in \mathbb{N}
| sample | r | f, r \in \mathbb{R}, f : \mathbb{R} \to \mathbb{R} mesureable

Operational Semantics.

Discrete case $\llbracket M \rrbracket$: Values $\rightarrow [0, 1]$ a discrete distribution

Continuous case $\llbracket M \rrbracket : \Sigma_{Values} \rightarrow [0, 1]$ a continuous distribution where:

 $\Sigma_{Values} \subseteq Parts(Values)$ a σ -algebra;

Example

- $\llbracket t \oplus f \rrbracket = \mathscr{D}$ with $\mathscr{D}(t) = \frac{1}{2}$, $\mathscr{D}(f) = \frac{1}{2}$;
- $\llbracket \text{let } x = \text{ sample in } (\lambda y.x + y) \rrbracket = \mathscr{D} \text{ with }$

$$\mathscr{D}: \mathsf{A} \in \Sigma_{\mathsf{Values}} \mapsto \mu_{\mathsf{Borel}}(\{z \in [0,1] \mid (\lambda y.z + y) \in \mathsf{A}\})$$

e.g.
$$\mathscr{D}(\{\lambda y.r + y \mid r \in [\frac{1}{3}, \frac{2}{3}]\}) = \frac{1}{3}.$$

Morris Context Equivalence (1969)

Comparing Two Programs

check whether two programs behaves *the same* no matter how the environment interacts with them (compiler optimisation, verification of a specification...);

When are two programs context equivalent?

- Environments are modelled as **contexts**-i.e. terms with a hole-thus by way of the underlying language
- Two terms are context equivalent if their **observable behaviour** is the same in **any** context.

Definition (Context Equivalence)

 $M \equiv^{\mathsf{ctx}} N$ when \forall context \mathcal{C} that returns a ground type,

 $\llbracket C[M] \rrbracket = \llbracket C[N] \rrbracket$ as distributions.

Contextual Reasoning- Challenges

•
$$M \not\equiv^{\text{ctx}} N$$
?

Find **one** context \mathcal{C} able to distinguish them.

•
$$M \equiv^{\text{ctx}} N$$
 ?

all contexts should be considered.

Objective:

A characterisation of context equivalence that gets rid of the *universal quantification* on contexts.

Definition

A binary relation R on programs is:

- sound when $M R N \Rightarrow M \equiv^{\mathsf{ctx}} N$
- *complete* when $M \equiv^{\text{ctx}} N \Leftrightarrow M R N$.

- Expressing interactively the semantics as a Labelled Transition System.
- Obtain an equivalence on programs from the bisimulation on this system.

Programs	Values	
М		
Ν		
L		
÷	< □ > < đ) > < 분 > < 분 > 분 ↔ 8	

- Expressing interactively the semantics as a Labelled Transition System.
- Obtain an equivalence on programs from the bisimulation on this system.

Programs	Values	
М	V	
N	W	
L	U	
÷	÷	
		(ロ) (型) (主) (主) (主) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2

General idea:

- Expressing interactively the semantics as a Labelled Transition System.
- Obtain an equivalence on programs from the bisimulation on this system.

М

- Expressing interactively the semantics as a Labelled Transition System.
- Obtain an equivalence on programs from the bisimulation on this system.

- Expressing interactively the semantics as a Labelled Transition System.
- Obtain an equivalence on programs from the bisimulation on this system.

 $\lambda x.N$

- Expressing interactively the semantics as a Labelled Transition System.
- Obtain an equivalence on programs from the bisimulation on this system.

- Similarity: union of all simulations, denoted ∠;
- **Bisimilarity**: union of all bisimulations, denoted \sim .

Full Abstraction results (deterministic case)

Untyped pure $\lambda\text{-calculus,}$ where we observe convergence

	$\sim \subseteq \equiv^{ctx}$	$\sim = \equiv^{ctx}$	$\precsim \subseteq \leq^{ctx}$	$\precsim = \leq^{ctx}$
CBN	\checkmark	\checkmark	\checkmark	\checkmark
CBV	\checkmark	\checkmark	\checkmark	\checkmark

[Abramsky1990,Howe1993]

Bisimilarity for discrete probabilistic systems (LMC)

Definition (Labelled Markov Chain)

a triple $\mathscr{M} = (\mathcal{S}, \mathcal{A}, \{h_a \mid a \in \mathcal{A}\})$, where

- S is a countable set of *states*, A a countable set of *labels*;
- *h_a* is a *transition probability matrix*, i.e., a function
 h_a : S × S → [0, 1] such that ∀s, a, *h_a(s, ·)* is a (sub)-distribution;

Definition ([Larsen-Skou'91])

A symmetric relation R on S is a bisimulation when:

$$s R t \Rightarrow \forall a \in \mathcal{L}, \forall X \subseteq S R$$
-closed, $h_a(s, X) = h_a(t, X)$.

Theorem (Logical caracterisation[Breugel et al'05])

$$\phi ::= \top | < a >_{p} \cdot \phi | \phi \wedge \phi$$

11 / 21

イロン 不得 とうほう イロン 二日

A Labelled Markov Chain for Λ_{\oplus} [Dal Lago et al'14]

Theorem (Dal Lago et al'14, Crubillé et al'14)

	$\sim \subseteq \equiv^{ctx}$	$\equiv^{ctx} \subseteq \sim$	$\precsim \subseteq \leq^{ctx}$	$\leq^{ctx} \subseteq \precsim$
CBN	\checkmark	×	\checkmark	×
CBV	\checkmark	\checkmark	\checkmark	×

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

12/21

The subject of this talk: the continuous case

Definition (Labelled Markov Process)

A triple $(S, A, \{h_a \mid a \in A\})$, where S is measurable, A is an arbitrary set, and for every $a \in A$ the map $h_a : S \times \Sigma_S \to [0, 1]$ is a sub-probability kernel.

From the literature

Two distincts notions of bisimulations exist for LMPs:

Definition (for Labelled Markov Chain)

A symmetric relation R on S is a bisimulation when:

$$s R t \Rightarrow \forall a \in \mathcal{L}, \forall X R$$
-closed, $h_a(s, X) = h_a(t, X)$.

Proposition (Dal Lago-Gavazzo'19)

Applicative state bisimulation is sound (w.r.t. context equivalence) for Λ_{λ} .

Definition (for Labelled Markov Process)

A symmetric relation R on S is a bisimulation when:

$$s R t \Rightarrow \forall a \in \mathcal{L}, \forall X \in \Sigma_{\mathcal{S}} R$$
-closed, $h_a(s, X) = h_a(t, X)$.

Proposition (Dal Lago-Gavazzo'19)

Applicative state bisimulation is sound (w.r.t. context equivalence) for Λ_{λ} .

Theorem

Applicative state bisimulation is not complete for Λ_{λ} .

Proof.

M and N are context equivalent [Staton et al'21], but not bisimilar.

] *つ*へで 15/21

Event bisimulation for Λ_{λ}

Definition

An event bisimulation on a LMP $(\mathcal{M}, \Sigma, \{h_a : | a \in \mathcal{A}\})$ is a sub- σ -algebra Λ of Σ ,such that $(\mathcal{M}, \Lambda, \{h_a | a \in \mathcal{A}\})$ is a LMP.

Proposition

logical caracterisation [Breugel et al'05]

16 / 21

Theorem

Applicative event bisimulation is complete, but not sound.

Proof.

- completeness proof: uses the logical caracterisation
- counter-example for soundness:

$$\begin{split} M &:= \text{ let } x = \text{ sample in } (\lambda y.((\text{if } x == y \text{ then } 1 \text{ else } 0) \oplus x)), \\ N &:= \text{ let } x = \text{ sample in } (\lambda y.(0 \oplus x)), \\ C &= (\text{ let } z = [] \text{ in } z(z1)). \end{split}$$

M and N are event bisimilar, but not context equivalent.

 Λ_λ with only continuous primitive functions

$$\begin{split} M &\in \Lambda_{\lambda,c} ::= x \mid \lambda x^{A} \cdot M \mid (MN) \mid (YN) \\ &\mid \text{ ifz } (M, N, L) \mid \text{ let}(x, M, N) \\ &\mid M \oplus N \mid \underline{n} \mid \text{ succ } (M) \mid \text{ pred } (M), \qquad n \in \mathbb{N} \\ &\mid \text{ sample } \mid \underline{r} \mid \underline{f}, \qquad r \in \mathbb{R}, f : \mathbb{R} \to \mathbb{R} \text{ continuous} \end{split}$$

Previous counter-examples cannot be written in this language.

Question:

Can we recover $\sim_{event} = \sim_{context} = \sim_{state}$?

Our demarch

Build a class of LMP with **uncountable labels** such that the two bisimulations coincide.

uncountable labels

Feller Continuous LMPs

Definition

X a polish space, $(\mu_n)_{n \in \mathbb{N}}$ a sequence of measures over X. $(\mu_n)_{n \in \mathbb{N}}$ converges weakly toward μ when $\forall f : X \to \mathbb{R}$ bounded and continuous function:

$$\lim_{n\to\infty}\int_X f.d\mu_n=\int_X f.d\mu.$$

Definition

A LMP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \{h_a \mid a \in \mathcal{A}\})$ with \mathcal{S}, \mathcal{A} polish spaces. \mathcal{M} is *Feller continuous* when:

- for every $a \in A$, the map $h_a : S \to \text{Distrs}(S)$ is continuous;
- for every s ∈ M the map h_(.)(s) : a ∈ A → h_a(s) ∈ Distrs(S) is continuous.

Bisimulations for Feller continuous LMPs

Theorem

For Feller continuous LMPs, state bisimulation and event bisimulation coincide.

Proof.

Uses a result from optimal transport [Villani'08].

Theorem

 $\Lambda_{\lambda,c}$ is Feller continuous, thus $\sim_{event} = \sim_{context} = \sim_{state}$.

Conclusion:

Contribution

- an extensive picture of the full abstraction problem for applicative similarité on Λ_λ
- the definition of a new class of LMP (Feller-continuous LMPs) where state and event bisimilarity coincide.

Perspectives

- bisimulation for a language with continuous probabilities and bayesian reasonning...
- quantitative reasonning (i.e. distances) for a continuous language.