A cartesian bicategory of polynomial functors in homotopy type theory

Samuel Mimram (joint with Eric Finster, Maxime Lucas and Thomas Seiller) Journées SCALP – November 4, 2021

• the category of polynomial functors is cartesian closed

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]
- we should consider polynomial functors in groupoids [Kock]

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]
- we should consider polynomial functors in groupoids [Kock]

Our contributions:

• we have formalized polynomials in groupoids (or spaces) in HoTT/Agda

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]
- we should consider polynomial functors in groupoids [Kock]

- we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
- we have shown that the resulting bicategory is cartesian closed

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]
- we should consider polynomial functors in groupoids [Kock]

- we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
- we have shown that the resulting bicategory is cartesian closed
- $\bullet\,$ we have provided a small axiomatization of the type $\mathbb B$ of natural numbers and bijections

Part I

Polynomial functors

Categorifying polynomials

A **polynomial** is a sum of monomials

$$P(X) = \sum_{0 \le i < k} X^{n_i}$$

(no coefficients, but repetitions allowed)

A **polynomial** is a sum of monomials

$$P(X) = \sum_{0 \le i < k} X^{n_i}$$

(no coefficients, but repetitions allowed)

We can **categorify** this notion: replace natural numbers by elements of a set.

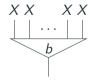
$$P(X) = \sum_{b \in B} X^{E_b}$$

This data can be encoded as a **polynomial** *P*, which is a diagram in **Set**:

 $E \xrightarrow{p} B$

where

- $b \in B$ is a monomial
- $E_b = p^{-1}(b)$ is the set of instances of X in the monomial b.



This data can be encoded as a **polynomial** *P*, which is a diagram in **Set**:

 $E \xrightarrow{p} B$

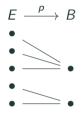
where

- $b \in B$ is a monomial
- $E_b = p^{-1}(b)$ is the set of instances of X in the monomial b.

It induces a polynomial functor

$$\llbracket P
rbracket : \mathbf{Set} o \mathbf{Set} \ X \mapsto \sum_{b \in B} X^{E_b}$$

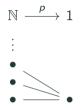
For instance, consider the polynomial corresponding to the function



The associated polynomial functor is

$$\llbracket P \rrbracket(X) : \mathbf{Set} o \mathbf{Set} \ X \mapsto X imes X \sqcup X imes X imes X$$

For instance, consider the polynomial corresponding to the function

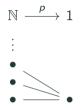


The associated polynomial functor is

$$\llbracket P \rrbracket(X) : \mathbf{Set} \to \mathbf{Set}$$

 $X \mapsto X \times X \times X \times \dots$

For instance, consider the polynomial corresponding to the function



The associated polynomial functor is

$$\llbracket P \rrbracket(X) : \mathbf{Set} \to \mathbf{Set}$$

 $X \mapsto X \times X \times X \times \dots$

A polynomial is **finitary** when each monomial is a finite product.

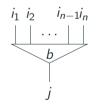
Polynomial functors: typed variant

We will more generally consider a "colored variant" of polynomials ${\it P}$

 $I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J$

this means that

- each monomial b has a color $t(b) \in J$,
- each occurrence of a variable $e \in E$ has a color $s(e) \in I$.



Polynomial functors: typed variant

We will more generally consider a "colored variant" of polynomials ${\it P}$

 $I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J$

this means that

- each monomial b has a color $t(b) \in J$,
- each occurrence of a variable $e \in E$ has a color $s(e) \in I$.

It induces a polynomial functor

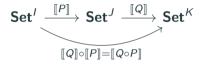
$$[P]](X) : \mathbf{Set}^I o \mathbf{Set}^J$$

 $(X_i)_{i \in I} \mapsto \left(\sum_{b \in t^{-1}(j)} \prod_{e \in p^{-1}(b)} X_{s(e)}\right)_{j \in I}$

The category of polynomial functors

Proposition

The composite of two polynomial functors is again polynomial:



We can thus build a category PolyFun of sets and polynomial functors:

- an object is a set I,
- a morphism

$$F: I \rightarrow J$$

is a polynomial functor

$$\llbracket P
rbracket : \mathbf{Set}^{I} o \mathbf{Set}^{J}$$

Polynomial vs polynomial functors

A polynomial P

$$I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J$$

induces a *polynomial functor*

$$\llbracket P
rbracket : \mathbf{Set}^I o \mathbf{Set}^J$$

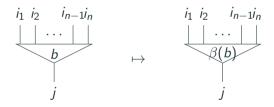
We have mentioned that composition is defined for polynomials. However, on polynomials, it is not strictly associative: we can build a *bicategory* **Poly** of sets an polynomial functors.

This suggests that 2-cells are an important part of the story!

Morphisms between polynomials

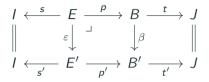
A morphism between two polynomials is

We send monomials to monomials, preserving typing and arities:

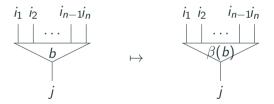


Morphisms between polynomials

A morphism between two polynomials is



We send monomials to monomials, preserving typing and arities:

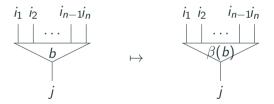


We can build a bicategory Poly of sets, polynomials and morphisms of polynomials.

Morphisms between polynomials

A morphism between two polynomials is

We send monomials to monomials, preserving typing and arities:



We can build a bicategory **Poly** of sets, polynomials and morphisms of polynomials. In the following, we will restrict to the case where 2-cells are *equivalences*.

10

A morphism between polynomial functors

 $\llbracket P \rrbracket, \llbracket Q \rrbracket : \mathbf{Set}^I \to \mathbf{Set}^J$

is a "suitable" natural transformation, and we can build a 2-category PolyFun.

The category PolyFun is cartesian. Namely, given two polynomial functors in Poly

$$P: I \to J$$
 $Q: I \to K$

i.e., in Cat,

$$\llbracket P \rrbracket : \mathbf{Set}' \to \mathbf{Set}^J \qquad \qquad \llbracket Q \rrbracket : \mathbf{Set}' \to \mathbf{Set}^K$$

we have, in Cat,

$$\langle P, Q \rangle : \mathbf{Set}^I \to \mathbf{Set}^J imes \mathbf{Set}^K \cong \mathbf{Set}^{J \sqcup K}$$

and the constructions preserve polynomiality: in PolyFun,

 $\langle P, Q \rangle : I \to (J \sqcup K)$

For the closed structure, we can hope for the same: given, in PolyFun,

 $P: I \sqcup J \to K$

i.e., in Cat,

$$\llbracket P \rrbracket : \mathbf{Set}^{I \sqcup J} \to \mathbf{Set}^K$$

we have

 $\mathbf{Set}^{I\sqcup J} o \mathbf{Set}^K$

For the closed structure, we can hope for the same: given, in $\ensuremath{\textbf{PolyFun}}$,

 $P: I \sqcup J \to K$

i.e., in Cat,

$$\llbracket P \rrbracket : \mathbf{Set}^{I \sqcup J} o \mathbf{Set}^K$$

we have

 $\frac{\mathbf{Set}^{I\sqcup J}\to\mathbf{Set}^K}{\mathbf{Set}^I\times\mathbf{Set}^J\to\mathbf{Set}^K}$

For the closed structure, we can hope for the same: given, in $\ensuremath{\textbf{PolyFun}}$,

 $P: I \sqcup J \to K$

i.e., in Cat,

$$\llbracket P \rrbracket : \mathbf{Set}^{I \sqcup J} \to \mathbf{Set}^K$$

we have

For the closed structure, we can hope for the same: given, in $\ensuremath{\textbf{PolyFun}}$,

 $P: I \sqcup J \to K$

i.e., in Cat,

$$\llbracket P \rrbracket : \mathbf{Set}^{I \sqcup J} \to \mathbf{Set}^K$$

we have

For the closed structure, we can hope for the same: given, in $\ensuremath{\textbf{PolyFun}}$,

 $P: I \sqcup J \to K$

i.e., in Cat,

$$\llbracket P \rrbracket : \mathbf{Set}^{I \sqcup J} \to \mathbf{Set}^K$$

we have

which suggests defining the closure as

$$[J, K] = \mathbf{Set}^J \times K$$

For the closed structure, we can hope for the same: given, in $\ensuremath{\textbf{PolyFun}}$,

 $P: I \sqcup J \to K$

i.e., in Cat,

$$\llbracket P \rrbracket : \mathbf{Set}^{I \sqcup J} \to \mathbf{Set}^K$$

we have

which suggests defining the closure as

$$[J, K] = \mathbf{Set}^J \times K$$

for LL-people: this looks like $!J \ \mathcal{B} K$.

In terms of operations, the intuition behind the bijection

```
\mathsf{PolyFun}(I \sqcup J, K) \cong \mathsf{PolyFun}(I, \mathsf{Set}^J \times K)
```

is that we can formally transform operations as follows

In terms of operations, the intuition behind the bijection

```
\mathsf{PolyFun}(I \sqcup J, K) \cong \mathsf{PolyFun}(I, \mathsf{Set}/J \times K)
```

is that we can formally transform operations as follows

via

 $\mathbf{Set}^J \simeq \mathbf{Set}/J$

There are two problems with our closure. The first one is that

 $[I,J] = \mathbf{Set}/I \times J$

is too large to be an object of our category.

There are two problems with our closure. The first one is that

 $[I, J] = \mathbf{Set}/I \times J$

is too large to be an object of our category.

One can restrict to polynomial functors which are finitary: we can then take

 $[I, J] = \mathbf{Set}_{\mathrm{fin}}/I \times J$

There are two problems with our closure. The first one is that

 $[I, J] = \mathbf{Set}/I \times J$

is too large to be an object of our category.

One can restrict to polynomial functors which are finitary: we can then take

 $[I, J] = \mathbf{Set}_{\mathrm{fin}} / I \times J$

or rather

 $[I,J] = \mathbb{N}/I \times J$

There are two problems with our closure. The first one is that

 $[I, J] = \mathbf{Set}/I \times J$

is too large to be an object of our category.

One can restrict to polynomial functors which are finitary: we can then take

 $[I, J] = \mathbf{Set}_{\mathrm{fin}}/I \times J$

or rather

$$[I,J] = \mathbb{N}/I \times J$$

Finitary polynomial functors are also known as normal functors [Girard].

Theorem *The category* **PolyFun** *is cartesian closed.* **Theorem** *The category* **PolyFun** *is cartesian closed.*

Remark (Girard) The <u>2-</u>category **PolyFun** is <u>not</u> cartesian closed.

Failure of the cartesian closed structure

We would like to have an equivalence of categories

 $\mathsf{PolyFun}(I \sqcup J, K) \simeq \mathsf{PolyFun}(I, \mathbb{N}/J \times K)$

Failure of the cartesian closed structure

We would like to have an equivalence of categories

 $\mathsf{PolyFun}(I \sqcup J, K) \simeq \mathsf{PolyFun}(I, \mathbb{N}/J \times K)$

but consider the polynomial functor

$$\llbracket P \rrbracket(X) = X^2$$
 : $\mathbf{Set}^{0 \sqcup 1} \to \mathbf{Set}^1$

 $\mathsf{PolyFun}(I \sqcup J, K) \simeq \mathsf{PolyFun}(I, \mathbb{N}/J \times K)$

but consider the polynomial functor

$$\llbracket P \rrbracket(X) = X^2$$
 : $\mathbf{Set}^{0 \sqcup 1} o \mathbf{Set}^1$

which is induced by the polynomial

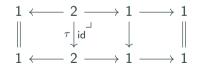
 $1 \longleftarrow 2 \longrightarrow 1 \longrightarrow 1$

$$\mathsf{PolyFun}(I \sqcup J, K) \simeq \mathsf{PolyFun}(I, \mathbb{N}/J imes K)$$

but consider the polynomial functor

$$\llbracket P \rrbracket(X) = X^2$$
 : $\mathbf{Set}^{0 \sqcup 1} \to \mathbf{Set}^1$

which has two automorphisms



 $\mathsf{PolyFun}(I \sqcup J, K) \simeq \mathsf{PolyFun}(I, \mathbb{N}/J \times K)$

but consider the polynomial functor

$$\llbracket P \rrbracket(X) = X^2$$
 : $\mathbf{Set}^{0 \sqcup 1} \to \mathbf{Set}^1$

whose exponential transpose is

$$0 \longleftarrow 0 \longrightarrow 1 \xrightarrow{\star \mapsto 2} \mathbb{N}$$

and has only one automorphism.

$$\mathsf{PolyFun}(I \sqcup J, K) \simeq \mathsf{PolyFun}(I, \mathbb{N}/J \times K)$$

but consider the polynomial functor

$$\llbracket P \rrbracket(X) = X^2$$
 : $\mathbf{Set}^{0 \sqcup 1} \to \mathbf{Set}^1$

whose exponential transpose is

$$0 \longleftrightarrow 0 \longrightarrow 1 \xrightarrow{\star \mapsto 2} \mathbb{N}$$

and has only one automorphism.

The equivalence fails:

$\textbf{PolyFun}(0 \sqcup 1, 1) \not\simeq \textbf{PolyFun}(0, \mathbb{N}/1 \times 1)$

(two elements on the left, one on the right)

The failure of the equivalence

$\textbf{PolyFun}(0\sqcup 1,1) \not\simeq \textbf{PolyFun}(0,\mathbb{N}/1\times 1)$

can be interpreted as being due to the fact that $2\in\mathbb{N}/1$ has no non-trivial isomorphism.

This suggests moving to groupoids!

The failure of the equivalence

$\textbf{PolyFun}(0\sqcup 1,1) \not\simeq \textbf{PolyFun}(0,\mathbb{N}/1\times 1)$

can be interpreted as being due to the fact that $2\in\mathbb{N}/1$ has no non-trivial isomorphism.

This suggests moving to groupoids!

More precisely, we should replace $\mathbb N$ by the groupoid $\mathbb B$ of all symmetric groups.

...but the category **Gpd** is not cartesian closed!

...but the category **Gpd** is not cartesian closed!

Kock has identified that if we perform all the usual constructions <u>up to homotopy</u> (slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.

...but the category **Gpd** is not cartesian closed!

Kock has identified that if we perform all the usual constructions <u>up to homotopy</u> (slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.

This requires properly defining and using all the usual constructions in a suitable 2-categorical sense.

Polynomial functors in groupoids

Given a polynomial P

$$E \xrightarrow{p} B$$

the induced polynomial functor

$$\llbracket P
rbracket : \mathbf{Gpd} o \mathbf{Gpd} \ X \mapsto \int^{b \in B} E_b$$

where E_b is the homotopy fiber of p at b and

$$\int^{b\in E} E_b = \sum_{b\in \pi_0(B)} X_b / \operatorname{Aut}(b)$$

where the quotient is to be taken 2-categorically / homotopically...

Part II

Formalization in Agda

There is a framework in which everything is constructed *up to homotopy* for free: **homotopy type theory**.

In particular, there is a well-known notion of groupoid in this setting: a type with no non-trivial equalities between equalities.

Let's formally develop the theory of polynomials in this setting.

Formalizing polynomials

A polynomial

$$I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J$$

is a container:

```
record Poly (I J : Type) : Type<sub>1</sub> where
field
Op : J \rightarrow Type
Pm : (i : I) \rightarrow {j : J} \rightarrow Op j \rightarrow Type
```

We sometimes write

I \rightsquigarrow J = Poly I J

The polynomial functor induced by a polynomial P is

$$\begin{bmatrix} & & \\ & & \end{bmatrix} : I \rightsquigarrow J \rightarrow (I \rightarrow Type) \rightarrow (J \rightarrow Type) \\ \begin{bmatrix} & & \\ & \end{bmatrix} P X j = \Sigma (Op P j) (\lambda c \rightarrow (i : I) \rightarrow (p : Pm P i c) \rightarrow (X i))$$

The polynomial functor induced by a polynomial P is

$$\begin{bmatrix} & & \\ - \end{bmatrix} : I \rightsquigarrow J \rightarrow (I \rightarrow Type) \rightarrow (J \rightarrow Type) \\ \begin{bmatrix} & & \\ - \end{bmatrix} P X j = \Sigma (Op P j) (\lambda c \rightarrow (i : I) \rightarrow (p : Pm P i c) \rightarrow (X i))$$

The composite of two polynomials is

 Theorem We can build a pre-bicategory of types, polynomials and their morphisms.

Note: by univalence, we can use propositional equality for 2-cells, which simplifies the definition.

Theorem

We can build a pre-bicategory of types, polynomials and their morphisms.

Theorem

We can build a bicategory of groupoids, polynomials in groupoids and their morphisms.

Theorem

We can build a pre-bicategory of types, polynomials and their morphisms.

Theorem

We can build a bicategory of groupoids, polynomials in groupoids and their morphisms.

Theorem This bicategory is cartesian with \Box as coproduct.

In order to define the 1-categorical closure, the plan was:

 $\textbf{Set} \quad \rightsquigarrow \quad \textbf{Set}_{fin} \quad \rightsquigarrow \quad \mathbb{N}$

In order to define the 1-categorical closure, the plan was:

 $\mathbf{Set} \quad \rightsquigarrow \quad \mathbf{Set}_{\mathrm{fin}} \quad \rightsquigarrow \quad \mathbb{N}$

For the 2-categorical closure the plan is

 $\mathbf{Gpd} \quad \rightsquigarrow \quad \mathbf{Gpd}_{\mathrm{fin}} \quad \rightsquigarrow \quad \mathbb{B}$

Here, $\mathbb B$ is the groupoid with $n \in \mathbb N$ as objects and Σ_n as automorphisms on n.

We write Fin n for the canonical finite type with n elements: its constructors are 0 to n-1.

We write Fin n for the canonical finite type with n elements: its constructors are 0 to n-1.

data Fin : $\mathbb{N} \rightarrow \text{Set where}$ zero : {n : \mathbb{N} } \rightarrow Fin (suc n) suc : {n : \mathbb{N} } (i : Fin n) \rightarrow Fin (suc n) The predicate of being finite is

```
is-finite : Type \rightarrow Type is-finite A = \Sigma \mathbb N (A n \rightarrow || A \simeq Fin n ||)
```

The predicate of being finite is

```
is-finite : Type \rightarrow Type is-finite A = \Sigma \mathbb N (A n \rightarrow || A \simeq Fin n ||)
```

The type of finite types is

FinType : Type₁ FinType = Σ Type is-finite The predicate of being finite is

```
is-finite : Type \rightarrow Type is-finite A = \Sigma \mathbb N (A n \rightarrow \parallel A \simeq Fin n \parallel)
```

The type of finite types is

```
FinType : Type<sub>1</sub>
FinType = \Sigma Type is-finite
```

```
(note that this is a large type)
```

A polynomial is **finitary** when, for each operation, the total space of its parameters is finite:

is-finitary : (P : I \rightsquigarrow J) \rightarrow Type is-finitary P = {j : J} (c : Op P j) \rightarrow is-finite (Σ I (λ i \rightarrow Pm P i c)) The type of **integers** is

```
data \mathbb{N} : Type where
zero : \mathbb{N}
suc : \mathbb{N} \to \mathbb{N}
```

A small model for finite types

The type \mathbb{B} is

data \mathbb{B} : Type where obj : $\mathbb{N} \to \mathbb{B}$ hom : {n : \mathbb{N} } (α : Fin n \simeq Fin n) \to obj n \equiv obj n id-coh : (n : \mathbb{N}) \to hom {n = n} \simeq -refl \equiv refl comp-coh : {m n o : \mathbb{N} } (α : Fin m \simeq Fin n) (β : Fin n \simeq Fin o) \to hom (\simeq -trans $\alpha \beta$) \equiv hom $\alpha \cdot$ hom β

(this is a small higher inductive type!)

A small model for finite types

The type \mathbb{B} is

data \mathbb{B} : Type where obj : $\mathbb{N} \to \mathbb{B}$ hom : {n : \mathbb{N} } (α : Fin n \simeq Fin n) \to obj n \equiv obj n id-coh : (n : \mathbb{N}) \to hom {n = n} \simeq -refl \equiv refl comp-coh : {m n o : \mathbb{N} } (α : Fin m \simeq Fin n) (β : Fin n \simeq Fin o) \to hom (\simeq -trans $\alpha \beta$) \equiv hom $\alpha \cdot$ hom β

(this is a small higher inductive type!)

Theorem FinType $\simeq \mathbb{B}$.

We define

Exp : Type \rightarrow Type₁ Exp I = I \rightarrow Type

Theorem

Ignoring size issues, for polynomials we have

We define

Exp : Type \rightarrow Type₁ Exp I = Σ (I \rightarrow Type) (λ F \rightarrow is-finite (Σ I F))

Theorem

Ignoring size issues, for finitary polynomials we have

```
We define
```

```
Exp : Type \rightarrow Type<sub>1</sub>
Exp I = \Sigma FinType (\lambda N \rightarrow fst N \rightarrow I)
```

Theorem

Ignoring size issues, for finitary polynomials we have

We define

Exp : Type \rightarrow Type Exp I = $\Sigma \mathbb{B}$ ($\lambda \ b \rightarrow \mathbb{B}$ -to-Fin $b \rightarrow$ I)

Theorem For finitary polynomials we have

Note that

Exp : Type \rightarrow Type Exp I = $\Sigma \mathbb{B}$ ($\lambda \ b \rightarrow \mathbb{B}$ -to-Fin $b \rightarrow$ I)

is the free pseudo-commutative monoid!

Questions?