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There is a remarkable divide in the field of logic in Computer Science, between two
distinct strands: one focusing on semantics and compositionality (“Structure”),
the other on expressiveness and complexity (“Power”). It is remarkable because
these two fundamental aspects of our field are studied using almost disjoint tech-
nical languages and methods, by almost disjoint research communities.

— From the blurb of this summer’s Structure meets Power workshop
(also found in Abramsky & Shah CSL’18)

• The Scalp community cares about “structure”
• This talk: connections with automata, from the “power” side

• Are they really though? I’ll come back to that at the end
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Some motivations coming from the λ-calculus

Let’s consider the simply typed λ-calculus (I assume basic familiarity).

It’s a programming language, so it computes, right? And it’s not Turing-complete

−→ typical “power” question: what does it compute? Some results known, e.g.

Theorem (Schwichtenberg 1975)
The functions Nk → N definable by simply-typed λ-terms t : Nat → · · · → Nat → Nat
are the extended polynomials (generated by 0, 1, +, ×, id and ifzero).

where Nat is the type of Church numerals.

But some open questions have no known satisfying answer…
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Simply typed functions on Church numerals (1)

Recall that the type of Church numerals is Nat = (o → o) → o → o

n ∈ N ⇝ n = λf. λx. f (. . . (f x) . . .) : Nat with n times f

All inhabitants of Nat are equal to some n up to =βη

Schwichtenberg 1975: Nat → · · · → Nat → Nat = extended polynomials

Let’s add a bit of (meta-level) polymorphism: for n ∈ N,

n : Nat[A] = Nat[A/o] = (A → A) → A → A

Open question
Choose some simple type A and some term t : Nat[A] → Nat.
What functions N → N can be defined this way?
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Simply typed functions on Church numerals (2)

Open question
Choose some simple type A and some term t : Nat[A] → Nat.
What functions N → N can be defined this way? (where B[A] = B{o := A})

Why is nobody working on this seemingly natural question?

• Apparently, low hopes for a nice answer until now
• you can express towers of exponentials
• but not subtraction or equality (Statman 198X)

• Not so important: this is about “power” while our focus is on “structure”

Little-known(?) fact: the case N → {0, 1} / Nat[A] → Bool has a very satisfying
characterization, that even generalizes to strings!
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Defining languages in the simply typed λ-calculus

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011 −→β 011 id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.
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Regular languages in STλC and implicit complexity

Template for theorems at the structure/power interface
The languages/functions computed by programs of type T in the programming
language P are exactly those in the class C.

• Hillebrand & Kanellakis: P = simply typed λ-calculus, C = regular languages
• Good news: unlike “extended polynomials”, a central object in

another field of computer science, namely automata theory
• The definition will be recalled soon

• Implicit computational complexity: C is a complexity class e.g. P, NP, …
• ICC has been an active research field since the 1990s (cf. Péchoux’s HDR)
• Historical example (Girard): P = Light Linear Logic, C = P (polynomial time)

Our “implicit automata” research programme: C coming from automata theory
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Grandeur et misère de la complexité implicite

Implicit complexity has been very successful in capturing lots of different
complexity classes!

But the programming languages involved are often ad-hoc…
Several systems […] have been produced; my favourite being LLL, light linear
logic, which […] can harbour all polytime functions. Unfortunately these systems
are good for nothing, they all come from bondage: artificial restrictions on the rules
which achieve certain effects, but are not justified by use, not even by some natural
“semantic” considerations. — Girard, From Foundations to Ludics

Yet we didn’t ask for regular languages to appear in the simply typed λ-calculus!

“Implicit automata” challenge: find natural characterizations for other
automata-theoretic classes of languages/functions using typed λ-calculi

Next: we review regular languages and star-free languages, our new target
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Regular languages

Many classical equivalent definitions (+ STλC with Church encodings!):

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (DFA/NFA): e.g. drawing below

• algebraic definition below (very close to DFA), e.g. M = Z/(2)

even odd

0
1

0

1

9/25



Regular languages

Many classical equivalent definitions (+ STλC with Church encodings!):

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (DFA/NFA)
• algebraic definition below (very close to DFA), e.g. M = Z/(2)

Theorem (classical)
A language L ⊆ Σ∗ is regular ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a
finite monoid M and a subset P ⊆ M such that L = φ−1(P) = {w ∈ Σ∗ | φ(w) ∈ P}.

Σ: finite alphabet, Σ∗: words over Σ
monoid structure: for v,w ∈ Σ∗, v · w = concatenation
morphism: for w ∈ Σ∗ with n letters, φ(w) = φ(w[0]) . . . φ(w[n])
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Star-free languages and aperiodicity

Star-free languages: regular expressions with complementation but without star

L, L′ ::= ∅ | {a} | L · L′ | L ∪ L′ | Lc

e.g. (ab)∗ = (b∅c ∪∅ca ∪∅caa∅c ∪∅cbb∅c)c

but (aa)∗ is not star-free…

Theorem (classical)
A language L ⊆ Σ∗ is regular ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a
finite monoid M and a subset P ⊆ M such that L = φ−1(P) = {w ∈ Σ∗ | φ(w) ∈ P}.

Theorem (Schützenberger 1965)
L ⊆ Σ∗ is star-free ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a finite and
aperiodic monoid M and a subset P ⊆ M such that L = φ−1(P).
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e.g. (ab)∗ = (b∅c ∪∅ca ∪∅caa∅c ∪∅cbb∅c)c but (aa)∗ is not star-free…

Definition
A (finite) monoid M is aperiodic when ∀x ∈ M, ∃n ∈ N : xn = xn+1.

Morally, (aa)∗ involves the group Z/(2): not aperiodic

Theorem (Schützenberger 1965)
L ⊆ Σ∗ is star-free ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a finite and
aperiodic monoid M and a subset P ⊆ M such that L = φ−1(P).
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From aperiodicity to non-commutativity

How to enforce aperiodicity in a λ-calculus? Consider monoids of terms t : A → A
Embedding of non-aperiodic Z/(2) via not : Bool → Bool (not ◦ not =β id)

true = λx. λy. x false = λx. λy. y not = λb. λx. λy. b y x

morally, if b then x else y ⇝ if not(b) then y else x
the not function exchanges two of its arguments

Idea: non-commutative type system, i.e. make the order of arguments matter
“a function λb. λx. λy. (. . .) should first use b, then x, then y”

Technical issue: λf. λx. λy. (λz. f z z) (x y) −→β λf. λx. λy. f (x y) (x y)
oops, now there’s a y occuring before an x…
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Non-commutative types and linear logic

Idea: non-commutative type system, i.e. make the order of arguments matter
Technical issue: λf. λx. λy. (λz. f z z) (x y) −→β λf. λx. λy. f (x y) (x y)

the problem comes from the two copies of (x y), caused by two occurrences of z

Fix: prohibit duplication −→ non-commutative affine λ-calculus
“a function should use its argument at most once”

If “exactly once”, non-commutative linear λ-calculus; an old idea:

• first introduced by Lambek (1958), applied to linguistics
• revival in late 1980s with the birth of linear logic (Girard)
• recently: correspondence with planar combinatorial maps (N. Zeilberger)

−→ not contrived to get a connection with automata!
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Finally, our theorem

Our type system: a base type o + two function arrows that coexist
non-commutative affine: λ◦x. t : A⊸ B unrestricted: λ�x. t : A → B

A function λ◦x. λ�y. λ◦z. (. . .) can use each of x and z at most once
cannot use x after z no restrictions on y

Church encoding with affine types
011 = λ�f0. λ�f1. λ◦x. f0 (f1 (f1 x)) : Str{0,1} = (o⊸ o) → (o⊸ o) → (o⊸ o)

Theorem (N. & Pradic, ICALP 2020)
This typed λ-calculus can define all star-free languages, and only those, with terms of
type Str{0,1}[A]⊸ Bool where A is purely affine i.e. does not contain any ‘→’.

(A may vary depending on the language, as in Hillebrand & Kanellakis.)

With commutative affine types, you’d get regular languages.
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A non-commutative affine type system

Typing judgments Γ | ∆ ` t : A for a set Γ and an ordered list ∆

Γ ] {x : A} | ∅ ` x : A Γ | x : A ` x : A
Γ | ∆ ` t : A → B Γ | ∅ ` u : A

Γ | ∆ ` t u : B

Γ ] {x : A} | ∆ ` t : B
Γ | ∆ ` λ�x. t : A → B

Γ | ∆ ` t : A⊸ B Γ | ∆′ ` u : A
Γ | ∆ ·∆′ ` t u : B

Γ | ∆ · (x : A) ` t : B
Γ | ∆ ` λ◦x. t : A⊸ B

Γ | ∆ ` t : A
Γ | ∆′ ` t : A

when ∆ is a subsequence of ∆′

without weakening (last rule)≈ Polakow & Pfenning’s Intuitionistic Non-Commutative Linear Logic
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Remarks on the proof

To prove λ-definable ⊆ star-free, we use:
Lemma (in our non-commutative λ-calculus)
For any purely affine A, the monoid {t | t : A⊸ A}/=βη is finite and aperiodic.

Finite due to affineness, aperiodic due to non-commutativity.

The converse is harder (unusual for implicit complexity!): how do we exploit the
aperiodicity assumption? Using the powerful toolbox of finite semigroup theory
Theorem (Krohn & Rhodes 1965 (special case))
Any finite and aperiodic monoid can be “decomposed” as a wreath product of
“building blocks” which are certain monoids with 3 elements.

To avoid the scary algebra: a detour through transducers, i.e. automata with output.
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Sequential transducers: an example

qa qb

end|bbb

a|a b|a b|bb

a|bbend|ab

7→ aabbbbab

Note: there is an implicit characterization of sequential transductions using
cyclic proofs [DeYoung & Pfenning, APLAS’16]; Anupam and Gianluca’s talks
later today will show other results on ICC with cyclic proofs
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Aperiodic sequential transducers

qa qb

end|ab end|bbb

a|a

a|bb

b|a b|bb

Transition for a: _ 7→ qa Transition for b: _ 7→ qb
They generate the transition monoid {id, (_ 7→ qa), (_ 7→ qb)}
(Remark: this 3-element monoid is the building block in Krohn–Rhodes!)
This monoid is aperiodic → aperiodic sequential transducer
Lemma
L ⊆ Σ∗ star-free ⇐⇒ L = f−1(ε) for some aperiodic sequential f : Σ∗ → Γ∗
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The Krohn–Rhodes decomposition, again

Reformulation of the Krohn–Rhodes decomposition
Aperiodic sequential functions are generated from aper. seq. transducers
with 2 states (as in prev. slide) by usual function composition.

So it’s enough to find λ-terms for transducers with 2 states.
(Not-so-trivial programming exercise!)

Theorem
Our non-commutative affine λ-calculus can define all aperiodic sequential functions with
terms of type StrΓ[A]⊸ StrΣ (A purely affine).

Corollary
It can define all star-free languages with terms of type StrΣ[A]⊸ Bool.
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String-to-string functions

Theorem
Our non-commutative λ-calculus can define all aperiodic sequential functions with terms
t : StrΓ[A]⊸ StrΣ[o] (A purely affine).

Obtained as byproduct of our proof. What about the converse?

False: we can code non-sequential functions, e.g. reverse : StrΣ[o⊸ o]⊸ StrΣ.

• Exact characterization of StrΓ[A]⊸ StrΣ (A purely affine)?
• What happens in a commutative affine λ-calculus?

Similar to questions at the beginning about simply typed λ-calculus,
but affineness makes things easier.
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Characterizing regular functions

Theorem (commutative case)
f : Γ∗ → Σ∗ can be expressed by an affine λ-term t : StrΓ[A]⊸ StrΣ (A purely affine)
⇐⇒ f is a regular function.

Regular functions admit many equivalent definitions; among others:

• monadic second-order logic (reg. fn. also called “MSO transductions”)
• basic functions + combinators (several variants)
• copyless streaming string transducers

' affine types!

• two-way finite state transducers

, closely related to the geometry of interaction
semantics of linear logic [Hines 2003]

Non-commutative case: aperiodic regular functions (“first-order transductions”)
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Decomposition of regular functions

One possible proof regular function =⇒ affine λ-definable uses:
Theorem (Bojańczyk et al. (see e.g. [Bojańczyk & Stefański 2020]))
Any regular function can be obtained as a composition of:

• sequential functions (that can themselves be decomposed by Krohn–Rhodes);
• mapReverseΣ, mapDuplicateΣ : (Σ ∪ {#})∗ → (Σ ∪ {#})∗ for # /∈ Σ

For w1, . . . ,wn ∈ Σ∗, mapReverseΣ(w1# . . .#wn) = rev(w1)# · · ·#rev(wn)

mapDuplicateΣ(w1# . . .#wn) = w1w1# · · ·#wnwn

Such factorization theorems (the above and Krohn–Rhodes) are a form of
compositional (algebraic?) “structure” arising in the study of “power”!
This often happens in automata theory…
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Semantic evaluation example: STλC-definable languages are regular

Next: a technique to bound the expressive power of λ-terms.

Example: for any type A & any simply typed λ-term t : Str{0,1}[A] → Bool, the
language {w ∈ {0, 1}∗ | t w =β true} is regular [Hillebrand & Kanellakis 1996].

Proof sketch: by semantic evaluation.

Use the standard semantics in finite sets: JA → BK = JBKJAK.
JwK determines whether Jt wK = JtK (JwK) = JtrueK.
When Card(JoK) ≥ 2, JtrueK 6= JfalseK, so this means t w =β true.

JStr[A]K is finite and has a monoid structure (JconcatK, JεK) such that
w ∈ {0, 1}∗ → JwK ∈ JStr[A]K is a monoid morphism.

Similar ideas in higher-order model checking, e.g. Grellois & Melliès
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Categorical automata theory meets semantic evaluation

Semantic evaluation strategy for affine λ-definable =⇒ regular function:

• Consider a category C of “transducer behaviors”, such that automata over C
(in the sense of [Colcombet & Petrişan 2017]) compute regular functions

• C = Int(PFinSet) (geometry of interaction): two-way transducers
• C = “Dialectica-like” category of affine register assignments:

variant of copyless streaming string transducers
• this reflects compositional structure that is actually used in “mainstream”

automata theory, under the guise of “monoids of behaviors”!

• Exhibit a monoidal closed structure on C
• Conclude by interpreting purely affine λ-terms in C

Side benefits: some composition and determinization theorems for transducers
“secretly rely on” monoidal closed categories, leading to generalizations
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Perspectives: new transducer models

• Comparison-free polyregular functions [N., Noûs, Pradic ICALP’21]:
discovered by playing around with Str[A] → Str instead of Str[A]⊸ Str
natural from an automata-theoretic POV, part of a recent line of investigations
into polynomial growth transductions (Bojańczyk, Douéneau, Kiefer, Lhote, …)

• Two-way automata/transducers with planar behaviors:
new machine model for star-free languages / aperiodic regular functions
inspiration topological planarity ↔ non-commutative types

• “Collapsible pushdown transducers”: answer to old question on STλC?
Lessons from 1980s literature on tree transducers
+ 2010s work on higher-order model checking

Also: tree automata vs multiplicative/additive distinction in linear logic
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By way of conclusion: back to Structure meets Power

There is a remarkable divide in the field of logic in Computer Science, between two
distinct strands: one focusing on semantics and compositionality (“Structure”),
the other on expressiveness and complexity (“Power”). It is remarkable because
these two fundamental aspects of our field are studied using almost disjoint techni-
cal languages and methods, by almost disjoint research communities.

Webelieve
that bridging this divide is a major issue in Computer Science, and may
hold the key to fundamental advances in the field.

Thanks for your attention! Questions?
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