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The model theoretic universe

° NIP NTP2 ®
[ [ [}
[}
(] L] [
e/  o-minimal distal
L]
(]
L] o L L]
3
El
2
El O °
L]
@ strongly minimal Z|
oo ° o
e o o £
°® 3
[} ) ® &
© )
o ] O
w-stable oo @
() ° ®
()
° ° e|e
® ®
[}
superstable | @ supersimple
L) @ (.
L]
ee °
° stable °® simple

(© Gabriel Conant



Introduction

Transductions Sparsification & Decomposition
(o] 000

NIP and VC-dimension
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Computational learning theory

PAC learning «~ NIP (Laskovski '92)
Online learning «~ Stability (Chase & Freitag ’18)
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Structural graph theory
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Special Generic Structures
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Computational complexity

Theorem (Grohe, Kreutzer, Siebertz '14)

For every nowhere dense class C and every € > 0, every property
of graphs definable in first-order logic can be decided in time
O(n'*<) on C.

Theorem (Dvorak, Kral, Thomas '10; Kreutzer '11)

if a monotone class C is somewhere dense, then deciding first-
order properties of graphs in C is not fixed-parameter tractable
(unless FPT = W[1]).
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Computational complexity

Theorem (Gajarsky, Hlinény, Lokshtanov, Ramanujan ’16)

Let D be a graph class interpretable in a bounded degree class.
Then D has an FO model checking algorithm in FPT.

Conjecture (Gajarsky et al. ’16)

Let C be a nowhere dense class and D a graph class interpretable
in C. Then D has an FO model checking algorithm in FPT.
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Transductions

How to encode graphs in a structure?

e Use a formula v(z) to select the vertices,
e Use a formula 7(z,y) to define the edges,

e Use colors to encode several graphs in a same graph.

C——=1D
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Example 1: blowing
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Edgeless —= Blowing of F'
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Example 2: k-leaf power

Trees ——= k-leaf powers
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Example 3: map graph

Planar quadrangulations ——s= Map graphs
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Example 4: bounded tree-depth
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Bounded height trees ——= Bounded tree-depth graphs
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Example 5: cograph

Tree orders ——= Cographs
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Monotone closure

Proposition

Xst(C) <oo =  C—— Monotone(C) J

Let C be a class with star chromatic number at most k. Then
there exists a transduction 1" mapping each graph G € C to the
set of all the subgraphs of G.
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Proof

Let v : V(G) — [k] be a star coloring of G, and let H C G.
Color v € V(G) by

c(v) = Ly (v),7(v), {7(2) | 2v € E(H)})

(1761,{027...}) (1702,{017...})
@ 0
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Proof

Let v : V(G) — [k] be a star coloring of G, and let H C G.
Color v € V(G) by

c(v) = Ly (v),7(v), {7(2) | 2v € E(H)})

(1761,{027...}) (1702,{017...})

o )
¢ E(H)
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Proof

Proof

Let v : V(G) — [k] be a star coloring of G, and let H C G.
Color v € V(G) by

c(v) = Ly (v),7(v), {7(2) | 2v € E(H)})

(1761,{027...}) (1702,{017...})
0

¢ E(H)
€ E(H)

(17027 .. )
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Proof

Proof

Let v : V(G) — [k] be a star coloring of G, and let H C G.
Color v € V(G) by

c(v) = Ly (v),7(v), {7(2) | 2v € E(H)})

(1761,{027...}) (1702,{017...})

€ E(H) € E(H)

(17027...) (1,01,...)
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Proof

Proof

Let v : V(G) — [k] be a star coloring of G, and let H C G.
Color v € V(G) by

c(v) = Ly (v),7(v), {7(2) | 2v € E(H)})

(1761,{027...}) (1,02.‘{01,..4})

¢ E(H)
€ E(H) € E(H)

(1762,...) % (1761,...)
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Monadic dependence and stability

e C is monadically NIP iff every definable class (in a monadic
lift) has bounded VC-dimension

Theorem (Baldwin, Shelah '85)

C monadically NIP < C—+=G

¢ C is monadically stable iff every definable class (in a
monadic lift) has bounded Littlestone dimension

Theorem (Anderson '90; Baldwin, Shelah '85)

C monadically stable <= C —+LO

Introduction Transductions Sparsification & Decomposition Rank-width
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Sparsification

Problem

Find a K, s-free class D and transductions 77, T» with
TQ o Tl = Id and
T

e If C is NIP then D is nowhere dense
® Model checking on T;(G) can be transported on G.
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Sparsification
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Vertex bloc: bounded depth cographs
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Edge bloc: bounded depth bi-cographs
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Structural Sparsity

Theorem (Gaja reutzer, Kwon, Nesetril, POM,

Pilipczuk, Siebertz, Toruriczyk ’18)
For a class of graphs C with (¢, d)-fold coloring the following are
equivalent:

® C has low shrub-depth decompositions

® Sparsify(C) has tree-depth decompositions;

¢ Sparsify(C) has bounded expansion.

® ( has structurally bounded expansion;

If (¢,d)-fold colorings can be computed in time F'(n) for G € C
then checking a first-order sentence ¢ on C can be done in time

F(n) + C(¢,C)n.
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Decompositions

Low rank-width decomposition = x-bounded
(Kwon, Pilipczuk, Siebertz ’17)

Low linear rank-width decomposition

i

9BE <> Low shrub-depth decomposition => linearly x-bounded

L) '

BE <= Low tree-depth decomposition

Monadically stable
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Rank-width
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Rank-width and Linear rank-width

Theorem (from Colcombet "07)

® A class of finite graphs has bounded rank-width if and only
it is a transduction of the class TO of finite tree orders

TO—=C

® A class of finite graphs has bounded linear rank-width if and
only it is a transduction of the class LO of finite linear orders

LO—C




Introduction Transductions Sparsification & Decomposition Rank-width
(o] o 000 [ ]

Order without order

What happens if LO —=C —= L0 ?
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Order without order

What happens if LO —=C —= L0 ?
Is it true that there is a standard class like PW,, such that

LO PW, —=C?
~——
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Order without order

What happens if LO —=C —= L0 ?
Is it true that there is a standard class like PW,, such that

=

LO PW, —=C7

And does TO——=C ——=LO imply

TO

TW, —=C?

LO/
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Rank-width and stability

Theorem (Nesetfil, POM, Rabinovich, Siebertz '19-)

Let C be a class of graphs. The following are equivalent:

1. C has bounded linear rank-width and excludes some semi-
induced half-graph,

2. C is a transduction of a class with bounded pathwidth.

Corollary

Let C be a class of graphs. The following are equivalent:

1. C is monadically stable and has low linear rank-width de-
compositions,

2. C has structurally bounded expansion.
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Hint
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Hint
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More?

Conjecture

Let C be a class of graphs. The following are equivalent:
1. C has bounded rank-width and is monadically stable,

2. C is a transduction of a class with bounded treewidth.

If true, the following are equivalent:

1. C is monadically stable and has low rank-width decomposi-
tions,

2. C has structurally bounded expansion.
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Dualities?

Conjecture

A class of graphs C has bounded shrub-depth if and only there is
no surjective transduction from C to the class of all finite paths.

This would corresponds to a duality between bounded height trees
and paths:
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Thank you for your
attention.
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