A model theoretic approach to sparsity

Patrice Ossona de Mendez

joint work with J. Gajarský, S. Kreutzer, J. Nešetřil, M. Pilipczuk, R. Rabinovich, S. Siebertz, and S. Toruńczyk

Charles University Praha, Czech Republic

LIA STRUCO

CAMS, CNRS/EHESS Paris, France

— Graph Theory in Paris — May 2019 —
Introduction
General View

Model Theory
Stability
NIP
Transduction
Sparsity
Decompositions
Structural Graph Theory
Encoding
Algorithmic Graph Theory
Kernels
FPT-algorithms
Model checking
PAC-learning
Sampling
Online-learning
The model theoretic universe

© Gabriel Conant
NIP and VC-dimension

\[
G \models \phi(\bar{a}_i, \bar{b}_I) \iff i \in I
\]
Stability and Order property

\[G \models \phi(\overline{a_i}, \overline{b_j}) \iff i < j \]
Computational learning theory

PAC learning \iff NIP

Online learning \iff Stability

(Laskovski ’92)
(Chase & Freitag ’18)
Adler & Adler ’14

For a monotone class C tfae:

1. C is nowhere dense,
2. C is NIP,
3. C is stable.

© Felix Reidl
Special Generic Structures

- NIP
- Stability
- Nowhere dense
- Bounded expansion
Computational complexity

Theorem (Grohe, Kreutzer, Siebertz ’14)
For every nowhere dense class C and every $\epsilon > 0$, every property of graphs definable in first-order logic can be decided in time $O(n^{1+\epsilon})$ on C.

Theorem (Dvořák, Kráľ, Thomas ’10; Kreutzer ’11)
if a monotone class C is somewhere dense, then deciding first-order properties of graphs in C is not fixed-parameter tractable (unless $\text{FPT} = \text{W}[1]$).
Introduction

Computational complexity

Theorem (Gajarský, Hliněný, Lokshtanov, Ramanujan ’16)

Let \mathcal{D} be a graph class interpretable in a bounded degree class. Then \mathcal{D} has an FO model checking algorithm in FPT.

Conjecture (Gajarský et al. ’16)

Let \mathcal{C} be a nowhere dense class and \mathcal{D} a graph class interpretable in \mathcal{C}. Then \mathcal{D} has an FO model checking algorithm in FPT.
Transductions
Transductions

How to encode graphs in a structure?

- Use a formula $\nu(x)$ to select the vertices,
- Use a formula $\eta(x, y)$ to define the edges,
- Use colors to encode several graphs in a same graph.

$C \longrightarrow D$
Example 1: blowing

Edgeless \longrightarrow Blowing of F
Example 2: k-leaf power

Trees $\rightarrow k$-leaf powers
Example 3: map graph

Planar quadrangulations \longrightarrow Map graphs
Example 4: bounded tree-depth

Bounded height trees \rightarrow Bounded tree-depth graphs
Example 5: cograph

Tree orders → Cographs
Monotone closure

Proposition

\[\chi_{st}(C) < \infty \implies C \rightarrow Monotone(C) \]

Let \(C \) be a class with star chromatic number at most \(k \). Then there exists a transduction \(T \) mapping each graph \(G \in C \) to the set of all the subgraphs of \(G \).
Proof

Let $\gamma : V(G) \rightarrow [k]$ be a star coloring of G, and let $H \subseteq G$. Color $v \in V(G)$ by

$$c(v) = (\mathbf{1}_{V(H)}(v), \gamma(v), \{\gamma(x) \mid xv \in E(H)\})$$

$$= (1, c_1, \{c_2, \ldots \}) \quad (1, c_2, \{c_1, \ldots \})$$
Proof

Let $\gamma : V(G) \to [k]$ be a star coloring of G, and let $H \subseteq G$. Color $v \in V(G)$ by

$$c(v) = (\mathbf{1}_{V(H)}(v), \gamma(v), \{\gamma(x) | xv \in E(H)\})$$

$$(1, c_1, \{c_2, \ldots\}) \\ (1, c_2, \{c_1, \ldots\})$$

$\notin E(H)$
Proof

Let $\gamma : V(G) \to [k]$ be a star coloring of G, and let $H \subseteq G$. Color $v \in V(G)$ by

$$c(v) = (1_{V(H)}(v), \gamma(v), \{\gamma(x) \mid xv \in E(H)\})$$

$$\in E(H)$$

$$\notin E(H)$$

$(1, c_1, \{c_2, \ldots\})$ $(1, c_2, \{c_1, \ldots\})$
Let $\gamma : V(G) \rightarrow [k]$ be a star coloring of G, and let $H \subseteq G$. Color $v \in V(G)$ by

$$c(v) = (1_{V(H)}(v), \gamma(v), \{\gamma(x) \mid xv \in E(H)\})$$
Proof

Let \(\gamma : V(G) \to [k] \) be a star coloring of \(G \), and let \(H \subseteq G \). Color \(v \in V(G) \) by

\[
c(v) = (1_{V(H)}(v), \gamma(v), \{\gamma(x) \mid xv \in E(H)\})
\]

\((1, c_1, \{c_2, \ldots\})\) \hspace{2cm} (1, c_2, \{c_1, \ldots\})

\(\in E(H)\) \hspace{2cm} \notin E(H) \hspace{2cm} \in E(H)

(1, c_2, \ldots) \hspace{2cm} (1, c_1, \ldots)\]
Monadic dependence and stability

• \mathcal{C} is monadically NIP iff every definable class (in a monadic lift) has bounded VC-dimension

Theorem (Baldwin, Shelah ’85)

$$\mathcal{C} \text{ monadically NIP } \iff \mathcal{C} \quad \mathcal{G}$$

• \mathcal{C} is monadically stable iff every definable class (in a monadic lift) has bounded Littlestone dimension

Theorem (Anderson ’90; Baldwin, Shelah ’85)

$$\mathcal{C} \text{ monadically stable } \iff \mathcal{C} \quad \mathcal{LO}$$
Sparsification & Decomposition
Sparsification

Problem

Find a $K_{s,s}$-free class \mathcal{D} and transductions T_1, T_2 with $T_2 \circ T_1 = \text{Id}$ and

\[
\begin{array}{c}
\mathcal{C} \\
\downarrow \quad T_1 \\
\mathcal{D}
\end{array}
\quad \quad \quad
\begin{array}{c}
\mathcal{D} \\
\downarrow \quad T_2 \\
\mathcal{C}
\end{array}
\]

- If \mathcal{C} is NIP then \mathcal{D} is nowhere dense
- Model checking on $T_1(G)$ can be transported on G.
Sparsification
Vertex bloc: bounded depth cographs
Edge bloc: bounded depth bi-cographs
(c, d)-fold coloring
(c, d)-fold coloring
Sparsification: Cut & Paste
Structural Sparsity

Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM, Pilipczuk, Siebertz, Toruńczyk ’18)

For a class of graphs \mathcal{C} with (c, d)-fold coloring the following are equivalent:

- \mathcal{C} has low shrub-depth decompositions
- $\text{Sparsify}(\mathcal{C})$ has tree-depth decompositions;
- $\text{Sparsify}(\mathcal{C})$ has bounded expansion.
- \mathcal{C} has structurally bounded expansion.

If (c, d)-fold colorings can be computed in time $F(n)$ for $G \in \mathcal{C}$ then checking a first-order sentence ϕ on \mathcal{C} can be done in time

$$F(n) + C(\phi, \mathcal{C})n.$$
Decompositions

Low rank-width decomposition \Rightarrow χ-bounded
(Kwon, Pilipczuk, Siebertz '17)

Low linear rank-width decomposition

Low shrub-depth decomposition \Rightarrow linearly χ-bounded

Low tree-depth decomposition

Monadically stable

SBE \iff Low shrub-depth decomposition
BE \iff Low tree-depth decomposition
Rank-width
Rank-width and Linear rank-width

Theorem (from Colcombet ’07)

• A class of finite graphs has bounded rank-width if and only if it is a transduction of the class TO of finite tree orders

$\text{TO} \rightarrow \mathcal{C}$

• A class of finite graphs has bounded linear rank-width if and only if it is a transduction of the class LO of finite linear orders

$\text{LO} \rightarrow \mathcal{C}$
Order without order

What happens if $\text{LO} \rightarrow C \rightarrow \text{LO}$?
Order without order

What happens if $\text{LO} \rightarrow C \rightarrow \text{LO}$?
Is it true that there is a standard class like \mathcal{PW}_n such that

$$\text{LO} \leftrightarrow \mathcal{PW}_n \rightarrow C$$
Order without order

What happens if \(\text{LO} \rightarrow \mathcal{C} \rightarrow \text{LO} \)?

Is it true that there is a standard class like \(\mathcal{PW}_n \) such that

\[
\text{LO} \leftrightarrow \mathcal{PW}_n \rightarrow \mathcal{C} ?
\]

And does \(\text{TO} \rightarrow \mathcal{C} \rightarrow \text{LO} \) imply

\[
\text{TO} \rightarrow \mathcal{TW}_n \rightarrow \mathcal{C} ?
\]
Theorem (Nešetřil, POM, Rabinovich, Siebertz ’19+)

Let \mathcal{C} be a class of graphs. The following are equivalent:

1. \mathcal{C} has bounded linear rank-width and excludes some semi-induced half-graph,
2. \mathcal{C} is a transduction of a class with bounded pathwidth.

Corollary

Let \mathcal{C} be a class of graphs. The following are equivalent:

1. \mathcal{C} is monadically stable and has low linear rank-width decompositions,
2. \mathcal{C} has structurally bounded expansion.
Hint

- Interval of a_k
- Interval of v
- Interval of a_1

Diagram showing nodes labeled a_1, a_2, a_k, and v with labeled intervals.
Hint
Conjecture

Let \mathcal{C} be a class of graphs. The following are equivalent:

1. \mathcal{C} has bounded rank-width and is monadically stable,
2. \mathcal{C} is a transduction of a class with bounded treewidth.

If true, the following are equivalent:

1. \mathcal{C} is monadically stable and has low rank-width decompositions,
2. \mathcal{C} has structurally bounded expansion.
Conjecture

A class of graphs \mathcal{C} has bounded shrub-depth if and only there is no surjective transduction from \mathcal{C} to the class of all finite paths.

This would corresponds to a duality between bounded height trees and paths:

$$\left(\exists n \right) \mathcal{Y}_n \longrightarrow \mathcal{C} \iff \mathcal{C} \longrightarrow \mathcal{P}$$
Thank you for your attention.