Ordering Robinsonian matrices with
graph algorithms

Monique Laurent

[] ’ a]
m TILBURG 0%0 UNIVERSITY

-’I

Graph Theory in Paris - 23 November 2018

Based on joint works with Matteo Seminaroti

Plan of the talk

Ordering similarity matrices: the seriation problem

Numerical algorithm: the spectral approach

Combinatorial algorithms: links to (unit interval) graphs

Graph search: Lexicographic Breadth-First Search (Lex-BFS)
(and unit interval graphs)

New weighted graph search: Similarity-First Search (SFS)

(and Robinson matrices)

Combinatorial obstructions

The seriation problem

Motivation: Archeology

Sequence dating

g’ﬁﬁh.
&5.

'65@* / ‘
- "

Matthew Flinders
Petrie (1853_1942)

Al

1 COMMONEST TYPES OF PREHISTORIC POTTERY.

cuss o
ouacx-TomreD
rorreRy
W“mw'.'. ..'.‘:

cuase r
rancr rorvs

class ¢ i 3
crcunins @

- @94 h,ﬂﬂ]l
..w..,.:._m; g@gao

=Zio i@V 6e
108)) s

DIOSPOLIS PARVA
THE CEMETERIES OF ABADIYEH AND HU

1898-9

"

W. M. FLINDERS PETRIE

With Chapters by
A. C. MACE

SPECIAL EXTRA FUBLICATION OF

THE EGYPT EXPLORATION FUND

PUBLISHED BY ORDER OF THE COMMITTEE

LoNDOXN
Tes OFFICES OF THE EOYFT KXPLORATION FOND 37, Oasr Bemss S, W.C.
v 9, Taursa Sranm,
o v KBOAN PATL. TAENCE, TRUBSES 4 (0 s Bovm, Caae Osm Ba, ..
B QUARITON, 33, Pccasess, Wy ARHER & Ca. 15, Buswoss S, Corser Qusses, W.C.

0

Paper-slips of Petrie

(©Courtesy of the Petrie

Museum, London

R I OO S T

Y 0 | I T TR T

Seriation and the Consecutive Ones Property (C1P)

Try to order the graves so that ‘similar’ graves are close to each other in
the ordering.

Seriation and the Consecutive Ones Property (C1P)

Try to order the graves so that ‘similar’ graves are close to each other in
the ordering.

P P Py Py P P P P
G 1 Gy 1
Gy 1 1 1 Gs 1 1 1 1
Gs 1 1 Go 1 1 1
Gy 1 G3 1 1
Gs 1 1 1 1 Gy 1

Matrix with C1P Petrie matrix
P IIP

Permute the rows of P so that the ones are consecutive in its columns.

The approach of Petrie is based on the presence/absence of pottery types

in the graves.

W.S. Robinson (1951) also uses the frequency of pottery types in the

graves.

AMERICAN

ANTIQUITY

Vor. XVI

ApriL, 1951

No. 4

A METHOD FOR CHRONOLOGICALLY ORDERING
ARCHAEOLOGICAL DEPOSITS*

W. S. RosiNsoN

THEORY

HE statistical technique of this paper is

based upon the empirically established fact
that over the course of time pottery types come
into and go out of general use by a given group
of people. It is further based upon the estab-
lished fact that in cultures where chronology
has been determined the differential use of
types takes on a form illustrated in Figure 89.
The data of this diagram are hypothetical, the
purpose being merely to illustrate the present
discussion.

PERCENT

into use at the beginning of the period, attains
its greatest popularity around the year 100, and
thereafter declines in importance. Type 4, on
the other hand, first makes its appearance
around the year 100, and increases in im-
portance throughout the remaining years shown
on the diagram.

The fact that types come into and go out
of use in the lenticular fashion shown in
Figure 89 has important implications for the
archaeologist. Suppose he has a number of
deposits, and that these deposits represent dif-
ferent points of time in the development of
a people. Assuming that he already has the
information given in Figure 89, what can he
tell about the properties of these deposits?
Reference to the figure will show that a deposit
representing an early stage in this culture will
have in it a preponderance of pottery of type 1,
with small percentages of types 2 and 3. A
deposit which represents an intermediate stage,
on the other hand, will show a largest per-

antoaa_of _natt £t a !

The dissimilarity measure d(G;, G;) between two graves G;, G; is the
{1-distance between their pottery-types frequency vectors.

~ their similarity measure (agreement coefficient) is C — d(G;, G;).

Tasee 17. PercextaGes oF EIGHT Types oF PotTery Tasre 20. AGREEMENT COEFFICIENTS FOR THREE
IN THREE STRATIFIED TRENCHES STRATIFIED TRENCHES—3RD ORDER
DerosiTs

1A J1IA 1113 1A 111C 1B 118 11C
Type 11A 11B 11C 1A 18 IIIA 1IIB 1IIC
1 20 Lk .2 13 3 296 Sk 0 11A @-@+ »+ n+ - 5+ 1

66,8 49 O 0 0O D 35 0 1A @+ o+ 2t be 30
13 0 2 38 2 Ml W0 66 s | @+ @ B2+ ro+Hy %
O 0 N L3 2 0 18 33 @O @ @+ @+ @
mic | @+ @+ @+ 0@-@
1B ke L+ »+@D+ @D @~ 9
118 s- 3+ 29+ @D+ @+
1ic 10 1+ 26+@D + @+Eod

195 252 W03 668 62 658 650 &i2

0 0 O 33 5 O 53 55
Lo 0 O 2L.9 Ll 7.0 T 2745
O 9T 993 52,6 97k O 123 574
3.9 0 3 28 0 L9318 o

@ = o W E W o

100.0 100.0 100.0 10040 100.0 100.0 100.0 100.0

W.S. Robinson (1951):

Order the graves, given by their pairwise similarities, in such a way that
similar graves are placed close to each other in the ordering.

Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gl G5 G2 G3 G4

Gy [1 1 0 0 O
Gs| 1 4 3 2 1
G| 0 3 3 2 1
Gs| 0 2 2 2 1
Gy \ O 1 1 1 1

Robinson matrix

Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy

G/ 1 0 0 0 1 G/ 1 1 0 0 0

G| O 3 2 1 3 Gs| 1 4 3 2 1

Gs| O 2 2 1 1 Go| O 3 3 2 1

G4l O 1 1 1 1 Gs| O 2 2 2 1

Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix

A TTAITT

Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy
G/ 1 0 0 0 1 G/ 1 1 0 0 0
G| O 3 2 1 3 Gs| 1 4 3 2 1
Gs| O 2 2 1 1 Go| O 3 3 2 1
G4l O 1 1 1 1 Gs| O 2 2 2 1
Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix
A AT

Theorem (Kendall 1969)
e For P 0/1-valued: P is Petrie < PPT is Robinson.

Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy
G/ 1 0 0 0 1 G/ 1 1 0 0 0
G| O 3 2 1 3 Gs| 1 4 3 2 1
Gs| O 2 2 1 1 Go| O 3 3 2 1
G4l O 1 1 1 1 Gs| O 2 2 2 1
Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix
A AT

Theorem (Kendall 1969)
o For P 0/1-valued: IIP is Petrie < IIPPTII" is Robinson.

Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy
G/ 1 0 0 0 1 G/ 1 1 0 0 0
G| O 3 2 1 3 Gs| 1 4 3 2 1
Gs| O 2 2 1 1 Go| O 3 3 2 1
G4l O 1 1 1 1 Gs| O 2 2 2 1
Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix
A AT

Theorem (Kendall 1969)

o For P 0/1-valued: IIP is Petrie < IIPPTII" is Robinson.

e P has unimodal columns <= Po PT := (3 min{P,.., P,.})zy
is Robinson.

Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy
G/ 1 0 0 0 1 G/ 1 1 0 0 0
G| O 3 2 1 3 Gs| 1 4 3 2 1
Gs| O 2 2 1 1 Go| O 3 3 2 1
G4l O 1 1 1 1 Gs| O 2 2 2 1
Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix
A AT

Theorem (Kendall 1969)

o For P 0/1-valued: IIP is Petrie < IIPPTII" is Robinson.

IIP has unimodal columns < 1P o PTTIT
is Robinson.

Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along the rows and columns when moving toward the diagonal:

Ay, <min{A;,, Ay}

Vi<z<y<z<n

Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along the rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

A € 8" is a Robinsonian similarity if there exists a permutation 7 such
that IIAIIT = A" := (Aﬂ(x)ﬂr(y))xy is a Robinson similarity.

Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along the rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

A € 8" is a Robinsonian similarity if there exists a permutation 7 such
that IIAIIT = A" := (Aﬂ(x)ﬂr(y))xy is a Robinson similarity.

Then 7 is called a Robinson ordering of A.

Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along the rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

A € 8" is a Robinsonian similarity if there exists a permutation 7 such
that IIAIIT = A" := (Aﬂ(x)ﬂr(y))xy is a Robinson similarity.

Then 7 is called a Robinson ordering of A.

The seriation problem: Find such a Robinson ordering 7 (if it exists).

Robinson(ian) dissimilarity matrix

D € 8" is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

D,. > max{Dyy, D,.}
Vi<z<y<z<n

Robinson(ian) dissimilarity matrix

D € 8" is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

D € §™ is a Robinsonian dissimilarity if there exists a permutation 7
such that D™ := (Dﬂ(x)m(y))xy is a Robinson dissimilarity,

that is: A = —D is a Robinsonian similarity.

The seriation problem

Given A € 8", find a permutation = (Robinson ordering) for which A™ is
Robinson, or decide that none exists.

There are efficient algorithms:

@ Numerical algorithm: spectral method

@ Combinatorial algorithms: via interval graphs and graph search

Applications: archeology, biology (DNA sequencing), ranking,
combinatorial data analysis, etc.

DNA sequencing

Cloned genomes

J .
= C—— C— Unordered sequenced
[) [=] ments
mﬁ — | ™

e
3 Computational automated

assembly
N [=] [E— N 2o it 20
|) [e—] E__—) it ey ©
segments, (The higher the
[} _—) (S S | overage the better the quality
[1] [o — [S—] of the sequencing.
B C——a T

(©Commins-Toft-Fares, Biological Procedures Online, 2009.

Seriation, quadratic assignment

and the spectral algorithm

Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix

QAP(4,D) min Y AzyDr(a)e(y) = Te(AIDILT)

z,y=1

Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix
QAP(4,D) min Y AsyDrayn(y) = Tr(ATIDIT)
z,y=1
e D= (z—y| ~» 1-SUM problem
e D= ((z—y)? ~> 2-SUM problem

NP-hard problems for general A [George-Pothen'97]

Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix
QAP(4,D) min Y AsyDrayn(y) = Tr(ATIDIT)
z,y=1
e D= (z—y| ~» 1-SUM problem
e D= ((z—y)? ~ 2-SUM problem
NP-hard problems for general A [George-Pothen'97]

@ Note: in both cases D is a Robinson dissimilarity and D is
Toeplitz: constant entries on each diagonal.

Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix
QAP(4,D) min Y AsyDrayn(y) = Tr(ATIDIT)
z,y=1
e D= (z—y| ~» 1-SUM problem
e D= ((z—y)? ~ 2-SUM problem
NP-hard problems for general A [George-Pothen'97]

@ Note: in both cases D is a Robinson dissimilarity and D is
Toeplitz: constant entries on each diagonal.

Theorem (L-Seminaroti'15)

If D is a Toeplitz Robinson dissimilarity and A is a Robinsonian
similarity then any Robinson ordering 7 of A is an optimal solution.

Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix
QAP(4,D) min Y AsyDrayn(y) = Tr(ATIDIT)
z,y=1
e D= (z—y| ~» 1-SUM problem
e D= ((z—y)? ~ 2-SUM problem
NP-hard problems for general A [George-Pothen'97]

@ Note: in both cases D is a Robinson dissimilarity and D is
Toeplitz: constant entries on each diagonal.

Theorem (L-Seminaroti'15)

If D is a Toeplitz Robinson dissimilarity and A is a Robinsonian
similarity then any Robinson ordering 7 of A is an optimal solution.
Hence QAP(A, D) is polynomial time solvable.

Extending a result of [Fogel, Jenatton, Bach, Aspremont 2014]

Idea behind this result

For any permutation 7:

x TI'$7T
ZAyD . ZAxnyy

z,y=1 z,y=1
when:
* — * —
_ * J _ * T .
A= " . , D= . . Toeplitz

Idea behind this result

For any permutation 7

Z Ay Do) > Z AvyDay

z,y=1 z,y=1
when:
* — * —
_ * J _ * T .
A= " . , D= . . Toeplitz
— * — *

This is the analogous for matrices of the rearrangement inequality:

i a:pdw(x) > i g dy
=1 r=1

when:
ay

dy

IN IV
|

The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.

e \i(L4) =0, with eigenvector the all-ones vector e.

The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.
e \i(L4) =0, with eigenvector the all-ones vector e.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0

e \i(L4) =0, with eigenvector the all-ones vector e.

~> Laplacian matrix: L, = Diag(Ae) — A.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: “Relax” 2-SUM:

Il’linﬂ ZZ,yZI Axy(ﬂ'(l) - W(y))Q

by

min e 7y Ary (0

—u,)? =0vTLav st elv=0, || =1

The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.
e \i(L4) =0, with eigenvector the all-ones vector e.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: “Relax” 2-SUM:| min, 37 | Agy(n(z) — 7(y))? by

min, cgn E;,yzl Agy (v — v,)? = vILav st elv=0, ||| =1

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then L 4 has a monotone Fiedler vector.

The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0

e \i(L4) =0, with eigenvector the all-ones vector e.

~> Laplacian matrix: L, = Diag(Ae) — A.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: “Relax” 2-SUM:

Il’linﬂ— ZZ,yZI Axy(ﬂ'(l) - W(y))Q

by

mil’lveRn Z;,;;:l Amy (/L‘.'L’ -

1);(/)2 = ’UTLA’U s.t. el = 0, ||1)H =1.

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then L 4 has a monotone Fiedler vector.

2. Assume A is irreducible with min; ; A;; = 0.

If A is Robinson(ian) then Aa(L4)> 0 and Aa(L) is simple.

The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.
e \i(L4) =0, with eigenvector the all-ones vector e.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: “Relax” 2-SUM:| min, 37 | Agy(n(z) — 7(y))? by

min,cgn Z;,yzl Agy(vy —vy)? = vILav st elv=0, ||| =1

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then L 4 has a monotone Fiedler vector.

2. Assume A is irreducible with min; ; A;; = 0.
If A is Robinson(ian) then Aa(L4)> 0 and Aa(L) is simple.

3. If the Fiedler vector v has no repeated entries, then a permutation
7 orders v monotonically <= m is a Robinson ordering of A.

The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.
e \i(L4) =0, with eigenvector the all-ones vector e.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: "Relax” 2-SUM: ming Yy Agy(7(2) — m(y))? by

min,cgn Z;,yzl Agy(vy —vy)? = vILav st elv=0, ||| =1

Theorem (Atkins-Boman-Hendrickson 1998)
1. If A is Robinson then L 4 has a monotone Fiedler vector.
2. Assume A is irreducible with min; ; A;; = 0.
If A is Robinson(ian) then Aa(L4)> 0 and Aa(L) is simple.

3. If the Fiedler vector v has no repeated entries, then a permutation
7 orders v monotonically <= m is a Robinson ordering of A.

Else recurse on the submatrices indexed by the repeated entries.

Combinatorial algorithms via

(unit) interval graphs

Robinsonian matrices, interval graphs and C1P

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B:= set of all balls; V' = [n].

Theorem (Fulkerson-Gross'65, Mirkin-Rodin'84)

The following are equivalent:
1. A is a Robinsonian similarity

2. the intersection graph of B is an interval graph

Robinsonian matrices, interval graphs and C1P

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B:= set of all balls; V' = [n].

Theorem (Fulkerson-Gross'65, Mirkin-Rodin'84)
The following are equivalent:

1. A is a Robinsonian similarity

2. the intersection graph of B is an interval graph
<= its max.cliques/vertices incidence matrix has C1P.

Robinsonian matrices, interval graphs and C1P

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B:= set of all balls; V' = [n].

Theorem (Fulkerson-Gross'65, Mirkin-Rodin'84)

The following are equivalent:
1. A is a Robinsonian similarity

2. the intersection graph of B is an interval graph

<= its max.cliques/vertices incidence matrix has C1P.

3. the vertices/balls incidence matrix has C1P
(~ the ball hypergraph (V,B) is an interval hypergraph)

Robinsonian matrices, interval graphs and C1P

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B:= set of all balls; V' = [n].

Theorem (Fulkerson-Gross'65, Mirkin-Rodin'84)
The following are equivalent:

1. A is a Robinsonian similarity

2. the intersection graph of B is an interval graph
<= its max.cliques/vertices incidence matrix has C1P.

3. the vertices/balls incidence matrix has C1P
(~ the ball hypergraph (V,B) is an interval hypergraph)

Theorem (Booth-Lueker 1976)

One can test whether a matrix M € {0,1}P*? with m ones has C1P in
O(p+q+m) (using PQ-trees).

Existing recognition algorithms for Robinsonian matrices

Year Complexity Subroutine Paradigm
&Mli?r:il?n 1084 O(n*) PQ-trees hyipn;regr;/;ll)hs
&Crll:(iatl:JI:;t 1997 O(n?) PQ-trees hy;)n;f;:;;hs
& Fortin | 21 o) araohs
Aeik;r;.s 1998 O(n(T(n)+nlogn)) eigenvalues I\:lfils:
N 'S'::‘n’::]’;otl 2015 O(L(m + n)) Lex-BFS “”i;ia”;fg"a'
& Semiparoty | 21 Ot £mnlogn) sk IR

n: size of A; m : # of nonzero entries of A; L : # of distinct values of A.

Unit interval graphs and binary Robinsonian matrices

G is a unit interval graph if 3 unit intervals I1,..., I, in R such that
{z,y}e B <= IL,NIL,#0.

N
/

Unit interval graphs and binary Robinsonian matrices

Theorem (Looges-Olariu 1993)

G is a unit interval graph <= there exists a linear order 7 of the
vertices satisfying the 3-point condition:

{CL',Z}GE = {xvy}v{wa}EE if T<ngy<gZ

Recall the Robinson (similarity) property:

Ay, < Il’liIl{Axy, Ayz} if r<y<z

Unit interval graphs and binary Robinsonian matrices

Theorem (Looges-Olariu 1993)

G is a unit interval graph <= there exists a linear order 7 of the
vertices satisfying the 3-point condition:

{l’,Z}GE = {l’,y},{y,Z}GE if x<ﬂ'y<ﬂ'z

Recall the Robinson (similarity) property:

-
’,
’

Ay, < Il’liIl{Axy, Ayz} if r<y<z

Fact (Roberts 1969)

A € {0,1}"*™ is a Robinsonian similarity <= A is the adjacency matrix

of a unit interval graph G.

Unit interval graphs and binary Robinsonian matrices

Theorem (Looges-Olariu 1993)

G is a unit interval graph <= there exists a linear order 7 of the
vertices satisfying the 3-point condition:

{z,2} e B = {z,y},{y,2} €L if x<zy<qz

Recall the Robinson (similarity) property:

-
’,
’

Ay, < Il’liIl{Axy, Ayz} if r<y<z

Fact (Roberts 1969)

A € {0,1}"*™ is a Robinsonian similarity <= A is the adjacency matrix

of a unit interval graph G.

v

Theorem (Corneil 2004)

One can recognize unit interval graphs in O(|V| + |E|) using Lex-BFS.

Graph search: Lex-BFS

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

4 @ 6

Different queue updates lead to different graph search algorithms:
@ Breadth-First Search (BFS)
@ Depth-First Search (DFS)

@ Lexicographic Breadth-First Search (Lex-BFS)
“Give the preference to vertices adjacent to vertices visited earlier.”

Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.

Let N(p) denote the neighborhood of the current pivot p.

B,

By

B3

Q : T

Z2

€T3

Zq

L5

6

Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.

Let N(p) denote the neighborhood of the current pivot p.

B, By B3
Q: T T2 T3 T4 T5 Z6
1 3 L2 z T4 6 T5

B1 N N(p)

Bi\N(p) BonN(p) B2\ N(p) BsNN(p) Bs\N(p)

Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.

Let N(p) denote the neighborhood of the current pivot p.

B4 By Bs
Q: T T2 T3 T4 T5 Z6
x1 €3 x2 z T4 Ze Z5
BiNN(p) Bi\N(p) BonN(p) B2\ N(p) BsNN(p) Bs\N(p)
Q’ . T T3 T2 T4 T6 Z5

Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.
Let N(p) denote the neighborhood of the current pivot p.

B, By B3
Q: 1 T T3 T4 5 6
x1 z3 x2 z T4 Ze Z5
BiNN(p) Bi\N(p) BonN(p) B2\ N(p) BsNN(p) Bs\N(p)
Q' : x1 x3 x2 x4 Z6 T5

Lex-BFS runs in time O(|V| + |E|) [Rose-Tarjan'75, Habib et al.’00]

Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.
Let N(p) denote the neighborhood of the current pivot p.

B4 By Bs
Q: T o xrs3 X4 x5 X6
T z3 z2 & T4 Te Ts5
By NN(p) Bi\N(p) BonN(p) B2\ N(p) BsNN(p) Bs\N(p)
Q’ . T T3 T2 T4 T6 Z5

Lex-BFS_ (G, 7): Order vertices in the blocks using a reference order 7.

Example of Lex-BFS.

r=(1,2,3,4,5,6)
1
/2\ /3\
4 5 6

1 2 3 4 5 6]

Example of Lex-BFS.

r=(1,2,3,4,5,6)
1
/2\ /3\
4 5 6

1 2 3 4 5 6]

12 3[4 5 6]

Example of Lex-BFS.

7 =(1,2,3,4,5,6)
1
/N
g — (3
NN
1 5 6
1 2 3 4 5 6] 1 2 [3]/4 5]6]

12 3[4 5 6]

Example of Lex-BFS.

r=(1,2,3,4,5,6)
1
2/ >3\\
4/ \5 6
1 2 3 4 5 6] 1 2 [3]/4 5]6]
12 3[4 5 6] 1 2 3|5]/4]6]

The Lex-BFS; ordering is 0 = (1,2, 3,5,4,6)

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

1. 0 = Lex-BFS (G)

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

1. 0 = Lex-BFS (G)
2. 0, = Lex-BFS (G, 07 1)

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

1. 0 = Lex-BFS (G)
2. 04 = Lex-BFS,(G,071)
3. 7= Lex-BFS4(G,07")

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

o = Lex-BFS (G)
04 = LeX-BFS+(G,O'_1)
T = Lex-BFS.(G,0} ")

if 7 satisfies 3-vertex condition return

Sl

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

o = Lex-BFS (G)
04 = LeX-BFS+(G,O'_1)
T = Lex-BFS.(G,0} ")

if 7 satisfies 3-vertex condition return

ok W=

else return “G is not a unit interval graph”

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

o = Lex-BFS (G)
04 = LeX-BFS+(G,O'_1)
T = Lex-BFS.(G,0} ")

if 7 satisfies 3-vertex condition return

ok W=

else return “G is not a unit interval graph”

Hence: In time O(|V| + |E|), return a Robinson ordering of A or state
Ag is not Robinsonian.

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

o = Lex-BFS (G)
04 = LeX-BFS+(G,O'_1)
T = Lex-BFS(G,0. ")

if 7 satisfies 3-vertex condition return

ok W=

else return “G is not a unit interval graph”

Hence: In time O(|V| + |E|), return a Robinson ordering of A or state
Ag is not Robinsonian.

What about general matrices A7

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

o = Lex-BFS (G)
04 = LeX-BFS+(G,O'_1)
T = Lex-BFS(G,0. ")

if 7 satisfies 3-vertex condition return

ok W=

else return “G is not a unit interval graph”

Hence: In time O(|V| + |E|), return a Robinson ordering of A or state
Ag is not Robinsonian.
What about general matrices A7

Option 1: Use Lex-BFS for the ‘level graphs’ of A. [L-Seminaroti’'15]
~ O(L(m +n))

Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

o = Lex-BFS (G)
04 = LeX-BFS+(G,O'_1)
T = Lex-BFS(G,0. ")

if 7 satisfies 3-vertex condition return

ok W=

else return “G is not a unit interval graph”

Hence: In time O(|V| + |E|), return a Robinson ordering of A or state
Ag is not Robinsonian.

What about general matrices A7

Option 1: Use Lex-BFS for the ‘level graphs’ of A. [L-Seminaroti’'15]
~ O(L(m +n))

Option 2: Generalize Lex-BFS to weighted graphs: SFS

Weighted graph search:

Similarity-First Search (SFS)

Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.

Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cy, Cs,...) of N(p), where
App =1 > Apy=aa>Ap. =a3>...>0 Vo e O,y € O,z € Cs,...

Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cy, Cs,...) of N(p), where
App =1 > Apy=aa>Ap. =a3>...>0 Vo e O,y € O,z € Cs,...

By Bs

Q: T T2 T3 T4 x5 6

Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cs, C5,...) of N(p

), where
App =1 >Apy=aa>Ap. =a3> ... >0 Vo e O,y € O,z € C3,.

B1 BQ
Q: T T2 3 T4 5 T
T3 | T1 T2 = & = T4 +— T +— L o Ty o &
BiNC, B1NCs BiNCs Bl\N(p) BonNCy BanNCy BaNCs B2\N(p)
Q' : x3 x1 x2 x4 Te — Ts

SFS runs in O(n + mlogn) if A has m nonzero entries. [L-Seminaroti 17]

Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cs,C5,...) of N(p

), where
App =1 > Apy=aa>Ap. =a3> ... >0 Vo e O,y € O,z € C3,.

B1 B2
Q: x1 x2 x3 x4 x5 Z6
T3 — I T2 = & = T4 +— T +— L o Ty o &
BiNC, B1NCs BiNCs Bl\N(p) BonNCy BanNCy BaNCs B2\N(p)
Q' : x3 1) T4 T +—— Ij

SFS. (A, 7): order the vertices in each block using a reference order 7

Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6]

Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6]

!

Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6] 1 3 [2]6][5]4]
]2 o]

Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6] 1 3 [2]6][5]4]
1[3][2][4 5 ¢ 13 2[6][5]4]

The SFS, ordering is 0 = (1,3,2,6,5,4)

SFS and Robinson matrices

SFS multisweep recognition algorithm

Input: a nonnegative matrix A € S"
Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian

SFS multisweep recognition algorithm

Input: a nonnegative matrix A € S"
Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian

1. 09 = SFS (A)

SFS multisweep recognition algorithm

Input: a nonnegative matrix A € S"
Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian

1. 09 = SFS (A)
2. fori=1,...,n—2

5. end

SFS multisweep recognition algorithm

Input: a nonnegative matrix A € S"

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
1. 09 = SFS (A)
2. fori=1,...,n—2
3. 0i=SFS (4,0,

5. end

SFS multisweep recognition algorithm

Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
1. 09 = SFS (A)
2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4 if o; is a Robinson ordering return © = o;

5. end

SFS multisweep recognition algorithm

Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
oo = SFS (A)

2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4. if o; is a Robinson ordering return 7 = o;

5

6

=

. end
. return “A is not Robinsonian”

Theorem (L-Seminaroti 2017)
Let A € 8™ be nonnegative with m nonzero entries. Then:

1. A € 8" is Robinsonian <= o, o is a Robinson ordering.

SFS multisweep recognition algorithm

Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
oo = SFS (A)

2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4. if o; is a Robinson ordering return 7 = o;

5

6

=

. end
. return “A is not Robinsonian”

Theorem (L-Seminaroti 2017)
Let A € 8™ be nonnegative with m nonzero entries. Then:

1. A € 8" is Robinsonian <= o, o is a Robinson ordering.

2. The multisweep recognition algorithm runs in O(n? + mnlogn) time.

SFS multisweep recognition algorithm

Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
oo = SFS (A)

2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4. if o; is a Robinson ordering return 7 = o;

5

6

=

. end
. return “A is not Robinsonian”

Theorem (L-Seminaroti 2017)
Let A € 8™ be nonnegative with m nonzero entries. Then:

1. A € 8" is Robinsonian <= o, o is a Robinson ordering.
2. The multisweep recognition algorithm runs in O(n? + mnlogn) time.

3. Simpler test at line 4: Check whether o; = 0;11. If YES then:

if o; is Robinson then A is Robinsonian; else A is not Robinsonian.

Tight example where n — 1 sweeps are needed

Example by S. Tanigawa: Robinson matrix A € S™:
A, =0, Ayy=1, Aoy =1, Ajp =2, Ajj = A 111+ 1.

(-]

1 9 10 11
*

—_
—_

2
1
*

ONOOOCTDEWN =
¥ N = W
* W~ S
* B~ W~ O
¥ ULk W NN - O
¥ U B W N~ ~N
*¥ O O i W W N~
* R R R R WY N

o

10
11

* W W W WwWwwNnH
* NN DNDNDNDNDNDN—-O

With SFS o¢ = (2,3,...,n,1), the first Robinson sweep is 7,,_».

SFS and end-vertices of Robinson orderings (anchors of A)

SFS and end-vertices of Robinson orderings (anchors of A)

e a € V is an anchor of A if there exists a Robinson ordering 7w of A
starting (or ending) at a

SFS and end-vertices of Robinson orderings (anchors of A)

e a € V is an anchor of A if there exists a Robinson ordering 7w of A
starting (or ending) at a

e a, b € V are opposite anchors of A if there exists a Robinson
ordering 7 of A starting at a and ending at b

T a al as cee bo by b

SFS and end-vertices of Robinson orderings (anchors of A)

e a € V is an anchor of A if there exists a Robinson ordering 7w of A
starting (or ending) at a

e a, b €V are opposite anchors of A if there exists a Robinson
ordering 7 of A starting at a and ending at b

o: a al a2 e bo b1 b

Theorem (L-Seminaroti 2017)

Assume A is Robinsonian and o = SFS(A) has last vertex b.

1. Then b is an anchor of A.
(In fact any anchor arises as end-vertex of some SFS ordering of A.)

SFS and end-vertices of Robinson orderings (anchors of A)

e a € V is an anchor of A if there exists a Robinson ordering 7w of A
starting (or ending) at a

e a, b €V are opposite anchors of A if there exists a Robinson
ordering 7 of A starting at a and ending at b

o a al as e bo by b

Theorem (L-Seminaroti 2017)
Assume A is Robinsonian and o = SFS(A) has last vertex b.

1. Then b is an anchor of A.
(In fact any anchor arises as end-vertex of some SFS ordering of A.)

2. If the first vertex a in o is an anchor of A, then a, b are opposite
anchors of A.

Anchor flipping property of SFS,

Anchor flipping property of SFS,

aggQ - Ul u9 us

Unp—2

Un—1

Anchor flipping property of SFS,

ao - Uy U2 us v Unp—2 Up—1 a

o1 : a ‘M/ b

n—2 n—1

Anchor flipping property of SFS,

0o : U1 UQU?)/UTLQW1
b a %
02! b Y2 Y3 s Yn—2 Yn—1

Theorem (Anchors Flipping)

Assume A € 8™ is Robinsonian and o; = SFS; (A, 0,_1) withi > 1.
o1 start with a and end with b; o9 start with b and end with a;

Anchor flipping property of SFS,
oo : U Ug us Up—2
: m b

[3 a aj

g2

Theorem (Anchors Flipping)

Assume A € 8" is Robinsonian and o; = SFS(A,0,_1) withi > 1.
o1 ,03 start with a and end with b; o5 , 04 start with b and end with a, etc.

Anchor flipping property of SFS,

0o : u1 UQUB/UTLQW1 a
o1t a T2 T3 S Tn—2 Tn—1 b

N | é a
o3 : a al a2 ba b1 b

Theorem (Anchors Flipping)

Assume A € 8™ is Robinsonian and o; = SFS; (A, 0,_1) withi > 1.
o1 ,03 start with a and end with b; o5 , 04 start with b and end with a, etc.

Key fact: a; = y,_1 and b; are opposite anchors of A[V \ {a,b}].

Anchor flipping property of SFS,

0o : U1 UZU?}/UTL2%1 a
o1t a T2 T3 S Tn—2 Tn—1 b

N | é a
03 : a ay as by by b

Theorem (Anchors Flipping)

Assume A € 8™ is Robinsonian and o; = SFS; (A, 0,_1) withi > 1.
o1 ,03 start with a and end with b; o5 , 04 start with b and end with a, etc.

Moreover: o, _2[A\ {a,b}]| can be seen as result of the multisweep
algorithm applied to A[V \ {a,b}], starting with o3[V \ {a,b}].
~> can apply induction.

Obstructions for Robinsonian matrices

Certifying non-Robinsonian matrices

For distinct z,y,z € V, P = (x = vg, v1,...,0k—1,Vt = Yy) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,

Apioryy >min{A,, Ay}, Yi=0,1,... k-1

Certifying non-Robinsonian matrices

For distinct z,y,z € V, P = (x = vg, v1,...,0k—1,Vt = Yy) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,
Appoey >min{Azy, Auy 3, Vi=01,... k-1,

Fact

Assume A is Robinsonian. If 3 path x ~ y avoiding z then
~ does not lie between = and y in any Robinson ordering 7 of A.

Certifying non-Robinsonian matrices

For distinct z,y,z € V, P = (x = vg, v1,...,0k—1,Vt = Yy) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,
AUWH—l > min{szia AZUH—I}’ V= 0, 1, ceey k—1.

Fact

Assume A is Robinsonian. If 3 path x ~ y avoiding z then
~ does not lie between = and y in any Robinson ordering 7 of A.

Definition
A weighted asteroidal triple for A is a triple {z,y, z} such that
i paths z ~ y avoiding z; x ~ z avoiding y; ¥y~ z avoiding .

If such triple exists then A is not Robinsonian!

Certifying non-Robinsonian matrices

For distinct z,y,z € V, P = (x = vg, v1,...,0k—1,Vt = Yy) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,
Appoey >min{Azy, Auy 3, Vi=01,... k-1,

Fact

Assume A is Robinsonian. If 3 path x ~ y avoiding z then
~ does not lie between = and y in any Robinson ordering 7 of A.

Definition
A weighted asteroidal triple for A is a triple {z,y, z} such that
i paths z ~ y avoiding z; x ~ z avoiding y; ¥y~ z avoiding .

Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian <= there does not exist a weighted asteroidal triple.

v

Certifying non-Robinsonian matrices

For distinct z,y,z € V, P = (x = vg, v1,...,0k—1,Vt = Yy) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,
AUWH—l > min{szia AZUH—I}’ V= 0, 1, ceey k—1.

Fact

Assume A is Robinsonian. If 3 path x ~ y avoiding z then
~ does not lie between = and y in any Robinson ordering 7 of A.

Definition
A weighted asteroidal triple for A is a triple {z,y, z} such that
i paths z ~ y avoiding z; x ~ z avoiding y; ¥y~ z avoiding .

Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian <= there does not exist a weighted asteroidal triple.

v

e Find a weighted asteroidal triple in O(n3): certifies A not Robinsonian.

Certifying non-Robinsonian matrices

For distinct z,y,z € V, P = (x = vg, v1,...,0k—1,Vt = Yy) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,
AUiUH—l > min{szia AZUH—I}’ V= 0, 1, ceey k—1.

Fact

Assume A is Robinsonian. If 3 path x ~ y avoiding z then
~ does not lie between = and y in any Robinson ordering 7 of A.

Definition
A weighted asteroidal triple for A is a triple {z,y, z} such that
i paths z ~ y avoiding z; x ~ z avoiding y; ¥y~ z avoiding .

Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian <= there does not exist a weighted asteroidal triple.

e Find a weighted asteroidal triple in O(n3): certifies A not Robinsonian.

e Implies the characterization of unit interval graphs: no asteroidal triple,
no induced cycle of length at least 4, no induced claw K 3. [Roberts 69]

Computational experiments

Matteo's PhD thesis

Instances generation

Generatlon 1 Generat|on 2

(c) Generation 3 (d) Generation 4

Performance table (n < 1000)

distinct values Tow (< 50) medium (> 50 and < 200) high (> 200)
algorithms
nonzero entries spectral SFS ~ LBFS | spectral SFS LBFS | spectral SFS LBFS
n
100 2,98 10,57 3,68 o7 58.85 2,20 B
200 848 36,99 838 8,08 893 -
300 16,69 83,08 18,00 16,55 16,58 -
400 27,68 153,23 30,06 31,92 } 32,10 -
sparse 500 38,78 209,87 47,77 4733 138298 41,20 -
(<30 %) 600 50,28 277,90 59,06 5547 1771,93 57,10 -
700 67,02 45 38313 72.54 7564 243752 78.96 -
800 9820 52648 98,96 102,09 -
900 124,67 616,90 122,12 130,02 -
1000 161,15 904,72 148,28 184,12 -
100 316 165 2625 346 5,20 5.04 E
200 11,04 1858 108.28 12,96 19,92 20,08 -
300 25,62 4091 25298 29,46 4437 45,00 -
400 49,50 76,23 459,03 55.82 74,65 79.34 -
normal 500 7335 10860 64523 8466 113,71 110,84 -
(> 30 % and < 70%) 600 10805 13940 89337 | 12633 153,15 148,99 -
700 14332 18648 124781 196,33 195,22 -
800 19345 25349 1646.54 246,19 5,05 -
900 25446 30713 213164 309,65 6.79 -
1000 33147 408,70 2856,86 376,66 499,45 -
100 681 66,58 772 78 B
200 2738 285,67 30,01 31,57 -
300 6159 633,54 65,96 490451 69.41 -
400 112,23 1165,52 9114,09 7766 12197 -
dense 500 158,87 1691,87 13693,00 | 11496 161,89 -
(>70 %) 600 17442 21188 234912 210,19 1845580 | 171,59 22539 -
700 27301 291,38 336406 286,44 2503280 | 24526 299,84 -
800 35928 379,78 449335 373,60 3480170 39755 -
900 480,78 487,85 585402 466,22 45060.20 519,41 -
1000 663,46 642,58 804678 579,50 5841050 | 70710 775,99 -

Figure 1: (Average) Time performance of the algorithms (in milliseconds)

Performance chart (n < 1000)

time (ms)

900

1000

time (ms)

(c) normal - low

%00

1000

time (ms)

time (ms)

800,

200/

100

%00

1000

200 300 400 500 600 700 800

(d) dense - high

%00

1000

Performance table (large instances)

distinct values

Tow (< 50)

medium (> 50 and < 200)

high (> 200)

algorithms
nonzero entries spectral ~SFS LBFS | spectral SFS LBFS | spectral SFS LBFS
n
1000 0.16 0.19 - 0.16 - 0.17 -
2000 0.68 0.62 - 0.72 - 0.76 -
3000 1,56 - 1.95 -
4000 2,94 - 3.58 -
sparse 5000 441 - 6.09 -
(<30 %) 6000 6,94 - 10,87 -
7000 10,56 - 20,73 -
8000 14.86 - 21,03 -
9000 17.58 - 31.66 -
10000 22,46 - 32,87 -
1000 - 045 -
2000 - 1.99 -
3000 - 5.74 -
4000 - 14,22 -
normal 5000 17,08 - 26,33 -
(> 30 % and < 70%) 6000 29,09 - 43,07 -
7000 43,05 - 68,86 -
8000 72,48 - 86,72 -
9000 92,18 - 116,02 -
10000 111,08 - 155,1 -
1000 0.62 - 0.6 -
2000 3.3 - 3.62 -
3000 10,46 - 11,61 -
4000 25,64 - 26,62 -
dense 5000 43,85 - 51,03 -
(> 70 %) 6000 104,47 - 92,41 -
7000 121,14 - 14265 31,19 -
8000 220,08 - 21643 4331 -
9000 284.63 5. - 293,18 5244 -
10000 38398 24897 - 423,32 - 41120 64,93 -

Figure 2: (Average) Time performance of the algorithms (in seconds)

Performance chart (large instances)

time (sec.)

time (sec.)

o
000 2000 3000 4000 5000 6000 7000 8000

(a) sparse - low

120

5000

10000

100

000 2000 3000 4000 5000 6000 7000 8000
n

(c) normal - low

9000

10000

time (sec.)

time (sec.)

1000 2000 3000 4000 5000 6000 7000 5000 9000 10000

(b) normal - medium

2000 3000 4000 5000 6000 7000 8000 9000 10000

(d) dense - high

Conclusions

e Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker'76), unit interval graphs (3 sweeps, Corneil'04),
interval graphs (5* sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib'17),...

Conclusions

e Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker'76), unit interval graphs (3 sweeps, Corneil'04),
interval graphs (5* sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib'17),...

e SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:

CRAN Package SFS available at the R platform.

Conclusions

e Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker'76), unit interval graphs (3 sweeps, Corneil'04),
interval graphs (5* sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib'17),...

e SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:

CRAN Package SFS available at the R platform.
SFS permits to recognize Robinsonian matrices.
Other applications?

Conclusions

e Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker'76), unit interval graphs (3 sweeps, Corneil'04),
interval graphs (5* sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib'17),...

e SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:
CRAN Package SFS available at the R platform.
SFS permits to recognize Robinsonian matrices.
Other applications?

e Robinsonian matrices are matrix analogues of unit interval graphs.

Conclusions

e Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker'76), unit interval graphs (3 sweeps, Corneil'04),
interval graphs (5* sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib'17),...

e SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:
CRAN Package SFS available at the R platform.
SFS permits to recognize Robinsonian matrices.
Other applications?

e Robinsonian matrices are matrix analogues of unit interval graphs.
[L-Tanigawa'17]: Structural characterization for ‘chordal’ matrices.
Other matrix analogues? applications?

Conclusions

e Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker'76), unit interval graphs (3 sweeps, Corneil'04),
interval graphs (5* sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib'17),...

e SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:
CRAN Package SFS available at the R platform.
SFS permits to recognize Robinsonian matrices.
Other applications?

e Robinsonian matrices are matrix analogues of unit interval graphs.
[L-Tanigawa'17]: Structural characterization for ‘chordal’ matrices.
Other matrix analogues? applications?

e (-fitting by Robinsonian is NP-hard to approximate within 3/2 — ¢

[Chepoi-Fichet-Seston’'09]

Exists 16-approximation algorithm. [Chepoi-Seston'11]
Better approximation guarantee?

THANK YOU

[] M. Laurent and M. Seminaroti.
The quadratic assignment problem is easy for Robinsonian matrices
with Toeplitz structure. Operations Research Letters, 2015.

[{ M. Seminaroti.
Combinatorial Algorithms for the Seriation Problem. PhD thesis,
Tilburg University, December 2016.

[] M. Laurent and M. Seminaroti.
A Lex-BFS-based recognition algorithm for Robinsonian matrices.
Discrete Applied Mathematics, 2017.

[M. Laurent and M. Seminaroti.
Similarity-First Search: a new algorithm with application to
Robinsonian matrix recognition. SIAM J. Discrete Mathematics, 2017,

@ M. Laurent, M. Seminaroti, S. Tanigawa.
A Structural Characterization for Certifying Robinsonian Matrices.
Electronic Journal of Combinatorics, 2017.

[M M. Laurent, S. Tanigawa.
Perfect Elimination Orderings for Symmetric Matrices. Opt. Letters'17.

