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Plan of the talk

Ordering similarity matrices: the seriation problem

Numerical algorithm: the spectral approach

Combinatorial algorithms: links to (unit interval) graphs

Graph search: Lexicographic Breadth-First Search (Lex-BFS)
(and unit interval graphs)

New weighted graph search: Similarity-First Search (SFS)

(and Robinson matrices)

Combinatorial obstructions



The seriation problem



Motivation: Archeology

Sequence dating
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1 COMMONEST TYPES OF PREHISTORIC POTTERY.
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Paper-slips of Petrie

(©Courtesy of the Petrie

Museum, London
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Seriation and the Consecutive Ones Property (C1P)

Try to order the graves so that ‘similar’ graves are close to each other in
the ordering.



Seriation and the Consecutive Ones Property (C1P)

Try to order the graves so that ‘similar’ graves are close to each other in
the ordering.

P P Py Py P P P P
G 1 Gy 1
Gy 1 1 1 Gs 1 1 1 1
Gs 1 1 Go 1 1 1
Gy 1 G3 1 1
Gs 1 1 1 1 Gy 1

Matrix with C1P Petrie matrix
P IIP

Permute the rows of P so that the ones are consecutive in its columns.



The approach of Petrie is based on the presence/absence of pottery types

in the graves.

W.S. Robinson (1951) also uses the frequency of pottery types in the

graves.
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A METHOD FOR CHRONOLOGICALLY ORDERING
ARCHAEOLOGICAL DEPOSITS*

W. S. RosiNsoN

THEORY

HE statistical technique of this paper is

based upon the empirically established fact
that over the course of time pottery types come
into and go out of general use by a given group
of people. It is further based upon the estab-
lished fact that in cultures where chronology
has been determined the differential use of
types takes on a form illustrated in Figure 89.
The data of this diagram are hypothetical, the
purpose being merely to illustrate the present
discussion.

PERCENT

into use at the beginning of the period, attains
its greatest popularity around the year 100, and
thereafter declines in importance. Type 4, on
the other hand, first makes its appearance
around the year 100, and increases in im-
portance throughout the remaining years shown
on the diagram.

The fact that types come into and go out
of use in the lenticular fashion shown in
Figure 89 has important implications for the
archaeologist. Suppose he has a number of
deposits, and that these deposits represent dif-
ferent points of time in the development of
a people. Assuming that he already has the
information given in Figure 89, what can he
tell about the properties of these deposits?
Reference to the figure will show that a deposit
representing an early stage in this culture will
have in it a preponderance of pottery of type 1,
with small percentages of types 2 and 3. A
deposit which represents an intermediate stage,
on the other hand, will show a largest per-
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The dissimilarity measure d(G;, G;) between two graves G;, G; is the
{1-distance between their pottery-types frequency vectors.

~ their similarity measure (agreement coefficient) is C — d(G;, G;).
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W.S. Robinson (1951):

Order the graves, given by their pairwise similarities, in such a way that
similar graves are placed close to each other in the ordering.



Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.



Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gl G5 G2 G3 G4

Gy [ 1 1 0 0 O
Gs| 1 4 3 2 1
G| 0 3 3 2 1
Gs| 0 2 2 2 1
Gy \ O 1 1 1 1

Robinson matrix



Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy

G/ 1 0 0 0 1 G/ 1 1 0 0 0

G| O 3 2 1 3 Gs| 1 4 3 2 1

Gs| O 2 2 1 1 Go| O 3 3 2 1

G4l O 1 1 1 1 Gs| O 2 2 2 1

Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix

A TTAITT



Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy
G/ 1 0 0 0 1 G/ 1 1 0 0 0
G| O 3 2 1 3 Gs| 1 4 3 2 1
Gs| O 2 2 1 1 Go| O 3 3 2 1
G4l O 1 1 1 1 Gs| O 2 2 2 1
Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix
A AT

Theorem (Kendall 1969)
e For P 0/1-valued: P is Petrie < PPT is Robinson.




Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy
G/ 1 0 0 0 1 G/ 1 1 0 0 0
G| O 3 2 1 3 Gs| 1 4 3 2 1
Gs| O 2 2 1 1 Go| O 3 3 2 1
G4l O 1 1 1 1 Gs| O 2 2 2 1
Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix
A AT

Theorem (Kendall 1969)
o For P 0/1-valued: IIP is Petrie < IIPPTII" is Robinson.




Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy
G/ 1 0 0 0 1 G/ 1 1 0 0 0
G| O 3 2 1 3 Gs| 1 4 3 2 1
Gs| O 2 2 1 1 Go| O 3 3 2 1
G4l O 1 1 1 1 Gs| O 2 2 2 1
Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix
A AT

Theorem (Kendall 1969)

o For P 0/1-valued: IIP is Petrie < IIPPTII" is Robinson.

e P has unimodal columns <= Po PT := (3 min{P,.., P,.})zy
is Robinson.




Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to
each other in the ordering.

Gi1 Gy G3 G4 Gs Gi1 Gs Gy Gz Gy
G/ 1 0 0 0 1 G/ 1 1 0 0 0
G| O 3 2 1 3 Gs| 1 4 3 2 1
Gs| O 2 2 1 1 Go| O 3 3 2 1
G4l O 1 1 1 1 Gs| O 2 2 2 1
Gs \ 1 3 1 1 4 Gy \ O 1 1 1 1
Robinsonian matrix Robinson matrix
A AT

Theorem (Kendall 1969)

o For P 0/1-valued: IIP is Petrie < IIPPTII" is Robinson.

IIP has unimodal columns < 1P o PTTIT
is Robinson.




Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along the rows and columns when moving toward the diagonal:

______

Ay, <min{A;,, Ay}

Vi<z<y<z<n




Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along the rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

A € 8" is a Robinsonian similarity if there exists a permutation 7 such
that IIAIIT = A" := (Aﬂ(x)ﬂr(y))xy is a Robinson similarity.




Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along the rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

A € 8" is a Robinsonian similarity if there exists a permutation 7 such
that IIAIIT = A" := (Aﬂ(x)ﬂr(y))xy is a Robinson similarity.

Then 7 is called a Robinson ordering of A.



Robinson(ian) similarity matrix

A € §" is a Robinson similarity if its entries increase monotonically
along the rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

A € 8" is a Robinsonian similarity if there exists a permutation 7 such
that IIAIIT = A" := (Aﬂ(x)ﬂr(y))xy is a Robinson similarity.

Then 7 is called a Robinson ordering of A.

The seriation problem: Find such a Robinson ordering 7 (if it exists).



Robinson(ian) dissimilarity matrix

D € 8" is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

D,. > max{Dyy, D,.}
Vi<z<y<z<n



Robinson(ian) dissimilarity matrix

D € 8" is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

800
700
500
s00
400
300
200
100

D € §™ is a Robinsonian dissimilarity if there exists a permutation 7
such that D™ := (Dﬂ(x)m(y))xy is a Robinson dissimilarity,

that is: A = —D is a Robinsonian similarity.



The seriation problem

Given A € 8", find a permutation = (Robinson ordering) for which A™ is
Robinson, or decide that none exists.

There are efficient algorithms:

@ Numerical algorithm: spectral method

@ Combinatorial algorithms: via interval graphs and graph search

Applications: archeology, biology (DNA sequencing), ranking,
combinatorial data analysis, etc.



DNA sequencing

Cloned genomes
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(©Commins-Toft-Fares, Biological Procedures Online, 2009.



Seriation, quadratic assignment

and the spectral algorithm



Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix

QAP(4,D) min Y AzyDr(a)e(y) = Te(AIDILT)

z,y=1



Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix
QAP(4,D) min Y AsyDrayn(y) = Tr(ATIDIT)
z,y=1
e D= (z—y| ~» 1-SUM problem
e D= ((z—y)? ~> 2-SUM problem

NP-hard problems for general A [George-Pothen'97]



Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix
QAP(4,D) min Y AsyDrayn(y) = Tr(ATIDIT)
z,y=1
e D= (z—y| ~» 1-SUM problem
e D= ((z—y)? ~ 2-SUM problem
NP-hard problems for general A [George-Pothen'97]

@ Note: in both cases D is a Robinson dissimilarity and D is
Toeplitz: constant entries on each diagonal.



Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix
QAP(4,D) min Y AsyDrayn(y) = Tr(ATIDIT)
z,y=1
e D= (z—y| ~» 1-SUM problem
e D= ((z—y)? ~ 2-SUM problem
NP-hard problems for general A [George-Pothen'97]

@ Note: in both cases D is a Robinson dissimilarity and D is
Toeplitz: constant entries on each diagonal.

Theorem (L-Seminaroti'15)

If D is a Toeplitz Robinson dissimilarity and A is a Robinsonian
similarity then any Robinson ordering 7 of A is an optimal solution.




Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix
QAP(4,D) min Y AsyDrayn(y) = Tr(ATIDIT)
z,y=1
e D= (z—y| ~» 1-SUM problem
e D= ((z—y)? ~ 2-SUM problem
NP-hard problems for general A [George-Pothen'97]

@ Note: in both cases D is a Robinson dissimilarity and D is
Toeplitz: constant entries on each diagonal.

Theorem (L-Seminaroti'15)

If D is a Toeplitz Robinson dissimilarity and A is a Robinsonian
similarity then any Robinson ordering 7 of A is an optimal solution.
Hence QAP(A, D) is polynomial time solvable.

Extending a result of [Fogel, Jenatton, Bach, Aspremont 2014]



Idea behind this result

For any permutation 7:

x TI'$7T
ZAyD . ZAxnyy

z,y=1 z,y=1
when:
* — * —
_ * J _ * T .
A= " . , D= . . Toeplitz



Idea behind this result

For any permutation 7

Z Ay Do) > Z AvyDay

z,y=1 z,y=1
when:
* — * —
_ * J _ * T .
A= " . , D= . . Toeplitz
— * — *

This is the analogous for matrices of the rearrangement inequality:

i a:pdw(x) > i g dy
=1 r=1

when:
ay

dy

IN IV
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The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.

e \i(L4) =0, with eigenvector the all-ones vector e.



The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.
e \i(L4) =0, with eigenvector the all-ones vector e.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.



The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0

e \i(L4) =0, with eigenvector the all-ones vector e.

~> Laplacian matrix: L, = Diag(Ae) — A.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: “Relax” 2-SUM:

Il’linﬂ ZZ,yZI Axy(ﬂ'(l) - W(y))Q

by

min e 7y Ary (0

—u,)? =0vTLav st elv=0, || =1




The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.
e \i(L4) =0, with eigenvector the all-ones vector e.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: “Relax” 2-SUM:|  min, 37 | Agy(n(z) — 7(y))? by

min, cgn E;,yzl Agy (v — v,)? = vILav st elv=0, ||| =1

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then L 4 has a monotone Fiedler vector.




The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0

e \i(L4) =0, with eigenvector the all-ones vector e.

~> Laplacian matrix: L, = Diag(Ae) — A.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: “Relax” 2-SUM:

Il’linﬂ— ZZ,yZI Axy(ﬂ'(l) - W(y))Q

by

mil’lveRn Z;,;;:l Amy (/L‘.'L’ -

1);(/)2 = ’UTLA’U s.t. el = 0, ||1)H =1.

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then L 4 has a monotone Fiedler vector.

2. Assume A is irreducible with min; ; A;; = 0.

If A is Robinson(ian) then Aa(L4)> 0 and Aa(L ) is simple.




The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.
e \i(L4) =0, with eigenvector the all-ones vector e.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: “Relax” 2-SUM:|  min, 37 | Agy(n(z) — 7(y))? by

min,cgn Z;,yzl Agy(vy —vy)? = vILav st elv=0, ||| =1

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then L 4 has a monotone Fiedler vector.

2. Assume A is irreducible with min; ; A;; = 0.
If A is Robinson(ian) then Aa(L4)> 0 and Aa(L ) is simple.

3. If the Fiedler vector v has no repeated entries, then a permutation
7 orders v monotonically <= m is a Robinson ordering of A.




The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A >0 ~> Laplacian matrix: L4 = Diag(Ae) — A.
e \i(L4) =0, with eigenvector the all-ones vector e.

e \o(L,) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: "Relax” 2-SUM: ming Yy Agy(7(2) — m(y))? by

min,cgn Z;,yzl Agy(vy —vy)? = vILav st elv=0, ||| =1

Theorem (Atkins-Boman-Hendrickson 1998)
1. If A is Robinson then L 4 has a monotone Fiedler vector.
2. Assume A is irreducible with min; ; A;; = 0.
If A is Robinson(ian) then Aa(L4)> 0 and Aa(L ) is simple.

3. If the Fiedler vector v has no repeated entries, then a permutation
7 orders v monotonically <= m is a Robinson ordering of A.

Else recurse on the submatrices indexed by the repeated entries.




Combinatorial algorithms via

(unit) interval graphs



Robinsonian matrices, interval graphs and C1P

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B:= set of all balls; V' = [n].

Theorem (Fulkerson-Gross'65, Mirkin-Rodin'84)

The following are equivalent:
1. A is a Robinsonian similarity

2. the intersection graph of B is an interval graph




Robinsonian matrices, interval graphs and C1P

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B:= set of all balls; V' = [n].

Theorem (Fulkerson-Gross'65, Mirkin-Rodin'84)
The following are equivalent:

1. A is a Robinsonian similarity

2. the intersection graph of B is an interval graph
<= its max.cliques/vertices incidence matrix has C1P.




Robinsonian matrices, interval graphs and C1P

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B:= set of all balls; V' = [n].

Theorem (Fulkerson-Gross'65, Mirkin-Rodin'84)

The following are equivalent:
1. A is a Robinsonian similarity

2. the intersection graph of B is an interval graph

<= its max.cliques/vertices incidence matrix has C1P.

3. the vertices/balls incidence matrix has C1P
(~ the ball hypergraph (V,B) is an interval hypergraph)




Robinsonian matrices, interval graphs and C1P

For a similarity A € ™, a ball is any set B(z,0) = {y € [n], Azy > d}.
B:= set of all balls; V' = [n].

Theorem (Fulkerson-Gross'65, Mirkin-Rodin'84)
The following are equivalent:

1. A is a Robinsonian similarity

2. the intersection graph of B is an interval graph
<= its max.cliques/vertices incidence matrix has C1P.

3. the vertices/balls incidence matrix has C1P
(~ the ball hypergraph (V,B) is an interval hypergraph)

Theorem (Booth-Lueker 1976)

One can test whether a matrix M € {0,1}P*? with m ones has C1P in
O(p+q+m) (using PQ-trees).




Existing recognition algorithms for Robinsonian matrices

Year Complexity Subroutine  Paradigm
&Mli?r:il?n 1084 O(n*) PQ-trees hyipn;regr;/;ll)hs
&Crll:(iatl:JI:;t 1997 O(n?) PQ-trees hy;)n;f;:;;hs
& Fortin | 21 o) araohs
Aeik;r;.s 1998 O(n(T(n)+nlogn)) eigenvalues I\:lfils:
N 'S'::‘n’::]’;otl 2015 O(L(m + n)) Lex-BFS “”i;ia”;fg"a'
& Semiparoty | 21 Ot £mnlogn) sk IR

n: size of A; m : # of nonzero entries of A; L : # of distinct values of A.



Unit interval graphs and binary Robinsonian matrices

G is a unit interval graph if 3 unit intervals I1,..., I, in R such that
{z,y}e B <= IL,NIL,#0.

N
/




Unit interval graphs and binary Robinsonian matrices

Theorem (Looges-Olariu 1993)

G is a unit interval graph <= there exists a linear order 7 of the
vertices satisfying the 3-point condition:

{CL',Z}GE = {xvy}v{wa}EE if T<ngy<gZ

Recall the Robinson (similarity) property:

_____

Ay, < Il’liIl{Axy, Ayz} if r<y<z



Unit interval graphs and binary Robinsonian matrices

Theorem (Looges-Olariu 1993)

G is a unit interval graph <= there exists a linear order 7 of the
vertices satisfying the 3-point condition:

{l’,Z}GE = {l’,y},{y,Z}GE if x<ﬂ'y<ﬂ'z

Recall the Robinson (similarity) property:

_____

-
’,
’

Ay, < Il’liIl{Axy, Ayz} if r<y<z

Fact (Roberts 1969)

A € {0,1}"*™ is a Robinsonian similarity <= A is the adjacency matrix

of a unit interval graph G.




Unit interval graphs and binary Robinsonian matrices

Theorem (Looges-Olariu 1993)

G is a unit interval graph <= there exists a linear order 7 of the
vertices satisfying the 3-point condition:

{z,2} e B = {z,y},{y,2} €L if x<zy<qz

Recall the Robinson (similarity) property:

_____

-
’,
’

Ay, < Il’liIl{Axy, Ayz} if r<y<z

Fact (Roberts 1969)

A € {0,1}"*™ is a Robinsonian similarity <= A is the adjacency matrix

of a unit interval graph G.

v

Theorem (Corneil 2004)

One can recognize unit interval graphs in O(|V| + |E|) using Lex-BFS.




Graph search: Lex-BFS



Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot
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Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot




Graph search paradigm

Given a graph G = (V, E):

unvisited vertices
(stored in a queue Q)

pivot

4 @ 6

Different queue updates lead to different graph search algorithms:
@ Breadth-First Search (BFS)
@ Depth-First Search (DFS)

@ Lexicographic Breadth-First Search (Lex-BFS)
“Give the preference to vertices adjacent to vertices visited earlier.”



Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.

Let N(p) denote the neighborhood of the current pivot p.

B,

By

B3

Q : T

Z2

€T3

Zq

L5

6




Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.

Let N(p) denote the neighborhood of the current pivot p.

B, By B3
Q: T T2 T3 T4 T5 Z6
1 3 L2 z T4 6 T5

B1 N N(p)

Bi\N(p) BonN(p) B2\ N(p) BsNN(p) Bs\N(p)




Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.

Let N(p) denote the neighborhood of the current pivot p.

B4 By Bs
Q: T T2 T3 T4 T5 Z6
x1 €3 x2 z T4 Ze Z5
BiNN(p) Bi\N(p) BonN(p) B2\ N(p) BsNN(p) Bs\N(p)
Q’ . T T3 T2 T4 T6 Z5




Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.
Let N(p) denote the neighborhood of the current pivot p.

B, By B3
Q: 1 T T3 T4 5 6
x1 z3 x2 z T4 Ze Z5
BiNN(p) Bi\N(p) BonN(p) B2\ N(p) BsNN(p) Bs\N(p)
Q' : x1 x3 x2 x4 Z6 T5

Lex-BFS runs in time O(|V| + |E|) [Rose-Tarjan'75, Habib et al.’00]



Lex-BFS via partition refinement

Idea: Maintain (and refine) a partition of the queue Q.
Let N(p) denote the neighborhood of the current pivot p.

B4 By Bs
Q: T o xrs3 X4 x5 X6
T z3 z2 & T4 Te Ts5
By NN(p) Bi\N(p) BonN(p) B2\ N(p) BsNN(p) Bs\N(p)
Q’ . T T3 T2 T4 T6 Z5

Lex-BFS_ (G, 7): Order vertices in the blocks using a reference order 7.
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Example of Lex-BFS.

7 =(1,2,3,4,5,6)
1
/N
g — (3
NN
1 5 6
1 2 3 4 5 6] 1 2 [3]/4 5]6]

12 3[4 5 6]




Example of Lex-BFS.

r=(1,2,3,4,5,6)
1
2/ >3\\
4/ \5 6
1 2 3 4 5 6] 1 2 [3]/4 5]6]
12 3[4 5 6] 1 2 3|5]/4]6]

The Lex-BFS; ordering is 0 = (1,2, 3,5,4,6)
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Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V, E).
Output: an ordering 7 of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

o = Lex-BFS (G)
04 = LeX-BFS+(G,O'_1)
T = Lex-BFS(G,0. ")

if 7 satisfies 3-vertex condition return

ok W=

else return “G is not a unit interval graph”

Hence: In time O(|V| + |E|), return a Robinson ordering of A or state
Ag is not Robinsonian.

What about general matrices A7

Option 1: Use Lex-BFS for the ‘level graphs’ of A. [L-Seminaroti’'15]
~ O(L(m +n))

Option 2: Generalize Lex-BFS to weighted graphs: SFS



Weighted graph search:

Similarity-First Search (SFS)
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Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cs, C5,...) of N(p

), where
App =1 >Apy=aa>Ap. =a3> ... >0 Vo e O,y € O,z € C3,.

B1 BQ
Q: T T2 3 T4 5 T
T3 | T1 T2 = & = T4 +— T +— L o Ty o &
BiNC, B1NCs BiNCs Bl\N(p) BonNCy BanNCy BaNCs B2\N(p)
Q' : x3 x1 x2 x4 Te — Ts

SFS runs in O(n + mlogn) if A has m nonzero entries. [L-Seminaroti 17]



Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {z : A, > 0}.
Consider the ordered similarity partition (C',Cs,C5,...) of N(p

), where
App =1 > Apy=aa>Ap. =a3> ... >0 Vo e O,y € O,z € C3,.

B1 B2
Q: x1 x2 x3 x4 x5 Z6
T3 — I T2 = & = T4 +— T +— L o Ty o &
BiNC, B1NCs BiNCs Bl\N(p) BonNCy BanNCy BaNCs B2\N(p)
Q' : x3 1 ) T4 T +—— Ij

SFS. (A, 7): order the vertices in each block using a reference order 7



Example for SFS

7=1(1,2,3,4,5,6)
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Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6] 1 3 [2]6][5]4]
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Example for SFS

7=1(1,2,3,4,5,6)

/\
/\/\

1 2 3 4 5 6] 1 3 [2]6][5]4]
1[3][2][4 5 ¢ 13 2[6][5]4]

The SFS, ordering is 0 = (1,3,2,6,5,4)
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Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
oo = SFS (A)

2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4. if o; is a Robinson ordering return 7 = o;
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6

=
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Let A € 8™ be nonnegative with m nonzero entries. Then:

1. A € 8" is Robinsonian <= o, o is a Robinson ordering.
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SFS multisweep recognition algorithm

Input: a nonnegative matrix A € §”

Output: a Robinson ordering 7 of A, or stating that A is not Robinsonian
oo = SFS (A)

2. fori=1,...,n—2

3. 0, =SFSi (4,0,

4. if o; is a Robinson ordering return 7 = o;

5

6

=

. end
. return “A is not Robinsonian”

Theorem (L-Seminaroti 2017)
Let A € 8™ be nonnegative with m nonzero entries. Then:

1. A € 8" is Robinsonian <= o, o is a Robinson ordering.
2. The multisweep recognition algorithm runs in O(n? + mnlogn) time.

3. Simpler test at line 4: Check whether o; = 0;11. If YES then:

if o; is Robinson then A is Robinsonian; else A is not Robinsonian.




Tight example where n — 1 sweeps are needed

Example by S. Tanigawa: Robinson matrix A € S™:
A, =0, Ayy=1, Aoy =1, Ajp =2, Ajj = A 111+ 1.

(-]

1 9 10 11
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—_
—_

2
1
*

ONOOOCTDEWN =
¥ N = W
* W~ S
* B~ W~ O
¥ ULk W NN - O
¥ U B W N~ ~N
*¥ O O i W W N~
* R R R R WY N

o

10
11

* W W W WwWwwNnH
* NN DNDNDNDNDNDN—-O

With SFS o¢ = (2,3,...,n,1), the first Robinson sweep is 7,,_».
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SFS and end-vertices of Robinson orderings (anchors of A)

e a € V is an anchor of A if there exists a Robinson ordering 7w of A
starting (or ending) at a

e a, b €V are opposite anchors of A if there exists a Robinson
ordering 7 of A starting at a and ending at b

o a al as e bo by b

Theorem (L-Seminaroti 2017)
Assume A is Robinsonian and o = SFS(A) has last vertex b.

1. Then b is an anchor of A.
(In fact any anchor arises as end-vertex of some SFS ordering of A.)

2. If the first vertex a in o is an anchor of A, then a, b are opposite
anchors of A.




Anchor flipping property of SFS,
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Anchor flipping property of SFS,

ao - Uy U2 us v Unp—2 Up—1 a

o1 : a ‘M/ b

n—2 n—1



Anchor flipping property of SFS,

0o : U1 UQU?)/UTLQW1
b a %
02! b Y2 Y3 s Yn—2 Yn—1

Theorem (Anchors Flipping)

Assume A € 8™ is Robinsonian and o; = SFS; (A, 0,_1) withi > 1.
o1 start with a and end with b; o9 start with b and end with a;




Anchor flipping property of SFS,
oo : U Ug us Up—2
: m b

[ 3 a aj

g2

Theorem (Anchors Flipping)

Assume A € 8" is Robinsonian and o; = SFS(A,0,_1) withi > 1.
o1 ,03 start with a and end with b; o5 , 04 start with b and end with a, etc.




Anchor flipping property of SFS,

0o : u1 UQUB/UTLQW1 a
o1t a T2 T3 S Tn—2 Tn—1 b

N | é a
o3 : a al a2 ba b1 b

Theorem (Anchors Flipping)

Assume A € 8™ is Robinsonian and o; = SFS; (A, 0,_1) withi > 1.
o1 ,03 start with a and end with b; o5 , 04 start with b and end with a, etc.

Key fact: a; = y,_1 and b; are opposite anchors of A[V \ {a,b}].



Anchor flipping property of SFS,

0o : U1 UZU?}/UTL2%1 a
o1t a T2 T3 S Tn—2 Tn—1 b

N | é a
03 : a ay as by by b

Theorem (Anchors Flipping)

Assume A € 8™ is Robinsonian and o; = SFS; (A, 0,_1) withi > 1.
o1 ,03 start with a and end with b; o5 , 04 start with b and end with a, etc.

Moreover: o, _2[A\ {a,b}]| can be seen as result of the multisweep
algorithm applied to A[V \ {a,b}], starting with o3[V \ {a,b}].
~> can apply induction.



Obstructions for Robinsonian matrices



Certifying non-Robinsonian matrices

For distinct z,y,z € V, P = (x = vg, v1,...,0k—1,Vt = Yy) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,

Apioryy >min{A,, Ay}, Yi=0,1,... k-1
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i paths z ~ y avoiding z; x ~ z avoiding y; ¥y~ z avoiding .

If such triple exists then A is not Robinsonian!
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e Find a weighted asteroidal triple in O(n3): certifies A not Robinsonian.



Certifying non-Robinsonian matrices

For distinct z,y,z € V, P = (x = vg, v1,...,0k—1,Vt = Yy) is a path from
x to y avoiding z if each triple (v;, z,v;4+1) is not Robinson, i.e.,
AUiUH—l > min{szia AZUH—I}’ V= 0, 1, ceey k—1.

Fact

Assume A is Robinsonian. If 3 path x ~ y avoiding z  then
~ does not lie between = and y in any Robinson ordering 7 of A.

Definition
A weighted asteroidal triple for A is a triple {z,y, z} such that
i paths z ~ y avoiding z; x ~ z avoiding y; ¥y~ z avoiding .

Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian <= there does not exist a weighted asteroidal triple.

e Find a weighted asteroidal triple in O(n3): certifies A not Robinsonian.

e Implies the characterization of unit interval graphs: no asteroidal triple,
no induced cycle of length at least 4, no induced claw K 3. [Roberts 69]



Computational experiments

Matteo's PhD thesis



Instances generation

Generatlon 1 Generat|on 2

(c) Generation 3 (d) Generation 4



Performance table (n < 1000)

# distinct values Tow (< 50) medium (> 50 and < 200) high (> 200)
algorithms
# nonzero entries spectral SFS ~ LBFS | spectral SFS  LBFS | spectral SFS LBFS
n
100 2,98 10,57 3,68 o7 58.85 2,20 B
200 848 36,99 838 8,08 893 -
300 16,69 83,08 18,00 16,55 16,58 -
400 27,68 153,23 30,06 31,92 } 32,10 -
sparse 500 38,78 209,87 47,77 4733 138298 41,20 -
(<30 %) 600 50,28 277,90 59,06 5547 1771,93 57,10 -
700 67,02 45 38313 72.54 7564 243752 78.96 -
800 9820 52648 98,96 102,09 -
900 124,67 616,90 122,12 130,02 -
1000 161,15 904,72 148,28 184,12 -
100 316 165 2625 346 5,20 5.04 E
200 11,04 1858 108.28 12,96 19,92 20,08 -
300 25,62 4091 25298 29,46 4437 45,00 -
400 49,50 76,23 459,03 55.82 74,65 79.34 -
normal 500 7335 10860 64523 8466 113,71 110,84 -
(> 30 % and < 70%) 600 10805 13940 89337 | 12633 153,15 148,99 -
700 14332 18648 124781 196,33 195,22 -
800 19345 25349 1646.54 246,19 5,05 -
900 25446 30713 213164 309,65 6.79 -
1000 33147 408,70 2856,86 376,66 499,45 -
100 681 66,58 772 78 B
200 2738 285,67 30,01 31,57 -
300 6159 633,54 65,96 490451 69.41 -
400 112,23 1165,52 9114,09 7766 12197 -
dense 500 158,87 1691,87 13693,00 | 11496 161,89 -
(>70 %) 600 17442 21188 234912 210,19 1845580 | 171,59 22539 -
700 27301 291,38 336406 286,44 2503280 | 24526 299,84 -
800 35928 379,78 449335 373,60 3480170 39755 -
900 480,78 487,85 585402 466,22 45060.20 519,41 -
1000 663,46 642,58 804678 579,50 5841050 | 70710 775,99 -

Figure 1: (Average) Time performance of the algorithms (in milliseconds)



Performance chart (n < 1000)
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Performance table (large instances)

# distinct values

Tow (< 50)

medium (> 50 and < 200)

high (> 200)

algorithms
# nonzero entries spectral ~SFS  LBFS | spectral SFS LBFS | spectral SFS LBFS
n
1000 0.16 0.19 - 0.16 - 0.17 -
2000 0.68 0.62 - 0.72 - 0.76 -
3000 1,56 - 1.95 -
4000 2,94 - 3.58 -
sparse 5000 441 - 6.09 -
(<30 %) 6000 6,94 - 10,87 -
7000 10,56 - 20,73 -
8000 14.86 - 21,03 -
9000 17.58 - 31.66 -
10000 22,46 - 32,87 -
1000 - 045 -
2000 - 1.99 -
3000 - 5.74 -
4000 - 14,22 -
normal 5000 17,08 - 26,33 -
(> 30 % and < 70%) 6000 29,09 - 43,07 -
7000 43,05 - 68,86 -
8000 72,48 - 86,72 -
9000 92,18 - 116,02 -
10000 111,08 - 155,1 -
1000 0.62 - 0.6 -
2000 3.3 - 3.62 -
3000 10,46 - 11,61 -
4000 25,64 - 26,62 -
dense 5000 43,85 - 51,03 -
(> 70 %) 6000 104,47 - 92,41 -
7000 121,14 - 14265 31,19 -
8000 220,08 - 21643 4331 -
9000 284.63 5. - 293,18 5244 -
10000 38398 24897 - 423,32 - 41120 64,93 -

Figure 2: (Average) Time performance of the algorithms (in seconds)
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