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Plan of the talk

• Ordering similarity matrices: the seriation problem

• Numerical algorithm: the spectral approach

• Combinatorial algorithms: links to (unit interval) graphs

• Graph search: Lexicographic Breadth-First Search (Lex-BFS)

(and unit interval graphs)

• New weighted graph search: Similarity-First Search (SFS)

(and Robinson matrices)

• Combinatorial obstructions



The seriation problem



Motivation: Archeology

Sequence dating

Sir William
Matthew Flinders
Petrie (1853-1942)





Paper-slips of Petrie

c©Courtesy of the Petrie
Museum, London



Seriation and the Consecutive Ones Property (C1P)

Try to order the graves so that ‘similar’ graves are close to each other in
the ordering.



P1 P2 P3 P4

G1 1
G2 1 1 1
G3 1 1
G4 1
G5 1 1 1 1




P1 P2 P3 P4

G1 1
G5 1 1 1 1
G2 1 1 1
G3 1 1
G4 1


Matrix with C1P Petrie matrix

P ΠP

Permute the rows of P so that the ones are consecutive in its columns.
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The approach of Petrie is based on the presence/absence of pottery types
in the graves.

W.S. Robinson (1951) also uses the frequency of pottery types in the
graves.



The dissimilarity measure d(Gi, Gj) between two graves Gi, Gj is the
`1-distance between their pottery-types frequency vectors.

; their similarity measure (agreement coefficient) is C− d(Gi, Gj).

W.S. Robinson (1951):

Order the graves, given by their pairwise similarities, in such a way that
similar graves are placed close to each other in the ordering.



Seriation and Robinson similarity matrices

W.S. Robinson (1951): Order n objects (graves), given by their pairwise
similarities, in such a way that similar objects (graves) are placed close to

each other in the ordering.



G1 G2 G3 G4 G5

G1 1 0 0 0 1
G2 0 3 2 1 3
G3 0 2 2 1 1
G4 0 1 1 1 1
G5 1 3 1 1 4





G1 G5 G2 G3 G4

G1 1 1 0 0 0
G5 1 4 3 2 1
G2 0 3 3 2 1
G3 0 2 2 2 1
G4 0 1 1 1 1



Robinsonian matrix

Robinson matrix

A ΠAΠT

Theorem (Kendall 1969)

For P 0/1-valued:

PΠP

is Petrie ⇐⇒

PP TΠPP TΠT

is Robinson.

• PΠP

has unimodal columns ⇐⇒

P ◦ PT := (
∑

z min{Pxz, Pyz})x,yΠP ◦ P TΠT

is Robinson.
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Robinson(ian) similarity matrix

A ∈ Sn is a Robinson similarity if its entries increase monotonically
along the rows and columns when moving toward the diagonal:

x y

Axz ≤ min{Axy, Ayz}
∀ 1 ≤ x < y < z ≤ n

z

A ∈ Sn is a Robinsonian similarity if there exists a permutation π such
that ΠAΠT = Aπ :=

(
Aπ(x),π(y)

)
x,y

is a Robinson similarity.

Then π is called a Robinson ordering of A.

The seriation problem: Find such a Robinson ordering π (if it exists).
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Robinson(ian) similarity matrix

A ∈ Sn is a Robinson similarity if its entries increase monotonically
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A ∈ Sn is a Robinsonian similarity if there exists a permutation π such
that ΠAΠT = Aπ :=
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)
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Then π is called a Robinson ordering of A.
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Robinson(ian) dissimilarity matrix

D ∈ Sn is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

x y

Dxz ≥ max{Dxy, Dyz}
∀ 1 ≤ x < y < z ≤ n

z

D ∈ Sn is a Robinsonian dissimilarity if there exists a permutation π
such that Dπ :=

(
Dπ(x),π(y)

)
x,y

is a Robinson dissimilarity,

that is: A = −D is a Robinsonian similarity.



Robinson(ian) dissimilarity matrix

D ∈ Sn is a Robinson dissimilarity if its entries decrease monotonically
along rows and columns when moving toward the diagonal:

D ∈ Sn is a Robinsonian dissimilarity if there exists a permutation π
such that Dπ :=

(
Dπ(x),π(y)

)
x,y

is a Robinson dissimilarity,

that is: A = −D is a Robinsonian similarity.



The seriation problem

Given A ∈ Sn, find a permutation π (Robinson ordering) for which Aπ is
Robinson, or decide that none exists.

There are efficient algorithms:

Numerical algorithm: spectral method

Combinatorial algorithms: via interval graphs and graph search

Applications: archeology, biology (DNA sequencing), ranking,
combinatorial data analysis, etc.



DNA sequencing

c©Commins-Toft-Fares, Biological Procedures Online, 2009.



Seriation, quadratic assignment

and the spectral algorithm



Seriation and Quadratic Assignment

A: similarity matrix D: dissimilarity matrix

QAP(A,D) min
π

n∑
x,y=1

AxyDπ(x)π(y) = Tr(AΠDΠT )

D = (|x− y|) ; 1-SUM problem

D = ((x− y)2) ; 2-SUM problem

NP-hard problems for general A [George-Pothen’97]

Note: in both cases D is a Robinson dissimilarity and D is
Toeplitz: constant entries on each diagonal.

Theorem (L-Seminaroti’15)

If D is a Toeplitz Robinson dissimilarity and A is a Robinsonian
similarity then any Robinson ordering π of A is an optimal solution.
Hence QAP(A,D) is polynomial time solvable.

Extending a result of [Fogel, Jenatton, Bach, Aspremont 2014]
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Idea behind this result

For any permutation π:

n∑
x,y=1

AxyDπ(x)π(y) ≥
n∑

x,y=1

AxyDxy

when:

A =


∗ ←
∗ ↓

↑ ∗
→ ∗

 , D =


∗ →
∗ ↑

↓ ∗
← ∗

 Toeplitz

This is the analogous for matrices of the rearrangement inequality:
n∑
x=1

axdπ(x) ≥
n∑
x=1

axdx

when:
a1 ≥ · · · ≥ an
d1 ≤ · · · ≤ dn
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The spectral algorithm to recognize Robinsonian matrices

Similarity matrix A ≥ 0 ; Laplacian matrix: LA = Diag(Ae)−A.
• λ1(LA) = 0, with eigenvector the all-ones vector e.

• λ2(LA) is the Fiedler value, its eigenvectors are the Fiedler vectors.

Idea: “Relax” 2-SUM: minπ
∑n

x,y=1Axy(π(x)− π(y))2 by

minv∈Rn

∑n
x,y=1Axy(vx − vy)2 = vTLAv s.t. eTv = 0, ‖v‖ = 1.

Theorem (Atkins-Boman-Hendrickson 1998)

1. If A is Robinson then LA has a monotone Fiedler vector.

2. Assume A is irreducible with mini,j Aij = 0.

If A is Robinson(ian) then λ2(LA)> 0 and λ2(LA) is simple.

3. If the Fiedler vector v has no repeated entries, then a permutation
π orders v monotonically ⇐⇒ π is a Robinson ordering of A.

Else recurse on the submatrices indexed by the repeated entries.
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Combinatorial algorithms via

(unit) interval graphs



Robinsonian matrices, interval graphs and C1P

For a similarity A ∈ Sn, a ball is any set B(x, δ) = {y ∈ [n], Axy ≥ δ}.
B:= set of all balls; V = [n].

Theorem (Fulkerson-Gross’65, Mirkin-Rodin’84)

The following are equivalent:

1. A is a Robinsonian similarity

2. the intersection graph of B is an interval graph

⇐⇒ its max.cliques/vertices incidence matrix has C1P.

3. the vertices/balls incidence matrix has C1P

(; the ball hypergraph (V,B) is an interval hypergraph)

Theorem (Booth-Lueker 1976)

One can test whether a matrix M ∈ {0, 1}p×q with m ones has C1P in
O(p+ q +m) (using PQ-trees).
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Existing recognition algorithms for Robinsonian matrices

Year Complexity Subroutine Paradigm

Mirkin
& Rodin

1984 O(n4) PQ-trees
interval

hypergraphs

Chepoi
& Fichet

1997 O(n3) PQ-trees
interval

hypergraphs

Préa
& Fortin

2014 O(n2)
interval
graphs

Atkins
et al.

1998 O(n(T (n) + n log n)) eigenvalues
Fiedler
vector

Laurent
& Seminaroti

2015 O(L(m+ n)) Lex-BFS
unit interval

graphs

Laurent
& Seminaroti

2017 O(n2 +mn log n) SFS
new weighted
graph search

n: size of A; m : # of nonzero entries of A; L : # of distinct values of A.



Unit interval graphs and binary Robinsonian matrices

G is a unit interval graph if ∃ unit intervals I1, . . . , In in R such that

{x, y} ∈ E ⇐⇒ Ix ∩ Iy 6= ∅.

1

2

3

4

5

1 2

3

4 5

Theorem (Looges-Olariu 1993)

G is a unit interval graph ⇐⇒ there exists a linear order π of the
vertices satisfying the 3-point condition:

{x, z} ∈ E =⇒ {x, y}, {y, z} ∈ E if x <π y <π z

Recall the Robinson (similarity) property:

x y z Axz ≤ min{Axy, Ayz} if x < y < z

Fact (Roberts 1969)

A ∈ {0, 1}n×n is a Robinsonian similarity ⇐⇒ A is the adjacency matrix
of a unit interval graph G.
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Unit interval graphs and binary Robinsonian matrices

Theorem (Looges-Olariu 1993)

G is a unit interval graph ⇐⇒ there exists a linear order π of the
vertices satisfying the 3-point condition:

{x, z} ∈ E =⇒ {x, y}, {y, z} ∈ E if x <π y <π z

Recall the Robinson (similarity) property:

x y z Axz ≤ min{Axy, Ayz} if x < y < z

Fact (Roberts 1969)

A ∈ {0, 1}n×n is a Robinsonian similarity ⇐⇒ A is the adjacency matrix
of a unit interval graph G.

Theorem (Corneil 2004)

One can recognize unit interval graphs in O(|V |+ |E|) using Lex-BFS.



Graph search: Lex-BFS



Graph search paradigm

Given a graph G = (V,E):

1
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4
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5
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6

6

visited vertices

unvisited vertices
(stored in a queue Q)

pivot

1Q : 2 3 4 5 6

Q : 3 4 5 6Q : 4 5 6Q : 5 6Q : 6Q :

Different queue updates lead to different graph search algorithms:

Breadth-First Search (BFS)

Depth-First Search (DFS)

Lexicographic Breadth-First Search (Lex-BFS)
“Give the preference to vertices adjacent to vertices visited earlier.”
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Lex-BFS via partition refinement
Idea: Maintain (and refine) a partition of the queue Q.

Let N(p) denote the neighborhood of the current pivot p.

Q : x1 x2 x3 x4 x5 x6

B1 B2 B3

x1 x3 x2 � x4 x6 x5

B1 ∩N(p) B1 \N(p) B2 ∩N(p) B2 \N(p) B3 ∩N(p) B3 \N(p)

Q′ : x1 x3 x2 x4 x6 x5

Lex-BFS runs in time O(|V |+ |E|) [Rose-Tarjan’75, Habib et al.’00]Lex-BFS+(G, τ): Order vertices in the blocks using a reference order τ .
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Example of Lex-BFS+

τ = (1, 2, 3, 4, 5, 6)
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1 2 3 5 4 6

The Lex-BFS+ ordering is σ = (1, 2, 3, 5, 4, 6)
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Corneil (2004) 3-sweep algorithm for unit interval graphs

Input: A graph G = (V,E).
Output: an ordering π of V satisfying the 3-point condition, or stating
that G is not a unit interval graph.

1. σ = Lex-BFS (G)

2. σ+ = Lex-BFS+(G, σ−1)

3. π = Lex-BFS+(G, σ−1+ )

4. if π satisfies 3-vertex condition return π

5. else return “G is not a unit interval graph”

Hence: In time O(|V |+ |E|), return a Robinson ordering of AG or state
AG is not Robinsonian.

What about general matrices A?

Option 1: Use Lex-BFS for the ‘level graphs’ of A. [L-Seminaroti’15]
; O(L(m+ n))

Option 2: Generalize Lex-BFS to weighted graphs: SFS
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Weighted graph search:

Similarity-First Search (SFS)



Similarity-First Search (SFS) for nonnegative A

For the current pivot p, define N(p) = {x : Apx > 0}.

Consider the ordered similarity partition (C1, C2, C3, . . . ) of N(p), where
Apx = α1 > Apy = α2 > Apz = α3 > . . . > 0 ∀x ∈ C1, y ∈ C2, z ∈ C3, ...

Q : x1 x2 x3 x4 x5 x6

B1 B2

x3 x1 x2 � x4 x6 � x5 �

B1 ∩ C1 B1 ∩ C2 B1 ∩ C3 B1 \N(p) B2 ∩ C1 B2 ∩ C2 B2 ∩ C3 B2 \N(p)

Q′ : x3 x1 x2 x4 x6 x5

SFS runs in O(n+m log n) if A has m nonzero entries. [L-Seminaroti 17]
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SFS+(A, τ): order the vertices in each block using a reference order τ



Example for SFS+

τ = (1, 2, 3, 4, 5, 6)
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1 3 2 4 5 6

1 3 2 6 5 4

1 3 2 6 5 4

The SFS+ ordering is σ = (1, 3, 2, 6, 5, 4)
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SFS and Robinson matrices



SFS multisweep recognition algorithm

Input: a nonnegative matrix A ∈ Sn
Output: a Robinson ordering π of A, or stating that A is not Robinsonian

1. σ0 = SFS (A)

2. for i = 1, . . . , n− 2

3. σi = SFS+(A, σ−1i−1)

4. if σi is a Robinson ordering return π = σi
5. end
6. return “A is not Robinsonian”

Theorem (L-Seminaroti 2017)

Let A ∈ Sn be nonnegative with m nonzero entries. Then:

1. A ∈ Sn is Robinsonian ⇐⇒ σn−2 is a Robinson ordering.

2. The multisweep recognition algorithm runs in O(n2 +mn log n) time.

3. Simpler test at line 4: Check whether σi = σ−1i−1. If YES then:

if σi is Robinson then A is Robinsonian; else A is not Robinsonian.
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Tight example where n− 1 sweeps are needed

Example by S. Tanigawa: Robinson matrix A ∈ Sn:
A1n = 0, A1i = 1, A2n = 1, Ain = 2, Aij = Ai−1,j+1 + 1.

A =



1 2 3 4 5 6 7 8 9 10 11

1 ∗ 1 1 1 1 1 1 1 1 1 0
2 ∗ 2 2 2 2 2 2 2 1 1
3 ∗ 3 3 3 3 3 2 2 2
4 ∗ 4 4 4 3 3 3 2
5 ∗ 5 4 4 4 3 2
6 ∗ 5 5 4 3 2
7 ∗ 5 4 3 2
8 ∗ 4 3 2
9 ∗ 3 2
10 ∗ 2
11 ∗


With SFS σ0 = (2, 3, . . . , n, 1), the first Robinson sweep is σn−2.



SFS and end-vertices of Robinson orderings (anchors of A)

• a ∈ V is an anchor of A if there exists a Robinson ordering π of A
starting (or ending) at a

• a, b ∈ V are opposite anchors of A if there exists a Robinson
ordering π of A starting at a and ending at b

π :σ :

a1 a2 . . . b2 b1

Theorem (L-Seminaroti 2017)

Assume A is Robinsonian and σ = SFS(A) has last vertex b.

1. Then b is an anchor of A.

(In fact any anchor arises as end-vertex of some SFS ordering of A.)

2. If the first vertex a in σ is an anchor of A, then a, b are opposite
anchors of A.
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Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
σ1

, σ3

start with a and end with b; σ2

, σ4

start with b and end with a;

etc.
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Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
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Key fact: a1 = yn−1 and b1 are opposite anchors of A[V \ {a, b}].



Anchor flipping property of SFS+

σ0 : u1 u2 u3 . . . un−2 un−1 a

σ1 : a x2 x3 . . . xn−2 xn−1 b

σ2 : b y2 y3 . . . yn−2 yn−1 a

σ3 : a a1 a2 . . . b2 b1 b

Theorem (Anchors Flipping)

Assume A ∈ Sn is Robinsonian and σi = SFS+(A, σi−1) with i ≥ 1.
σ1 , σ3 start with a and end with b; σ2 , σ4 start with b and end with a; etc.

Moreover: σn−2[A \ {a, b}] can be seen as result of the multisweep
algorithm applied to A[V \ {a, b}], starting with σ3[V \ {a, b}].
; can apply induction.



Obstructions for Robinsonian matrices



Certifying non-Robinsonian matrices

For distinct x, y, z ∈ V , P = (x = v0, v1, . . . , vk−1, vk = y) is a path from
x to y avoiding z if each triple (vi, z, vi+1) is not Robinson, i.e.,

Avivi+1 > min{Azvi , Azvi+1}, ∀ i = 0, 1, . . . , k − 1.

Fact

Assume A is Robinsonian. If ∃ path x ; y avoiding z then
z does not lie between x and y in any Robinson ordering π of A.

Definition

A weighted asteroidal triple for A is a triple {x, y, z} such that
∃ paths x; y avoiding z; x; z avoiding y; y ; z avoiding x.

If such triple exists then A is not Robinsonian!Theorem (L-Seminaroti-Tanigawa 2017)

A is Robinsonian ⇐⇒ there does not exist a weighted asteroidal triple.

• Find a weighted asteroidal triple in O(n3): certifies A not Robinsonian.

• Implies the characterization of unit interval graphs: no asteroidal triple,
no induced cycle of length at least 4, no induced claw K1,3. [Roberts 69]
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Computational experiments

Matteo’s PhD thesis



Instances generation

(a) Generation 1 (b) Generation 2

(c) Generation 3 (d) Generation 4



Performance table (n ≤ 1000)
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Table 9.2: (Average) Time performance of the algorithms (in milliseconds)

# distinct values low ( 50) medium (> 50 and  200) high (� 200)

# nonzero entries
n

algorithms

spectral SFS LBFS spectral SFS LBFS spectral SFS LBFS

sparse
( 30 %)

100 2,98 1,78 10,57 3,68 1,97 58,85 4,24 2,20 -

200 8,48 8,22 36,99 8,38 8,08 211,08 9,62 8,93 -

300 16,69 17,58 83,08 18,00 16,55 513,76 18,18 16,58 -

400 27,68 29,91 153,23 30,06 31,92 953,13 30,30 32,10 -

500 38,78 44,35 209,87 47,77 47,33 1382,98 45,60 41,20 -

600 50,28 53,66 277,90 59,06 55,47 1771,93 54,10 57,10 -

700 67,02 73,45 383,13 72,54 75,64 2437,52 76,55 78,96 -

800 98,54 98,29 526,48 94,76 98,96 3236,95 104,52 102,09 -

900 114,36 124,67 616,90 121,75 122,12 4103,76 136,70 130,02 -

1000 152,63 161,15 904,72 153,52 148,28 5047,28 189,63 184,12 -

normal
(> 30 % and  70%)

100 3,16 4,65 26,25 3,46 5,20 196,26 3,41 5,04 -

200 11,04 18,58 108,28 12,96 19,92 942,65 14,43 20,08 -

300 25,62 40,91 252,98 29,46 44,37 2098,60 30,71 45,09 -

400 49,50 76,23 459,03 55,82 74,65 3833,16 56,85 79,34 -

500 73,35 108,69 645,23 84,66 113,71 5659,31 84,77 110,84 -

600 108,05 139,40 893,37 126,33 153,15 7437,49 126,89 148,99 -

700 143,32 186,48 1247,81 164,40 196,33 10402,90 172,27 195,22 -

800 193,45 253,49 1646,54 232,95 246,19 13920,20 253,77 255,05 -

900 254,46 307,13 2131,64 317,26 309,65 17909,20 310,84 326,79 -

1000 331,47 408,70 2856,86 383,54 376,66 22601,10 442,26 499,45 -

dense
(> 70 %)

100 3,87 6,81 66,58 3,89 7,72 493,64 3,89 7,78 -

200 16,37 27,38 285,67 16,08 30,01 2126,32 16,95 31,57 -

300 38,64 61,59 633,54 40,14 65,96 4904,51 38,32 69,41 -

400 77,00 112,23 1165,52 76,81 114,90 9114,09 77,66 121,97 -

500 122,27 158,87 1691,87 122,57 163,62 13693,00 114,96 161,89 -

600 174,42 211,88 2349,12 173,31 210,19 18455,80 171,59 225,39 -

700 273,01 291,58 3364,06 248,08 286,44 25932,80 245,26 299,84 -

800 359,28 379,78 4493,35 339,09 373,69 34891,70 344,47 397,55 -

900 489,78 487,85 5854,02 450,70 466,22 45060,20 450,22 519,41 -

1000 663,46 642,58 8046,78 588,68 579,59 58410,50 707,10 775,99 -

Figure 1: (Average) Time performance of the algorithms (in milliseconds)



Performance chart (n ≤ 1000)

(a) sparse - low (b) normal - medium

(c) normal - low (d) dense - high
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Table 9.3: (Average) Time performance of the algorithms (in seconds)

# distinct values low ( 50) medium (> 50 and  200) high (� 200)

# nonzero entries
n

algorithms

spectral SFS LBFS spectral SFS LBFS spectral SFS LBFS

sparse
( 30 %)

1000 0,16 0,19 - 0,16 0,16 - 0,17 0,18 -

2000 0,68 0,62 - 0,72 0,7 - 0,76 0,62 -

3000 1,56 1,5 - 1,95 1,58 - 1,95 1,48 -

4000 2,94 2,92 - 3,6 2,57 - 3,58 2,81 -

5000 4,41 4,61 - 5,56 4,03 - 6,09 4,38 -

6000 6,94 6,23 - 9,93 6,52 - 10,87 6,72 -

7000 10,56 10,48 - 20,98 10,32 - 20,73 8,75 -

8000 14,86 13,5 - 18,24 10,67 - 21,03 11,63 -

9000 17,58 16,83 - 26,38 13,75 - 31,66 13,97 -

10000 22,46 21,28 - 45,32 18,11 - 32,87 16,18 -

normal
(> 30 % and  70%)

1000 0,32 0,4 - 0,45 0,41 - 0,45 0,46 -

2000 1,53 1,8 - 2,2 1,67 - 1,99 1,71 -

3000 4,42 4,77 - 5,49 3,77 - 5,74 3,64 -

4000 9,13 9,46 - 13,04 6,33 - 14,22 6,54 -

5000 17,08 16,45 - 26,85 10,55 - 26,33 10,77 -

6000 29,09 27,48 - 44,08 16,76 - 43,07 18,11 -

7000 43,05 45,63 - 85,31 24,65 - 68,86 21,71 -

8000 72,48 58,42 - 88,91 31,54 - 86,72 30,49 -

9000 92,18 95,53 - 151,81 36,85 - 116,02 36,87 -

10000 111,08 116,67 - 190,55 48,09 - 155,1 43,41 -

dense
(> 70 %)

1000 0,62 0,67 - 0,62 0,6 - 0,6 0,63 -

2000 3,3 2,95 - 3,59 2,26 - 3,62 2,38 -

3000 10,46 8,43 - 11,65 4,99 - 11,61 5,51 -

4000 25,64 16,75 - 27,53 9,38 - 26,62 9,92 -

5000 43,85 29,4 - 51,63 15,22 - 51,03 15,89 -

6000 104,47 59,28 - 101,14 22,69 - 92,41 26,09 -

7000 121,14 91,75 - 166,53 38,52 - 142,65 31,19 -

8000 220,08 129,7 - 219,71 40,28 - 216,43 43,31 -

9000 284,63 175,07 - 331,37 52,81 - 293,18 52,44 -

10000 383,98 248,97 - 423,32 65,31 - 411,29 64,93 -

Figure 2: (Average) Time performance of the algorithms (in seconds)



Performance chart (large instances)

(a) sparse - low (b) normal - medium

(c) normal - low (d) dense - high



Conclusions

• Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker’76), unit interval graphs (3 sweeps, Corneil’04),
interval graphs (5∗ sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib’17),...

• SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices.

Other applications?

• Robinsonian matrices are matrix analogues of unit interval graphs.

[L-Tanigawa’17]: Structural characterization for ‘chordal’ matrices.

Other matrix analogues? applications?

• `∞-fitting by Robinsonian is NP-hard to approximate within 3/2− ε
[Chepoi-Fichet-Seston’09]

Exists 16-approximation algorithm. [Chepoi-Seston’11]
Better approximation guarantee?



Conclusions

• Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker’76), unit interval graphs (3 sweeps, Corneil’04),
interval graphs (5∗ sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib’17),...

• SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices.

Other applications?

• Robinsonian matrices are matrix analogues of unit interval graphs.

[L-Tanigawa’17]: Structural characterization for ‘chordal’ matrices.

Other matrix analogues? applications?

• `∞-fitting by Robinsonian is NP-hard to approximate within 3/2− ε
[Chepoi-Fichet-Seston’09]

Exists 16-approximation algorithm. [Chepoi-Seston’11]
Better approximation guarantee?



Conclusions

• Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker’76), unit interval graphs (3 sweeps, Corneil’04),
interval graphs (5∗ sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib’17),...

• SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices.

Other applications?

• Robinsonian matrices are matrix analogues of unit interval graphs.

[L-Tanigawa’17]: Structural characterization for ‘chordal’ matrices.

Other matrix analogues? applications?

• `∞-fitting by Robinsonian is NP-hard to approximate within 3/2− ε
[Chepoi-Fichet-Seston’09]

Exists 16-approximation algorithm. [Chepoi-Seston’11]
Better approximation guarantee?



Conclusions

• Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker’76), unit interval graphs (3 sweeps, Corneil’04),
interval graphs (5∗ sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib’17),...

• SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices.

Other applications?

• Robinsonian matrices are matrix analogues of unit interval graphs.

[L-Tanigawa’17]: Structural characterization for ‘chordal’ matrices.

Other matrix analogues? applications?

• `∞-fitting by Robinsonian is NP-hard to approximate within 3/2− ε
[Chepoi-Fichet-Seston’09]

Exists 16-approximation algorithm. [Chepoi-Seston’11]
Better approximation guarantee?



Conclusions

• Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker’76), unit interval graphs (3 sweeps, Corneil’04),
interval graphs (5∗ sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib’17),...

• SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices.

Other applications?

• Robinsonian matrices are matrix analogues of unit interval graphs.

[L-Tanigawa’17]: Structural characterization for ‘chordal’ matrices.

Other matrix analogues? applications?

• `∞-fitting by Robinsonian is NP-hard to approximate within 3/2− ε
[Chepoi-Fichet-Seston’09]

Exists 16-approximation algorithm. [Chepoi-Seston’11]
Better approximation guarantee?



Conclusions

• Lex-BFS is widely used: recognize chordal graphs (1 sweep,
Rose-Tarjan-Lueker’76), unit interval graphs (3 sweeps, Corneil’04),
interval graphs (5∗ sweeps, Corneil & al.’09), cocomparability graphs
(n sweeps, Dusart-Habib’17),...

• SFS (Similarity-First Search) is a new weighted graph search
algorithm, very simple conceptually and to implement:

CRAN Package SFS available at the R platform.

SFS permits to recognize Robinsonian matrices.

Other applications?

• Robinsonian matrices are matrix analogues of unit interval graphs.

[L-Tanigawa’17]: Structural characterization for ‘chordal’ matrices.

Other matrix analogues? applications?

• `∞-fitting by Robinsonian is NP-hard to approximate within 3/2− ε
[Chepoi-Fichet-Seston’09]

Exists 16-approximation algorithm. [Chepoi-Seston’11]
Better approximation guarantee?



Thank you



M. Laurent and M. Seminaroti.
The quadratic assignment problem is easy for Robinsonian matrices
with Toeplitz structure. Operations Research Letters, 2015.

M. Seminaroti.
Combinatorial Algorithms for the Seriation Problem. PhD thesis,
Tilburg University, December 2016.

M. Laurent and M. Seminaroti.
A Lex-BFS-based recognition algorithm for Robinsonian matrices.
Discrete Applied Mathematics, 2017.

M. Laurent and M. Seminaroti.
Similarity-First Search: a new algorithm with application to
Robinsonian matrix recognition. SIAM J. Discrete Mathematics, 2017.

M. Laurent, M. Seminaroti, S. Tanigawa.
A Structural Characterization for Certifying Robinsonian Matrices.
Electronic Journal of Combinatorics, 2017.

M. Laurent, S. Tanigawa.
Perfect Elimination Orderings for Symmetric Matrices. Opt. Letters’17.


