QUANTITATIVE TYPES FOR HIGHER-ORDER LANGUAGES

Delia KESNER IRIF, Université Paris Cité, CNRS

HCERES, 28 November 2023

Motivations

Quantitative techniques emerging in different areas of computer science.

- Time, space, probability, cost.
- Verification, model-checking, theorem proving.
- Automata, logics, algorithm analysis.
- Performance measurement, network analysis, data mining.
- **Types** are a key tool in programming languages.
- What is a quantitative type system?
- Principles, Properties, and Applications.

Some Principles of Quantitative Type Systems

3 Quantitative Types for Measuring

Quantitative Types and Observational Equivalence

5 Conclusion

Simple versus Intersection Type Systems

Which Kind of Intersection Constructor?

Associativity Commutativity

Idempotent

versus Non-idempotent

 $\mathbf{A} \cap \mathbf{A} = \mathbf{A}$

Infinite Resources

 $\mathbf{A} \ \cap \mathbf{A} \ \neq \mathbf{A}$

Finite Resources

Idempotent	Non-idempotent
Coppo&Dezani in the eighties	Gardner and Kfoury in the nineties
	(Girard's Linear Logic flavour)
Sets : A ∩ A ∩ C is { A , C }	Multi-Sets : <u>A ∩ A ∩ C</u> is [A, A, C]
Qualitative properties: Yes or No	Quantitative properties: Bounds and Exact Measures De Carvalho

Let $t := \lambda x \cdot x (x x)$

Idempotent/Qualitative Typing with Sets

$$\vdash t: \{\{A\} \to A, A\} \to A$$

Non-Idempotent/Quantitative Typing with Multi-Sets

$$\vdash t: [[A] \to A, [A] \to A, A] \to A$$

(Standard) Notation for Typing

- \blacksquare X is a type system,
- **Π** is a (tree) derivation,
- *t* is a program/term,
- A is a type,
- **\square** Γ is a set of **type declarations**.
- X and Π may be omitted to simplify the notation.

Some Principles of Quantitative Type Systems

2 Quantitative Types and Inhabitation

3 Quantitative Types for Measuring

Quantitative Types and Observational Equivalence

5 Conclusion

Inhabitation

Proof Search

Program Synthesis

Call-by-Name	Typing	Inhabitation
Lambda-Calculus	$? \vdash t : ?$	$\Gamma \vdash ? : \mathbf{A}$
Simple Types	Decidable	Decidable
Idempotent Types	Undecidable	Undecidable
		(Infinite Resources)
Restricted	Undecidable	Decidable
Idempotent Types		(Finite Search on Infinite Resources)
Unrestricted	Undecidable	Decidable
Non-Idempotent Types		(Finite Resources)

on Finite Resources

Bucciarelli&K.&Ronchi Della Rocca'{14,18,21}, Arrial&Guerrieri&K.'21

Some Principles of Quantitative Type Systems

Quantitative Types and Observational Equivalence

5 Conclusion

Intersection type systems provide a mathematical meaning of programs:

 $\llbracket t \rrbracket := \{ (\Gamma, \mathbf{A}) \mid \Pi \triangleright \Gamma \vdash t : \mathbf{A} \}$

This gives relational models where equivalent programs have the same meaning :

If $t =_{operational} u$, then [t] = [u]*i.e.* $\Pi \triangleright \Gamma \vdash t : A \Leftrightarrow \Pi' \triangleright \Gamma \vdash u : A$

Qualitative Quantitative

 $size(\mathbf{\Pi})$ # $size(\mathbf{\Pi}')$

 $\texttt{size}(\Pi) > \texttt{size}(\Pi')$

Idempotent types

Non-idempotent types

Quantitative Notation for Typing $\Pi \triangleright \Gamma \vdash^{(C_1,...,C_n)} t : A$

The **counters** (C_1, \ldots, C_n) measure different behaviors of the program **t**

Bounding and Measuring Evaluation by Means of Quantitative Types

(**RES**) and length = L and size = S

Some Principles of Quantitative Type Systems

- 2 Quantitative Types and Inhabitation
- 3 Quantitative Types for Measuring
- Quantitative Types and Observational Equivalence

5 Conclusion

Observational Equivalence

Call-by-Need Different from Call-by-Name

Call-by-need is different from call-by-name:

 $\begin{array}{l} \text{Twice } (4+3) \rightarrow_{\text{cbname}} (4+3) + (4+3) \rightarrow_{\text{cbname}} 7 + (4+3) \rightarrow_{\text{cbname}} 7 + 7 \rightarrow_{\text{cbname}} 14 \\ \text{Twice } (4+3) \rightarrow_{\text{cbneed}} \text{Twice } 7 \rightarrow_{\text{cbneed}} 7 + 7 \rightarrow_{\text{cbneed}} 14 \end{array}$

where Twice = $\lambda x.x + x$.

Call-by-Need Different from Call-by-Value

Call-by-need is different from call-by-value:

$$(\lambda x.8)(4+3) \rightarrow_{\text{cbvalue}} (\lambda x.8)7 \rightarrow_{\text{cbvalue}} 8$$

 $(\lambda x.8)(4+3) \rightarrow_{\text{cbneed}} 8$

In particular

$$\begin{array}{l} (\lambda x.8)\Omega \xrightarrow[]{\text{cbvalue}} \\ (\lambda x.8)\Omega \xrightarrow[]{\text{cbneed}} 8 \end{array}$$

(Syntactical) call-by-need is different from (semantical) neededness

$$(\lambda x.x)(4+3) \rightarrow_{\text{cbneed}} (\lambda x.x)7 \rightarrow_{\text{cbneed}} 7$$

 $(\lambda x.x)(4+3) \rightarrow_{\text{neededness}} 4+3 \rightarrow_{\text{neededness}} 7$

Same typing system to capture different models of computation

- t is typable in type system \mathcal{R} if and only if t normalizes in call-by-need.
- t is typable in type system \mathcal{R} if and only if t normalizes in call-by-name.
- t is typable in type system \mathcal{R} if and only if t normalizes w.r.t. neededness.

Theorem (K.'16, K.&Viso&Ríos'18)

Some Principles of Quantitative Type Systems

- 2 Quantitative Types and Inhabitation
- 3 Quantitative Types for Measuring

Quantitative Types and Observational Equivalence

Power of Quantitative Types

- Provide quantitative information (upper bounds and split/exact measures).
- Relational models.
- Characterization of different notions of normalization (head, head-linear, head-needed, weak, strong, value, infinitary etc).
- Inhabitation decidable.
- Simple observational equivalence proofs by means of types.
- Characterize complexity classes.
- **Completeness** of reduction strategies.

Ongoing Work

- New (time) cost models for functional programming (usefulness, pattern matching).
- Effectful computations (global memory, exceptions).
- Unifying frameworks (call-by-push-value, bang calculus).
- Quantitative view of traditional properties (solvability, genericity).

Thanks