

1

To highlight the 50th anniversary of the ICALP conference and of
the creation of EATCS, IRIF (Institut de Recherche en Informatique
Fondamentale) has set up an exhibition on 50 Years of Theoretical
Computer Science: Since the birth of ICALP and the EATCS.

When first held in July 1972 at IRIA Rocquencourt near Paris, ICALP
was the first conference for the newly drafted European Association
for Theoretical Computer Science (EATCS). Beyond the start of a
new academic venue, this was in many ways a defining moment for
theoretical computer science. Through a historical tour and an overview
of some key topics, the exhibition 50 Years of Theoretical Computer
Science: Since the birth of ICALP and the EATCS offers a dive into this
field, often way too little known.

The exhibition was first presented at ICALP'22 on July 6–8, 2022 at
Université Paris Cité and then continued its tour to the Mathématiques
Informatique Recherche (MIR) library from December 8, 2022 to
February 27, 2023.

Designed simultaneously with the exhibition, this leaflet aims to bring
the discipline and its history into the hands of all experts, curious and
afficionados of theoretical computer science. Close to twenty French
and international scientific contributors took part in this project, striving
to share the history of the discipline and to reflect the diversity and
richness of its themes. The “Further reading” sections invite the most
curious to dive deeper into specific topics.

Enjoy your reading!

Foreword

2
ISBN 9-782958-699703
© IRIF, PARIS, 2022

3

Table
of contents

50 years
of Theoretical
Computer
Science
Since the birth
of ICALP and the EATCS

 Brussels, 1972
Where, when and why
EATCS and ICALP started

 Maurice Nivat
A founding father of Theoretical
Computer Science

 ICALP Through Time
Mining publications data

7

11

15

HISTORY 43

47

51

55

 Model-Checking
Proving system correctness,
automatically

 The Science of Programming
Languages and tools

 Machine Checked Proofs
When computers improve
mathematical rigour

 Quantum Computing
Or, using Schrödinger’s cat
to solve problems faster

 Algorithms that Shaped the World

 Computational Complexity
Classifying problems by hardness

 Zero-Knowledge Proofs
Showing that a problem has
a solution without revealing it

 Fine-Grained Complexity
A way to prove exact time bounds

 Logic and Computational Complexity
A perfect match

 Automata Theory
Abstract machines and
their computational power

21

23

27

31

35

39

HIGHLIGHTS

4

H I S T O RY

5

H I S T O RY
 Brussels, 1972

Where, when and why
EATCS and ICALP started

 Maurice Nivat
A founding father of Theoretical
Computer Science

 ICALP Through Time
Mining publications data

7

11

15

6

7

Brussels, 1972

Informatics or computer science was
seen by other disciplines and by many
politicians as simply a technology to support
other enterprises. It was already clear
however that to improve the correctness
and efficiency of large-scale programs,
theoretical studies were needed to
investigate the principles and properties of
computing. At the time, such work in Europe
tended to be local and national. New funding
for inter-European collaboration would be
required.

Where, when and why
EATCS and ICALP started

Left page: Marcel-Paul Schützenberger
at the first ICALP conference, July 3-7 1972

50 Years of Theoretical Computer Science

8

 In those years
There was a very special spirit in the air; we
knew that we were witnessing the birth of
a new scientific discipline centered on the
computer – (R. Karp)

There was absolutely no appreciation
of the work on the issues of computing.
Mathematicians did not recognize the
emerging new field – (M. Rabin)

 At the Berlaymont building of the EU Commission
in Brussels, on January 27-28, 1972, there is a
meeting chaired by Alfonso Caracciolo.

Participants: M. Nivat, L. Nolin, M. Gross (F),
H. Langmaack, K. H. Böhling (D), l. Verbeek,
J. de Bakker (NL), M. Paterson (UK), M. Sintzoff (B),
C. Böhm, U. Montanari, G. Ausiello (I).
After presenting the report of M. Nivat, L. Nolin and
M.-P. Schützenberger, they approve the proposal
prepared by Maurice Nivat on cooperation among
European universities, which leads in September
to the creation of the European Association for
Theoretical Computer Science (EATCS).

Rapport préliminaire
sur l’Informatique Théorique
(M. Nivat, L. Nolin, M.-P. Schützenberger, 1971)

 This report outlines the main pillars of the new
science and, for each pillar, describes the research
subject addressed, with reference to a few specific
authors:

— Algorithms, with specific reference to arithmetic
operations (Winograd), sorting (Knuth, Floyd), graph
algorithms (Rabin);

— Automata and formal languages, with reference
to equations on the free monoid (Lentin), codes,
finite automata and regular languages (Kleene,
Krohn & Rhodes), push-down automata and
context-free languages (Schützenberger), tree
automata;

— Formal semantics of programming languages,
where with experience from the syntactic and
semantic definition of Algol 68, the need to
provide precise formulations of the semantics of
programming languages is discussed, based on
the early works on axiomatic semantics (Floyd),
operational semantics (McCarthy), approaches
to semantics based on lambda-calculus (Scott)
and combinatory logic (Nolin), and the theory
of program schemes (Ianov, Luckham, Park &
Paterson, and Strong).

The report underlines the theory of operating
systems, of parallel concurrent and cooperating
processes, and of the corresponding computation
models (Dijkstra, Naur, Wirth) expected to play an
important role in the future.

 Foundation of the EATCS

Brussels, 1972 I Where, when and why EATCS and ICALP started

9

 First Bulletin

 EATCS Awards

 On December 1973,
Maurice Nivat prepares
the first Bulletin of EATCS
at IRIA, Rocquencourt.
The bulletin includes
the minutes of the first
general assembly and
council meeting; reports
on the second MFCS; and
provides activity reports
of the Mathematisch
Centrum, Amsterdam, the

Technological University, Delft, the Technological
University, Twente, the Istituto di Scienza
dell’Informazione, Università di Torino and the
Institut de Programmation, Université Paris VI.

 Awarded annually since 2000, this honours
scientists from the community of Theoretical
Computer Science in acknowledgment of their
extensive and widely recognized contributions over
a lifelong scientific career.

Richard Karp (2000), Corrado Böhm (2001),
Maurice Nivat (2002), Grzegorz Rozenberg (2003),
Arto Salomaa (2004), Robin Milner (2005),
Mike Paterson (2006), Dana S. Scott (2007),
Leslie G. Valiant (2008), Gérard Huet (2009),
Kurt Mehlhorn (2010), Boris (Boaz) Trakhtenbrot
(2011), Moshe Y. Vardi (2012), Martin Dyer (2013),
Gordon Plotkin(2014), Christos Papadimitriou (2015),
Dexter Kozen (2016), Éva Tardos (2017),
Noam Nisan (2018), Thomas Henzinger (2019),
Mihalis Yannakakis (2020), Toniann (Toni) Pitassi
(2021), Patrick Cousot (2022)

 First ICALP
 On July 3-7, 1972, at IRIA (Rocquencourt,

Paris) the first ICALP takes place. The Program
Committee of C. Böhm, S. Eilenberg, P. Fisher,
S. Ginzburg, G. Hotz, M. Nivat, L. Nolin, D. Park,
M. Rabin, A. Salomaa, and A. van Wijngaarden is
chaired by M.-P. Schützenberger.
The program includes 45 accepted papers (29 in
English, 14 in French, 2 in German) on automata
theory, theory of programming, theory of formal
languages, and complexity of algorithms.

Maurice Gross and Maurice Nivat at the first ICALP

Programme of the first colloquium

50 Years of Theoretical Computer Science

Further reading

U. Brauer & W. Brauer.
“Silver Jubilee of EATCS.”
Bulletin of the EATCS 62:3–23,
1997.

G. Ausiello.
The Making of a New Science.
Springer, 2018.

G. Ausiello. “EATCS Golden Jubilee:
How EATCS was born 50 years ago
and why it is still alive and well.”
Bulletin of the EATCS 137, 2022.

10

11

Maurice Nivat

As a mathematician he applied rigorous
algebraic approaches to numerous
domains, from formal languages to program
semantics, from concurrent processes to
discrete geometry.
As a scientific leader he undertook with
incredible energy the mission of promoting
study and research in the theory of
computing.

A founding father of
Theoretical Computer Science

50 Years of Theoretical Computer Science

1937–2017

12

Maurice (right) with siblings and Grandma

Maurice, 20 years old

 Early years

 1971
With Louis Nolin and Marcel-Paul Schützenberger,
presents a “charter” of theoretical computer science,
called Rapport préliminaire sur l’Informatique
Théorique; proposes to establish a collaboration
with the main European universities and research
centers

 1972
- Organises the first International Colloquium on
Automata, Languages and Programming (ICALP)
- Organises with Alfonso Caracciolo the Brussels
meeting where the creation of the EATCS is
approved

 1973
Elected President of EATCS and edits the first
Bulletin of the EATCS; founds the journal Theoretical
Computer Science

 1937
Born in Clermont-Ferrand, France

 1956
Enters École Normale Supérieure; his broad
mindedness and originality flourish and he is the
leader of a group of merry fellows which calls itself
“Praesidium du Bordel Suprême”; he gets married
and has his first son while still at ENS

 1959
Begins work at Institut Blaise Pascal and gets
acquainted with computers and programming
languages

 1969
Becomes professor at Université de Paris

 Founding the EATCS

Maurice Nivat I A founding father of Theoretical Computer Science

Nivat (left) with Schützenberger at ICALP’72

13

 Fostering French TCS
 1973

Initiates the yearly École de Printemps
d’Informatique Théorique bringing together
younger researchers in pleasant historical places
throughout France to learn about a topic in
Theoretical Computer Science

 1975
Founds the Laboratoire d’Informatique Théorique
et Programmation (LITP), of which the Institut de
Recherche en Informatique Fondamentale (IRIF)
that organises ICALP’22 is a descendant

 1992
Founds the Association Française d’Informatique
Théorique, the French arm of EATCS

50 Years of Theoretical Computer Science

Further reading

P.-L. Curien. “Une brève biographie scientifique de Maurice
Nivat.” Theoretical Computer Science 281(1–2):3–23, 2002.

I. Bellin. “Maurice Nivat, Une vision à long terme
de la recherche en informatique.” Interstices, 2008.

Decoration by Minister of Research Hubert Curien, 2002

Maurice Nivat worked on many subjects:
transductions, language theory, algebraic
semantics, semantics of concurrency, infinite
words, tilings... In each one, he had seminal
ideas, and was able to direct his numerous
students to the best-suited domains.

Rouen

Rennes

Poitiers

Clermont
Ferrand

NiceSophia

Grenoble

Lyon

Toulouse

Bordeaux

Corte

Amiens

Lille

Nancy
Strasbourg

Paris

Chambéry

Orléans

Maurice’s former
PhD students
in France

Throughout his career,
Maurice fought for the
introduction of computer
science in education. His
wish was finally fulfilled
in 2021: an Agrégation
d’Informatique (i.e.,
a contest to select
Computer Science
professors for high
schools) was created.

1983 report on
computer science
education

Computer Science
in Education

Scientific Legacy

14

15

ICALP
Through Time

In the 50 years since its inception,
the ICALP conference has evolved in pace
with the scientific advances and the growth
and maturation of the Theoretical Computer
Science community. This poster, based on an
analysis of DBLP data, provides a bird's eye
view of that evolution.

Mining publications data

50 Years of Theoretical Computer Science

16

Percentage of ICALP papers whose titles mention
the word algorithm, complexity, automata, or logic.

algorithm
approximation
complexity
distribued
grammar
network
program
system

abstract
automata
data
game
language
parallel
random
time

algebra
bound
dynamic
graph
logic
process
semantic

ICALP Through Time I Mining publications data

 ICALP Topics
Throughout its fifty-year history, ICALP has
provided a broad coverage of topics in
Theoretical Computer Science. How has the
relevance of research topics within the
theoretical-computer-science community
changed since 1972?

17

50 Years of Theoretical Computer Science

 ICALP Authorship
Like other major conferences in Theoretical Computer Science, the authorship at ICALP tends to stabilise
over time.

Number of authors per year, corresponding
to a similar evolution in the number of
accepted papers.

Percentage of new authors per year. Every
year, approximately half the authors at TCS
conferences are newcomers to the conference.

Ratio of women over men among authors.
Still below 0.2 for almost all TCS
conferences in 2021.

Number of papers with each co-author-
ship size, per decade. Papers with two,
three, and even four authors have
gradually become more common than
single-author papers.

Link to the full
data analysis

Further reading

P. Crescenzi. “Celebrating 50 years of ICALP: A data and graph mining analysis.”
https://slides.com/piluc/icalp-50?token=fl3BBJ8j

18

HIGHLIGHTS

19

HIGHLIGHTS
43

47

51

55

 Model-Checking
Proving system correctness,
automatically

 The Science of Programming
Languages and tools

 Machine Checked Proofs
When computers improve
mathematical rigour

 Quantum Computing
Or, using Schrödinger’s cat
to solve problems faster

 Algorithms that Shaped the World

 Computational Complexity
Classifying problems by hardness

 Zero-Knowledge Proofs
Showing that a problem has
a solution without revealing it

 Fine-Grained Complexity
A way to prove exact time bounds

 Logic and Computational Complexity
A perfect match

 Automata Theory
Abstract machines and
their computational power

21

23

27

31

35

39

20

21

Algorithms
that Shaped
the World

Algorithms are the hearts of computing
systems. They are usually not visible
to the user, but they keep the systems
going and provide functionality and speed.
Without algorithms there would be no
systems. Not surprisingly, every computer
scientist is taught algorithms. The design
and analysis of algorithms is a subject
of intellectual depth and beauty with
wide-ranging impact on the real world.

50 Years of Theoretical Computer Science

Further reading

K. Mehlhorn. Data Structures and
Algorithms, volumes 1, 2, and 3.
EATCS Monographs on Theoretical
Computer Science, Springer, 1984.

K. Mehlhorn & S. Näher.
LEDA: A Platform for Combinatorial
and Geometric Computing.
Cambridge University Press, 1999.

T. H. Cormen, C. E. Leiserson,
R. L. Rivest, & C. Stein.
Introduction to Algorithms,
3rd Edition. MIT Press, 2009.

22

23

Computational
Complexity

In the 1930's, Church, Turing and others
proposed the “right” notion of algorithm
and studied what is recursive, i.e., what
can be solved at all by computers.
Later, with the first computers, the
efficiency of algorithms became crucial.
Computational complexity was born.

Classifying problems
by hardness

50 Years of Theoretical Computer Science

Further reading

S. A. Cook.
“The complexity
of theorem proving
procedures.” Proceedings
of STOC’71. ACM, 1971.

L. A. Levin. “Universal
search problems.”
Problems of Information
Transmission,
9(3):265–266, 1973.

R. M. Karp. “Reducibility
Among Combinatorial
Problems.” Complexity
of Computer Computations.
Springer, 1972.

S. Arora & B. Barak.
Computational Complexity.
A Modern Approach.
Cambridge University
Press, 2009.

24

Al
go

ri
th

m
s

ru
nn

in
g

in
 e

xp
on

en
ti

al
 t

im
e

(2
n)

 a
re

 n
ot

co

ns
id

er
ed

 e
ffi

ci
en

t.
 H

ar
tm

an
is

 a
nd

 S
te

ar
ns

sh

ow
 in

 1
96

5
th

at
 E

XP
 ≠

 P
.

N
P-

co
m

pl
et

e
K

ar
p

19
72

,
G

ar
ey

 a
nd

 J
oh

ns
on

 1
97

9,

an
d

m
an

y
ot

he
rs

Th

ou
sa

nd
s

of
 im

po
rt

an
t

pr
ob

le
m

s
ar

e
N

P-
co

m
pl

et
e!

If

on
e

ca
n

be
 s

ol
ve

d
effi

ci
en

tl
y,

 t
he

n
P=

N
P.

If
 P

 ≠
 N

P
th

en
 t

he
re

 a
re

 p
ro

bl
em

s
in

 N
P\

P
th

at
 a

re
 n

ot

N
P-

co
m

pl
et

e
(L

ad
ne

r 1
97

5)

"P
ol

yn
om

ia
l t

im
e"

is

 t
he

 c
la

ss
 o

f
pr

ob
le

m
s

ha
vi

ng

"e
ffi

ci
en

t"
 a

lg
or

it
hm

s.

Fi
rs

t
id

en
ti

fie
d

by

Co
bh

am
 a

nd
 E

dm
on

ds

in
 1

96
5

D
oe

s
ra

nd
om

ne
ss

sp

ee
d

up
 a

lg
or

it
hm

s?
O

r
is

 B
PP

 =
 P

("

de
ra

nd
om

is
at

io
n"

)?

P

N
on

-u
ni

fo
rm

it
y

=
on

e
al

go
ri

th
m

 (i
.e

. o
ne

 B
oo

le
an

 c
irc

ui
t)

 fo
r

ea
ch

 in
pu

t
le

ng
th

.
Ci

rc
ui

ts
 m

ig
ht

 b
e

ea
si

er
 t

o
st

ud
y.

Th
e

ho
pe

: p
ro

vi
ng

 N
P

no
t

in
 P

/p
ol

y.

Is
 E

XP
 in

 P
/p

ol
y?

(u

nl
ik

el
y)

If
no

t,
 "

ha
rd

"
fu

nc
ti

on
s

ca
n

be
 u

se
d

to
 d

er
an

do
m

is
e

BP
PRec

P
=

N
P?

Th
e

m
aj

or
 q

ue
st

io
n

in

co
m

pu
ta

ti
on

al
 c

om
pl

ex
it

y

Co
ok

, L
ev

in
 1

97
1

SA
T

is
 "

ha
rd

er
"

th
an

 a
ny

 p
ro

bl
em

 in
 N

P:
 it

 is
 N

P-
co

m
pl

et
e

EXP

NP
BPP

P/poly

pr
ob

le
m

s
th

at
 c

an

be
 s

ol
ve

d
by

 c
om

pu
te

rs

Re
c

Ex
po

ne
nt

ia
l

ti
m

e

EX
P

N
on

de
te

rm
in

is
ti

c
Po

ly
no

m
ia

l t
im

e:

so
lu

ti
on

s
ca

n
be

 v
er

ifi
ed

 e
ffi

ci
en

tl
y

Bo
un

de
d-

er
ro

r
Pr

ob
ab

ili
st

ic

Po
ly

no
m

ia
l t

im
e

N
P

BP
P

In
te

ge
r

pr
og

ra
m

m
in

g
3

SA
T

Ch
ro

m
at

ic
 n

um
be

r

Ex
ac

t
co

ve
r

3D
 m

at
ch

in
g

Kn
ap

sa
ck

Pa
rt

it
io

n

M
ax

 c
ut

Cl
iq

ue
 c

ov
er

Cl
iq

ue

N
od

e
co

ve
r

Se
t

Pa
ck

in
gH
am

ilt
on

Ci

rc
ui

t
Se

t
co

ve
ri

ng

SA
T

(S
at

is
fia

bi
lit

y
of

 B
oo

le
an

 fo
rm

ul
as

)

Computational Complexity I Classifying problems by hardness

25

Al
go

ri
th

m
s

ru
nn

in
g

in
 e

xp
on

en
ti

al
 t

im
e

(2
n)

 a
re

 n
ot

co

ns
id

er
ed

 e
ffi

ci
en

t.
 H

ar
tm

an
is

 a
nd

 S
te

ar
ns

sh

ow
 in

 1
96

5
th

at
 E

XP
 ≠

 P
.

N
P-

co
m

pl
et

e
K

ar
p

19
72

,
G

ar
ey

 a
nd

 J
oh

ns
on

 1
97

9,

an
d

m
an

y
ot

he
rs

Th

ou
sa

nd
s

of
 im

po
rt

an
t

pr
ob

le
m

s
ar

e
N

P-
co

m
pl

et
e!

If

on
e

ca
n

be
 s

ol
ve

d
effi

ci
en

tl
y,

 t
he

n
P=

N
P.

If
 P

 ≠
 N

P
th

en
 t

he
re

 a
re

 p
ro

bl
em

s
in

 N
P\

P
th

at
 a

re
 n

ot

N
P-

co
m

pl
et

e
(L

ad
ne

r 1
97

5)

"P
ol

yn
om

ia
l t

im
e"

is

 t
he

 c
la

ss
 o

f
pr

ob
le

m
s

ha
vi

ng

"e
ffi

ci
en

t"
 a

lg
or

it
hm

s.

Fi
rs

t
id

en
ti

fie
d

by

Co
bh

am
 a

nd
 E

dm
on

ds

in
 1

96
5

D
oe

s
ra

nd
om

ne
ss

sp

ee
d

up
 a

lg
or

it
hm

s?
O

r
is

 B
PP

 =
 P

("

de
ra

nd
om

is
at

io
n"

)?

P

N
on

-u
ni

fo
rm

it
y

=
on

e
al

go
ri

th
m

 (i
.e

. o
ne

 B
oo

le
an

 c
irc

ui
t)

 fo
r

ea
ch

 in
pu

t
le

ng
th

.
Ci

rc
ui

ts
 m

ig
ht

 b
e

ea
si

er
 t

o
st

ud
y.

Th
e

ho
pe

: p
ro

vi
ng

 N
P

no
t

in
 P

/p
ol

y.

Is
 E

XP
 in

 P
/p

ol
y?

(u

nl
ik

el
y)

If
no

t,
 "

ha
rd

"
fu

nc
ti

on
s

ca
n

be
 u

se
d

to
 d

er
an

do
m

is
e

BP
PRec

P
=

N
P?

Th
e

m
aj

or
 q

ue
st

io
n

in

co
m

pu
ta

ti
on

al
 c

om
pl

ex
it

y

Co
ok

, L
ev

in
 1

97
1

SA
T

is
 "

ha
rd

er
"

th
an

 a
ny

 p
ro

bl
em

 in
 N

P:
 it

 is
 N

P-
co

m
pl

et
e

EXP

NP
BPP

P/poly

pr
ob

le
m

s
th

at
 c

an

be
 s

ol
ve

d
by

 c
om

pu
te

rs

Re
c

Ex
po

ne
nt

ia
l

ti
m

e

EX
P

N
on

de
te

rm
in

is
ti

c
Po

ly
no

m
ia

l t
im

e:

so
lu

ti
on

s
ca

n
be

 v
er

ifi
ed

 e
ffi

ci
en

tl
y

Bo
un

de
d-

er
ro

r
Pr

ob
ab

ili
st

ic

Po
ly

no
m

ia
l t

im
e

N
P

BP
P

In
te

ge
r

pr
og

ra
m

m
in

g
3

SA
T

Ch
ro

m
at

ic
 n

um
be

r

Ex
ac

t
co

ve
r

3D
 m

at
ch

in
g

Kn
ap

sa
ck

Pa
rt

it
io

n

M
ax

 c
ut

Cl
iq

ue
 c

ov
er

Cl
iq

ue

N
od

e
co

ve
r

Se
t

Pa
ck

in
gH
am

ilt
on

Ci

rc
ui

t
Se

t
co

ve
ri

ng

SA
T

(S
at

is
fia

bi
lit

y
of

 B
oo

le
an

 fo
rm

ul
as

)

A
lg

or
it

hm
s

ru
nn

in
g

in
 e

xp
on

en
ti

al
 t

im
e

(2
n)

 a
re

 n
ot

co

ns
id

er
ed

 e
ffi

ci
en

t.
 H

ar
tm

an
is

 a
nd

 S
te

ar
ns

sh

ow
 in

 1
96

5
th

at
 E

XP
 ≠

 P
.

N
P

-c
om

pl
et

e

C
oo

k,
 L

ev
in

 1
97

1

K
ar

p
19

72
,

G
ar

ey
 a

nd
 J

oh
ns

on
 1

97
9,

an

d
m

an
y

ot
he

rs

Th
ou

sa
nd

s
of

 im
po

rt
an

t
pr

ob
le

m
s

ar
e

N
P-

co
m

pl
et

e!

If
 o

ne
 c

an
 b

e
so

lv
ed

 e
ffi

ci
en

tl
y,

 t
he

n
P=

N
P.

If
 P

 ≠
 N

P
 t

he
n

th
er

e
ar

e
pr

ob
le

m
s

in
 N

P
\P

 t
ha

t
ar

e
no

t
N

P
-c

om
pl

et
e

(L
ad

ne
r

19
75

)

"P
ol

yn
om

ia
l t

im
e"

is

 t
he

 c
la

ss
 o

f
pr

ob
le

m
s

ha
vi

ng

"e
ffi

ci
en

t"
 a

lg
or

it
hm

s.

Fi
rs

t
id

en
ti

fi
ed

 b
y

C
ob

ha
m

 a
nd

 E
dm

on
ds

in

 1
96

5

D
oe

s
ra

nd
om

ne
ss

sp

ee
d

up
 a

lg
or

it
hm

s?
O

r
is

 B
PP

 =
 P

("

de
ra

nd
om

is
at

io
n"

)?

P

N
on

-u
ni

fo
rm

it
y

=
on

e
al

go
ri

th
m

 (
i.e

. o
ne

 B
oo

le
an

 c
ir

cu
it

)
fo

r
ea

ch
 in

pu
t

le
ng

th
.

C
ir

cu
it

s
m

ig
ht

 b
e

ea
si

er
 t

o
st

ud
y.

Th
e

ho
pe

: p
ro

vi
ng

 N
P

no
t

in
 P

/p
ol

y.

Is
 E

XP
 in

 P
/p

ol
y?

(u

nl
ik

el
y)

If
 n

ot
, "

ha
rd

"
fu

nc
ti

on
s

ca
n

be
 u

se
d

to
 d

er
an

do
m

is
e

B
PP

Rec

P
 =

 N
P

?
Th

e
m

aj
or

 q
ue

st
io

n
in

co

m
pu

ta
ti

on
al

 c
om

pl
ex

it
y

SA
T

is
 "

ha
rd

er
"

th
an

 a
ny

 p
ro

bl
em

 in
 N

P:
 it

 is
 N

P-
co

m
pl

et
e

EXP

NP
BPP

P/poly pr
ob

le
m

s
th

at
 c

an

be
 s

ol
ve

d
by

 c
om

pu
te

rs

R
ec

Ex
po

ne
nt

ia
l

ti
m

e

EX
P

N
on

de
te

rm
in

is
ti

c
Po

ly
no

m
ia

l t
im

e:

so
lu

ti
on

s
ca

n
be

 v
er

ifi
ed

 e
ffi

ci
en

tl
y

B
ou

nd
ed

-e
rr

or
 P

ro
ba

bi
lis

ti
c

Po
ly

no
m

ia
l t

im
e

N
P

B
P

P

In
te

ge
r

pr
og

ra
m

m
in

g
3

SA
T

C
hr

om
at

ic
 n

um
be

r

Ex
ac

t
co

ve
r

3D
 m

at
ch

in
g

K
na

ps
ac

k

Pa
rt

it
io

n

M
ax

 c
ut

C
liq

ue
 c

ov
er

C
liq

ue

N
od

e
co

ve
r

Se
t

Pa
ck

in
gH
am

ilt
on

C

ir
cu

it
Se

t
co

ve
ri

ng

SA
T

(S
at

is
fi

ab
ili

ty
 o

f
B

oo
le

an
 f

or
m

ul
as

)

50 Years of Theoretical Computer Science

26

27

Zero-Knowledge
Proofs

Is it possible to demonstrate that we
know how to prove a theorem, but without
disclosing the proof? Surprisingly, the answer
turns out to be “yes.” This result, discovered
in the 80’s, had a profound impact on our
understanding of privacy, and opened the
floodgates of a myriad of applications in
cryptography and computer security.

Showing that a problem has
a solution without revealing it

50 Years of Theoretical Computer Science

28

Zero-Knowledge Proofs I Showing that a problem has a solution without revealing it

 The Origin An example

1985
Goldwasser, Micali, and Rackoff introduced the
notion of zero-knowledge proofs: proofs that
yield no information beyond the validity of the
statement.

1986
Goldreich, Micali, and Wigderson, showed the wide
applicability of this concept: they demonstrated
that, under widely believed assumptions, any
theorem whose proof can be verified efficiently
also admits a zero-knowledge proof.

Imagine a network of radio towers that can
emit at three different frequencies. To avoid
interference, we want that two nearby towers
always emit at a different frequency. In general,
determining whether this task can be achieved is
a hard combinatorial problem. Dodgy is an agency
that claims to have a solution (a setting of the
frequencies), wishes to sell it to an operator and
will only reveal its frequency setting after it has
been paid. The operator, Towergrid, is suspicious
and wants to be convinced that Dodgy really knows
a solution before paying.

The paper of Goldreich, Micali, and Wigderson gives
a nice solution to the above conundrum.

1 - Dodgy chooses random names for the
 frequencies, e.g., A,B, and C.

2 - Dodgy puts the name of the chosen frequency
 for each tower in a “cryptographic box.”

3 - Towergrid then asks Dodgy to open two
 randomly chosen boxes for nearby towers.

4 - Towergrid checks whether the letters are
 indeed different.

After enough repetitions of steps 1 to 4, any
cheater is guaranteed to be caught (with whatever
probability of error Towergrid likes to achieve), but
the solution is never revealed.

This radio-tower problem described above is
well-known to be “NP-complete.” In essence, this
means that by finding a zero-knowledge proof for
this problem, Goldreich, Micali, and Wigderson
have in fact found a zero-knowledge proof for all
problems with efficiently-verifiable proofs!

Further reading

S. Goldwasser, S. Micali, & C. Rackoff.
“The knowledge complexity of
interactive proof systems.”
Proceedings of STOC’85. ACM, 1985.

O. Goldreich. Foundations
of Cryptography, Volume 1.
Cambridge University Press, 2008.

M. Green. “Zero Knowledge
Proofs: An illustrated primer.”
A Few Thoughts on Cryptographic
Engineering, 2014.

29

Zero-Knowledge Proofs I Showing that a problem has a solution without revealing it 50 Years of Theoretical Computer Science

Agency
“Dodgy”

Operator
“Towergrid”

Frequence 1 = B
Frequence 2 = A
Frequence 3 = C

Open boxes

and

1

8

7

7

2

3

3

4

5 6

OK, A = C

Impact

37 years laters, zero-knowledge
proofs have revolutionised
cryptography.

They enable powerful
authentication and verification
mechanisms: any user can
demonstrate possession of
an appropriate credential, or
execution of an appropriate
procedure, without revealing
any of the private information
(personal data, passwords,
cryptographic keys) used in the
process.

They are a core component in
blockchain or in electronic voting,
and are routinely used by banks
and companies in the finance
sector.

The radio-tower problem

30

.

.

0(n log n)

0(n)

0(n2)

0(n3)

0(2n)
-109

31

Fine-Grained
Complexity

For any computational problem, the two
most important factors for designing an
algorithm are its efficiency and optimality.
However, one of the major challenges in
complexity theory has been the inability
to prove unconditional time lower bounds.
Nevertheless, we would like to provide
evidence that say a problem A with a running
time T(n) that has not been improved in
decades, also requires T(n)1−o(1) time, thus
explaining the lack of progress on the
problem. Unfortunately, such unconditional
time lower bounds seem very difficult to
obtain. Towards that, the area of fine-grained
complexity has been developed.

A way to prove exact time bounds

50 Years of Theoretical Computer Science

32

Fine-Grained Complexity I A way to prove exact time bounds

 What is Fine-Grained
 complexity theory?

 The Approach

Fine-Grained complexity theory is based on
fine-grained reductions that focus on the exact
running times for computational problems. The
techniques mimic the idea of proving NP-hardness
for problems, except that in the latter case we
don’t care about the exact hardness. Over decades,
using fine-grained reductions, many meaningful
relationships between problems in the classical
setting have been made. More recently, similar
connections gave been explored in the quantum
setting as well.

The approach is:

1 — To select a key problem X that for some
function T, is conjectured to not be solvable by any
O(T (n)1−) time algorithm for > 0, and

2 — To reduce X in a fine-grained way to many
important problems, thus giving (mostly) tight
conditional time lower bounds for them.

Some of the key problems for example are the
CNF-SAT problem, the 3-SUM problem, and the All
Pairs Shortest Paths Problem (APSP).

CNF-SAT
Given a Boolean formula in its
conjunctive normal form on n
variables, is there an assignment
to these variables such that the
formula evaluates to true?

3-SUM
Given a list of n integers, is there
a triple a, b, c in the list such
that a + b + c = 0?

All Pairs Shortest Path
Given a graph of n nodes with
weighted edges, output the
shortest path between all the pairs
of nodes in the graph.

GLOSSARY

Further reading

V. V. Williams. “Hardness of easy problems:
Basing hardness on popular conjectures
such as the Strong Exponential Time
Hypothesis.” Proceedings of IPEC’15.
LIPIcs 43, LZI, 2015.

V. V. Williams & R. R. Williams.
“Subcubic equivalences
between path, matrix, and
triangle problems.” Journal
of the ACM 65(5):27, 2018.

M. Patrascu. “Towards
polynomial lower bounds
for dynamic problems.”
Proceedings of STOC’10.
ACM, 2010

33

Fine-Grained Complexity I A way to prove exact time bounds 50 Years of Theoretical Computer Science

 Some key problems and their Fined-Grained reductions

CNF-SAT

TRIANGLE
COLLECTION

3SUM

(min, +) CONVOLUTION

(min, +) - PRODUCT

MAX MATCHING

SCC

APSP

HITTING SET

ORTHOGONAL
VECTORS

LONGEST COMMON SUBSEQUENCE

EDIT DISTANCE

APPROXIMATE
DIAMETER

3
—
2

-

-3
—
2

APPROXIMATE
RADIUS

VISIBLE TRIANGLE

STRIPS COVER BOX

TRIANGLE MEASURE

3 POINTS ON LINE

POINT COVERING

ZERO EDGE WEIGHT
TRIANGLE

HOLE IN UNION

RADIUS MEDIAN

NEGATIVE TRIANGLE

MATCHING TRIANGLES

34

35

Logic and
Computational
Complexity

The unity of logic and computation has
manifested itself in the development
of computability theory from the
1930s onward and the development of
computational complexity from the 1960s
onward. Computability theory delineates
the boundary between decidability and
undecidability. Computational complexity
delineates the boundary between tractability
and intractability. Logic provides prototypical
complete problems for complexity classes
and led to descriptive complexity, a
framework for characterising complexity
classes using logical resources.

A Perfect match

50 Years of Theoretical Computer Science

36

Logic and Computational Complexity I A Perfect match

 Complete problems Descriptive complexity
1936
Church-Turing Theorem
First-Order Validity is computably enumerable
(c.e.)-complete.

1949
Trakhtenbrot’s Theorem
First-Order Finite Satisfiability is computably
enumerable (c.e)-complete.

1971
Cook-Levin Theorem
SAT is NP-complete.

1974
Fagin’s Theorem
NP = ESO. In words, a decision problem Q is in NP
if and only if Q is expressible in existential second-
order logic ESO.

“machine-free characterisation of NP with no
mention of polynomial”

Example: SAT is definable by the ESO-formula

1982
Immerman-Vardi Theorem
P = FO+LFP on classes of ordered finite structures.

2010
Grohe’s Theorem
If C is a class of graphs with at least one excluded
minor, then on C

P = FO + LFP + Counting.
Key Property: Linear order definable in FO + LFP +
Counting on C.

∃S ∀c ∃v
(
(P (c, v) ∧ S(v)) ∨ (N(c, v) ∧ ¬S(v))

)

Descriptive complexity
and complete problems

PSPACE = FO + PFP*
QBF is PSPACE-complete

NP = ESO
SAT is NP-complete

Partial Fixed-Point Logic

Existential Second-Order Logic

Least Fixed-Point Logic

Transitive Closure Logic

P = FO + LFP*
P = FO + LFP + Counting †
HORN SAT is P-complete

NL = FO+TC*
2SAT is NL-complete

*on classes of ordered finite structures
† on classes of finite structures excluding at least one minor

37

Logic and Computational Complexity I A Perfect match

Long-standing Open Problem
in Descriptive Complexity

[Chandra & Harel (1982) – Gurevich (1988)]

Is there a logic for P
 on the class

of all finite structures?

Further reading

R. Fagin. “Generalized first-order
spectra and polynomial-time
recognizable sets.”
Complexity of Computation
7:43–73. SIAM-AMS, 1974

N. Immerman.
Descriptive Complexity.
Texts in Computer Science,
Springer, 1999.

E. Grädel, P. G. Kolaitis, L. Libkin,
M. Marx, J. Spencer, M. Y. Vardi,
Y. Venema, & S. Weinstein.
Finite Model Theory and its Applications.
Texts in Theoretical Computer Science,
An EATCS Series, Springer, 2007.

50 Years of Theoretical Computer Science

38

39

Automata Theory

Automata Theory is one of the oldest research areas in
Computer Science. Historically, it developed with the theory
of formal languages, since automata were categorised
by the classes of languages they can recognise. Today,
automata-based formalisms are widely applied in modern
computing. Indeed, every computing device has “automata
inside!”

Abstract machines and their
computational power

50 Years of Theoretical Computer Science

40

Automata Theory is a research area that is
concerned with the study of abstract computing
devices and of their computational power.
It emerged from A. Turing’s study of the power
of general-purpose computation and from S.C.
Kleene’s formalisation of an earlier proposal by
McCulloch and Pitts that was motivated by the
study of networks of neurons.

The short answer is that automata are everywhere in Computer Science! Initially, their study was motivated
by, and had immediate application in, fields such as computer design, compilation of programming
languages, and search and pattern matching. Their use then spread across the whole field.

An automaton describing the behaviour of a car driving in
front of an autonomous vehicle as a player in a stochastic
priced timed game. The tool Uppaal Stratego can be used
to synthesise winning strategies in such games.

Automata Theory uses increasingly sophisticated
mathematical techniques to study the power of
abstract computational devices.
It has close connections with classic and novel
fields of Mathematics such as group theory and the
theory of algebraic structures, logic, (finite) model
theory, number theory, (automatic) real function
theory, symbolic dynamics, and topology.

A weighted word automaton for part-of-speech tagging
in English.

Automata Theory I Abstract machines and their computational power

 What is Automata Theory?

 Where is Automata Theory used in computer science?

 Connections with
 mathematics

41

A. Turing: Turing machines

J. Myhill:
Non-deterministic automata
and determinisation.

A. Nerode:
Nerode equivalence
J.R. Büchi, C.C. Elgot, B.A. Trakhtenbrot:
Finite automata and monadic
second-order logic (MSO)

M.O. Rabin, D. Scott:
Finite automata and their decision problems

Y. Gurevich, L. Harrington:
Trees, automata and games

W. Thomas:
Classifying regular events in symbolic logic

N. Chomsky, M.P. Schützenberger:
Context-free languages and pushdown automata

N. Immerman, R. Szelepszenyi:
Complementation of linear bounded automata
K. Hashiguchi:
Solution of the restricted star-height problem

M.P. Schützenberger:
Star-free expressions and group-free monoids
K. Krohn and J. Rhodes:
Decomposition of automata

M.O. Rabin:
Automata on infinite trees and MSO

1936

1943

1948

1951

1955

1958

1957

1956

1963

1959

1965

1982

1969

1988

W. McCulloch, W. Pitts:
Nerve nets as finite automata

J. von Neumann:
The general and logical theory of automata

S.C. Kleene:
Regular expressions, Kleene’s Theorem

M.P. Schützenberger:
Algebraic theory of automata: Syntactic
semigroup and variable-length codes

E.F. Moore:
Minimal automata

Automata Theory I Abstract machines and their computational power

Further reading

 Selected key Milestones in Automata Theory

50 Years of Theoretical Computer Science

J.-É. Pin (Ed.). Handbook of automata
theory. Volumes I and II. European
Mathematical Society, 2021.

H.Straubing. Finite automata, formal logic,
and circuit complexity. Progress in Theoretical
Computer Science. Birkhäuser, 1994.

42

43

Model Checking

One of the goals of computing as a whole
is to develop computing systems that perform
the tasks they were designed to do in a reliable
manner. Model checking is an area of research
in Theoretical Computer Science that has had
huge impact on achieving that difficult goal.

Proving system correctness,
automatically

50 Years of Theoretical Computer Science

44

 What is Model Checking?

Model Checking I Proving system correctness, automatically

Formal
model

Verification
algorithm

Logical
specification

Labelled
graphs
are models
of system
behaviour.

Logic is used to
describe the properties
the systems should,
or should not, have.

Algorithms are used
to automatically explore
all the computations
of the analysed model
to check whether they
satisfy the specification
and to provide
counterexamples
when they do not.

bugs

termination

privacy

properties

te
rm
in
at
io
n

sa
fe
ty

liv
en
es
s

fairness

security
equivalence

anonym
ity au

th
en
tic
ity

systems

cr
it
ic
al

so
ft
w
ar
e

cy
be
r-p
hy
sic
al

avionics em
be

dd
ed

protocols

hardware

data
drivers

ap
ps

semi-conductors

critical systems

Examples
of systems

Examples of
properties

security protocols

data

Formal
model

Verification
algorithm

Logical
specification

Labelled
graphs
are models
of system
behaviour.

Logic is used to
describe the properties
the systems should,
or should not, have.

Algorithms are used
to automatically explore
all the computations
of the analysed model
to check whether they
satisfy the specification
and to provide
counterexamples
when they do not.

bugs

termination

privacy

properties
te
rm
in
at
io
n

sa
fe
ty

liv
en
es
s

fairness

security
equivalence

anonym
ity au

th
en
tic
ity

systems

cr
it
ic
al

so
ft
w
ar
e

cy
be
r-p
hy
sic
al

avionics em
be

dd
ed

protocols

hardware

data
drivers

ap
ps

semi-conductors

critical systems

Examples
of systems

Examples of
properties

security protocols

data

Formal
model

Verification
algorithm

Logical
specification

Labelled
graphs
are models
of system
behaviour.

Logic is used to
describe the properties
the systems should,
or should not, have.

Algorithms are used
to automatically explore
all the computations
of the analysed model
to check whether they
satisfy the specification
and to provide
counterexamples
when they do not.

bugs

termination

privacy

properties

te
rm
in
at
io
n

sa
fe
ty

liv
en
es
s

fairness

security
equivalence

anonym
ity au

th
en
tic
ity

systems

cr
it
ic
al

so
ft
w
ar
e

cy
be
r-p
hy
sic
al

avionics em
be

dd
ed

protocols

hardware

data
drivers

ap
ps

semi-conductors

critical systems

Examples
of systems

Examples of
properties

security protocols

data

45

 What does the checking?

Model Checking I Proving system correctness, automatically 50 Years of Theoretical Computer Science

Formal
model

Verification
algorithm

Logical
specification

Labelled
graphs
are models
of system
behaviour.

Logic is used to
describe the properties
the systems should,
or should not, have.

Algorithms are used
to automatically explore
all the computations
of the analysed model
to check whether they
satisfy the specification
and to provide
counterexamples
when they do not.

bugs

termination

privacy

properties

te
rm
in
at
io
n

sa
fe
ty

liv
en
es
s

fairness

security
equivalence

anonym
ity au

th
en
tic
ity

systems

cr
it
ic
al

so
ft
w
ar
e

cy
be
r-p
hy
sic
al

avionics em
be

dd
ed

protocols

hardware

data
drivers

ap
ps

semi-conductors

critical systems

Examples
of systems

Examples of
properties

security protocols

data

Edmund Melson Clarke (left), E. Allen Emerson (centre) and
Joseph Sifakis (right) received the 2007 A.M. Turing Award
“for their role in developing Model-Checking into a highly
effective verification technology that is widely adopted in
the hardware and software industries.” Those scientists
introduced Model Checking as an algorithmic system
verification technique in two path-breaking papers
published in 1981 (Edmund M. Clarke, E. Allen Emerson)
and 1982 (Jean-Pierre Queille; Joseph Sifakis).

Software tools carrying out this analysis are called
model checkers and have been used to find and
fix bugs in many mission-critical hardware and
software systems, in program synthesis, and in
optimal scheduling among many other applications.
Examples of model checkers are Alloy Analyzer,
BLAST, CADP, FDR2, HyTech, Java Pathfinder, mCRL2,
NuSMV, Prism, SPIN, TLA+, and UPPAAL.

0, shutdown

1, perm 1, trans

0, perm 0, up

1

0, trans
pr

p r⋅q 1
(1-pr)⋅q1

(1-pr)⋅q2

q1

q2

pr⋅(1-q2)

pt⋅(1-q2)

p
t ⋅q
2

pp⋅(1-q2)

pup⋅q2

1-q2

1-q1

1

1

(1-pr)⋅(1-q2)

(1-pr)⋅(1-q1)

pup⋅(1-q2)

2, up2, perm

1-pr

pp⋅(1-q1)

pup⋅(1-q1)

p
t ⋅q
1

p p⋅q
2

p p⋅q
1

1, up
pr⋅(1-q1)

pt⋅(1-q1)
p r⋅q 1

2, trans

pup⋅q1

The pictures above describe the application of the model
checker UPPAAL to the classic “train-gate example” where
six trains want to cross a one-track bridge and to do so
safely. Each train has a specified arrival rate and can
be stopped before some time threshold. When a train is
stopped, it can start again. Eventually trains cross the
bridge and go back to their safe state. In the second picture,
the tool is used to estimate the probability that Train 0 will
cross the bridge in less than 100 units of time.

A discrete-time Markov Chain PRISM model of an embedded
system comprising a processor which reads and processes
data from two sensors.

Further reading

C. Baier & J.-P. Katoen.
Principles of Model Checking.
MIT Press, 2008.

E. M. Clarke, O. Grumberg,
D. Kroening, D. Peled, & H. Veith.
Model Checking, 2nd edition.
MIT Press, 2016.

E. M. Clarke, E. A. Emerson, & J. Sifakis.
“Model checking: algorithmic verification
and debugging.” Communications of the
ACM 52(11):74–84, 2009.

46

47

50 Years of Theoretical Computer Science

The Science
of Programming

Parsing of programming languages was based
on the study of grammars, formal languages
and automata. At ICALP’72, 30 out of 50
presentations dealt with formal languages
and automata theory. In the 1970’s, the theory
of programming languages turned to the
description of their semantics with algebra,
denotational semantics, and mathematical
logic. Since then, new conferences have
appeared about logic in computer science,
principles of programming languages,
compilers, functional programming, types,
static analysis, concurrency, automatic
verification.

Languages & tools

48

The Science of Programming I Languages & tools

 Programming Languages

The next 700 programming languages predicted by Peter Landin in 1965 are now nearly existing. Today
languages are introduced with their semantics written in a more or less formal setting. Mathematical models
have also influenced the design of new concepts (types, closures, objects, etc).

Church Turing

Lambda-calculus

Functional languages Procedural languages

CLOSURES

Turing machines

• Object-oriented
• Logic

• Scripting
• Descriptive
• Functional
• Procedural

MONADS

FROM
THE 1930’S

FOUNDATIONAL
COMPUTATION

MODELS…

WITH
PROGRAMMING

PARADIGMS

…TO REAL-WORLD
LANGUAGES

49

The Science of Programming I Languages & tools

 Programming Tools

50 Years of Theoretical Computer Science

The first programming tools dealt with compiler construction or program profiling. Nowadays they include
program verification, static analysis, and program testing. These new tools have followed theoretical progress
in the semantics of programming languages, dependent high-order types, interactive proof-checkers,
automatic provers, and abstract interpretation.

POLYMORPHISM
OVERLOADING

GRADUAL TYPING
MODULES AND FUNCTORS

VIRTUAL MACHINES
OPTIMIZED CODE

SPECIAL HARDWARE

LOGIC FOR PROGRAMS
MACHINE-CHECKED PROOFS

STATIC ANALYSIS

RACE-FREE
RESOURCE ALLOCATION

PROOFS

TYPES COMPILERS

VERIFICATION CONCURRENCY

Further reading

P. J. Landin. “The next 700 programming
languages.” Communications of the ACM
9(3):157–166, 1966.

G. Winskel. The Formal Semantics
of Programming Languages:
An Introduction. MIT Press, 1993.

J. C. Mitchell. Concepts in
Programming Languages.
Cambridge University Press, 2003.

50

51

50 Years of Theoretical Computer Science

Machine
Checked Proofs

Since the invention of the concept of proof
in ancient Greece, mathematicians
have always sought to write ever more
rigourous proofs: identifying axioms
precisely, defining every object used in the
proof, avoiding the call to intuition, etc.
Machine-checked proof is a new step in this
never ending quest of rigour.
A machine-checked proof is written with
such precision that a computer program can
check its correctness.

When computers improve
mathematical rigour

52

Machine Checked Proofs I When computers improve mathematical rigour

Like the crossing of a river ford, a mathematical proof goes
step by step

For long, mathematics was the only science not to use
instruments. The computer is becoming the telescope of
mathematicians

 The beginning

 Recent proofs Today

The two first proof-checkers were Automath (de
Bruijn, 1967), and then LCF (Milner, 1972). Their goals
were different: Automath was designed to check
general mathematical proofs, LCF, more specifically,
proofs of properties of programs.

2000: four colour theorem (Gonthier et al.)
2008: correctness of the C compiler CompCert
(Leroy et al.)
2009: correctness of the operating system seL4
(Klein et al.)
2012: Feit-Thompson theorem (Gonthier et al.)
2014: Kepler’s conjecture (Hales et al.)
2014: UniMath a body of mathematics using
univalent foundations (Voevodsky et al.)

Several of these projects aim at gathering
a substantial body of mathematics, like
Euclid’s Element and Bourbaki’s Eléments
de mathématiques did.

The development of proof-checkers triggered the
development of new theories, besides set theory,
to express mathematics: each system innovates,
introducing new features to express mathematical
statements and proofs, just like each new
programming language introduces new features to
express programs.

Popular proof-checkers are ACL 2, Agda, Coq, HOL
Light, HOL 4, Lean, Mizar, Nuprl, PVS, and many
others. These proof-checkers are specific to one
theory. Others, such as Beluga, Dedukti, Isabelle,
Lambda-prolog, Twelf, and others are frameworks,
where various theories can be defined.

They have in total more than 10,000 users.

53

Machine Checked Proofs I When computers improve mathematical rigour 50 Years of Theoretical Computer Science

Two proofs of Peirce’s
law, in COQ and in the

natural deduction calculus

Further reading

S. Owre and N. Shankar.
“A Brief Overview of PVS.”
In Proceedings of TPHOLs’08,
Lecture Notes in Computer Science
5170:22–27, Springer, 2008.

Y. Bertot and P. Castéran.
Interactive Theorem Proving and
Program Development: Coq’Art:
The Calculus of Inductive
Constructions. Texts in Theoretical
Computer Science. An EATCS Series,
Springer, 2004.

G. Dowek. Computation, Proof,
Machine: Mathematics Enters a
New Age. Cambridge University
Press, 2015.

54

55

50 Years of Theoretical Computer Science

Quantum
Computing

The development of quantum mechanics
forced us to drastically rethink
the definition of computation, leading to a
new computational model called
quantum computing. This model exploits
quantum properties to solve some
computational tasks more efficiently, and
cryptographic tasks more securely,
than classical computers.

or, using Schrödinger’s cat
to solve problems faster

56

Quantum Computing I Or, using Schrödinger's cat to solve problems faster

 Time Line From Theory to Practice

 Subfields

1905 › 35
Development of quantum mechanics

1970
Birth of quantum crypto with Wiesner quantum
money scheme

1980 › 90
Theoretical conception of quantum computers

1990 › 2000
Conception of quantum algorithms, error
correcting codes, quantum complexity theory

2000 › …
Boom of quantum computing, first quantum
devices

In parallel to developing the theory of quantum
computation, there is a worldwide effort to actually
build quantum computing devices and implement
their applications. Some devices are already able
to implement certain cryptographic protocols, and
even made it to the public market. In contrast, the
actual implementation of quantum algorithms is
still in its infancy.
Recent years did bring an exciting first step called
“quantum advantage:” a quantum device solving
a computational task that cannot be efficiently
solved by a classical computer.

Quantum algorithms. Solving computational tasks
related to quantum mechanics (e.g., simulating
molecular dynamics), as well as tasks unrelated to
quantum mechanics (e.g., factorisation and search)

Quantum cryptography. Using quantum properties
to achieve secure protocols for key exchange,
money schemes,...

Quantum complexity theory. Fundamental
connections between physics problems and
quantum complexity classes

Quantum logic and programming languages.
Developing and compiling applications on different
physical architectures

And more… Quantum information, quantum error
correction,…

Google’s Sycamore quantum processor used for first
quantum advantage experiment

57

Quantum Computing I Or, using Schrödinger's cat to solve problems faster 50 Years of Theoretical Computer Science

Further reading

M. A. Nielsen & I. L. Chuang.
Quantum Computation
and Quantum Information.
Cambridge University Press, 2010.

C. H. Bennett & G. Brassard.
“Quantum cryptography: Public
key distribution and coin tossing.”
Theoretical Computer Science
560(1):7–11, 2014.

F. Arute & al.,
“Quantum supremacy using a
programmable superconducting
processor.”
Nature 574:505–510, 2019.

Alice sends qbits to Bob via untrusted channel

Using trusted classical channel, Alice and Bob
check that Eve did not tamper with the state

PROTOCOL FOR SHARING SECRET KEY
WITH PERFECT SECURITY

Alice Bob

Eve

59

Project coordination

Sandrine Cadet
Communication officer, IRIF

Sylvain Schmitz
Professor, Université Paris Cité

Contributors

Luca Aceto - Reykjavik University, Gran Sasso Science Institute, L’Aquila
Susanne Albers - Technische Universität München
Simon Apers - CNRS
Giorgio Ausiello - Sapienza University of Rome
Alex Bredariol Grilo - LIP6, CNRS, Sorbonne Université
Ioannis Catzigiannakis - Sapienza University of Rome
Geoffroy Couteau - CNRS
Pierluigi Crescenzi - Gran Sasso Science Institute, L’Aquila
Gilles Dowek - Inria, ENS Paris-Saclay
Irène Guessarian - IRIF, Emerita at Sorbonne Université
Hugo Herbelin - Inria, IRIF
Ce Jin - MIT
Phokion G. Kolaitis - UC Santa Cruz, IBM Research
Jean-Jacques Levy - Inria, IRIF, CNRS
Kurt Mehlhorn - Max-Planck-Institut für Informatik
Mike Paterson - University of Warwick
Subhasree Patro - QuSoft, CWI Amsterdam
Sylvain Périfel - IRIF, Université Paris Cité
Jean-Eric Pin - IRIF, CNRS
Sylvain Schmitz - IRIF, Université Paris Cité

Images by the contributors plus

Inria/Photo Studio 9, Christian Morel/IRIF/CNRS Photothèque,
Famille Nivat, Andreas Maletti, Forest Stearns,
Wellcome Collection, Martyn Davies, Diego Torres Silvestre,
Marta Kwiatkowska, Kim G. Larsen, Marius Mikucionis,
Gethin Norman, Joseph Sifakis, AdobeStock, Noun project.

Layout

Faustine Brunet & Patrik Aveillan

Printing

Code&Clics, Miribel (Ain)

Partners of the project

Thank you

60

