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The chairman assignment problem

••••••••••••••••••••••••••••••

• We are given k states which form a union.
• Every year a union chairman has to be selected.
• At any time the accumulated number of chairmen from

each state has to be proportional to its weight.

How to get in an effective way a fair assignment?



From assignments to symbolic discrepancy

Take an infinite word u = (un)n with values in a finite alphabet.

The frequency αa of the letter a in u is defined as the following
limit, if it exists

αa = lim
n→∞

1
n

Card{k, 0 ≤ k ≤ n − 1, uk = a}



From assignments to symbolic discrepancy

Take an infinite word u = (un)n with values in a finite alphabet.

The frequency αa of the letter a in u is defined as the following
limit, if it exists

αa = lim
n→∞

1
n

Card{k, 0 ≤ k ≤ n − 1, uk = a}

Examples
0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 · · ·

0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 · · ·



From assignments to symbolic discrepancy

Take an infinite word u = (un)n with values in a finite alphabet.

The frequency αa of the letter a in u is defined as the following
limit, if it exists

αa = lim
n→∞

1
n

Card{k, 0 ≤ k ≤ n − 1, uk = a}

The discrepancy of u = (un)n is defined as

∆α(u) = max
a∈A

sup
n∈N

|Card{k, 0 ≤ k ≤ n − 1, uk = a} − nαa|

The discrepancy measures the difference between the
accumulated number and the expected value.



How small can the discrepancy be?

We are given a finite alphabet A, and a vector α of frequencies
for the letters of A.

Theorem [Meijer,Tijdeman] Let d stand for the cardinality of
A. Let d ≥ 2. One has

Dd = sup
α

inf
u

∆α(u) = 1 − 1
2d − 2

.

When d = 2, D2 = 1/2.

How to construct such sequences?



How small can the discrepancy be?

We are given a finite alphabet A, and a vector α of frequencies
for the letters of A.

Theorem [Meijer,Tijdeman] Let d stand for the cardinality of
A. Let d ≥ 2. One has

Dd = sup
α

inf
u

∆α(u) = 1 − 1
2d − 2

.

When d = 2, D2 = 1/2.

How to construct such sequences?



The two-letter case
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alphabet are the Sturmian words.

Sturmian words are codings of
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The two-letter case

The words having the smallest discrepancy on a two-letter
alphabet are the Sturmian words.

Sturmian words are codings of trajectories of dynamical
systems.



A trajectory for a discrete-time dynamical
system

We consider orbits/trajectories of points of X under the action
of the map T : X → X

{Tnx | n ∈ N}

x

T (x) T2(x)

T3(x) T4(x)

T5(x)
T6(x)

T7(x)
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And a coding of a trajectory

P1

P2 P3

P4

P5

x

T (x) T2(x)

T3(x) T4(x)

T5(x)
T6(x)

T7(x)

The coding works as follows

un = i if and only if Tn(x) ∈ Pi

u = (un)n = 12355421 · · ·



Symbolic codings of circle rotations

Sturmian words are codings of the orbits of the rotation
Rα : x 7→ x + α mod 1 w.r.t. 2 intervals.

x•

Rα

I0
1 − α

I1 α

un = i iff x + nα ∈ Ii mod. 1



A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer
here?

u = 0100101 00︸︷︷︸ 10010100101001

00 is a factor, 11 is not a factor



A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer
here?

u = 01001010010010100101001 · · ·

Does the factor 00 occur? Does it have a frequency? Does it
have bounded discrepancy?

I0
1 − α

I1 α

x•

+α

I00

I01

I10

0

1 − 2α

1 − α



A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer
here?

I0
1 − α

I1 α

x•

+α

I00

I01

I10

0

1 − 2α

1 − α

The factors of length n of u are in one-to-one correspondence
with the n + 1 intervals of T whose end-points are given by

−kα mod 1 for 0 ≤ k ≤ n

By uniform distribution of (kα)k modulo 1, the frequency of a
factor w of a Sturmian word is equal to the length of Iw .



Fair assignments in general dimension

The best assignments for d = 2 code the simplest
(discrete-time) dynamical systems.

And now for d ≥ 3?

• Given a frequency vector α = (αa)a∈A, R. Tijdeman (’80)
has given an algorithmic way, to construct a sequence u with
∆α(u) ≤ 1 − 1

2d−2 .

Theorem [B.-Carton-Chevallier-Steiner-Yassawi] Let u be a
Tijdeman sequence with a frequency vector α which has
rationally independent coordinates.
Then, the sequence u has factor complexity of order nd−1.

The sequence u is a symbolic coding of a translation Rα via a
partition of a fundamental domain of Td−1 into d finite unions
of polytopes such that Rα is a translation by a vector on each
of the polytopes.
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Evenly distributed sequences

Let α = (α1, · · · , αd) ∈ [0, 1]d such that
∑d

i=1 αi = 1.

How to construct sequences u over the alphabet {1, 2, · · · , d}
satisfying the following conditions

• the letter frequencies in u are given by (α1, · · · , αd)

• u has discrepancy smaller than or equal to Dd

• u has linear complexity function
• u has bounded discrepancy for factors

Let us start from the dynamical system given by the translation
Rα : x 7→ x + α modulo 1. How to find a good partition?



The ubiquitous Fibonacci word

Take the golden ratio α =
√

5+1
2 and the dynamical system

x 7→ x + α modulo 1

α2 = α+ 1 ; self-similarity

The Fibonacci word

u = lim
n

Un with Un+1 = UnUn−1, U0 = 1, U1 = 12

And the Fibonacci substitution

σ(u) = u with σ : 1 7→ 12, 2 7→ 1

u = σ∞(1) = 121121211211212 · · ·

Theorem The symbolic dynamical system (Xσ,S) is isomorphic
to the geometric dynamical system (T,R 1+

√
5

2
) where T = R/Z
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2 and the dynamical system

x 7→ x + α modulo 1

α2 = α+ 1 ; self-similarity ; substitution

The Fibonacci word
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A few milestones

1898, Hadamard Geodesic flows on surfaces of negative
curvature.
1912 Prouhet-Thue-Morse substitution σ : a 7→ ab, b 7→ ba
1940, Morse-Hedlund Symbolic dynamics.
30’s Skolem-Mahler-Lech theorem and linear recurrences.
60’s Tilings, substitutions and the domino problem.
1984 Quasicrystals, quasiperiodic order and the Pisot
conjecture.
80’s Rauzy fractal and Thurston’s tile for the Tribonacci
numeration.
80’s Reachability problems and linear recurrences.
2023 The Einstein monotile.
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Rauzy fractal

Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

121312112131212131211213 · · ·
π(e⃗1 + e⃗2 + e⃗1 + e⃗3 + e⃗1 + e⃗2 + e⃗1 + · · · )

π projection along the
expanding eigenline onto
the contracting plane of
the incidence matrix of
Mσ

π(e⃗1)
π(e⃗2)

π(e⃗3)

c⃝ Timo Jolivet
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Pisot numbers, codings and fractals

X3 = X2 + X + 1

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Theorem [Rauzy’82] The symbolic dynamical system (Xσ,S) is
measure-theoretically isomorphic to the translation Rβ on the
two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)



How to produce symbolic codings for
translations

How to produce fair assignments for a given vector of letter
frequencies α.

• We apply a multidimensional continued fraction algorithm
that generates nonnegative matrices

α 7→ (Mn)n with α ∈ ∩nM1 · · ·MnRd
+

• that generates in turn a sequence of substitutions

• and thus infinite words u = limσ0 · · ·σn(a).



Beyond the Pisot conjecture

Classical exponentially convergent multidimensional continued
fraction algorithms generate faithful symbolic codings for
translations on the torus.

Theorem [B.-Steiner-Thuswaldner]
For almost every α ∈ [0, 1]d , there exists a faithful symbolic
coding for the translation Rα : x 7→ x + α modulo 1 having
bounded discrepancy.

with also bounded discrepancy for all factors (multiscale)
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Exponential convergence of continued fraction
algorithms

According to recent numerical experiments, classical
multidimensional continued fraction algorithms seem to cease to
be exponentially convergent when the dimension increases.
[B.-Steiner-Thuswaldner]

Brun algorithm

d λ2(AB) d λ2(AB)
2 −0.11216 7 −0.01210
3 −0.07189 8 −0.00647
4 −0.04651 9 −0.00218
5 −0.03051 10 +0.00115
6 −0.01974 11 +0.00381

To be confirmed theoretically and numerically
How to design efficient continued fraction algorithms?
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What can infinite words represent?

Infinite words arise as codings of trajectories but there is more.
A word can represent

A predicate in some logic
A characteristic function for a subset of integers
The sequence of digits of a real number in some
numeration system
A quasicrystal
A tiling
The trace of the execution of an algorithm



Reachability vs. statistical properties of orbits

Ergodicity and long-term behavior: will a trajectory visit
infinitely often a subregion and how long will it stay in this
subregion?

Model checking and reachability problems for linear
dynamical systems. Will an orbit enter a given subregion
of the space or even reach a given point?

[B.,Fijalkow,Karimov,Nosan,Ohlmann,Ouaknine,Pouly,
Schmitz,Shirmohammadi,Vahanwala,Worrell,. . .]


