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1 Proposal’s context, positioning and objectives

1.1 Objectives and research hypotheses

On the unusual effectiveness of (co)induction in computer science. Given the pervasive nature of induc-
tively defined data in computing (integers, finite lists, finite trees, etc.), induction is one of the most elementary
concepts of computer science and induction principles are probably its most important reasoning principles.

Coinduction can arguably be considered of the same basic nature as induction, even though it is not as
widespread and well-known as induction. As a dual concept to induction, coinduction allows to model and
reason about infinite data and infinite behaviours (finite or infinite lists, infinite words, streams, trees or execution
traces, bisimulations, etc.) and provides its own proof principles. Still, the focus on coinduction is much more
recent and CS community is not yet as familiar with coinduction than it is with induction. Reading 20 years
later the inspiring paper by Halpern et al. On the unusual effectiveness of logic in computer science [45], it is
striking to note that, while induction is – explicitly or implicitly – a key concept of almost every section of this
paper which emphasizes the central role of logic for computer science, one cannot find a single reference to
coinduction.

Coinduction and programming. While the ability to define inductive and coinductive types gives the user a
great flexibility in specifying data together with a high level of abstraction, coinductive types are in general not
as well-handled as their inductive counterpart, notably in total programming languages and proof assistants. This
can be explained on the base of younger age of coinduction compared to that of induction. We believe, however,
that this is most importantly due to the sharp discrepancy between the infinite nature of coinductive objects and
the termination requirements of some of those languages.

If we come to mixed inductive and coinductive types, then very few languages correctly handle them, see
e.g. [43, 26, 25], and this is an active research topic for proof assistants [1, 14, 15, 27, 13, 47].

Coinductive types in COQ. The COQ proof assistant [83] allows us to define coinductive types using cofix-
points [44]. Such coinductive reasoning is widely used in large scale formalized developments, such as Com-
pCert [63], which relies on (bi)simulation arguments to express the semantic preservation of several compilation
phases. Yet, both the foundational and practical aspects of coinduction in type theory are still unsatisfactory.

On a foundational side, critical meta-theoretical problems arise because of coinductive predicates: coinduc-
tion in COQ breaks type preservation [65]. Moreover, the interaction between inductive and coinductive types
suffers severe limitations. From the point of view of usability, coinduction is also largely ill-handled, particularly
when compared to induction (e.g.COQ does not provide any coinduction principle). Moreover, to preserve the
strong normalization property, a corecursive definition must fulfill a syntactic criterion of productivity: every
corecursive call must appear as an argument of a constructor of the coinductive type, this is the guard condi-
tion, constraining the writing of coinductive definitions. In the example of Figure 1, filter1everyk and
faultyfilter are rejected, only gfilter1everyk satisfies the guard condition. Even if the last example
is rightly rejected (the term faultyfilter (fun _⇒ false) cannot be applied to an infinite stream without
diverging), the programmer should be able to add an extra logical argument to faultyfilter to justify, for
instance, that there is only a finite number of steps before the predicate cond is verified by an element of the
stream. Such a logical argument can be expressed in COQ by nesting an induction inside the coinduction [30, 12]
which requires a significant reformulation of the program. More recent work [47] introduces a semantically jus-
tified productivity argument based on lattice theory formalized inside COQ itself, resulting in the Paco library.
Still, such issues should instead be solved at the language level.

Fixed point logics and circular proofs. (Co)induction proof principles are derived from fixed-point theorems,
that ensure the existence of least and greatest fixed points. Witnessing the importance of those forms of reason-
ing, logics featuring least and greatest fixed points have been developed since the early eighties [58]. These
logics are named µ-calculi, and were very successful as specification languages, e.g. to specify temporal or spa-
tial properties of program executions. More recently, the structural proof theory of those logics with least and
greatest fixed point received a growing attention from the community especially with the research line on circular
proof theory. Unsurprisingly, such proof systems can themselves be derived from Knaster-Tarski’s characteriza-
tion of least fixed points as least pre-fixed points (and dually for gfp). However, when building proofs using such
inference rules, one has to guess (co)invariants which may be more complex than the property to establish.

2



CoInductive Stream := Cons : nat→ Stream→ Stream.

CoFixpoint filter1everyk (m n : nat) (s : Stream) : Stream := match (m,s) with
| (0, Cons a s’)⇒ Cons a (filter1everyk n n s’)
| (S m’,Cons a s’)⇒ (filter1everyk m’ n s’) end.

Fixpoint afterk (n : nat) (s: Stream) : nat ∗ Stream := match (n,s) with
| (0, Cons a s’)⇒ (a, s’)
| (S m, Cons a s’)⇒ afterk m s’ end.

CoFixpoint gfilter1everyk (n : nat) (s : Stream) : Stream := match (afterk n s) with
| (a, s’) ⇒ Cons a (gfilter1everyk n s’) end.
CoFixpoint faultyfilter (cond : nat→ bool) (s : Stream) : Stream := match s with
| Cons a s’⇒ if cond a then Cons a (faultyfilter cond s’) else faultyfilter cond s’ end.

Figure 1: Guarded and non-guarded examples of coinductive predicates.
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Figure 2: (a) Example of a non-valid circular derivation, illustrating inconsistency of non-valid derivations. (b)
Examples of µMALL finite and circular derivations of sequents ` N and S ` S.

Infinite (aka. non-wellfounded) and circular proofs were introduced as alternatives to these explicit forms
of (co)induction rules. Considering infinite (or regular in the case of circular proofs) derivation trees makes it
possible to reason on fixed points by simply unfolding them, possibly infinitely often. There is of course a price
to pay: the soundness of such systems requires a validity condition which is global: it ensures that some progress
is made along every infinite branch. Indeed, in the particular case of circular proofs, one can view a circular
proof as reducing a statement to be established to the statement itself, under the condition that the structure of
the loop prevents “vicious” circular reasoning: circular invalid derivations may conclude any formula as shown
in Figure 2.(a). For instance, in the framework of linear logic with fixed points, one can consider formulas
N = µX.1 ⊕ X and S = νY.N ⊗ Y which are respectively the least and greatest fixed points of operators
X 7→ 1 ⊕ X and Y 7→ N ⊗ Y . These formulas provide encodings for the (co)inductive types of the natural
numbers and streams of natural numbers in µMALL and one can consider several examples of circular proofs on
logical judgements (or sequents) involving those formulas in Figure 2.(b).

Towards a Curry-Howard correspondence between circular proofs and recursive programs. Circular
proofs [16, 19, 20, 77] were successful both at a foundational and at a more applied level. Foundationally, the
meta-theory of circular proofs is important and well-behaved compared to finitary proof systems for fixed point
logics: cut-elimination is notably better-behaved in non-wellfounded proof systems [77, 42, 9] than with finitary
proofs [7]. From a more practical point of view, circular proofs happened to be particularly useful for automated
proof construction in fixed point logics, with automated theorem provers now relying on circular proofs [18, 41].
A natural question arises, underlying our project:

Can circular proofs have a similar impact on programming with coinductive types?

In the long-standing tradition of the Curry-Howard correspondence [46] associating logical formulas to data
types, logical proofs to programs and cut-elimination (or proof normalization) to program execution, it is indeed
natural to expect that the success of circular proofs can have an impact on programming with inductive and
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Figure 3: Examplifying the lack of compositionality of circular proofs.

coinductive types. Still, in the current state of the art, circular proofs suffer a lack of compositionality preventing
them to be directly transferable, in the Curry-Howard perspective, to the programming side.

ReCiProg proposes to improve the compositionality of circular proofs and their meta-theory (providing
them, notably, with well-established proof-semantics) to unlock their use in a Curry-Howard correspon-
dence with inductive and coinductive types. We put a specific focus on the COQ proof assistant with the
aim at improving its coinductive types and its support for coinductive reasoning.

In the course of our ReCiProg project, we consider the COQ proof assistant as a central object of research as
it will be both a particular software to which our findings will find a concrete application, and a tool to formalize
our results as well as to test the ability to formalize coinductive reasoning. This twofold role of COQ is best
described in WP 6 below.

Lack of compositionality. The lack of compositionality of circular proofs can be described in two ways: on
the one hand, those proof objects shall be equipped with a global validity condition and on the other hand, this
validity condition is only compositional in a weak sense that we describe now.

While cut-elimination holds for circular proofs of linear logic, cuts – when introduced in cycles along an
infinite branch – may badly interact with the validity condition and result in invalidating a proof and in the
failure of cut-elimination: this is examplified in Figure 3. This phenomenon can be produced on even simpler
situations, for instance applying an identity program (that is building a trivial cut with an identity axiom) to a
recursive call (that is along an cycle) may render it invalid.

Indeed, the validity condition requires every infinite branch to be inhabited by a thread which witnesses
that an inductive object is consumed or a coinductive object is produced. This is a strong restriction, and rules
out some natural proofs that could be considered correct on other grounds: they derive valid judgements, cut-
elimination produces a valid proof, etc.

A condition for using circular proofs as a primitive construct for programming and for building coinductive
reasonings in proof assistants such as COQ is to provide a solution to their lack of compositionality.

Lack of proof semantics. While the µ-calculus [58] has a well-established truth semantics, the denotational
semantics of logics with least and greatest fixed points is yet underdeveloped, especially when it comes to
non-wellfounded and circular proofs. Regarding finitary proofs for linear or intuitionistic logics with least and
greatest fixed points, one can essentially build on the following prior works: originally, Santocanale’s categorical
[77] and game-theoretical[76, 78] semantics, Clairambault’s game semantics for µLJ[24], interactive semantics
of µMALL by Baelde et al. in the framework of Ludics [10] as well as Ehrhard and Jafarramahni’s recent
work on a coherent semantics of µLL. In a slightly different though related perspective, there are also a bunch
of categorical semantics developed on the emerging topic of the Curry-Howard correspondence for functional
reactive programming where reactive types are in correspondence with LTL formulas [22, 52, 53, 54, 55, 56].

When turning to circular proofs, even less is known: Santocanale defined a categorical semantics for circular
proofs of the additive fragment of linear logic with fixed points [77] later extended with Fortier to properly treat

4



the cut-rule [42] but no denotational semantics is yet known for the full fragment of µLL non-wellfounded (or
even circular) proofs nor for other logics.

Expanding the realm of circular proofs. After the first seminal logical frameworks expressing inductive and
coinductive statements were equipped with circular proofs, namely Martin Löf’s inductive predicates [17, 19, 21]
and variant of the µ-calculus (linear-time [33, 38, 36] or linear logical [77, 42, 37, 9]), circular proofs found to be
successfully applied on a variety of other logical languages such as separation logic, Kleene algebra or transitive
closure logics [72, 31, 28].

A global objective will be to investigate applicability and benefits of circular proofs to various frame-
works, from logics with quantitative semantics (see below) to λ-calculi with dependent types and COQ.

Let us illustrate this question on an example from fixed–point logics based on quantitative semantics – where
formulas are interpreted as real numbers rather than booleans. Those logics indeed emerged as useful specifi-
cation formalisms to express properties of programs exhibiting quantitative (e.g., probabilistic) behaviours (see,
e.g., [68, 67, 6]). One interesting line of research is to advance the theory of circular proofs in the context of quan-
titative semantics. For a simple example, consider the following least fixed–point equationE

µ
= (12 ·E)+0 evalu-

ated in R. The least (and in this case only) solution is E = 0.

0 ≤ E
0 ≤ (12 · E)

(*) if 0 ≤ x then 0 ≤ 1
2 · x

0 ≤ (12 · E) + 0
x+ 0 = x

0 ≤ E by def. E = (12 · E) + 0

Figure 4: A proof-search attempt for 0 ≤ E

Suppose we attempt a bottom-up proof-search for 0 ≤ E, shown
on Figure 4. As usual, in the machinery of circular proofs, we
have reduced the problem of proving 0 ≤ E to itself, and we
would like to conclude by observing that the “reasoning loop”
is valid. However this type of loop would be deemed not valid
in the usual framework of circular proofs, technically because
the expression being unfolded in the cycle is a least fixed–point
expression and it appears on the right side of the inequality, vi-
olating the usual thread condition. The loop is indeed valid but the justification for its validity comes from
the real–valued semantics under consideration and the Archimedean property of R: appropriate conditions for
circular reasoning in such a quantitative framework shall be established.

We believe there is a lot of potential in this approach, on the theoretical side (e.g. understand the link with
metric space) and on the practical side (verifying quantitative properties of systems).

Verifying coinductive systems with circular proofs. A further step, once circular proofs have been developed
for those more application-oriented logics, will be to attack several research directions more directly connected
with verification, investigating more advanced uses of circular proofs in this direction. Indeed, since many
natural objects of interest in computer science are defined by coinduction, it is natural to use circular proofs to
verify the correctness of these objects, for instance their compliance with a specification. The typical example
is the model of infinite words: it is one of the most standard framework for modelling the behaviour of systems,
and it is the simplest example of coinduction. Circular proofs can therefore be of use to verify specification
on infinite words, such as inclusion of ω-regular languages defined by logics or expressions using coinduction.
Given the nature and composition of our consortium:

Research directions connected with verification will be investigated with a great attention to the nature
and structure of the proofs being built and in particular to their computational content.

1.2 Position of the project as it relates to the state of the art

The project aims at building on recent developments in structural proof theory which have an already recognized
strong potential for application in the design of (typed) programming languages and proof assistants in particu-
lar. The international community of researchers in computational logic and theoretical computer science that is
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getting interested in circular proofs has been increasing in the past ten years and our consortium reflects the vari-
ety of such researchers, from logic and category theory to the theory and implementation of typed programming
languages and proof assistants.

The project also builds on the recent ANR JCJC RAPIDO project and ERC CoVeCe which provided major
advances in the meta-theory of circular proofs and their use in axiomatizing various logics with induction and
coinduction. More specifically, the main advances of RAPIDO directly related with ReCiProg are (i) the defini-
tion, for a wide range of logics, of a general notion of circular proof with a productive cut-elimination procedure
(ii) the investigation of the validity condition from a complexity point of view as well as from the relation with
finitary logics (iii) the design of a first proposal for a notion of non-wellfounded proof nets.

The discussion of the state of the art has been mostly done in the presentation of the context. Let us add here
some remarks relevant to the positioning of the project community-wise. Since the seminal work by Rutten [73,
74, 51], many scientists working on foundations of computer science converged into a community developing the
field of coalgebra theory, see e.g. the scientific meetings CMCS and CALCO. While only part of this community
shares our interest in coinduction for programming, the proof theory of fixed point logic, therefore circular proof
systems, is presently intensively investigated by some of these researchers, see e.g. [4, 40] to which members
of the project are already related. We plan to develop and make formal connections with international groups
(in Italy, Japan, the Netherlands, Slovenia, Sweden, UK and USA) which gather the top researchers in those
topics and among which are natural researchers to invite for visits during the project. In connection with this,
one should mention projects managed by Anupam Das, in the UK, or Bahareh Afshari, in Sweden, who pursue
research on circular proofs, with different aims but quite complementary and also targeting to structure the
scientific community. More details on this are provided in Section 3.

1.3 Methodology and risk management

In order to achieve the goals presented in Section 1.1, our project is organized around six work-packages (WP)
presented in detail below, preceded by a general coordination work package (WP 0):

WP 1: Denotational semantics of fixed-point logics and circular proofs. This will address the lack of
proof semantics for circular proofs and design denotational guides for the associated programming
languages of the following work packages.

WP 2: Modularity and compositionality of circular proofs. This will address the default of composi-
tionality of circular proofs by designing alternative and more expressive validity conditions as well as
alternative proof representations for circular proofs.

WP 3: Circular proofs and Computational Calculi. This work package will consist in conceiving the
theoretical grounds for designing programming languages with inductive and coinductive types taking
advantage of circular proofs.

WP 4: Circularity and constructivity issues. This will address several directions related with constructiv-
ity issues in fixed-point logics: how to turn a circular proof into a finite proof à la Park (that is, address
Brotherston-Simpson’s conjecture for µ-calculi)? How to formalize circular proofs and their validity
and extract validity witnesses? Which proof systems admit a circular proof presentation?

WP 5: Circular Program analysis and verification of infinite systems. This is dedicated to developing
program analysis tools as well as verification techniques deriving from circular proof systems.

WP 6: Enhancing coinductive reasoning in COQ. Benefiting from the previous work packages, this aims
at improving the treatment of coinductive types in COQ proof assistant in order to ease coinductive
reasoning which is currently not satisfactory, both foundationally and practically.

Summary of the work packages

WORK PACKAGE 0: National and Local Coordination Tasks. We start by describing an initial WP detailing
coordination tasks that we view as a condition of success for the project, due to the fact that our consortium is
large and spread over France.

The national and local coordination duties are naturally assigned to the coordinators PI and site coordinators,
they will be in regular contact in managing the project.
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They will be in charge of organizing the general meetings of the project to be held mainly in Lyon, taking the
opportunity of the already existing Chocola monthly seminar, and alternatively in other sites of the project. The
actual implementation of those meetings will depend on the conditions of normalization after the Covid crisis:
currently, Chocola seminar is held twice a month online and should return to a physical gathering early in the
academic year 2021-2022. We plan to organize general meetings twice a year, the day before of after Chocola
meetings, plus an annual general meeting in another site of a project.

In addition to the regular meetings of the project, we plan several actions to foster discussion and collabo-
ration in the project: First, we will set up a dedicated forum for communication on the project, most probably
adopting the Zulip chat platform which is used in the COQ community. This will permit scientific discussion,
reference communication and also internal announcements in the project. Second, we plan to set up a regular
internal seminar that we consider keeping online, the purpose of which being mainly to make young researchers
more visible in our group: indeed, we noticed that the covid-crisis had a huge impact on how young researchers
developed their scientific network and we want to compensate for this, both during the general meetings and
with this online seminar. This seminar will be complemented with a reading group that we plan to organize.

The project plans on hiring for several positions. We plan to have a general steering committee for hiring
postdoctoral researchers and identifying potential valuable candidates for the various sites of the project. In doing
so, we plan to have a particular care in gender equality in the recruitment process from position announcement
to candidate selection by using tools for raising awareness about gender biases. We will be using existing tools
such as video1 or documents elaborated in our lab (for instance in IRIF gender-equality committee to which
the PI participates). Considering the very low number of female participants to the project, we are considering
involving some external members (in particular Assia Mahboubi who had to leave the project to take the lead of
her ERC project) in the hiring process.

In the third year of the project, we plan to organize a spring/summer school. An organizing and scientific
committee for the school will be set up soon after the start of the project to foresee the school program and its
concrete organization (choice of location, format of the school, program, speakers...).

Who does what. Alexis Saurin is the main investigator of this task, and will coordinate goals. Guilhem
Jaber, Denis Kuperberg and Luigi Santocanale together with Alexis Saurin are site coordinators. We plan to
involve PhD students in organizing the regular seminars and reading groups. Both the hiring committee of the
project and the scientific committee of the school will be constituted partly of members of the consortium and
partly of external members.

WORK PACKAGE 1: Denotational Semantics of Fixed-point Logics and Circular Proofs. While the µ-
calculus [58] has a well-established truth semantics, the project’s interest in proofs and programs leads us to
shift our attention to proof semantics and denotational semantics. Indeed, in such a setting, semantics shall
model formulas altogether with proofs as they shall respectively stand for (coinductive) datatypes and programs.

While for finite proofs, approaches to the semantics of fixed points might be easily developed (for example,
via initial or final (co)algebras), the lack of such semantics and the limits of those approaches in the case of
non-wellfounded and circular proofs are obvious. In this WP, we plan to develop various denotational semantics
for logics with circular proofs and for computational calculi with inductive and coinductive types.

Task 1.1: Totality and Coherence Semantics of Circular Proofs. We will extend the coherence space model
developed by Ehrhard and Jafarrahmani for finitary µLL [39] to the circular and non-wellfounded setting. Their
model comes with two instances: a relational semantics in which least and greatest fixed points are interpreted in
the same way and a more refined interpretation in which sets are equipped with a notion of totality (non-uniform
totality spaces), the relations preserving the totality.

A crucial point will be to ensure that infinitary proofs can be interpreted as total morphisms in the model of
non-uniform totality spaces. On the categorical side [76] (see next point), thread-validity is intimately related
with the existence (and uniqueness) of certain systems of equations that automatically ensures totality.

Another direction will consist in refining models that are naturally equiped with unique fixed points (eg. in
domains or the topos of trees) in order to distinguish, as above, least and greatest fixed points.

Task 1.2: Categorical and Interactive Semantics of Circular Proofs. The semantics of circular proofs [77, 42]
relies on a few elementary concepts from category theory (naturality, the Yoneda Lemma, initial algebras and
final coalgebras of functors) and fixed-point theory. We shall investigate how the recent proposals from the
syntactic side (notably extension of thread-validity to the multiplicatives) relate to these concepts and whether

1https://www.youtube.com/watch?v=g978T58gELo
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these concepts may provide a categorical semantics for different systems of circular proofs, especially in the
linear and intuitionistic setting.

In addition, we shall build on Clairambault’s game-model of µLJ as well as on Baelde, Doumane and
Saurin’s Ludics model of µMALL [24, 10] in order to design game-theoretical interpretations of non-wellfounded
proofs in both linear and intuitionistic logics with least and greatest fixed-points.

Task 1.3: Denotational Semantics for Reactive, Probabilistic and Quantum Languages with (Co)Inductive
Types. As an outcome of WP 3, we will design foundational probabilistic and quantum programming languages
with inductive and coinductive types and revisit the models of FRP. This goal consists in providing those lan-
guages with denotational semantics on the ground of the previous items. In particular, we shall make use of
probabilistic coherence spaces and the recent work by Ehrhard, Pagani and Tasson on Probabilistic PCF and on
Valiron’s expertise on the denotational semantics of quantum programming. Moreover, we plan to use the close
relationship of Zamdzhiev’s recent categorical constructions [86] with Munch-Maccagnoni’s models of linear
call-by-push-value in order to apply the latter to model quantum languages.

Who does what. Alexis Saurin is the main investigator of this task, and will coordinate goals. Pierre
Clairambault, Thomas Ehrhard, Charles Grellois, Adrien Guatto, Paul-Andre Melliès, Daniela Petrişan, Luigi
Santocanale and Lionel Vaux will bring their expertise in denotational semantics and coalgebraic methods and
contribute to this task. Task 1.1 is currently investigated by Ehrhard and Saurin with their first-year PhD stu-
dent Jafarrahmani. Task 1.3 on the quantum programming semantics will be investigated by Valiron, Saurin,
Chardonnet and Munch-Maccagnoni while the reactive aspects will be investigated by Guatto and Saurin and a
PhD student to start (hopefully) in September 2021.

WORK PACKAGE 2: Modularity and compositionality of circular proofs. Even though circular proofs are
promising in many respects, their main current shortcoming lies in their lack of compositionality and modularity
which has been discussed on page 4, a serious restriction discussed above preventing them from being directly
usable for modelling programming. The task at hand is to allow for more compositionality, and to render the
criterion as permissive as possible while still guaranteeing termination.

Task 2.1: Relaxing the Validity Condition of Circular Proofs. In the case of cut-free circular proofs, the
validity condition is widely accepted as robust and satisfying. It is shown to be compositional in some sense, as it
ensures productivity of infinitary cut-elimination and validity is preserved by cut-elimination. Still, the interplay
between cuts and validity is not fully understood: as discussed in the context section, cuts may badly interact
with the validity condition, and the current validity condition is too restricted. In this task, we shall develop more
relaxed validity conditions that provide more compositionality for circular proofs while preserving productivity.
Some preliminary results have been recently obtained [8, 66], and the semantical results of Task 1 (notably the
game and coherent semantics) shall be useful in this respect. For instance Baelde et al. consider threads endowed
with a richer geometry, allowing them to bounce on cuts and axioms [8], in the spirit of Girard’s Geometry of
Interaction. This yields a more relaxed validity condition where some branches can be validated by threads
bouncing on cuts even in the absence of validating straight threads, thereby providing more compositionality for
circular proofs. A strong limitation for this approach is the undecidability of the general productivity problem:
given an arbitrary circular proof, it is undecidable to recognize whether the program associated to the proof will
terminate, as this boils down to solving the halting problem. Therefore, we can only hope to accept as many
natural proofs as possible, via a criterion that can be verified algorithmically. It is particularly interesting here to
understand which features of circular proofs bring undecidability, and compare them to the features we want to
allow for programming purposes: we are interested in designing more expressive validity conditions (decidable
and ensuring productivity) and at the same time obtaining some negative results, in order to understand in a
fine-grained way the undecidability barrier that we are facing.

Task 2.2: Canonical Circular Proof Objects. It is well-known that sequent calculus proofs suffer non-canonicity
(sometimes called “bureaucracy”): many proofs differ only by an irrelevant permutation of their inferences,
which is denotationally trivial. Proof-nets were developed as a canonical alternative proofs of the sequent calcu-
lus. We shall develop in this task a theory of circular proofs-nets. In previous works, De and Saurin introduced
Infinets [34], a framework extending traditional linear proof-nets to allow for least and greatest fixed-points to-
gether with non-wellfounded branches later extended with Pellissier to account for an adequate treatment of the
cut inference. Still, the current framework suffers two limitations: (i) it only captures straight-thread validity, not
the more flexible validity conditions (ii) no notion of circular (ie. finitely presentable) infinet is available yet. We
will develop the theory of regular infinets and, once Task 2.1 is achieved, generalize the cut-elimination theorem
to more expressive and flexible notions of validity.
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Task 2.3: Enriching the Shape of Proof Trees. Proof trees with non well-founded branches also appear natu-
rally when considering transfinite expressions, see Task 5.2. We hope that investigating validity conditions for
proof trees in such frameworks can shed a light on dealing with nested fixed points in general.

In another direction, insisting that the number of subtrees is finite, as in regular trees, can be too strong a
constraint. Indeed, we could allow a more general class of trees, that still admit finite representations. This would
include for instance trees generated by context-free grammars, or by higher-order grammars. Investigating how
robust the properties of circular proofs are in these new contexts would likely yield interesting insights, and could
expand our understanding of what should be considered a valid proof.

Who does what. Alexis Saurin is the main investigator of this task, and will coordinate goals. PostDoc
A, Charles Grellois, Adrien Guatto, Pierre Hyvernat, Guilhem Jaber, Denis Kuperberg, Paul-Andre Melliès, and
Alexis Saurin will contribute to Task 2.1. Task 2.2 is currently investigated by Alexis Saurin and his PhD student
Abhishek De. Pierre Clairambault shall also work on Task 2.2. Task 2.3 is currently investigated by Denis
Kuperberg and his PhD student Emile Hazard and finitely representable non-regular proofs will be investigated
by Abhishek De.

WORK PACKAGE 3: Circular proofs and Computational Calculi. Circular proofs were originally defined
for intuitionistic, modal, and linear logic. A number of alternative logics have been provided with circular
proof systems (Kleene algebras, temporal logics, ...) in the recent literature. Following the Curry-Howard
correspondence, we plan to cover a systematic investigation to provide circular systems together with their
computational interpretation for a wide range of logical systems.

Task 3.1: Circular Typing Derivation. Many systems, like Charity [43] or COQ are based on typed λ-calculi
with inductive and coinductive types. Our goal in this task will be to design circular representation of the typing
derivation for such calculi. It would enforce termination of programs over inductive types, and productivity of
programs over coinductive types. The distinction between inductive and coinductive types follows their repre-
sentation respectively as smallest and greatest fixed-points.

We first plan to explore a system with only coinductive types, using their encoding as guarded recursive
types [69]. Indeed, guarded recursive types have been embedded within rich type systems with dependent types,
polymorphism, universes, as can be found in the Calculus of Inductive Constructions, the type system behind
COQ. Guarded recursive types rely on the so-called Löb rule as a general coinductive principle. We plan to
investigate the representation of this rule using a circular representation and a validity criterion expressed in
terms of threads, as explored in Task 5.4. Using the validity criterion that encompass both smallest and greatest
fixed points developed in that Task, we then plan to incorporate inductive types.

This system will be designed to handle mutually inductive definitions, and interactions between inductive and
coinductive types. Moreover, a comparison with COQ’s inductive definitions will be performed, in order to check
that elimination schemes that are generated by inductive definitions can indeed be represented in our system. We
also plan to investigate relationships with size-change termination techniques [62, 48, 49], as developed in Task
5.1.

Task 3.2: Probabilistic and Quantum programming with (co)inductive types. Probabilistic and quantum
programming languages are active research topics in need of higher-level programming features. In this respect,
it is important to provide the ability for (co)inductive types in such systems. We plan to design probabilistic
and quantum programming languages with inductive and coinductive types, for the probabilistic effect. we shall
build on the recent development of probabilistic PCF and its fully abstract semantics.

Regarding quantum programming, we plan to build on preliminary results by Chardonnet, Saurin and Val-
iron [23] who extended a typed reversible language to inductive and coinductive datatypes, following [75] and are
currently studying the type isomorphisms in finitary and infinitary µMALL and their proof-theoretic properties,
using [7, 9]. Then we shall extend the logic for supporting superposition of states and unitary operations, building
on [75] and compare with alternative recent approaches [70]. This investigation should open the route towards a
“fully quantum” logic, suitable for reasoning about general quantum datatypes and quantum algorithms.

Task 3.3: Automata and Kleene Algebras. Denis Kuperberg, Laureline Pinault and Damien Pous established
links between cyclic proof systems for Kleene algebra and automata models as well as complexity classes, via the
Curry-Howard correspondence. The cut-free system characterizes regular languages (without contraction) and
LOGSPACE (with contraction) [59], while the system with cut characterizes primitive recursive functions (without
contraction) and Gödel’s System T (with contraction) [60]. These approaches can later be generalized to other
systems using less constrained forms of fixed points (the Kleene star being a particular case of least fixed point).
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The knowledge acquired during the study of Kleene algebra is likely to be useful for a general understanding of
circular proofs. For instance in [60], in order to obtain the characterization of primitive recursion functions, an
algorithm was built to assign ranks to simultaneous cycles in a circular proof. This allows to explicit a nesting
hierarchy between these cycles, and to turn the cyclic proof into a λ-term with nested recursion operators. We
hope this approach can adapted for a better understanding of circular proofs in a general setting.

Who does what. PostDoc A, Guilhem Jaber, Kenji Maillard, Pierre-Marie Pédrot, Luigi Santocanale and
Alexis Saurin will work on Task 3.1. Benoit Valiron, Kostia Chardonnet, Farzad Jafarrahmani, Alexis Saurin,
Charles Grellois and Guillaume Munch-Maccagnoni will work on Task 3.2. Denis Kuperberg, and Damien Pous
will work on Task 3.3.

WORK PACKAGE 4: Circularity and constructivity issues. Constructivity issues arise when studying circu-
lar proofs: (i) Towards having decision procedures or even a feasible syntax, Brotherston and Simpson firstly
asked when a given infinitary circular proof system is equivalent to the corresponding finitary one. It is almost
straightforward that finitary proofs, circular or not, can be embedded in infinitary circular proofs. However,
the converse inclusions are open for many logical frameworks (with the notable exception of circular arithmetic
[11, 80]). We shall investigate finitization of circular proofs in variants of the µ-calculus. (ii) Another problem
that we aim to address is the extraction of validity-witnesses from circular proofs. This might be tackled via
the formalization in COQ (thus in a constructive setting) of these systems and of algorithms for deciding the
validity conditions. (iii) Finally, we aim at systematically relating circular proof systems to proof systems based
on ordinals and ordinal notations. While circular proof systems are tailored on Tarski’s impredicative definition
of least fixed points, proof systems based on ordinal notations reflect our understanding of least fixed points as
built via successive applications of a function, that is, by Kleene’s iteration.

Task 4.1: Finitization of Circular Proof Systems. We shall tackle the finitization problem for variants of the µ-
calculus in the context of provability logic. While tackling a given variant of the µ-calculus might be of interest,
the most ambitious goal is to identify uniform criteria ensuring finitization.

A related direction will consist in investigating implications of finitization for proof-theory; here, proof
equivalence is determined either by a denotational semantics, or by the equivalences induced by the cut-elimination
procedure. We shall rely on the work achieved in WP 1 to develop this second step.

Task 4.2: Formalization of Soundness. We shall formalize in COQ circular proofs and their validity conditions,
the standard ones as well as the criteria designed in Task 2.1. We also aim at formalizing some of the meta-
theory of circular proof, most notably the decidability of the validity condition. To this end, we will extend
the Yalla library (https://perso.ens-lyon.fr/olivier.laurent/yalla/, that provides tools
for the syntactic study of linear logic variants in COQ. The current release is restricted to finitary sequent calculus
systems. We want to extend it to more general notions of proofs, notably circular proofs. Some experiments in
this direction have already been performed by Saurin and students. More graphical representations of proofs such
as proof nets also have to be considered, finally leading to a formalization of appropriate notions of circular proof
nets. Formalization of the validity condition and its validity will rely on Work package 6, and more specifically
Task 6.4, in which we shall develop a library for ω-automata. This formalization could then be used to get
certified algorithms that automatically check validity of proofs in these logical systems, using the extraction
feature of COQ to programming languages like OCaml.

Task 4.3: Ordinal-based Representations. We shall investigate relations between circular proof systems and
logical systems based on ordinals. While the two kinds of proof systems have similarities, it is not obvious to
develop uniform translations, since on the semantic side the least fixed-points characterizations of each system
(Tarski vs. Kleene) coincide only on complete lattices and in a classical meta-theory. This identity falls apart
as soon as: (i) the poset considered are not complete, see [79], (ii) the meta-theory is intuitionistic, see [57, 82],
(iii) the focus is shifted from provability to proofs and their categorical models.We will approach the problem by
developing translations for some selected simple systems of circular proofs and systems with ordinals and then
generalize and develop a uniform approach to inter-translating between these two kinds of systems. In particular,
we will formalize the size-change principle as an ordinal-based logical system and as a system of circular proofs.

Task 4.4: Fixed-Points Logics. We shall try to answer some challenging concrete questions, such as: (i) does
any fixed point logic have a presentation by means of circular proofs? (ii) if a fixed-point logical system has
such a circular presentation, is it the case that least-fixed points are constructible by Kleene’s iteration in the free
fixed-point algebras presented by circular proof systems? (iii) otherwise, what are the conditions needed for this?
(iv) do finite circular proof systems ensure general completeness theorems? (v) what is the metatheory necessary
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to achieve any of the previous results? (vi) use the knowledge achieved so far to develop an intuitionistic theory
of ordinals based on circular proof systems.

Quantitative reasoning, as discussed along with Fig. 4, p. 5 will be a natural framework for this program: how
to advance the theory of circular proofs in the context of quantitative semantics? As shown in the example, this
type of loop is not valid in the usual framework of circular proofs. What validates this reasoning comes from the
real–valued semantics under consideration and the Archimedean property of R. This leads to some interesting
lines of research: identifying the additional reasoning principles (e.g., the Archimedean property) available in
quantitative semantics, identifying syntactic conditions on cycles ensuring their validity, exploring natural theo-
retical questions such as, e.g., completeness of these syntactic conditions and develop the corresponding proof
theory (e.g., cut–elimination, etc.). Understanding the smooth connection relating 2-valued logic to multivalued
logics and metric spaces, see e.g. [61, 71], will allow to find the appropriate ideas to generalize circular proof
systems to quantitative logics and to exploit them in this context.

Who does what. Luigi Santocanale is the main investigator of this task, and will coordinate goals. Luigi
Santocanale and Alexis Saurin shall work on goal Goal 4.1. Olivier Laurent and Damien Pous shall work on
Goal 4.2. Luigi Santocanale, Pierre Hyvernat, and the recruited PhD student shall work on Goals 4.3 and 4.4.
Matteo Mio and Daniela Petrişan will work on Task 4.4.

WORK PACKAGE 5: Circular Program analysis and verification of infinite systems. Circular proofs offer
a powerful tool to perform verification tasks, i.e. guarantee that a system behaves according to a specification.
These specification can range for simple termination to complex behaviours specified by different formalisms,
such as regular expressions or logics. We are also interested in testing program equivalence, for instance to
guarantee that a new implementation behaves in the same way as the previous one in any context. We shall build
on preliminary works by the partners to develop tools and techniques for program analysis and verification.

Task 5.1: Program Termination. Correctness of circular proofs relate to program termination, and it is therefore
very natural to use circular proofs as a certificate for program termination. Preliminary work on this approach
has shown how to use the size-change principle [62] to check validity of recursive functions with coinductive
types [49]. One issue encountered is that the problem of verifying coinductive types is subtler than plain termi-
nation as there exist invalid well-typed definitions that terminate [5]. Extending this work to more expressive
settings (e.g. dependent types) is a natural next step, that could use work done in the Task 3.1.

Task 5.2: Regular Expression Inclusion. Circular proofs offer a promising framework for checking inclusion of
various kinds of regular expressions. While, this approach is well-studied for regular expressions [32], we plan
to design proof-based algorithms for inclusion of ω-regular expressions (which describe languages of infinite
words, a standard formalism in verification). This approach could be further extended to transfinite expressions,
to encompass more complex specifications. Apart from its direct applications, we hope that this project will allow
us to better understand how nesting fixed points can be dealt with in circular proofs. Indeed, regular expressions
correspond to the case where only least fixed points are present, while transfinite expressions are allowed to
nest least fixed points (∗) and greatest fixed points (ω). An example of such an expression is (a + b)ω(b∗aω +
a)ω, which describes a language of transfinite words, containing for instance the word (ab)ωbbbbaωbbaωaω.
Generalizing circular proof systems for regular expressions such as the ones from [32] to ω-regular expressions,
describing words of length ω, is already a challenging problem. Going even further, the model of words of
ordinal length can be seen as a toy model for the nesting of fixed points. In the realm of inclusion checking
algorithm for expressions, our algorithms building circular proofs would be more compositional than classical
automata-based algorithms, as the cut is a versatile way to combine inclusion certificates. This corresponds
to potential applications of the proof systems we aim at designing in Task 2.3. It should be noted that the
theoretical complexity for inclusion of ω-regular expressions is known to be PSPACE-complete. Although this
approach with circular proofs cannot improve on this, it can offer a formalism which is more convenient as a
certificate of correctness. in particular, compositionality properties will allow to compose certificates for different
components of a system into a certificate for the whole system. This operation typically cannot be done with the
usual automata-based approach to verification, where an algorithm has to be run on the automaton modelling the
system, and the algorithm has to be run again when the system is modified.

Task 5.3: Automating Circular Proofs and Program Equivalence. Circular proofs have been particularly use-
ful to design automated theorem provers, notably in the setting of separation logic with inductive predicates [18].
Following this line of work, we will explore the design of automated tools based on the circular systems designed
in the Work Packages 2 and 3.
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As a first step, we will explore the decidability of program equivalence for the basic calculus of circular
proofs given in [77]. Going further, we will explore the possibility of transferring these techniques to the COQ

proof assistant by proving automatically the equivalence of recursively-defined programs encoded as interaction
trees [84]. The equational theory of interaction trees has been developed up-to a notion of weak bisimulations
defined and reasoned on via parameterized coinduction [85], formalized in COQ using Paco. We plan more
specifically to use circular representations of parameterized coinduction, as developed in Task 6.2, to explore
how to automate the construction of bisimulation proofs between interaction trees.

A more fundamental line on automated circular proofs will consist in developing proof-search methods for
the circular proof nets of Task 2.2, thus quotienting the proof-search space by permutative equivalence.

Task 5.4: Temporal Refinements for Guarded Recursive Types. Guilhem Jaber and Colin Riba have intro-
duced in [50] a framework for verifying functional reactive programs, based on a type system that combines
guarded recursive types, to enforce productivity, with temporal refinements, for specifying safety and liveness
properties. These refinements are given as coalgebraic µ-calculus formulas.

We plan to develop a new version of this system that would be based on a circular representation of deriva-
tions. It would combine the circular representation of guarded recursive types, as developed in Task 3.1, together
with the circular proof systems for the µ-calculus, as developed in [38, 4]. Using a circular representation for
both types and refinements would allow for a transfer of information from refinements to types. This would per-
mit to use refinements in order to type more programs, whose productivity depends on the refinement. Moreover,
the design on an embedding of this system in COQ is planned, that would use Task 6.2.

Who does what. Pierre Hyvernat and the recruited PhD student will contribute on Tasks 5.1 and 5.3. Denis
Kuperberg and Emile Hazard shall work on Task 5.2. Guilhem Jaber will work on Task 5.3 and 5.4, Abhishek
De, Luigi Santocanale, Alexis Saurin and Yannick Zakowski on Task 5.3 and Colin Riba on Task 5.4.

WORK PACKAGE 6: Enhancing coinductive reasoning in COQ. COQ is a widely used proof assistant based on
the Calculus of Inductive Constructions. As the name implies, it prominently features inductive types, together
with a heavy support from the tactic language that comes bundled with it. While it also features coinductive
types, both their foundational properties and practical tooling are deficient. This task aims at enhancing the
situation on both sides.

Task 6.1: Foundation of Coinductive Types. Coinductive types as they were introduced in COQ are well-
known to introduce a breakage of subject reduction. On foundational grounds, this is highly problematic from
the programming language point of view, and this subtask is dedicated to solving this issue. There are various
potential ways out. First, we shall work at the integration of copatterns [2, 3], a language construct that can
be used to cleanly define computations over infinite structures through their observations. Copatterns rely on a
negative formulation of coinductive types, already implemented in COQ, which enjoy subject reduction but have
little high-level support compared to inductive types. By integrating copattern-matching in the system, we hope
to provide a solution that unifies induction and coinduction, compatible with dependent types and that keeps
the good meta-theoretical properties of the system. We will in particular work on extending the EQUATIONS

compiler [81] which already includes a high-level syntax for dependent pattern-matching to handle copatterns.
For backwards compatibility, we shall also consider other solutions, based on syntactic criteria that are closer to
the usual treatment of coinduction in COQ.

Task 6.2: Parameterized Coinduction. As a mean to provide practical tools to users of COQ, we notably plan
to develop further the Paco library. Paco provides a compositional way to perform coinductive proofs in COQ,
building incrementally the coinductive predicate that one traditionally must exhibit upfront. This work has been
a major step toward making coinductive proofs in COQ as easy to perform as their inductive counterpart, with
similar tactic support. Paco is however currently restricted to coinductive predicates (living in the Prop universe),
and is hence of no help to build coinductive objects living in other universes, in Type in particular. We wish to
address this shortcoming. In another direction, we also plan to connect Paco to foundational works done on the
circular representation of type systems, as developed in Task 3.1, in order to explore automation of reasoning
with Paco.

Task 6.3: Built-in Compositional Coinductive Reasoning. The syntactic guard condition used in COQ to check
for (co)fixed-point productivity is a well-known source of problems, including lack of modularity, brittleness
and poor foundational justifications. We will study the extension of this guard condition with techniques coming
from the world of circular proofs. We aim at providing a comprehensive theoretical treatment of the interaction
between inductive and coinductive types in dependent type theory. Surprisingly, this is still missing, despite
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incremental results, notably from the Agda community. Moreover, mixing inductive and coinductive types in
COQ typically incurs a high expressivity limitation, which requires intricate and fragile workarounds. This is
especially problematic in so far as on paper it is standard to mix inductive steps of reasoning with coinductive
steps, e.g. when considering fairness predicates. We consider this as a barrier to proof mechanization which
should be tackled theoretically, and implemented in practice in COQ.

This subgoal depends on Tasks 6.1, and would benefit from the results obtained in Tasks 3.1,3.2 and 5.1.

Task 6.4: Formalization using Circular Reasoning. Along with the contributions of the previous three tasks,
we will also pursue a formalization effort of computational and mathematical results related to the project. A
natural direction will consist in formalizing several classical mathematical results using infinite descent: one
such result would be Fermat’s last theorem for n = 3 the proof of which can be done by infinite descent but is
much more involved than for n = 4 [35]. More related to the results of the project, in direct connection with
Task 4.2, we will develop a COQ library to formalize and reason about various classes of ω-automata, building
on preexisting formalizations of Büchi automata in COQ [64] but targeting better-behaved classes of automata
on infinite words, such as parity automata, which have not yet been formalized nor their rich meta-theory. Still
in connection with Task 4.2, we will extend the Yalla library with a support for fixed-points and circular proofs,
formalizing their validity conditions.

Who does what. Pierre-Marie Pédrot, Matthieu Sozeau and the recruited post-doctorate in Nantes will work
on Tasks 6.1-3. Damien Pous will contribute on Tasks 6.2-4. Guilhem Jaber and Yannick Zakowski will work
on Tasks 6.2. The recruited PhD student, Pierre Hyvernat, Luigi Santocanale and Kenji Maillard will contribute
on Tasks 6.1 and 6.3. Alexis Saurin will contribute to Task 6.4

Methodology and Risks of the Proposal The methodology of the project (and its broad spectrum, ranging
from the most abstract semantical contributions to the principled implementation of coinduction in proof assis-
tants) results from our analysis (that we partly build from the experience and result of the previous ANR JCJC
project RAPIDO concluded in September 2019) that circular proofs reached a degree of maturity such that we
hope to apply them in the short term to the design and analysis of programs even if some limitations are still
to be unlocked, notably a compositionality issue. The organization of the tasks (as well as composition of the
consortium, see below) reflects this analysis: the first three tasks deal with questions of a more fundamental
nature while the last three are more focused towards applications of circular proofs. Wrt. risks, we identified the
following two main risks: (i) achieving enough compositionality or lifting circular proofs to dependently-typed
setting might be out of reach and (ii) other groups may obtain results we expect prior to our project (on some
aspects of Task 4, there is an intense research effort in Italy, Slovenia, Sweden, etc.). Risk (i) is quite low (our
preliminary investigations on bouncing threads, semantics and on mixing circular proofs systems with guarded
recursive types are promising) and it would not prevent us from achieving major contributions in each and ev-
ery tasks of the project; risk (ii) is inherent to active research and we are quite confident as the consortium is
ahead (most notably on Tasks 1, 2, 5 and 6); the project will also allow to strengthen international collaborations
through invitations of colleagues.

Figure 5: Organization in time and dependencies between tasks
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2 Organization and implementation of the project

2.1 Scientific coordinator and its consortium

Scientific coordination. The scientific coordinator of the project will be Alexis Saurin, who will also co-
ordinate the site of Paris (IRIF). He is CR CNRS at IRIF and team leader of the INRIA team π.r2 (INRIA
Paris-Rocquencourt)[29] since October 2019.

Alexis Saurin is an expert in computational logic and the theory of programming languages: his field ranges
from the computational interpretations of proof theory to interactive semantics of programming languages and
logics, with a specific focus on the the Curry-Howard correspondence, classical and linear proof theory and
on circular and non-wellfounded proofs for fixed-point logics. His current research effort mainly focuses on
unveiling the computational content of circular proofs and transferring this logical artifact to programming.

In addition to the INRIA team management, his experience is complemented with the scientific coordination
of the INRIA associated team SEMACODE (2011-2013, France-Serbia-USA) and various collective responsi-
bilities (GT-Scalp of GDR-IM, ...) and, more importantly, the scientific coordination of the ANR JCJC project
RAPIDO (from jan. 2015 to oct. 2019) in which a significant part of the meta-theory of circular proofs that will
be used in ReCiProg has been developed. In 2018, he chaired a workshop on the topics of circular proofs and
coinduction, organized in Oxford as part of FLoC 2018; he was also involved in a follow-up edition organized
late 2019 in Sweden by Afshari, while a forthcoming edition is planned in the future, see below.Saurin will be
mainly involved in Tasks 1, 2, 3, 4 and 6 and three PhD students is currently (co-)advises (Chardonnet, De and
Jafarrahmani) who will be involved in ReCiProg. He will devote about 65% of his research time to the project.

More details on scientific coordination of the project are provided as Work-Package 0.

Description of the consortium. The consortium consists in researchers gathered in four sites, located in Lyon
(LIP), Marseille (LIS), Nantes (LS2N) in addition to Paris (IRIF).

The site of Lyon (LIP and LAMA) will be coordinated by Denis Kuperberg (CR CNRS LIP, 50%, Tasks 2,3
& 5). He is specialized in automata theory and its links with verification, logics, proof theory and algebra. The
site of Marseille (LIS and I2M) will be coordinated by Luigi Santocanale (Prof. Univ Aix-Marseille, 55%, Tasks
1, 4, and 6). He is expert on fixed point theory of monotone functions, both at the order theoretic level (provabil-
ity) and at the category-theoretic level (proof theory). The site of Nantes (LS2N) will be coordinated by Guilhem
Jaber (MCF, univ Nantes, 33%, Tasks 2,3 & 5). He is specialized in semantics and analysis of programming
languages, and type theory (including guarded recursive types). Besides the four coordinators, the other partici-
pants of the projects are (by sites – PhD students are not listed at that stage): Lyon (Pierre Clairambault, Olivier
Laurent, Matteo Mio, Damien Pous, Colin Riba & Yannick Zakowski), Marseille (Charles Grellois & Lionel
Vaux), Nantes (Kenji Maillard, Guillaume Munch-Maccagnoni, Pierre-Marie Pédrot & Matthieu Sozeau), and
Paris (Thomas Ehrhard, Adrien Guatto, Hugo Herbelin, Pierre Hyvernat, Paul-André Melliès, Daniela Petrişan &
Benoît Valiron ).

Originality, complementarity and strength of the consortium. ReCiProg proposes to build quite a large
consortium, for two main reasons: the main goal of the project is to put circular proofs to use in the Curry-
Howard perspective targeting notably coinduction in COQ; this requires both theoretical developments on the
meta-theory of circular proofs as well as software developments of COQ. Additionally a research community
is currently growing and spreading in France with an interest in circular proofs that the project will contribute
to structure. The main strength of the consortium is actually in that it gathers top researchers involved in de-
notational semantics, (circular) proof theory, program analysis and verification, type theory and proof assistants
(members of the COQ development team are part of the project, including Sozeau and Herbelin, respectively
the current and previous coordinators of COQ development). About half of the members of the project are COQ

developers or COQ users. Most of the project members are actually involved in at least two of the above scientific
categories, allowing to foresee a dense network of potential collaborations within the project. Also, the project
involves senior researchers as well as young researchers (recently hired ones as well as post-docs).

Collaborations between members on the consortium on the topic have already been started. Alexis Saurin
and Denis Kuperberg, together with David Baelde and Amina Doumane, are investigating an extended criterion
for circular proofs in µMALL [8]. Denis Kuperberg and Damien Pous, together with their Phd student Laureline
Pinault, are studying the Curry-Howard correspondence in a context of Kleene Algebra [59, 60]. Matteo Mio and
Denis Kuperberg have also each recently hired a PhD student (Christophe Lucas and Emile Hazard respectively)
to work on related topics. Paul-André Melliès and Charles Grellois have a long-standing collaboration on proof
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systems for linear logics with fixed points. The expertise of Damien Pous, Denis Kuperberg, Matteo Mio and
Daniela Petrişan in automata theory and Kleene algebra offers a valuable complement, and expands the variety
of tools at the disposal of the team. Hugo Herbelin, Pierre-Marie Pédrot, Matthieu Sozeau are core member of
the development team of COQ and are experts on the type theory on which this proof assistant is based on. This
expertise will be crucial in order to design and implement the modifications of COQ needed to support circular
reasoning. Olivier Laurent, Kenji Maillard and Damien Pous have a recognized expertise in formalization in
proof assistants, that would be needed to design the precise expectations of the extension of COQ with circular
reasoning, to be useful in such formalizations. Guillaume Munch-Maccagnoni is an expert on calculi for proof-
s/programs with resources and effects, and their algebraic models. Colin Riba is a specialist of Proof Theory and
in particular of the Curry-Howard “proofs-as-programs” correspondence, for MSO logics and automata theory.
Lionel Vaux is expert in denotational semantics of various calculi.

2.2 Brief description of objectives for the non-permanent researchers to be hired by the project

2.2.1 Partner 1 : IRIF – Paris

The Post-doc will work on WP 2 and 3, mainly on the issue of compositionality of circular proof and the design of
computational systems based on circular proofs as well as the cross-fertilization between guarded recursive types
and circular proofs. The post-doc will be supervised by Alexis Saurin and will benefit from the environment of
IRIF site members, notably Guatto, Herbelin, Melliès for his/her purpose.

2.2.2 Partner 2: LS2N – Nantes

The postdoc would work on WP 6, in coordination with Guilhem Jaber, Pierre-Marie Pédrot and Matthieu
Sozeau. His goal would be to pursue the theoretical results of Work Package 3, in order to incorporate circular
reasoning into COQ.

2.2.3 Partner 3 : LIP – Lyon

The postdoc shall work on different aspects of WP 3, in coordination with Denis Kuperberg, Damien Pous and
Matteo Mio. One of the objectives is to succeed Laureline Pinault currently finishing her thesis which brought
first contributions to Goal 3.5, and to extend the techniques developed in her thesis to more general frameworks.
Depending on her/his expertise in COQ and software developments, he/she may also contribute to WP 4 and 6.

2.2.4 Partner 4 : LIS – Marseille

Staff Expenses The two internships we have asked for shall attract young researchers towards the subject of
the project during its first year. At the end of the internships we plan to hire as a PhD the student of the internships
that has shown the better aptitude to research. We do not exclude, however, to announce the PhD position on
various mailing lists and hire more qualified candidates if needed.

The PhD student shall be supervised by Luigi Santocanale (50 %) and Pierre Hyvernat (50 %). The ex-
changes among the members of the project have emphasized that the need to recruit good PhD students is more
important for the Marseille partner and at the Université Savoie Mont Blanc to which Pierre Hyvernat is affili-
ated. Other sites acknowledge their capacity to attract qualified students. Pierre Hyvernat and Luigi Santocanale
know each other very well, since Hyvernat doctoral studies in Marseille, and look forward to this collaboration
on co-tutoring the PhD student. This co-tutoring will be the occasion for Pierre Hyvernat to complete his training
as a research director and obtain his Habilitation Thesis. In order to foster this collaboration and the co-tutoring,
a special budget has been asked for to allow longer visits (mostly of the PhD student) between Marseille and
Chambéry.

Themes, methodology, and risks of the PhD tutoring. The PhD student shall develop his research along
three axes that might be tackled in a chronological order—even if this is more a pedagogic approach than a
necessity. The axes are: (a) comparison of circular proof systems with other formalisms for fixed-points and
(co)induction (systems based on ordinals, size-change principle, ...); this will include coverage of existing litera-
ture and devising formal translations between the systems; (b) semantic study of guard conditions w.r.t. standard
semantics of programming languages and proof assistants (PER and realisability models); (c) implementation
within COQ of algorithms for termination verification based on established validity of guard conditions. These
axes are related to many of our tasks (1.1, 1.2, 4.2, 4.3, 5.1, 5.3, 6.1, 6.3). Many elementary questions may
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be raised w.r.t. these axes, since they can be answered simply by making precise the context of the questions.
Other goals and questions are more challenging, but they can be approached by systematically producing partial
results. Therefore, we believe that the PhD student will have no difficulties advancing with his research.

3 Impact and benefits of the projects

Our project is mostly a fundamental research project, so our first and main impact will consist in developing
new fundamental results. Still, ReCiProg also has a strong ambition to have an impact on Software development
and, first of all, on the treatment of coinduction in COQ proof assistant. Besides those expected impacts from the
project, a major benefit will also consist in strengthening and shaping the young but growing scientific “circular
community” of french researchers interested in circular proofs. Last, the project aims at disseminating the results,
both in direction of experts and colleagues from the field (through seminars, conferences and publications) but
also to researchers who are less focused on circular proofs but could benefit from them and apply those techniques
to their problems. We also aim at a dissemination to a general public, as we think it is important that researchers
are involved in popularisation activities, and we believe this topic could sparkle the interest of people that do not
have formal mathematical training.

Fundamental results First of all, we aim at contributing to the meta-theory of circular proof and their theoret-
ical applications which is an active research topic at the international level. The impact of understanding these
objects will likely reach other fields of theoretical computer science and mathematics, and can irrigate theoretical
research in connected fields: automata theory, verification, complexity theory, measure theory. We plan that our
results will be published in top international conferences and journals.

Software Unveiling the concrete Curry-Howard correspondence between circular proofs and coinductive pro-
gramming will allow us to treat coinductive constructions in COQ. This can be instantiated by additions to
the COQ kernel allowing more flexible syntax, or in more specialized libraries to verify the validity of circular
proofs, or to extend current COQ tactics to coinductive data. (The project gathers researchers from two of the
Inria teams mainly involved in the development of COQ as well as the current main developers of COQ proof
assistant.) Other software developments include verification and program analysis tools: their purposes will be
to verify the correctness of various components (hardware, software), using the new model-checking algorithms
brought by circular proofs.

Community building This project will strengthen and shape a french community working on circular proofs,
allowing more communication and making explicit the relationships between different projects. This goal is
in particular at the center of the organization of a summer school affiliated with the project to bring young
researchers as well as interested colleagues to the project’s topics. This will in turn ease the process of connecting
with international researchers working on similar topics, notably in United Kingdom, Sweden, Italy, Netherlands,
USA as well as Japan. Also, our young “circular community” is having a growing number of PhD students
graduating and the post-doc positions offered in the project will allow us to attract promising PhD who recently
graduated in France as well as international PhDs from the teams contributing to the field. Visits to and invitations
of foreign colleagues will be an important part of this international community-building. To name a few people
we consider inviting or visiting (but also involving in the spring school, see below), one can think of Andreas
Abel, Bahareh Afshari, Stefano Berardi, James Brotherston, Anupam Das, Liron Cohen, Graham Leigh, Reuben
Rowe, Alexandra Silva, Alex Simpson, Makoto Tatsuta or Yde Venema, etc.

In the longer term, the shaping of such a community, at the french and international level, could result in
an international research network. Early initiatives are already taking place: for instance a series of workshops
started in Oxford in july 2018 (funded by ANR as part of RAPIDO project) continued in Sweden in november
2019 while a forthcoming edition originally planned in the UK in 2021 was postponed due to the pandemics.

Dissemination By expanding the existing body of knowledge on circular proofs, and giving talks about this
research to a larger community, our goal is to spread the idea of using circular proofs instead of well-founded
ones to researchers from other subfields. Indeed, this concept is interesting beyond the areas of proof theory
and verification. Researchers from any field of mathematics or computer science can benefit from knowing the
theory of circular proofs, but also getting more familiar with coinduction and mechanized proofs. To this aim,
the school will be an important landmark of the project. Popularisation talks are also part of this goal, as the
idea of circular proof is suitable to awaken the interest and curiosity of a general public. This can be done for
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instance via the Pint of Science festival occurring each May, in which Denis Kuperberg and Pierre Clairambault
were already involved several times as organizers and speakers, or during the “Fête de la Science" each October.
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