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Context of the talk

Two different kinds of automata:

• Deterministic automata (in FinSet)
• Non-deterministic automata (in FinRel)

Profinite methods are well established for words using finite monoids.

Contribution: definition of profinite λ-terms in any model and proof that

Profinite words are in bijection with deterministic profinite λ-terms

using the Church encoding of words and Reynolds parametricity.

This leads to a notion of non-deterministic profinite λ-term in FinRel.
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Interpreting words as λ-terms



Simply typed λ-terms

λ-terms are defined by the grammar

M,N ::= x | λx.M | MN.

Simple types are generated by the grammar

A,B ::= o | A⇒ B.

For simple types, typing derivations are generated by the following three rules:

Var
Γ, x : A ` x : A

Γ ` M : A⇒ B Γ ` N : A App
Γ ` MN : B

Γ, x : A ` M : B
Abs

Γ ` λx.M : A⇒ B
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The Church encoding for words

Any natural number n can be encoded in the simply typed λ-calculus as

s : o ⇒ o, z : o ` s (. . . (s z))︸ ︷︷ ︸
n applications

: o.

A natural number is just a word over a one-letter alphabet.

For example, the word abba over the two-letter alphabet {a,b}

a : o ⇒ o, b : o ⇒ o, c : o ` a (b (b (a c))) : o.

is encoded as the closed λ-term

λa.λb.λc.a (b (b (a c))) : (o ⇒ o)︸ ︷︷ ︸
letter a

⇒ (o ⇒ o)︸ ︷︷ ︸
letter b

⇒ o︸︷︷︸
input

⇒ o︸︷︷︸
output

.

3/18



Categorical interpretation

Let C be a cartesian closed category.

In order to interpret the simply typed λ-calculus in C, we pick an object Q of C in
order to interpret the base type o and define, for any simple type A, the object

JAKQ
by induction, as follows:

JoKQ := QJA⇒ BKQ := JAKQ ⇒ JBKQ.
The simply typed λ-terms are then interpreted by structural induction on their
type derivation using the cartesian closed structure of C.
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The category FinSet

Fact. The category FinSet is cartesian closed: there is a bijection

FinSet(A× B, C) ∼= FinSet(B,A⇒ C)

natural in A and C, where A⇒ C is the set of functions from A to C.

In particular, given a finite set Q used to interpret o, every word w over the
alphabet Σ = {a,b} seen as a λ-term

` w : (o ⇒ o)︸ ︷︷ ︸
letter a

⇒ (o ⇒ o)︸ ︷︷ ︸
letter b

⇒ o︸︷︷︸
input

⇒ o︸︷︷︸
output

can be interpreted in FinSet as

JwKQ ∈ (Q⇒ Q) ⇒ (Q⇒ Q) ⇒ Q⇒ Q

which describes how the word will interact with a deterministic automaton.
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Entering the profinite world



An intuition about profinite words
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Profinite words

Definition. A profinite word is a family of maps

uM : [Σ,M] −→ M where M ranges over all finite monoids

such that for every function p : Σ → M and homomorphism φ : M→ N, with M
and N finite monoids, we have uN(φ ◦ p) = φ(uM(p)), i.e. the following diagram
commutes:

[Σ,M] [Σ,N]

M Nφ

φ◦−

uM uN .

Remark. Any word w = a1 . . . an induces a profinite word u whose components are

uM : p 7−→ p(a1) . . .p(an) where M ranges over all finite monoids.
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A profinite word which is not a word

In any finite monoid M, all elements m ∈ M have a unique power mn (for n ≥ 1)
which is idempotent, i.e. such that mnmn = mn. It is obtained for n = |M|!.

Let a be any letter in Σ. The family of maps

uM :
[Σ,M] −→ M
p 7−→ p(a)|M|!

where M ranges over all finite monoids

is an profinite word written aω which is not a finite word.

The set of profinite words is endowed with a monoid structure computed
pointwise. In that setting, aω is idempotent.
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Key property: parametricity of profinite words

Definition. Given M, N two finite monoids and R ⊆ M× N, we say that R is a
monoidal relation M 7→ N if it is a submonoid of M× N. This means that

(eM, eN) ∈ R and for all (m,n) and (m′,n′) in R, we have (mm′,nn′) ∈ R.

Proposition. Let u = (uM) be a family of maps. The following are equivalent:

• u is profinite
• for every pair of functions p : Σ → M and q : Σ → N with M and N finite
monoids, and for any monoidal relation R : M 7→ N,

if for all a ∈ Σ we have (p(a),q(a)) ∈ R, then (uM(p),uN(q)) ∈ R.
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Parametric λ-terms



Definition of logical relations

Recall that for any set Q we have defined the set

JAKQ
by structural induction on the type A.

We extend the construction to set-theoretic relations R : P 7→ Q, giving a relation

JAKR : JAKP 7→ JAKQ .

by structural induction on the type A:

JoKR := RJA⇒ BKR := { (f,g) ∈ JA⇒ BKP × JA⇒ BKQ |
for all x ∈ JAKP and y ∈ JAKQ ,

if (x, y) ∈ JAKR then (f(x),g(y)) ∈ JBKR }.
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Double categories and main example

A double category is given by the data of objects together with

• 1-cells: vertical (→) and horizontal ( 7→) arrows,
• 2-cells: squares (⇒) between pairs of vertical and horizontal arrows which
can be composed both horizontally or vertically.

Example. the category whose objects are finite sets, vertical arrows are functions,
horizontal arrows are relations and whose squares are unique and exist when:

X Y

X′ Y′
f g

Rp

R′
p

iff ∀x ∈ X, y ∈ Y, if (x, y) ∈ R then (f(x),g(y)) ∈ R′
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Double categories as internal categories

The category Cat of categories has pullbacks.

Definition. A double category is a diagram

D1

D0

is t

where s ◦ i = IdD0 = t ◦ i, together with m : D1 ×D0 D1 → D1 such that s ◦m = s ◦ π1
and t ◦m = t ◦ π2 such that the following monoidal identities hold:

D1 ×D0 D1 ×D0 D1 D1 ×D0 D1

D1 ×D0 D1 D1m

m

IdD1 ×m

m×IdD1

D1 ×D0 D0 D1 ×D0 D1 D0 ×D0 D1

D1

i×IdD1IdD1 ×i

m
π2π1
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FinSet as an internal category

Example. We can endow FinSet with a structure of double category:

• the category D0 is FinSet
• the category D1 is the category whose objects are relations R : X 7→ Y and a
morphism f : (R : X 7→ Y) → (R′ : X′ 7→ Y′) is a pair of functions f1 : X→ X′ and
f2 : Y→ Y′ such that

if (x, y) ∈ R then (f1(x), f2(y)) ∈ R′ .

We take s(R : X 7→ Y) = X and t(R : X 7→ Y) = Y. If R : X 7→ Y and R′ : Y 7→ Z, we let

m(R,R′) = R ◦ R′ = {(x, z) ∈ X× Z | ∃y ∈ Y, (x, y) ∈ R, (y, z) ∈ R′} .
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Cartesian double categories

A double category D is cartesian if the pairs of squares

X Y

X1 Y1

Rp

S1
p

f1 g1C1

X Y

X2 Y2

Rp

S2
p

f2 g2C2

is in bijection with the set of squares

X Y

X1 × X2 Y1 × Y2

Rp

S1×S2
p

⟨f1,f2⟩ ⟨g1,g2⟩⟨C1,C2⟩

and the horizontal morphism Id1 : 1 7→ 1 is terminal.

Internally: D0 and D1 are cartesian and s and t strictly respect the cartesian
structure.
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Cartesian closed double categories

A cartesian double category D is closed if the set of squares

X1 × X2 Y1 × Y2

X Y
R
p

R1×R2p
gf C

is in bijection with the set of squares

X2 Y2

X1 ⇒ X Y1 ⇒ Y
R1⇒R
p

R2p

Cur(g)Cur(f) Cur(C)

Internally: D0 and D1 are CCCs and s and t strictly respect the CCC structure.
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Parametric λ-terms

Let us consider a cartesian closed double category.

Definition. Let A be a simple type. A parametric λ-term of type A is the data

• a family of vertical maps θQ : 1→ JAKQ where Q ranges over all objects
• a family of squares θR : Id1 ⇒ JAKR where R ranges over all horizontal arrows

such that the horizontal source and target of a square θR for R : P 7→ Q are the
maps θP and θQ, which we can represent as

1 1

JAKP JAKQ
θP

JAKRp
θQ

Id1p
θR
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Parametric λ-terms and profinite words

In the case of FinSet, a parametric λ-term of type A amounts to a family

θQ ∈ JAKQ where Q ranges over all finite sets,

such that, for every binary relation R : P 7→ Q, we have

(θP, θQ) ∈ JAKR .

Theorem. Parametric λ-terms define a cartesian closed category, and the
parametric λ-terms of type

ChurchΣ := (o ⇒ o) ⇒ . . . ⇒ (o ⇒ o)︸ ︷︷ ︸
|Σ| times

⇒ (o ⇒ o)

are in bijection with the profinite words on Σ.
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Conclusion

Current work:

• Phrase this result in the formalism of Stone duality for any type.

Future work:

• determine the parametric λ-terms of type ChurchΣ in the model associated
to nondeterministic automata;

• investigate a generalization of logic on words with MSO to a logic on λ-terms.

Thank you for your attention!

Any questions?
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The inverse bijections T and W

Pro→ Para. Every profinite word u induces a parafinite term with components

T(u)Q :
Σ ⇒ (Q⇒ Q) −→ Q⇒ Q

p 7−→ uQ⇒Q(p)
given the fact that Q⇒ Q is a monoid for the function composition.

Para→ Pro. Every parametric term θ induces a profinite word with components

W(θ)M :
Σ ⇒ M −→ M
p 7−→ θM(iM ◦ p)(eM)

Σ ⇒ (M⇒ M) M⇒ M

Σ ⇒ M M
W(θ)M

−(eM)

θM

iM◦−

where iM : M→ (M⇒ M) is the Cayley embedding.

These are bijections between profinite words and parametric λ-terms.



Pro→ Para→ Pro (1/2)

Let u be a profinite word. Recall that uM : (Σ ⇒ M) → M.

Its associated parametric λ-term T(u) has components

T(u)Q = u(Q⇒Q)

Its associated profinite word W(T(u)), for p : Σ → M, is equal to

W(T(u))M(p) = T(u)M(iM ◦ p)(eM) = u(M⇒M)(iM ◦ p)(eM)

In order to show that W(T(u)) is u, we use the parametricity of profinite words.

We consider the moinoidal logical relation R ⊆ (M⇒ M)×M defined as

R := {(f,m) ∈ (M⇒ M)×M | ∀n ∈ M, f(n) = m · n}



Pro→ Para→ Pro (2/2)

We have that (iM ◦ p,p) ∈ Jo× · · · × oKR because for all a ∈ Σ,

for all m ∈ I, (iM ◦ p)(a)(m) = p(a) ·m.

By parametricity of u applied to R, we have that

(u(M⇒M)(iM ◦ p),uM(p)) ∈ Jo ⇒ oKR
which means, by definition of Jo ⇒ oKR, that

for all (f,m) ∈ R, we have (u(M⇒M)(iM ◦ p)(f),uM(p)(m)) ∈ R

which gives the desired result:

W(T(u)) = u(M⇒M)(iM ◦ p)(eM) = uM(p)(m).



Para→ Pro→ Para (1/2)

Let θ be a parafinite term. Recall that θQ ∈ (Σ ⇒ (Q⇒ Q)) ⇒ (Q⇒ Q).

Its associated profinite word W(θ) is equal, for p : Σ → M, to

W(θ)M(p) = θM(iM ◦ p)(eM).

Its reassociated parametric λ-term T(W(θ)) has components

T(W(θ))Q = W(Q⇒Q).

We want to show that, for all p : Σ → (Q⇒ Q), we have θQ(p) = T(W(θ))Q(p), i.e.

for all q0 ∈ Q, θ(Q⇒Q)(i(Q⇒Q) ◦ p)(IdQ)(q0) = θQ(p)(q0)

To show that, we introduce, for any q0 ∈ Q, the logical relation

Rq0 := {(f,q) ∈ (Q⇒ Q)× Q | f(q0) = q}.



Para→ Pro→ Para (2/2)

First, we have (i(Q⇒Q) ◦ p,p) ∈ J(o ⇒ o)× · · · × (o ⇒ o)KRq0 because for all a ∈ Σ,

for all (f,q) ∈ R, we have (i(Q⇒Q) ◦ p)(a)(f)(q0) = p(a)(f(q0)) = p(a)(q)

By parametricity of θ, we obtain that (θ(Q⇒Q)(i(Q⇒Q) ◦ p), θQ(p)) ∈ Jo ⇒ oKRq0 .
Given the fact that (IdQ,q0) ∈ Rq0 and by definition of Jo ⇒ oKRq0 , we obtain that

θ(Q⇒Q)(i(Q⇒Q) ◦ p)(IdQ)(q0) = θQ(p)(q0)

which concludes the proof.
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