A denotational semantics for non-wellfounded proofs in linear logic

RECIPROG December 2022

Farzad Jafarrahmani based on joint work with Thomas Ehrhard and Alexis Saurin

IRIF, CNRS and Université de Paris

<ロ > < 部 > < 差 > < 差 > 差 の Q @ 1/23

Denotational Semantics

The denotational semantic is a way of assigning suitable mathematical entities to the objects of a given language.

Denotational semantics

Let's consider the numerals and numbers:

- The numerals are expression in a familiar language such as binary, octal, or decimal numerals.
- So, there are different languages to convey same concepts.
- Even in one language, there are different expression for a same concepts (3 + 3 = 2 + 2 + 2 = 6 = ...).

The problem of explaining these equivalences of expressions is one of the tasks of semantics and is much too important to be left to syntax alone.

Denotational semantics

A way of expressing the meaning of types and programs independent from their syntactic, operational, specification.

Main principles, since Scott:

- Formulas → complete partial orders. u ≤ v means "u less defined than v".
- Proofs ~> Continuous function (a finite amount of information at the input is enough to produce finite amount of information).

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 4/23

What we consider in this talk

Language: Non-wellfounded linear logic (μ LL $_{\infty}$).

Model: Category $\mbox{\bf REL}$ of sets and relations and non-uniform totality spaces (NUTS).

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 5/23

μLL_{∞}

$A, B, \ldots := 1 \mid 0 \mid \perp \mid \top \mid A \oplus B \mid A \otimes B \mid A \otimes B \mid A \otimes B \mid A ?? B \mid ?A \mid !B \mid X \mid \mu X.F \mid \nu X.F$

$$\frac{\vdash \Gamma, F[\nu\zeta . F/\zeta]}{\vdash \Gamma, \nu\zeta . F} (\nu - \mathsf{fold}) \qquad \frac{\vdash \Gamma, F[\mu\zeta . F/\zeta]}{\vdash \Gamma, \mu\zeta . F} (\mu - \mathsf{fold})$$

Interpretation of formulas in **REL**

$A(\zeta_1, \cdots, \zeta_k) \mapsto k$ -ary CPO functor $[\![A]\!]$

Fact (M. Wand)

If \mathbb{F} : **REL** \to **REL** is a CPO functor, then \mathbb{F} has a final coalgebra which is also an initial algebra, $\mu \mathbb{F} = \nu \mathbb{F}$: the "least fixpoint" of \mathbb{F} .

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q C 7/23

Interpretation of proofs in **REL**

$$\left[\frac{\frac{\delta}{\vdash \Gamma, F[\sigma\zeta. F/\zeta]}}{\vdash \Gamma, \sigma\zeta. F} (\sigma - \mathsf{fold}) \right] = \llbracket \delta \rrbracket$$

$$\llbracket \pi \rrbracket_{\mathsf{REL}} = \bigcup_{\rho \in \mathsf{fin}(\pi)} \llbracket \rho \rrbracket_{\mathsf{REL}}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 8/23

Example

Consider the following circular proof π_{\equiv_3} :

 $\llbracket \pi_{\equiv_3} \rrbracket_{\mathsf{REL}} = \{ (\underline{n}, \underline{m}) \mid \underline{n} = \underline{m} \mod 3 \}$

On the relation between the interpretation of finite proofs and their circular correspondent

Fact Let π be a μ LL proof. Then we have $[\![\pi]\!] = [\![Trans(\pi)]\!]$ where the interpretation is given in a model $(\mathcal{L}, \overrightarrow{\mathcal{L}})$ of μ LL.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ ● ○ Q ○ 10/23

Two properties of the semantics

Soundness: If π and π' are proofs of $\vdash \Gamma$ and π reduces to π' by the cut-elimination rules of μLL_{∞} , then $[\![\pi]\!]_{REL} = [\![\pi']\!]_{REL}$.

Validity implies totality: If π is a valid proof of the sequent $\vdash \Gamma$, then $[\![\pi]\!]$ is a "total element of $[\![\Gamma]\!]$ ".

Totality candidates on a set E

Given $\mathcal{T} \subseteq \mathcal{P}(E)$ we set

$$\mathcal{T}^{\perp} = \left\{ u' \subseteq E \mid \forall u \in \mathcal{T} \ u \cap u' \neq \varnothing \right\}$$

Definition (Totality candidates) \mathcal{T} is a *totality candidate* for E if $\mathcal{T} = \mathcal{T}^{\perp \perp}$. (Equivalently $\mathcal{T}^{\perp \perp} \subseteq \mathcal{T}$, equivalently $\mathcal{T} = \mathcal{S}^{\perp}$ for some $\mathcal{S} \subseteq \mathcal{P}(E)$.)

Fact

- \mathcal{T} is a totality candidate on E iff $\mathcal{T} \subseteq \mathcal{P}(E)$ and $\mathcal{T} = \uparrow \mathcal{T}$.
- ► Tot(X) (The set of all totality candidates on E), ordered with ⊆, is a complete lattice (it is closed under arbitrary intersections).

Non-uniform totality spaces (NUTS)

A NUTS is a pair $X = (|X|, \mathcal{T}X)$ where

- ► |X| is a set
- TX is a totality candidate on |X|, that is, a ↑-closed subset of P(|X|).
- $t \in \mathsf{NUTS}(X, Y)$ if $t \in \mathsf{REL}(|X|, |Y|)$ and

$$\forall u \in \mathcal{T}X \quad t \cdot u \in \mathcal{T}Y$$

Fact

NUTS is a model of LL where the proofs are interpreted exactly as in **REL**.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ の へ 0 13/23

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ○ 14/23

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ <u>15/23</u>

 \overline{F} : $(X, U) \mapsto (FX, \Phi U)$ where $\Phi U \in \mathcal{T}(FX)$.

 \overline{F} : $(X, U) \mapsto (FX, \Phi U)$ where $\Phi U \in \mathcal{T}(FX)$.

Assume μF exists.

$$g: \operatorname{Tot}(\mu F)
ightarrow \operatorname{Tot}(\mu F)$$
 $R \mapsto \Phi R$

 \overline{F} : $(X, U) \mapsto (FX, \Phi U)$ where $\Phi U \in \mathcal{T}(FX)$.

Assume μF exists.

$$g: \operatorname{Tot}(\mu F) o \operatorname{Tot}(\mu F)$$

 $R \mapsto \Phi R$

By Tarski theorem, μg exists.

$$\mu \overline{F} = (\mu F, \mu g).$$

Interpretation of proofs

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 18/23

The interpretation of proofs in $\ensuremath{\text{NUTS}}$ is same as their interpretation in $\ensuremath{\text{REL}}$.

Validity implies totality

Theorem: If π is a valid proof of the sequent $\vdash \Gamma$, then $\llbracket \pi \rrbracket \in \mathcal{T}\llbracket \Gamma \rrbracket$.

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 19/23

Validity implies totality

Theorem: If π is a valid proof of the sequent $\vdash \Gamma$, then $\llbracket \pi \rrbracket \in \mathcal{T}\llbracket \Gamma \rrbracket$.

The proof is similar to the proof of soundness of $LKID^{\omega}$ in ¹.

We needed to adapt the proof in two aspects:

- considering μLL_{∞} instead of $LKID^{\omega}$,
- and deal with the denotational semantics instead of Tarskian semantics.

Adapation for μLL_{∞} : somehow done in ²

So, basically, the main point of this proof is adapting a Tarskian soundness theorem to a denotational semantic soundness.

¹James Brotherston.Sequent Calculus Proof Systems for Inductive Def-initions. PhD thesis, University of Edinburgh, November 2006.

²Amina Doumane. On the infinitary proof theory of logics with fixedpoints. PhD thesis, Paris Diderot University, 2017.

An example

A syntatic-free proof that any term of booleans has a defined boolean value true or false

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q C 21/23

Consider $1 \oplus 1$ (The type of booleans). $\llbracket 1 \oplus 1 \rrbracket = (\{(1, \star), (2, \star)\}, \mathcal{T}\llbracket 1 \oplus 1 \rrbracket)$ where $\mathcal{T}(\llbracket 1 \oplus 1 \rrbracket) = \mathcal{P}(|\llbracket 1 \oplus 1 \rrbracket|) \setminus \emptyset$

For any proof π of $1 \oplus 1$, we have $[\![\pi]\!] \in \mathcal{T}[\![1 \oplus 1]\!]$. Hence $[\![\pi]\!] \neq \emptyset$.

Future work

- Categorical axiomitazation of models of μLL_{∞} .
- Try to understand what sort of information can be obtained from a total interpretation, if not syntactic validity.

< □ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 볼 ♡ < ♡ 22/23

Thanks!

<□ → < □ → < ■ → < ■ → < ■ → < ■ → ○ へ ○ 23/23</p>