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Denotational Semantics

The denotational semantic is a way of assigning suitable
mathematical entities to the objects of a given language.
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Denotational semantics

Let’s consider the numerals and numbers:

▶ The numerals are expression in a familiar language such as
binary, octal, or decimal numerals.

▶ So, there are different languages to convey same concepts.

▶ Even in one language, there are different expression for a same
concepts (3 + 3 = 2 + 2 + 2 = 6 = ...).

The problem of explaining these equivalences of expressions is one
of the tasks of semantics and is much too important to be left to
syntax alone.
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Denotational semantics

A way of expressing the meaning of types and programs
independent from their syntactic, operational, specification.

Main principles, since Scott:

▶ Formulas ; complete partial orders. u ≤ v means “u less
defined than v”.

▶ Proofs ; Continuous function (a finite amount of information
at the input is enough to produce finite amount of
information).
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What we consider in this talk

Language: Non-wellfounded linear logic (µLL∞).

Model: Category REL of sets and relations and non-uniform
totality spaces (NUTS).
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µLL∞

A,B, . . . := 1 | 0 | ⊥ | ⊤ | A⊕ B | A⊗ B | A& B | A` B | ?A | !B
| X | µX .F | νX .F

⊢ Γ,F [νζ .F/ζ]
(ν − fold)

⊢ Γ, νζ .F

⊢ Γ,F [µζ .F/ζ]
(µ− fold)

⊢ Γ, µζ .F
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Interpretation of formulas in REL

A(ζ1, · · · , ζk) 7→ k-ary CPO functor JAK−→
ζ

Fact (M. Wand)

If F : REL → REL is a CPO functor, then F has a final coalgebra
which is also an initial algebra, µF = νF: the “least fixpoint” of F.
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Interpretation of proofs in REL

u

v
δ

⊢ Γ,F [σζ.F/ζ]
(σ − fold)

⊢ Γ, σζ.F

}

~ = JδK

JπKREL =
⋃

ρ∈fin(π)

JρKREL
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Example

Consider the following circular proof π≡3 :

πnat
0

(⊥)
⊢ nat,⊥

πnat
1

(⊥)
⊢ nat,⊥

πnat
2

(⊥)
⊢ nat,⊥ ⊢ nat, nat⊥

(&)
⊢ nat,⊥& nat⊥

(ν − fold)
⊢ nat, nat⊥

(&)
⊢ nat,⊥& nat⊥

(ν − fold)
⊢ nat, nat⊥

(&)
⊢ nat,⊥& nat⊥

(ν − fold)
⊢ nat, nat⊥

JσKREL ≃ {(2, 2), (1, 1), (0, 0)}

Jπ≡3KREL = {(n,m) | n = m mod 3}
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On the relation between the interpretation of finite proofs
and their circular correspondent

Fact
Let π be a µLL proof. Then we have JπK = JTrans (π)K where the

interpretation is given in a model (L,
−→
L ) of µLL.
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Two properties of the semantics

Soundness: If π and π′ are proofs of ⊢ Γ and π reduces to π′ by
the cut-elimination rules of µLL∞, then JπKREL = Jπ′KREL.

Validity implies totality: If π is a valid proof of the sequent ⊢ Γ,
then JπK is a “total element of JΓK”.
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Totality candidates on a set E

Given T ⊆ P(E ) we set

T ⊥ =
{
u′ ⊆ E | ∀u ∈ T u ∩ u′ ̸= ∅

}
Definition (Totality candidates)

T is a totality candidate for E if T = T ⊥⊥.

(Equivalently T ⊥⊥ ⊆ T , equivalently T = S⊥ for some
S ⊆ P(E ).)

Fact
▶ T is a totality candidate on E iff T ⊆ P(E ) and T = ↑T .

▶ Tot(X ) (The set of all totality candidates on E ), ordered with
⊆, is a complete lattice (it is closed under arbitrary
intersections).
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Non-uniform totality spaces (NUTS)

A NUTS is a pair X = (|X |, T X ) where

▶ |X | is a set

▶ T X is a totality candidate on |X |, that is, a ↑-closed subset of
P(|X |).

t ∈ NUTS(X ,Y ) if t ∈ REL(|X |, |Y |) and

∀u ∈ T X t · u ∈ T Y

Fact
NUTS is a model of LL where the proofs are interpreted exactly as
in REL.
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Interpretation of µX .F in NUTS

NUTS NUTS

REL REL

F

F



15/23

Interpretation of µX .F in NUTS

NUTS NUTS

REL REL

F

F

F : (X ,U) 7→ (FX ,ΦU) where ΦU ∈ T (FX ).
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Interpretation of µX .F in NUTS

NUTS NUTS

REL REL

F

F

F : (X ,U) 7→ (FX ,ΦU) where ΦU ∈ T (FX ).

Assume µF exists.

g : Tot(µF ) → Tot(µF )

R 7→ ΦR
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Interpretation of µX .F in NUTS

NUTS NUTS

REL REL

F

F

F : (X ,U) 7→ (FX ,ΦU) where ΦU ∈ T (FX ).

Assume µF exists.

g : Tot(µF ) → Tot(µF )

R 7→ ΦR

By Tarski theorem, µg exists.

µF = (µF , µg).
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Interpretation of proofs

The interpretation of proofs in NUTS is same as their
interpretation in REL.
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Validity implies totality

Theorem: If π is a valid proof of the sequent ⊢ Γ, then JπK ∈ T JΓK.
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Validity implies totality

Theorem: If π is a valid proof of the sequent ⊢ Γ, then JπK ∈ T JΓK.

The proof is similar to the proof of soundness of LKIDω in 1.

We needed to adapt the proof in two aspects:

▶ considering µLL∞ instead of LKIDω,

▶ and deal with the denotational semantics instead of Tarskian
semantics.

Adapation for µLL∞: somehow done in 2

So, basically, the main point of this proof is adapting a Tarskian soundness
theorem to a denotational semantic soundness.

1James Brotherston.Sequent Calculus Proof Systems for Inductive Def-initions.
PhD thesis, University of Edinburgh, November 2006.

2Amina Doumane. On the infinitary proof theory of logics with fixedpoints. PhD
thesis, Paris Diderot University, 2017.
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An example

A syntatic-free proof that any term of booleans has a defined
boolean value true or false

Consider 1⊕ 1 (The type of booleans).
J1⊕ 1K = ({(1, ⋆), (2, ⋆)}, T J1⊕ 1K) where

T (J1⊕ 1K) = P(|J1⊕ 1K|)\∅

For any proof π of 1⊕ 1, we have JπK ∈ T J1⊕ 1K.
Hence JπK ̸= ∅.
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Future work

▶ Categorical axiomitazation of models of µLL∞.

▶ Try to understand what sort of information can be obtained
from a total interpretation, if not syntactic validity.
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Thanks!


