A denotational semantics for non-wellfounded proofs in linear logic

RECIPROG December 2022

Farzad Jafarrahmani
based on joint work with Thomas Ehrhard and Alexis Saurin

IRIF, CNRS and Université de Paris
Denotational Semantics

The denotational semantic is a way of assigning suitable mathematical entities to the objects of a given language.
Let’s consider the numerals and numbers:

- The numerals are expressions in a familiar language such as binary, octal, or decimal numerals.
- So, there are different languages to convey the same concepts.
- Even in one language, there are different expressions for the same concepts ($3 + 3 = 2 + 2 + 2 = 6 = ...$).

The problem of explaining these equivalences of expressions is one of the tasks of semantics and is much too important to be left to syntax alone.
Denotational semantics

A way of expressing the meaning of types and programs independent from their syntactic, operational, specification.

Main principles, since Scott:

- Formulas \(\sim \) complete partial orders. \(u \leq v \) means “\(u \) less defined than \(v \)”.
- Proofs \(\sim \) Continuous function (a finite amount of information at the input is enough to produce finite amount of information).
What we consider in this talk

Language: Non-wellfounded linear logic (μLL_∞).

Model: Category REL of sets and relations and non-uniform totality spaces (NUTS).
\[\mu \mathcal{L} \mathcal{L}_\infty\]

\[A, B, \ldots := 1 \mid 0 \mid \bot \mid \top \mid A \oplus B \mid A \otimes B \mid A \& B \mid A \otimes B \mid ?A \mid !B \mid X \mid \mu X.F \mid \nu X.F\]

\[\frac{\vdash \Gamma, F[\nu \zeta . F / \zeta]}{\vdash \Gamma, \nu \zeta . F} \quad \text{(\(\nu\) - fold)}\]

\[\frac{\vdash \Gamma, F[\mu \zeta . F / \zeta]}{\vdash \Gamma, \mu \zeta . F} \quad \text{(\(\mu\) - fold)}\]
Interpretation of formulas in REL

\[A(\zeta_1, \cdots, \zeta_k) \mapsto k\text{-ary CPO functor } [A]_{\zeta} \]

Fact (M. Wand)

If \(\mathbb{F} : \text{REL} \to \text{REL} \) is a CPO functor, then \(\mathbb{F} \) has a final coalgebra which is also an initial algebra, \(\mu \mathbb{F} = \nu \mathbb{F} \): the “least fixpoint” of \(\mathbb{F} \).
Interpretation of proofs in \(\text{REL} \)

\[
\begin{align*}
& \frac{\delta}{\vdash \Gamma, F[\sigma \zeta. F/\zeta]} \\
& \quad \vdash \Gamma, \sigma \zeta. F \\
& \hspace{1cm} (\sigma - \text{fold}) \\
\end{align*}
\]

\[
[\pi]_{\text{REL}} = \bigcup_{\rho \in \text{fin}(\pi)} [\rho]_{\text{REL}}
\]
Consider the following circular proof $\pi_{\equiv 3}$:

$$
\frac{
\frac{
\frac{
\pi_0^{\text{nat}}
}{\vdash \text{nat}, \bot}
}{\vdash \text{nat}, \bot}
{\vdash \text{nat, nat}^\perp}
}{\vdash \text{nat, nat}^\perp}
$$

$$
\frac{
\frac{
\frac{
\pi_1^{\text{nat}}
}{\vdash \text{nat}, \bot}
}{\vdash \text{nat, \bot \& nat}^\perp}
}{\vdash \text{nat, nat}^\perp}
$$

$$
\frac{
\frac{
\frac{
\pi_2^{\text{nat}}
}{\vdash \text{nat, \bot}}
}{\vdash \text{nat, \bot \& nat}^\perp}
}{\vdash \text{nat, nat}^\perp}
$$

$$
\frac{
\vdash \text{nat, \bot \& nat}^\perp
}{\vdash \text{nat, nat}^\perp}
$$

$$
\nu - \text{fold}
$$

$$
\text{J} \sigma \ K \text{REL} \simeq \{(2, 2), (1, 1), (0, 0)\}
$$

$$
\text{J} \pi_{\equiv 3} \ K \text{REL} = \{(n, m) | n = m \mod 3\}
$$
On the relation between the interpretation of finite proofs and their circular correspondent

Fact
Let π be a μLL proof. Then we have $\downarrow \pi = \downarrow \text{Trans}(\pi)$ where the interpretation is given in a model $(\mathcal{L}, \overset{\rightarrow}{\mathcal{L}})$ of μLL.
Two properties of the semantics

Soundness: If π and π' are proofs of $\Gamma \vdash \Gamma$ and π reduces to π' by the cut-elimination rules of μLL_∞, then $[\pi]_{\text{REL}} = [\pi']_{\text{REL}}$.

Validity implies totality: If π is a valid proof of the sequent $\vdash \Gamma$, then $[\pi]$ is a “total element of $[\Gamma]$”.
Totality candidates on a set E

Given $\mathcal{T} \subseteq \mathcal{P}(E)$ we set

$$\mathcal{T}^\perp = \{ u' \subseteq E \mid \forall u \in \mathcal{T} \ u \cap u' \neq \emptyset \}$$

Definition (Totality candidates)

\mathcal{T} is a **totality candidate** for E if $\mathcal{T} = \mathcal{T}^{\perp\perp}$.

(Equivalently $\mathcal{T}^{\perp\perp} \subseteq \mathcal{T}$, equivalently $\mathcal{T} = S^{\perp}$ for some $S \subseteq \mathcal{P}(E)$.)

Fact

- \mathcal{T} is a totality candidate on E iff $\mathcal{T} \subseteq \mathcal{P}(E)$ and $\mathcal{T} = \uparrow \mathcal{T}$.
- $\text{Tot}(X)$ (*The set of all totality candidates on } E$, ordered with \subseteq, is a complete lattice (it is closed under arbitrary intersections)*.
Non-uniform totality spaces (NUTS)

A NUTS is a pair $X = (|X|, TX)$ where
- $|X|$ is a set
- TX is a totality candidate on $|X|$, that is, a \uparrow-closed subset of $\mathcal{P}(|X|)$.

$t \in \text{NUTS}(X, Y)$ if $t \in \text{REL}(|X|, |Y|)$ and

$$\forall u \in TX \quad t \cdot u \in TY$$

Fact

\text{NUTS} is a model of LL where the proofs are interpreted exactly as in REL.
Interpretation of $\mu X.F$ in NUTS
Interpretation of $\mu X. F$ in **NUTS**

![Diagram]

$\overline{F} : (X, U) \mapsto (FX, \Phi U)$ where $\Phi U \in T(FX)$.
Interpretation of $\mu X.F$ in NUTS

$\overline{F} : (X, U) \mapsto (FX, \Phi U)$ where $\Phi U \in T(FX)$.

Assume μF exists.

$g : \text{Tot}(\mu F) \rightarrow \text{Tot}(\mu F)$

$R \mapsto \Phi R$
Interpretation of $\mu X. F$ in NUTS

$\overline{F} : (X, U) \mapsto (FX, \Phi U)$ where $\Phi U \in T(FX)$.

Assume μF exists.

$g : \text{Tot}(\mu F) \to \text{Tot}(\mu F)$

$R \mapsto \Phi R$

By Tarski theorem, μg exists.

$\overline{\mu F} = (\mu F, \mu g)$.
The interpretation of proofs in \textbf{NUTS} is same as their interpretation in \textbf{REL}.
Validity implies totality

Theorem: If π is a valid proof of the sequent $\vdash \Gamma$, then $\llbracket \pi \rrbracket \in T[\Gamma]$.
Validity implies totality

Theorem: If π is a valid proof of the sequent Γ, then $[\pi] \in T[\Gamma]$.

The proof is similar to the proof of soundness of LKID$^\omega$ in 1.

We needed to adapt the proof in two aspects:

- considering μLL_{∞} instead of LKID$^\omega$,
- and deal with the denotational semantics instead of Tarskian semantics.

Adapation for μLL_{∞}: somehow done in 2

So, basically, the main point of this proof is adapting a Tarskian soundness theorem to a denotational semantic soundness.

An example

A syntactic-free proof that any term of booleans has a defined boolean value true or false

Consider $1 \oplus 1$ (The type of booleans).
\[
\llbracket 1 \oplus 1 \rrbracket = (\{ (1, \star), (2, \star) \}, \mathcal{T}[1 \oplus 1]) \text{ where }
\]
\[
\mathcal{T}(\llbracket 1 \oplus 1 \rrbracket) = \mathcal{P}(\llbracket 1 \oplus 1 \rrbracket) \setminus \emptyset
\]

For any proof π of $1 \oplus 1$, we have $\llbracket \pi \rrbracket \in \mathcal{T}[1 \oplus 1]$. Hence $\llbracket \pi \rrbracket \neq \emptyset$.
Future work

- Categorical axiomitazation of models of $\mu\mathsf{LL}_\infty$.
- Try to understand what sort of information can be obtained from a total interpretation, if not syntactic validity.
Thanks!