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Denotational Semantics

The denotational semantic is a way of assigning suitable
mathematical entities to the objects of a given language.



Denotational semantics

Let's consider the numerals and numbers:

» The numerals are expression in a familiar language such as
binary, octal, or decimal numerals.

» So, there are different languages to convey same concepts.

» Even in one language, there are different expression for a same
concepts (3+3=24+24+2=6=..).

The problem of explaining these equivalences of expressions is one
of the tasks of semantics and is much too important to be left to
syntax alone.



Denotational semantics

A way of expressing the meaning of types and programs
independent from their syntactic, operational, specification.

Main principles, since Scott:
» Formulas ~» complete partial orders. u < v means “u less
defined than v".
» Proofs ~» Continuous function (a finite amount of information
at the input is enough to produce finite amount of
information).



What we consider in this talk

Language: Non-wellfounded linear logic (uLLs).

Model: Category REL of sets and relations and non-uniform
totality spaces (NUTS).
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Interpretation of formulas in REL

A(Cy, -+, Ck) — k-ary CPO functor [[A}]?

Fact (M. Wand)

IfF : REL — REL is a CPO functor, then F has a final coalgebra
which is also an initial algebra, ulF = vIF: the “least fixpoint” of F.



Interpretation of proofs in REL

s
- T, Flo¢.F/(] (o — fold)| = 11
FT,0(.F

[7lrec = | J [olrer

pefin(m)



Example

Consider the following circular proof 7=,:

nat
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On the relation between the interpretation of finite proofs
and their circular correspondent

Fact
Let  be a puLL proof. Then we have [r] = [Trans(x)] where the

interpretation is given in a model (L, L) of uLL.



Two properties of the semantics

Soundness: If m and 7’ are proofs of - I and 7 reduces to 7’ by
the cut-elimination rules of ulLLs, then [7]reL = [7']REL-

Validity implies totality: If w is a valid proof of the sequent - T,
then [x] is a “total element of [I]".



Totality candidates on a set E

Given 7 C P(E) we set

Tl:{u’§E| VueT und # o}

Definition (Totality candidates)
T is a totality candidate for E if T = T++.
(Equivalently 7+ C T, equivalently 7 = S+ for some
S CP(E).)
Fact
» T is a totality candidate on E iff T C P(E) and T =1T.

» Tot(X) (The set of all totality candidates on E), ordered with
C, is a complete lattice (it is closed under arbitrary
intersections).



Non-uniform totality spaces (NUTS)

A NUTS is a pair X = (|X], TX) where
> |X]is a set
» 7 X is a totality candidate on | X], that is, a 1-closed subset of
P(IX1)-
t € NUTS(X,Y) if t € REL(|X],|Y]) and

YueTX t-ueTY

Fact
NUTS is a model of LL where the proofs are interpreted exactly as
in REL.



Interpretation of uX.F in NUTS

NUTS —F . NUTS

|,

REL —— REL



Interpretation of uX.F in NUTS

NUTS —F & NUTS

|,

REL —— REL

F (X, U) — (FX,®U) where U € T(FX).



Interpretation of uX.F in NUTS

NUTS —F & NUTS

|,

REL — F . REL

F: (X, U) — (FX,®U) where ®U € T(FX).
Assume pF exists.
g : Tot(uF) — Tot(uF)

R— ®oR



Interpretation of uX.F in NUTS

NUTS — F . NUTS

|,

REL — F . REL

F:(X,U)— (FX,®U) where U € T(FX).
Assume pF exists.
g : Tot(uF) — Tot(uF)
R +— ®R

By Tarski theorem, ug exists.

uF = (uF, pg).



Interpretation of proofs

The interpretation of proofs in NUTS is same as their
interpretation in REL.



Validity implies totality

Theorem: If 7 is a valid proof of the sequent T, then [z € T[I].



Validity implies totality

Theorem: If 7 is a valid proof of the sequent T, then [r] € T[I].

The proof is similar to the proof of soundness of LKID* in 1.

We needed to adapt the proof in two aspects:
» considering uLLy, instead of LKID*,

» and deal with the denotational semantics instead of Tarskian

semantics.

Adapation for uLL..: somehow done in 2

So, basically, the main point of this proof is adapting a Tarskian soundness
theorem to a denotational semantic soundness.

! James Brotherston.Sequent Calculus Proof Systems for Inductive Def-initions.
PhD thesis, University of Edinburgh, November 2006.

2Amina Doumane. On the infinitary proof theory of logics with fixedpoints. PhD
thesis, Paris Diderot University, 2017.



An example

A syntatic-free proof that any term of booleans has a defined
boolean value true or false

Consider 1 & 1 (The type of booleans).
[1©1] = ({(1,%),(2,%)}, T[L @ 1]) where

T([e1]) =P([1e 1)\

For any proof 7 of 1 & 1, we have 7] € T[1 & 1].
Hence [r] # 0.



Future work

» Categorical axiomitazation of models of ulLL.

» Try to understand what sort of information can be obtained
from a total interpretation, if not syntactic validity.
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