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µLL∞:
circular and non-wellfounded
proofs for linear logic with

least and greatest fixed-points
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µLL∞

Non-Wellfounded Sequent Calculus
Consider your favourite logic L & add fixed points as in the µ-calculus

µLL∞

Pre-proofs are the trees coinductively generated by:

L inference rules
inference for µ,ν:

Γ,F [µX .F/X ] `∆
[µl]Γ,µX .F `∆

Γ,F [νX .F/X ] `∆
[νl]Γ,νX .F `∆

Γ ` F [µX .F/X ],∆
[µr]Γ ` µX .F ,∆

Γ ` F [νX .F/X ],∆
[νr]Γ ` νX .F ,∆

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely
many sub-(pre)proofs.

µLLω

Pre-proofs are unsound!!
Need for a validity condition

... [µ]
` µX .X

[µ]
` µX .X

... [ν]
` νX .X ,F

[ν]
` νX .X ,F

[Cut]
` F

Involutive negation, ( )⊥: operator on formula, not a connective.
One-sided sequents as lists: ` A1, . . . ,An. (Γ `∆ is a short for ` Γ⊥,∆)
µ and ν are dual binders. Ex: (νX .X ⊗X)⊥ = µX .X `X .

3 / 31



µLL∞ Non-Wellfounded Sequent Calculus
Consider your favourite logic LL & add fixed points as in the µ-calculus

µLL∞ Pre-proofs are the trees coinductively generated by:

LL inference rules
inference for µ,ν:

Γ,F [µX .F/X ] `∆
[µl]Γ,µX .F `∆

Γ,F [νX .F/X ] `∆
[νl]Γ,νX .F `∆

Γ

` F [µX .F/X ],∆
[µr]

Γ

` µX .F ,∆

Γ

` F [νX .F/X ],∆
[νr]

Γ

` νX .F ,∆

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely
many sub-(pre)proofs. µLLω

Pre-proofs are unsound!!
Need for a validity condition

... [µ]
` µX .X

[µ]
` µX .X

... [ν]
` νX .X ,F

[ν]
` νX .X ,F

[Cut]
` F

Involutive negation, ( )⊥: operator on formula, not a connective.
One-sided sequents as lists: ` A1, . . . ,An. (Γ `∆ is a short for ` Γ⊥,∆)
µ and ν are dual binders. Ex: (νX .X ⊗X)⊥ = µX .X `X .

3 / 31



µLK∞ Inferences

µLL formulas

F ::= a | > |⊥| F `F | F & F | ?F negative LL formulas
| a⊥ | 0 | 1 | F⊗F | F ⊕F | !F positive LL formulas
| X | µX .F | νX .F lfp & gfp

µLL∞

Inference Rules

(with ancestor relation)

(ax)
` F ,F⊥

` Γ,F ` F⊥,∆
(cut)

` Γ,∆
` Γ,G ,F ,∆

(ex)
` Γ,F ,G ,∆

` F ,Γ
(?)

`?F ,Γ
` F ,?Γ

(!)
`!F ,?Γ

`

?

F ,

?

F ,Γ
(c)

`

?

F ,Γ
` Γ

(w)
`

?

F ,Γ
(>)

` >,Γ
` F ,Γ ` G ,Γ

(∧)
` F ∧G ,Γ

` Ai ,Γ
(∨i )` A1∨A2,Γ

(no rule for 0)

` Γ
(⊥)

` ⊥,Γ
` F ,G ,Γ

(`)
` F `G ,Γ

` F ,Γ ` G ,∆
(⊗)

` F⊗G ,Γ,∆
(1)

` 1

` G [νX .G/X ],Γ
(ν)

` νX .G ,Γ
` F [µX .F/X ],Γ

(µ)
` µX .F ,Γ

How to distinguish valid nwf proofs from invalid ones?
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Fischer-Ladner subformulas
FL(F ) is the least set of formula occurrences such that:

F ∈ FL(F );
G1 ?G2 ∈ FL(F )⇒ G1,G2 ∈ FL(F ) for ? ∈ {⊕,&,`,⊗};
σX .B ∈ FL(F )⇒ B[σX .B/X ] ∈ FL(F ) for σ ∈ {µ,ν};
mG ∈ FL(F )⇒ G ∈ FL(F ) for m ∈ {!,?}.

Fact

FL(F ) is a finite set for any formula F .

Example: F = νX .((a`a⊥)⊗(!X⊗µY .X ))
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Infinite threads, validity

F = νX .((a`a⊥)⊗(!X⊗µY .X )).
G = µY .F

(ax)
` a,a⊥

(`)
` a`a⊥

` F
(!)

`!F
` F

(µ)
` G

(⊗)
`!F⊗G

(⊗)
` (a`a⊥)⊗(!F⊗G)

(ν)
` F

A thread on an infinite
branch (Γi )i∈ω is an infinite
sequence of formula occur-
rences (Fi )i≥k such that for
any i ≥ k, Fi ∈ Γi and Fi+1 is
an immediate ancestor of Fi .

A thread is valid if it unfolds infinitely many ν . More precisely, if the
minimal recurring principal formula of the thread is a ν-formula.

A proof is valid if every infinite branch contains a valid thread.
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Fixed-point encoding the exponentials
Consider the following encoding of LL exponentials:

?•F , µX .F ⊕ (⊥⊕ (X `X ))
!•F , νX .F & (1& (X ⊗X ))

The exponential inferences can be derived:
Dereliction (?d•) : Contraction (?c•) : Weakening (?w•) :

` F ,∆
(⊕1)

` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

`?•F ,?•F ,∆
(`)

`?•F`?•F ,∆
(⊕2)

` ⊥⊕ (?•F`?•F ),∆
(⊕2)

` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

`∆
(⊥)

` ⊥,∆
(⊕1)

` ⊥⊕ (?•F`?•F ),∆
(⊕2)

` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

Promotion (!p•):

` F ,?•∆

(1)
` 1

(?w•)
` 1,?•∆

`!•F ,?•∆ `!•F ,?•∆
(⊗)

`!•F⊗!•F ,?•∆,?•∆
(?c•)

`!•F⊗!•F ,?•∆
(ν) , (&) , (&)

`!•F ,?•∆
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Fixed-point encoding the exponentials
Consider the following encoding of LL exponentials:

?•F , µX .F ⊕ (⊥⊕ (X `X ))
!•F , νX .F & (1& (X ⊗X ))

Preservation of validity
π is a valid µMLL∞ pre-proof of ` Γ iff
π• is a valid µMALL∞ pre-proof of ` Γ•.

Preservation of provability
If ` Γ is provable in µMLL∞ (resp. µMLLω),
then ` Γ• is provable in µMALL∞ (resp. µMALLω).

Shortcomings of this encoding
No soundness result for the encoding: converse result for the
preservation of provability. Loss of Seely isomorphisms, etc.
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Circular & finitary proofs

From finitary to circular proofs

Theorem
Finitary proofs can be transformed to (valid) circular proofs.

The key translation step is the following:

π1

` Γ,S
π2

` S⊥,F [S]
(ν)

` Γ,νX .F
7−→ [π1]
` Γ,S

[π2]

` S⊥,F [S]
` S⊥,νX .F

(rF )
` F [S]⊥,F [νX .F ]

(cut)
` S⊥,F [νX .F ]

(ν)
` S⊥,νX .F

(cut)
` Γ,νX .F

From circular to finitary proofs
Open problem for µLLω .
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Cut-elimination for µLL∞
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Examples of circular proofs
N = µX .1⊕X

π0 =
(1)

` 1
(⊕1)

` 1⊕N
(µ)

` N
πk+1 =

πk
(⊕2)

` 1⊕N
(µ)

` N
πsucc =

(ax)
N ` N

(⊕2)
N ` 1⊕N

(µ)
N ` N

πdouble =

(1)
` 1

(⊕1)
` 1⊕N

(µ)
` N

(⊥)
1 ` N

N ` N
(⊕2)

N ` 1⊕N
(µ)

N ` N
(⊕2)

N ` 1⊕N
(µ)

N ` N
(&)

1⊕N ` N
(ν)

N ` N

πk πsucc
(cut)

` N
−→? πk+1

πk πdouble
(cut)

` N
−→? π2k
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Examples of circular proofs
N = µX .1⊕X

WNat(π) =

π

` Γ
(⊥)

1 ` Γ N ` Γ
(&)

1⊕N ` Γ
(ν)

N` Γ

πk πdup
(cut)

` N⊗N
−→?

πk πk
(⊗)

` N⊗N
πk WNat(π)

(cut)
` Γ

−→? π

` Γ
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Examples of circular proofs
S = νX .(1& (N⊗X))

enum : Nat→ Stream
enum(n) = n :: enum(succ(n))

πenum =
(1)

` 1
(w)

!N ` 1

(ax)
N ` N

(?)
!N ` N

πsucc

N ` N
(?)

!N ` N
(!)

!N `!N !N ` S
(cut)

!N ` S
(⊗)

!N, !N ` N⊗S
(c)

!N ` N⊗S
(&)

!N ` 1& (N⊗S)
(ν)

!N ` S

πk
(?)

` ?N πenum
(cut)

` S
−→ω

(1)
` 1

πk

(1)
` 1

πk+1

(1)
` 1

πk+2

. . .

` S
(⊗)

` N⊗S
(ν) , (&)

` S
(⊗)

` N⊗S
(ν) , (&)

` S
(⊗)

` N⊗S
(&)

` 1& (N⊗S)
(ν)

` S
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Cut-elimination for µLL∞

Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞ cut-reduction sequences converge to cut-free
µMALL∞ proofs.

Idea
The proof goes by:

considering the following encoding of LL exponential
modalities:

?•F = µX .F ⊕ (⊥⊕ (X `X ))
!•F = νX .F & (1& (X ⊗X ))

translating µLL∞ sequents and proofs in µMALL∞,
simulating µLL∞ cut-reduction sequences in µMALL∞ and
applying µMALL∞ cut-elimination theorem.
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Encoding µLL∞ in µMALL∞

?•F = µX .F ⊕ (⊥⊕ (X `X)) !•F = νX .F & (1& (X ⊗X))
µMALL∞ derivability of the exponential rules (?d•,?c•, ?w•, !p•):
Dereliction : Contraction : Weakening :

` F ,∆
(⊕1)

` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

`?•F ,?•F ,∆
(`)

`?•F`?•F ,∆
(⊕2)

` ⊥⊕ (?•F`?•F ),∆
(⊕2)

` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

`∆
(⊥)

` ⊥,∆
(⊕1)

` ⊥⊕ (?•F`?•F ),∆
(⊕2)

` F ⊕ (⊥⊕ (?•F`?•F )),∆
(µ)

`?•F ,∆

Promotion:
` F ,?•∆

(1)
` 1

(?w•)
` 1,?•∆

`!•F ,?•∆ `!•F ,?•∆
(⊗)

`!•F⊗!•F ,?•∆,?•∆
(?c•)

`!•F⊗!•F ,?•∆
(ν) , (&) , (&)

`!•F ,?•∆

Preservation of validity
π is a valid µMLL∞ pre-proof of ` Γ iff
π• is a valid µMALL∞ pre-proof of ` Γ•.
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Simulation of µLL∞ cut-elimination steps
µLL∞ cut-elimination steps can be simulated by the previous
encoding.

For instance, the following reduction can be simulated by applying
the external reduction rule (µ)/(cut) followed by the external
reduction rule (⊕)/(cut).

` F ,G ,Γ
(?d•)

`?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
(cut)

` F ,Γ,∆
(?d•)

`?•F ,Γ,∆

Challenge: to show that the simulation of derivation also holds
(i) for the reductions involving [!p] as well as
(ii) for reductions occurring above a promotion rule (aka. in a
box) since the encoding of [!p] uses an infinite, circular derivation.
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Simulation of µLL∞ cut-elimination steps
Cut-commutation rules

` F ,G ,Γ
(?d•)

`?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,Γ,∆
−→2

` F ,G ,Γ ` G⊥,∆
(cut)

` F ,Γ,∆
(?d•)

`?•F ,Γ,∆

`?•F ,?•F ,G ,Γ
(?c•)

`?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,Γ,∆
−→3

`?•F ,?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,?•F ,Γ,∆
(?c•)

`?•F ,Γ,∆

` G ,Γ
(?w•)

`?•F ,G ,Γ ` G⊥,∆
(cut)

`?•F ,Γ,∆
−→3

` G ,Γ ` G⊥,∆
(cut)

` Γ,∆
(?w•)

`?•F ,Γ,∆

` F ,?•G ,?•Γ
(!p•)

`!•F ,?•G ,?•Γ
` G ,?•∆

(!p•)
`!•G⊥,?•∆

(cut)
`!•F ,?•Γ,?•∆

−→ω
` F ,?•G ,?•Γ

` G ,?•∆
(!p•)

`!•G⊥,?•∆
(cut)

` F ,?•Γ,?•∆
(!p•)

`!•F ,?•Γ,?•∆
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Simulation of µLL∞ cut-elimination steps
Key-cut rules

π

` F ,Γ
(?d•)

`?•F ,Γ

π ′

` F⊥,?•∆
(!p•)

`!•F⊥,?•∆
(cut)

` Γ,?•∆

−→2
π

` F ,Γ
π ′

` F⊥,?•∆
(cut)

` Γ,?•∆

π

`?•F ,?•F ,Γ
(?c•)

`?•F ,Γ

π ′

` F⊥,?•∆
(!p•)

`!•F⊥,?•∆
(cut)

` Γ,?•∆

−→4int,4×#∆ext

π

`?•F ,?•F ,Γ
π ′

`!•F⊥,?•∆
π ′

`!•F⊥,?•∆
(mcut)

` Γ,?•∆,?•∆
(?c•) ?

` Γ,?•∆
π

` Γ
(?w•)

`?•F ,Γ

π ′

` F⊥,?•∆
(!p•)

`!•F⊥,?•∆
(cut)

` Γ,?•∆

−→3int,3×#∆ext
π

` Γ
(?w•) ?

` Γ,?•∆
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Cut-elimination for µLL∞

1 Consider a fair cut-reduction sequence σ = (πi )i∈ω in µLL∞

from π.
2 σ converges to a cut-free µLL∞ pre-proof. By contradiction:

Otherwise, a suffix τ of σ would contain only key-cut steps.
The encoding of τ in µMALL∞, τ• would either be
unproductive or would produce an infinite tree of encodings of
?w,?c containing no ν inference. This would contradict
µMALL∞ cut-elimination theorem.

3 As σ is productive and since reduction only occurs above cuts,
it strongly converges to some µLL∞ cut-free pre-proof π ′.

4 σ• is a transfinite sequence from π• strongly converging to
π ′•: because π ′• – the encoding of π ′ – is cut-free and
because only ! commutations and reductions above a
promotion create infinite reductions: boxes are simulated by
strongly converging sequences.

5 The compression lemma applies: there exists ρ an ω-indexed
µMALL∞ cut-reduction sequence converging to π ′•.

6 Fairness of σ transfers to ρ: ρ is a fair µMALL∞ cut-red
sequence.

7 Therefore, by µMALL∞ cut-elimination thm, ρ has a limit,
π ′•, which is a valid cut-free µMALL∞ proof.

8 Using preservation of validity, π ′ is a valid cut-free
µLL∞-proof.
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About Seely isomorphisms
Two conjunctions and two disjunctions in LL: additives and multiplicatives.
In LK, they are interderivable thanks to structural rules. One has:

(ax)
A ` A (Wl )A,B ` A

(ax)
B ` B (Wl )A,B ` B

(∧a
r )

A,B ` A∧a B
(∧m

l )
A∧m B ` A∧a B

(ax)
A ` A (∧a1

l )
A∧a B ` A

(ax)
B ` B (∧a2

l )
A∧a B ` B (∧m

r )
A∧a B,A∧a B ` A∧m B

(Cl )A∧a B ` A∧m B
A, B are weakened on the left, A∧a B is contracted on the left.

In LL, we do not have free structural rules, but only thanks to exponentials, so
we need to mark formulas with exponentials where structural rules are needed,
leading to: !A⊗!B a` !(A & B).

πS =

(ax)
A ` A (?)
!A ` A (w)

!A, !B ` A

(ax)
B ` B (?)
!B ` B (w)

!A, !B ` B
(&)

!A, !B ` A & B
(!)

!A, !B ` !(A & B)
(`)

!A⊗!B ` !(A & B)

π ′S =

(ax)
A ` A (⊕1)

A & B ` A (?)
!(A & B) ` A

(!)
!(A & B) ` !A

(ax)
B ` B (⊕2)

A & B ` B (?)
!(A & B) ` B

(!)
!(A & B) ` !B

(⊗)
!(A & B), !(A & B) ` !A⊗!B

(c)
!(A & B) ` !A⊗!B
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B ` B (?)
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!A, !B ` B
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!A, !B ` !B
(⊗)

!A, !B, !A, !B ` !A⊗!B
(c)2

!A, !B ` !A⊗!B
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About Seely isomorphisms
What about the fixed-point encoding?

(πS )• (π ′S )•
(cut)

!•A⊗!•B ` !•A⊗!•B

→ω
cut

(ax)
A ` A (?)

!•A ` A (w)
!•A, !•B ` A

(!)
!•A, !B ` !A

(ax)
B ` B (?)

!•B ` B (w)
!•A, !•B ` B

(!)
!•A, !•B ` !•B

(⊗)
!•A, !•B, !•A, !•B ` !•A⊗!•B

(c)2

!•A, !•B ` !•A⊗!•B
(`)

!•A⊗!•B ` !•A⊗!•B

The left occurrences of A,B require two unfolding of the fixed-point, while the
right occurrences of A,B require only one unfolding of the fixed-point.
The fixed-point unfolding structure tracks te history of the structural rules.
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Cut-elimination for µLK∞, µLJ∞

The usual call-by-value embedding of LJ in ILL (intuitionnistic LL) can be
lifted to µLJ∞: indeed, the translation of proofs does not introduce cuts.
For µLK∞, it is slightly trickier as the well-known T/Q-translations
introduce cuts breaking validity. An alternative translation which does
not introduce cuts can be used.

Moreover, one gets the skeleton of a µLL∞ (resp. µILL∞) proof which is
a µLK∞ (resp. µLJ∞) proof, simply by erasing the exponentials
(connectives and inferences), preserving validity.
The skeleton of a µLL∞ (resp. µILL∞) cut-reduction sequence is a µLK∞

(resp. µLJ∞) cut-reduction sequence. As a result, one has:

Theorem
If π is an µLK∞ (resp. µLJ∞) proof of ` Γ (resp. Γ ` F), there exists a
µLL∞ (resp. µILL∞) proof of the translated sequents.

Theorem
There are productive cut-reduction strategies producing cut-free µLK∞

(resp. µLJ∞) proofs.
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Conclusion

To sum up:
Fixed-point logics extending LL/LK/LJ with finite circular or
non-wellfounded proofs;
A parity condition to discriminate valid/invalid proofs;
Syntactic cut elimination for various nwf sequent calculi:
µMALL∞, µLL∞, µLJ∞, µLK∞.
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Thanks!
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µMALL∞ Cut elimination
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µMALL∞ Cut Elimination Theorem

Theorem (Baelde, Doumane & S, 2016)
Fair µMALL∞

m

cut-reduction sequences converge to cut-free µMALL∞

proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of µMALL∞.

Proof uses a locative treatment of occurrences.

Strategy: “push” the cuts away from the root.

Cut-Cut:

` Γ,F ` F⊥,∆,G
(cut)

` Γ,∆,G ` G⊥,Σ
(cut)

` Γ,∆,Σ
←→ ` Γ,F

` F⊥,∆,G ` G⊥,Σ
(cut)

` F⊥,∆,Σ
(cut)

` Γ,∆,Σ
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` Γ,∆,Σ
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(mcut)
` Γ,∆,Σ

26 / 31



Cut elimination procedure
External phase: Cut-commutation cases

`∆,F ,G
(`)

`∆,F `G . . .
(mcut)

` Σ,F `G
⇒

`∆,F ,G . . .
(mcut)

` Σ,F ,G
(`)

` Σ,F `G

`∆,F `∆,G
(&)

`∆,F & G . . .
(mcut)

` Σ,F & G
⇒
`∆,F . . .

(mcut)
` Σ,F

`∆,G . . .
(mcut)

` Σ,G
(&)

` Σ,F & G

`∆,F [µX .F/X ]
(µ)

`∆,µX .F . . .
(mcut)

` Σ,µX .F
⇒

`∆,F [µX .F/X ] . . .
(mcut)

` Σ,F [µX .F/X ]
(µ)

` Σ,µX .F

+ additional cases

Cut-commutation steps are productive
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Cut elimination procedure
Internal Phase: Key cases

. . .

`∆,F2 `∆,F1
(&)

`∆,F2 & F1

` Γ,F⊥i
(⊕i )

` Γ,F⊥1 ⊕F⊥2
(mcut)

` Σ
⇒ . . . `∆,Fi ` Γ,F⊥i

(mcut)
` Σ

. . .

`∆,F [µX .F/X ]
(µ)

`∆,µX .F
` Γ,F⊥[νX .F⊥/X ]

(ν)
` Γ,νX .F⊥

(mcut)
` Σ

⇒ . . . `∆,F [µX .F/X ] ` Γ,F⊥[νX .F⊥/X ]
(mcut)

` Σ

+ additional cases

Key cases are not productive
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Cut elimination algorithm
Internal phase: Perform key case reductions as long as you
cannot do anything else.
External phase: Build a part of the output tree by applying
cut-commutation steps as soon possible, being fair.
Repeat.

Remark: We consider a fair strategy ie. every reduction which is
available at some point will be performed eventually.

Theorem
Internal phases always halt. Cut-elimination produces a pre-proof.

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

µLLω is not stable by cut-elimination
Eliminating cuts from a µLLω proof (circular) may result in a µLL∞, non
circular, proof.
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Cut elimination is productive
Theorem
Internal phase always halts.
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Cut elimination is productive
Theorem
Internal phase always halts.

Proof by contradiction: Suppose that there is a proof of F for
which the internal phase does not halt.

` F
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Cut elimination is productive
Theorem
Internal phase always halts.

Proof by contradiction: Consider the trace of this divergent
reduction.

` F

30 / 31



Cut elimination is productive
Theorem
Internal phase always halts.

Proof by contradiction: No rule on F is applied in the trace,
otherwise the internal phase would halt.

` F

. . .
(r )

`Σ,F
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Cut elimination is productive
Theorem
Internal phase always halts.

Proof by contradiction: We can eliminate the occurrences of F
from the trace. This yields a "proof" of `.

`

. . .
(r )

`Σ
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Cut elimination is productive
Theorem
Internal phase always halts.

Proof by contradiction: We show that the proof system is sound.
Contradiction.

`

. . .
(r )

`Σ
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Cut elimination produces a proof
Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

Proof: Let π? be the pre-proof obtained from π `∆ by cut
elimination. Suppose that a branch b of π? is not valid.

Let θ be the sub-derivation of π explored by the reduction
that produces b.
Fact: Threads of θ are the threads of b, together with
threads starting from cut formulas.
The validity of θ cannot rely on the threads of b.
θ µ is θ where we replace in ∆ any ν by a µ and any 1,> by
⊥,0.
Show that formulas containing only µ,⊥,0 and MALL
connectives are false.
θ µ proves a false sequent which contradicts soundness.
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