Cut-elimination for non-wellfounded proofs beyong $\mu \mathrm{MALL}$

RECIPROG workshop

Alexis Saurin
IRIF, CNRS, INRIA \& Université Paris Cité

2nd december 2022
Paris

$\mu \mathrm{LL}^{\infty}$:
 circular and non-wellfounded
 proofs for linear logic with least and greatest fixed-points

Non-Wellfounded Sequent Calculus

Consider your favourite logic $\mathscr{L} \&$ add fixed points as in the μ-calculus

Pre-proofs are the trees coinductively generated by:

- \mathscr{L} inference rules
- inference for μ, v :

$$
\begin{aligned}
& \frac{\Gamma, F[\mu X \cdot F / X] \vdash \Delta}{\Gamma, \mu X \cdot F \vdash \Delta}\left[\mu_{1}\right] \frac{\Gamma, F[v X \cdot F / X] \vdash \Delta}{\Gamma, v X \cdot F \vdash \Delta}\left[v_{1}\right] \\
& \frac{\Gamma \vdash F[\mu X \cdot F / X], \Delta}{\Gamma \vdash \mu X . F, \Delta}\left[\mu_{r}\right] \frac{\Gamma \vdash F[v X \cdot F / X], \Delta}{\Gamma \vdash v X \cdot F, \Delta}\left[v_{r}\right]
\end{aligned}
$$

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely many sub-(pre)proofs.

Pre-proofs are unsound!!
Need for a validity condition

$\mu \mathrm{LL}^{\infty}$ Non-Wellfounded Sequent Calculus

Consider your favourite logic LL \& add fixed points as in the μ-calculus
$\mu L L^{\infty}$ Pre-proofs are the trees coinductively generated by:

- LL inference rules
- inference for μ, v :

$$
\frac{\vdash F[\mu X . F / X], \Delta}{\vdash \mu X . F, \Delta}\left[\mu_{r}\right] \frac{\vdash F[v X . F / X], \Delta}{\vdash v X . F, \Delta}\left[v_{r}\right]
$$

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely many sub-(pre)proofs.

Pre-proofs are unsound!! Need for a validity condition

$$
\begin{array}{cccc}
\frac{\vdots}{\frac{\vdots \mu X . X}{\vdash-\mu X . X}} & {[\mu]} & \frac{\vdots}{\mid-v X \cdot X, F} & {\left[v L^{\omega}\right.} \\
\vdash F & \frac{[v]}{\vdash v X . X, F} & {[\mathrm{Cut}]}
\end{array}
$$

Involutive negation, ($)^{\perp}$: operator on formula, not a connective. One-sided sequents as lists: $\vdash A_{1}, \ldots, A_{n} . \quad\left(\Gamma \vdash \Delta\right.$ is a short for $\left.\vdash \Gamma^{\perp}, \Delta\right)$ μ and v are dual binders. Ex: $(v X . X \otimes X)^{\perp}=\mu X . X>X$.

$\mu \mathrm{LK}^{\infty}$ Inferences

Inference Rules

$$
\begin{aligned}
& \overline{\vdash F, F^{\perp}}(\text { ax }) \frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta}{\vdash \Gamma, \Delta}(\text { cut })
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\vdash G[v X . G / X], \Gamma}{\vdash v X . G, \Gamma} \text { (v) } \frac{\vdash F[\mu X . F / X], \Gamma}{\vdash \mu X . F, \Gamma}(\mu) \\
& \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta} \text { (ex) }
\end{aligned}
$$

$\mu \mathrm{LL}^{\infty}$ Inferences

μ LL formulas

$$
F::=\begin{array}{rr}
a|T| \perp|F \curvearrowright F| F \& F \mid ? F & \text { negative } L L \text { formulas } \\
& \left|a^{\perp}\right| 0|1| F \otimes F|F \oplus F|!F \\
& \text { positive } L L \text { formulas } \\
& |\mu X . F| v X . F
\end{array}
$$

μ LL ${ }^{\infty}$ Inference Rules

$$
\begin{align*}
& \overline{\vdash F, F^{\perp}}(\text { ax }) \frac{\vdash \Gamma, F \vdash F^{\perp}, \Delta}{\vdash \Gamma, \Delta} \text { (cut) } \quad \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta} \text { (ex) } \\
& \frac{\vdash F, \Gamma}{\vdash ? F, \Gamma} \text { (?) } \quad \frac{\vdash F, ? \Gamma}{\vdash!F, ? \Gamma} \\
& \text {) } \\
& \overline{\vdash T, \Gamma}(T) \frac{\vdash F, \Gamma \quad \vdash G, \Gamma}{\vdash F \& G, \Gamma} \text { (\&) } \\
& \frac{\vdash ? F, ? F, \Gamma}{\vdash ? F, \Gamma} \text { (c) } \frac{\vdash \Gamma}{\vdash ? F, \Gamma} \text { (w) } \\
& \vdash \top, \Gamma \quad \vdash F \& G, \Gamma \\
& \begin{array}{ll}
\stackrel{\vdash A_{i}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma}\left(\oplus_{i}\right) & \text { (no rule } \\
\vdash F, \Gamma \quad \vdash G, \Delta \\
\vdash F \otimes G, \Gamma, \Delta
\end{array}(\otimes) \quad \overline{\vdash \mathbf{1}} \\
& \text { (} \begin{aligned}
& \frac{\vdash F, G, \Gamma}{\vdash F X G, \Gamma} \\
& \frac{\vdash G[v X, G / X], \Gamma}{\vdash v X, G, \Gamma}
\end{aligned} \\
& \text { (8) } \vdash \\
& \frac{\vdash \Gamma}{\vdash \perp, \Gamma} \\
& \text { (v) } \frac{\vdash F[\mu X, F / X], \Gamma}{\vdash \mu X, F, \Gamma}
\end{align*}
$$

How to distinguish valid nwf proofs from invalid ones?

μL^{∞} Inferences

μ LL formulas

$$
F::=\begin{array}{rrr}
a|\top| \perp|F \propto F| F \& F \mid ? F & \text { negative } L L \text { formulas } \\
& \left|a^{\perp}\right| 0|1| F \otimes F|F \oplus F|!F & \text { positive } L L \text { formulas } \\
& X|\mu X . F| v X . F & \text { Ifp \& gfp }
\end{array}
$$

μL^{∞} Inference Rules (with ancestor relation)

$$
\begin{aligned}
& \overline{\vdash F, F^{\perp}}(a x) \frac{\vdash \Gamma, F \vdash F^{\perp}, \Delta}{ค \Gamma, \Delta}(\text { cut }) \\
& \frac{\vdash \Gamma, G, F, \Delta}{\vdash \Gamma, F, G, \Delta} \text { (ex) } \\
& \frac{\vdash F, \Gamma}{\vdash ? F, \Gamma} \\
& \text { (?) } \frac{\vdash F, ? \Gamma}{\vdash!F, ? \Gamma} \\
& \frac{\vdash ? F, ? F, \Gamma}{\vdash ? F, \Gamma} \\
& \text { (c) } \frac{\vdash \Gamma}{\vdash ? F, \Gamma} \text { (w) } \\
& \overline{\vdash T, \Gamma} \\
& \text { (T) } \frac{\vdash F, \Gamma \vdash G, F}{\vdash F \& G, V} \\
& \text { (\&) } \\
& \frac{\vdash \Gamma}{\vdash \perp, \Gamma} \\
& \text { (} 1 \text {) } \frac{\vdash F, G, \Gamma}{\vdash F \mathcal{G}, \Gamma} \\
& \text { (8) } \\
& \begin{array}{cr}
\frac{\vdash A_{i}, \Gamma}{\vdash A_{1} \oplus A_{2}, \zeta}\left(\oplus_{i}\right) & \text { (no rule } \\
\frac{\vdash F, \Gamma}{\vdash F G, \Delta} \\
\vdash F \otimes G, \zeta, \Delta
\end{array}(\otimes) \quad \overline{\vdash \mathbf{1}} \\
& \frac{\vdash G[v X . G / X], \Gamma}{\vdash v X, G, V} \\
& \text { (v) } \frac{\vdash F[\mu X, F / X], \Gamma}{\vdash \mu X, F, \Gamma} \\
& \text { (} \mu \text {) }
\end{aligned}
$$

How to distinguish valid nwf proofs from invalid ones?

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \ngtr, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!, ?\}$.

Fact

$F L(F)$ is a finite set for any formula F.

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \ngtr, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!$,?\}.

Fact

$F L(F)$ is a finite set for any formula F.
Example: $F=v X .\left(\left(a \otimes a^{\perp}\right) \otimes(!X \otimes \mu Y . X)\right)$

$$
F L(F)=\{F,
$$

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \ngtr, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!$,? $\}$.

Fact

$F L(F)$ is a finite set for any formula F.

Example: $F=v X .\left(\left(a \not a^{\perp}\right) \otimes(!X \otimes \mu Y . X)\right)$

$$
F L(F)=\left\{F,\left(a \ngtr a^{\perp}\right) \otimes(!F \otimes \mu Y . F),\right.
$$

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \ngtr, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!$,? $\}$.

Fact

$F L(F)$ is a finite set for any formula F.
Example: $F=v X .\left(\left(a^{2} a^{\perp}\right) \otimes(!X \otimes \mu Y . X)\right)$

$$
F L(F)=\left\{F,\left(a \otimes a^{\perp}\right) \otimes(!F \otimes \mu Y . F), \begin{array}{l}
a^{\vee} a^{\perp}, \\
!F \otimes \mu Y . F,
\end{array}\right.
$$

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \gamma, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!, ?\}$.

Fact

$F L(F)$ is a finite set for any formula F.
Example: $F=v X .\left(\left(a \vee a^{\perp}\right) \otimes(!X \otimes \mu Y . X)\right)$

$$
F L(F)=\left\{F,\left(a \ngtr a^{\perp}\right) \otimes(!F \otimes \mu Y . F), \begin{array}{cc}
a \ngtr a^{\perp} & , \\
!F \otimes \mu Y . F, & a^{\perp} Y . F
\end{array}\right\}
$$

Fischer-Ladner subformulas

$F L(F)$ is the least set of formula occurrences such that:

- $F \in F L(F)$;
- $G_{1} \star G_{2} \in F L(F) \Rightarrow G_{1}, G_{2} \in F L(F)$ for $\star \in\{\oplus, \&, \ngtr, \otimes\}$;
- $\sigma X . B \in F L(F) \Rightarrow B[\sigma X . B / X] \in F L(F)$ for $\sigma \in\{\mu, v\}$;
- $m G \in F L(F) \Rightarrow G \in F L(F)$ for $m \in\{!, ?\}$.

Fact

$F L(F)$ is a finite set for any formula F.
Example: $F=v X .\left(\left(a^{\curvearrowright} a^{\perp}\right) \otimes(!X \otimes \mu Y . X)\right)$

Infinite threads, validity

$$
\begin{aligned}
& F=v X .\left(\left(a \otimes a^{\perp}\right) \otimes(!X \otimes \mu Y . X)\right) . \\
& G=\mu Y . F
\end{aligned}
$$

A thread on an infinite branch $\left(\Gamma_{i}\right)_{i \in \omega}$ is an infinite sequence of formula occurrences $\left(F_{i}\right)_{i \geq k}$ such that for any $i \geq k, F_{i} \in \Gamma_{i}$ and F_{i+1} is an immediate ancestor of F_{i}.

Infinite threads, validity

$$
\begin{aligned}
& F=v X .\left(\left(a \ngtr a^{\perp}\right) \otimes(!X \otimes \mu Y . X)\right) . \\
& G=\mu Y . F
\end{aligned}
$$

A thread on an infinite branch $\left(\Gamma_{i}\right)_{i \in \omega}$ is an infinite sequence of formula occurrences $\left(F_{i}\right)_{i \geq k}$ such that for any $i \geq k, F_{i} \in \Gamma_{i}$ and F_{i+1} is an immediate ancestor of F_{i}.

A thread is valid if it unfolds infinitely many v. More precisely, if the minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.

Infinite threads, validity

$$
\begin{aligned}
& F=v X .\left(\left(a^{X} a^{\perp}\right) \otimes(!X \otimes G)\right) \\
& G=\mu Y . v X .\left(\left(a^{\mathcal{P}} a^{\perp}\right) \otimes(!X \otimes Y)\right)
\end{aligned}
$$

A thread on an infinite branch $\left(\Gamma_{i}\right)_{i \in \omega}$ is an infinite sequence of formula occurrences $\left(F_{i}\right)_{i \geq k}$ such that for any $i \geq k, F_{i} \in \Gamma_{i}$ and F_{i+1} is an immediate ancestor of F_{i}.

A thread is valid if it unfolds infinitely many v. More precisely, if the minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.

Infinite threads, validity

$$
\begin{aligned}
& F=v X .\left(\left(a \ngtr a^{\perp}\right) \otimes(!X \otimes \mu Y . X)\right) . \\
& G=\mu Y . F
\end{aligned}
$$

A thread on an infinite branch $\left(\Gamma_{i}\right)_{i \in \omega}$ is an infinite sequence of formula occurrences $\left(F_{i}\right)_{i \geq k}$ such that for any $i \geq k, F_{i} \in \Gamma_{i}$ and F_{i+1} is an immediate ancestor of F_{i}.

A thread is valid if it unfolds infinitely many v. More precisely, if the minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.

Fixed-point encoding the exponentials

Consider the following encoding of LL exponentials:

$$
\begin{aligned}
& ? \bullet F \triangleq \mu X . F \oplus(\perp \oplus(X X X)) \\
& l^{\bullet} F \triangleq v X . F \&(1 \&(X \otimes X))
\end{aligned}
$$

Fixed-point encoding the exponentials

Consider the following encoding of LL exponentials:

$$
\begin{aligned}
& ? \bullet F \triangleq \mu X . F \oplus(\perp \oplus(X \not \subset X)) \\
& l^{\bullet} F \triangleq v X . F \&(1 \&(X \otimes X))
\end{aligned}
$$

The exponential inferences can be derived:
Dereliction $\left(? d^{\bullet}\right): \quad$ Contraction $\left(? c^{\bullet}\right): \quad$ Weakening (? $\left.\mathrm{w}^{\bullet}\right):$

$$
\frac{\vdash F, \Delta}{\vdash F \oplus(\perp \oplus(? \bullet F \gamma ? \bullet F)), \Delta}_{\vdash ? \cdot \bullet, \Delta}^{\left(\oplus_{1}\right)}{ }^{(\mu)}
$$

Fixed-point encoding the exponentials

Consider the following encoding of LL exponentials:

$$
\begin{aligned}
& ?^{\bullet} F \triangleq \mu X . F \oplus(\perp \oplus(X \ngtr X)) \\
& l^{\bullet} F \triangleq v X . F \&(1 \&(X \otimes X))
\end{aligned}
$$

Preservation of validity
π is a valid $\mu \mathrm{MLL}^{\infty}$ pre-proof of $\vdash \Gamma$ iff
π^{\bullet} is a valid μ MALL $^{\infty}$ pre-proof of $\vdash \Gamma^{\bullet}$.

Preservation of provability
If $\vdash \Gamma$ is provable in $\mu \mathrm{MLL}^{\infty}$ (resp. $\mu \mathrm{MLL}^{\omega}$), then $\vdash \Gamma^{\bullet}$ is provable in $\mu \mathrm{MALL}^{\infty}\left(\right.$ resp. $\left.\mu \mathrm{MALL}^{\omega}\right)$.

Fixed-point encoding the exponentials

Consider the following encoding of LL exponentials:

$$
\begin{aligned}
& ?^{\bullet} F \triangleq \mu X . F \oplus(\perp \oplus(X \ngtr X)) \\
& !^{\bullet} F \triangleq v X . F \&(1 \&(X \otimes X))
\end{aligned}
$$

Preservation of validity
π is a valid $\mu \mathrm{MLL}^{\infty}$ pre-proof of $\vdash \Gamma$ iff
π^{\bullet} is a valid μ MALL $^{\infty}$ pre-proof of $\vdash \Gamma^{\bullet}$.

Preservation of provability
If $\vdash \Gamma$ is provable in $\mu \mathrm{MLL}^{\infty}$ (resp. $\mu \mathrm{MLL}^{\omega}$), then $\vdash \Gamma^{\bullet}$ is provable in $\mu \mathrm{MALL}^{\infty}\left(\right.$ resp. $\left.\mu \mathrm{MALL}^{\omega}\right)$.

Shortcomings of this encoding
No soundness result for the encoding: converse result for the preservation of provability. Loss of Seely isomorphisms, etc.

Circular \& finitary proofs

From finitary to circular proofs
Theorem
Finitary proofs can be transformed to (valid) circular proofs.
The key translation step is the following:

From circular to finitary proofs
Open problem for $\mu \mathrm{LL}^{\omega}$.

Cut-elimination for $\mu \mathrm{LL}{ }^{\infty}$

Examples of circular proofs

$$
\mathrm{N}=\mu X .1 \oplus X
$$

Examples of circular proofs

$$
\mathrm{N}=\mu X .1 \oplus X
$$

$$
\frac{\pi_{\mathrm{k}} \pi_{\text {succ }}}{\vdash N}(c u t) \longrightarrow^{\star} \pi_{\mathrm{k}+1} \quad \frac{\pi_{k} \pi_{\text {double }}}{\vdash N}(c u t) \longrightarrow^{\star} \pi_{2 k}
$$

Examples of circular proofs

$$
N=\mu X .1 \oplus X
$$

$$
\mathrm{WNat}(\pi)=\frac{\frac{\frac{\pi}{\vdash \Gamma}}{1 \vdash \Gamma}(\perp) \quad N \vdash \Gamma}{\frac{1 \oplus N \vdash \Gamma}{N \vdash \Gamma}(\mathrm{r})}
$$

Examples of circular proofs

$$
N=\mu X .1 \oplus X
$$

$$
\mathrm{WNat}(\pi)=\frac{\frac{\frac{\pi}{\vdash \Gamma}}{1 \vdash \Gamma}(\perp) \quad N \vdash \Gamma}{\frac{1 \oplus N \vdash \Gamma}{N \vdash \Gamma}(v)}
$$

$$
\frac{\pi_{k} \pi_{\text {dup }}}{\vdash N \otimes N}(c u t) \quad \longrightarrow^{\star} \frac{\pi_{k} \pi_{k}}{\vdash N \otimes N} \quad(\otimes) \quad \frac{\pi_{k} \quad \operatorname{WNat}(\pi)}{\vdash \Gamma} \quad(c u t) \quad \longrightarrow \quad \frac{\pi}{\vdash \Gamma}
$$

Examples of circular proofs

$$
\begin{aligned}
S= & v X .(1 \&(N \otimes X)) \\
\operatorname{enum} & : N a t \rightarrow \operatorname{Stream} \\
\operatorname{enum}(n) & =n:: \operatorname{enum}(\operatorname{succ}(n))
\end{aligned}
$$

Examples of circular proofs

\[

\]

Cut-elimination for $\mu \mathrm{LL}^{\infty}$

Theorem (Baelde, Doumane \& S, 2016)
Fair $\mu \mathrm{MALL}{ }^{\infty}$ cut-reduction sequences converge to cut-free $\mu \mathrm{MALL}^{\infty}$ proofs.

Cut-elimination for $\mu \mathrm{LL}^{\infty}$

Theorem
Fair $\mu \mathrm{LL}{ }^{\infty}$ mcut-reduction sequences converge to cut-free $\mu \mathrm{LL}^{\infty}$ proofs.

Idea
The proof goes by:

- considering the following encoding of LL exponential modalities:

$$
\begin{aligned}
& ?^{\bullet} F=\mu X . F \oplus(\perp \oplus(X \ngtr X)) \\
& !^{\bullet} F=v X . F \&(1 \&(X \otimes X))
\end{aligned}
$$

- translating $\mu \mathrm{LL}^{\infty}$ sequents and proofs in $\mu \mathrm{MALL}^{\infty}$,
- simulating $\mu \mathrm{LL}{ }^{\infty}$ cut-reduction sequences in $\mu \mathrm{MALL}^{\infty}$ and
- applying μ MALL ${ }^{\infty}$ cut-elimination theorem.

Encoding $\mu \mathrm{LL}^{\infty}$ in $\mu \mathrm{MALL}^{\infty}$

$$
? \bullet F=\mu X . F \oplus(\perp \oplus(X \ngtr X)) \quad!\cdot F=v X . F \&(1 \&(X \otimes X))
$$

$\mu \mathrm{MALL}^{\infty}$ derivability of the exponential rules (? $\left.\mathrm{d}^{\bullet}, ? \mathrm{c}^{\bullet}, ? \mathrm{w}^{\bullet},!\mathrm{p}^{\bullet}\right)$:

Dereliction :

$$
\frac{\vdash F, \Delta}{\frac{\vdash F \oplus\left(\perp \oplus\left(?^{\bullet} F^{\Upsilon} ?^{\bullet} F\right)\right), \Delta}{\vdash ?^{\bullet} F, \Delta}}\left({ }_{(\mu)}^{\left(\oplus_{1}\right)}\right.
$$

Contraction:

$$
{\frac{{\frac{\vdash ?^{\bullet}}{} F, ?^{\bullet} F, \Delta}_{\vdash ?^{\bullet} F^{\gamma} \gamma ?^{\bullet} F, \Delta}^{\vdash \perp \oplus\left(?^{\bullet} F^{\gamma} \gamma ?^{\bullet} F\right), \Delta}}{}{ }^{(\gamma)}}_{\left(\oplus_{2}\right)}^{\vdash \oplus\left(\perp \oplus\left(?^{\bullet} F^{\gamma \gamma} ?^{\bullet} F\right)\right), \Delta}\left(\oplus_{2}\right)
$$

Weakening :

$$
\frac{\frac{\vdash \Delta}{\vdash \perp, \Delta}}{\frac{\frac{\vdash \perp \oplus}{}_{\vdash \perp\left(?^{\bullet} F^{\not \gamma} ?^{\bullet} F\right), \Delta}^{\vdash \oplus\left(\perp \oplus\left(?^{\bullet} F \mathcal{P} ?^{\bullet} F\right)\right), \Delta}}{\vdash ?^{\bullet} F, \Delta}}{ }^{\left(\oplus_{1}\right)}\left(\oplus_{2}\right)
$$

Promotion:

Preservation of validity
π is a valid $\mu \mathrm{MLL}^{\infty}$ pre-proof of $\vdash \Gamma$ iff π^{\bullet} is a valid μ MALL $^{\infty}$ pre-proof of $\vdash \Gamma^{\bullet}$.

Simulation of $\mu \mathrm{LL}^{\infty}$ cut-elimination steps

$\mu \mathrm{LL}{ }^{\infty}$ cut-elimination steps can be simulated by the previous encoding.

For instance, the following reduction can be simulated by applying the external reduction rule $(\mu) /(c u t)$ followed by the external reduction rule $(\oplus) /(c u t)$.

$$
{\frac{\frac{\vdash F, G, \Gamma}{\vdash ?^{\bullet} F, G, \Gamma}}{\left.\vdash ?^{\bullet}\right)} \quad \vdash G^{\perp}, \Delta}_{(c u t)}^{\vdash ?^{\bullet} F, \Gamma, \Delta} \longrightarrow^{2} \frac{\vdash F, G, \Gamma \quad \vdash G^{\perp}, \Delta}{\frac{\vdash F, \Gamma, \Delta}{\vdash ?^{\bullet} F, \Gamma, \Delta}}\left(\text { ? } d^{\bullet}\right) ~(c u t)
$$

Challenge: to show that the simulation of derivation also holds
(i) for the reductions involving $[!p]$ as well as
(ii) for reductions occurring above a promotion rule (aka. in a box) since the encoding of $[!p]$ uses an infinite, circular derivation.

Simulation of $\mu \mathrm{LL}{ }^{\infty}$ cut-elimination steps Cut-commutation rules

$$
\begin{aligned}
& \frac{\frac{\vdash F, G, \Gamma}{\vdash ?^{\bullet} F, G, \Gamma}\left(\text { ? }^{\bullet}\right) \quad \vdash G^{\perp}, \Delta}{\vdash ?^{\bullet} F, \Gamma, \Delta}(\text { cut }) \longrightarrow \longrightarrow^{2} \frac{\vdash F, G, \Gamma \quad \vdash G^{\perp}, \Delta}{\frac{\vdash F, \Gamma, \Delta}{\vdash ?^{\bullet} F, \Gamma, \Delta}\left(\text { ?d }{ }^{\bullet}\right)} \text { (cut) }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\vdash^{\vdash ?^{\bullet} F, G, \Gamma}\left(? w^{\bullet}\right) \quad \vdash G^{\perp}, \Delta}{\vdash ?^{\bullet} F, \Gamma, \Delta}(c u t) \longrightarrow \longrightarrow^{3} \frac{\vdash G, \Gamma}{\frac{\vdash \Gamma, \Delta}{\vdash ?^{\bullet} F, \Gamma, \Delta}}\left(? w^{\bullet}\right) \text { (cut) }
\end{aligned}
$$

Simulation of $\mu \mathrm{LL}{ }^{\infty}$ cut-elimination steps
Key-cut rules

$$
\begin{aligned}
& \left.\frac{\frac{\pi}{\vdash ?^{\bullet} F, ?^{\bullet} F, \Gamma}}{} \frac{\frac{\pi^{\prime}}{\vdash!^{\bullet} F^{\perp}, ?^{\bullet} \Delta}}{\frac{\vdash \Gamma, ?^{\bullet} \Delta, ?^{\bullet} \Delta}{\vdash \Gamma, ?^{\bullet} \Delta}} \quad \frac{\pi^{\prime}}{\vdash!^{\bullet} F^{\perp}, ?^{\bullet} \Delta}{ }^{\bullet} c^{\bullet}\right)^{\star} \quad \text { (mcut) }
\end{aligned}
$$

Cut-elimination for $\mu \mathrm{LL}^{\infty}$

(1) Consider a fair cut-reduction sequence $\sigma=\left(\pi_{i}\right)_{i \in \omega}$ in $\mu \mathrm{LL}^{\infty}$ from π.
(2) σ converges to a cut-free $\mu \mathrm{LL}^{\infty}$ pre-proof. By contradiction: Otherwise, a suffix τ of σ would contain only key-cut steps. The encoding of τ in $\mu \mathrm{MALL}{ }^{\infty}, \tau^{\bullet}$ would either be unproductive or would produce an infinite tree of encodings of ?w, ?c containing no v inference. This would contradict $\mu \mathrm{MALL}{ }^{\infty}$ cut-elimination theorem.

Cut-elimination for $\mu \mathrm{LL}^{\infty}$

(1) Consider a fair cut-reduction sequence $\sigma=\left(\pi_{i}\right)_{i \in \omega}$ in $\mu \mathrm{LL}^{\infty}$ from π.
(2) σ converges to a cut-free $\mu \mathrm{LL}^{\infty}$ pre-proof.
(3) As σ is productive and since reduction only occurs above cuts, it strongly converges to some $\mu \mathrm{LL}{ }^{\infty}$ cut-free pre-proof π^{\prime}.
(9) σ^{\bullet} is a transfinite sequence from π^{\bullet} strongly converging to $\pi^{\prime \bullet}$: because $\pi^{\prime \bullet}$ - the encoding of π^{\prime} - is cut-free and because only! commutations and reductions above a promotion create infinite reductions: boxes are simulated by strongly converging sequences.

Cut-elimination for $\mu \mathrm{LL}^{\infty}$

(1) Consider a fair cut-reduction sequence $\sigma=\left(\pi_{i}\right)_{i \in \omega}$ in $\mu \mathrm{LL}^{\infty}$ from π.
(2) σ converges to a cut-free μL^{∞} pre-proof.
(3) As σ is productive and since reduction only occurs above cuts, it strongly converges to some $\mu \mathrm{LL}{ }^{\infty}$ cut-free pre-proof π^{\prime}.
(9) σ^{\bullet} is a transfinite sequence from π^{\bullet} strongly converging to $\pi^{\prime \bullet}$.
(5) The compression lemma applies: there exists ρ an ω-indexed $\mu \mathrm{MALL}{ }^{\infty}$ cut-reduction sequence converging to $\pi^{\prime \bullet}$.
(0) Fairness of σ transfers to $\rho: \rho$ is a fair $\mu \mathrm{MALL}^{\infty}$ cut-red sequence.

Cut-elimination for $\mu \mathrm{LL}^{\infty}$

(1) Consider a fair cut-reduction sequence $\sigma=\left(\pi_{i}\right)_{i \in \omega}$ in $\mu \mathrm{LL}^{\infty}$ from π.
(2) σ converges to a cut-free μL^{∞} pre-proof.
(3) As σ is productive and since reduction only occurs above cuts, it strongly converges to some $\mu \mathrm{LL}{ }^{\infty}$ cut-free pre-proof π^{\prime}.
(3) σ^{\bullet} is a transfinite sequence from π^{\bullet} strongly converging to $\pi^{\prime \bullet}$.
(5) The compression lemma applies: there exists ρ an ω-indexed $\mu \mathrm{MALL}{ }^{\infty}$ cut-reduction sequence converging to $\pi^{\prime \bullet}$.
(0) Fairness of σ transfers to $\rho: \rho$ is a fair $\mu \mathrm{MALL}^{\infty}$ cut-red sequence.
(1) Therefore, by $\mu \mathrm{MALL}^{\infty}$ cut-elimination thm, ρ has a limit, $\pi^{\prime \bullet}$, which is a valid cut-free $\mu \mathrm{MALL}^{\infty}$ proof.
(8) Using preservation of validity, π^{\prime} is a valid cut-free $\mu \mathrm{LL}{ }^{\infty}$-proof.

About Seely isomorphisms

Two conjunctions and two disjunctions in LL: additives and multiplicatives. In LK, they are interderivable thanks to structural rules. One has:

A, B are weakened on the left, $A \wedge^{a} B$ is contracted on the left.

About Seely isomorphisms

Two conjunctions and two disjunctions in LL: additives and multiplicatives. In LK, they are interderivable thanks to structural rules. One has:

$$
\frac{\frac{\overline{A \vdash A}_{A, B \vdash A}^{(a x)}}{\left(W_{l}\right)} \quad \frac{\overline{B \vdash B}}{A, B \vdash B}}{(a x)}\binom{\left(W_{l}\right)}{\left(\wedge_{r}^{a}\right)} \frac{\overline{A \vdash A}_{(a x)}^{A \wedge^{a} B \vdash A}\left(\wedge_{l}^{a 1}\right)}{\frac{A \wedge^{a} B, A \wedge^{a} B \vdash A \wedge^{m} B}{A \wedge^{a} B \vdash B}}{ }^{\left(\wedge_{l}^{a}\right)}\left(\wedge_{r}^{m}\right)
$$

A, B are weakened on the left, $A \wedge^{a} B$ is contracted on the left.
In LL, we do not have free structural rules, but only thanks to exponentials, so we need to mark formulas with exponentials where structural rules are needed, leading to:
$!A \otimes!B \dashv!(A \& B)$.

About Seely isomorphisms

$!A \otimes!B \dashv!(A \& B)$

$$
\frac{\pi_{S} \quad \pi_{S}^{\prime}}{!A \otimes!B \vdash!A \otimes!B}
$$

About Seely isomorphisms

$!A \otimes!B \dashv!(A \& B)$

About Seely isomorphisms

What about the fixed-point encoding?

$$
\frac{\left(\pi_{S}\right)^{\bullet} \quad\left(\pi_{S}^{\prime}\right)^{\bullet}}{!^{\bullet} A \otimes!^{\bullet} B \vdash!^{\bullet} A \otimes!^{\bullet} B} \quad(c u t)
$$

The left occurrences of A, B require two unfolding of the fixed-point, while the right occurrences of A, B require only one unfolding of the fixed-point.
The fixed-point unfolding structure tracks te history of the structural rules.

About Seely isomorphisms

What about the fixed-point encoding?

The left occurrences of A, B require two unfolding of the fixed-point, while the right occurrences of A, B require only one unfolding of the fixed-point.
The fixed-point unfolding structure tracks te history of the structural rules.

Cut-elimination for $\mu \mathrm{LK}^{\infty}, \mu \mathrm{LJ}{ }^{\infty}$

The usual call-by-value embedding of LJ in ILL (intuitionnistic LL) can be lifted to $\mu \mathrm{LJ}{ }^{\infty}$: indeed, the translation of proofs does not introduce cuts. For $\mu \mathrm{LK}^{\infty}$, it is slightly trickier as the well-known T/Q-translations introduce cuts breaking validity. An alternative translation which does not introduce cuts can be used.

Moreover, one gets the skeleton of a $\mu \mathrm{LL}{ }^{\infty}$ (resp. $\mu \mathrm{ILL}{ }^{\infty}$) proof which is a $\mu \mathrm{LK}{ }^{\infty}$ (resp. $\mu \mathrm{LJ}{ }^{\infty}$) proof, simply by erasing the exponentials (connectives and inferences), preserving validity.
The skeleton of a $\mu \mathrm{LL}{ }^{\infty}$ (resp. $\mu \mathrm{ILL}{ }^{\infty}$) cut-reduction sequence is a $\mu \mathrm{LK}^{\infty}$ (resp. $\mu \mathrm{L} \mathrm{J}^{\infty}$) cut-reduction sequence. As a result, one has:

Theorem

If π is an $\mu \mathrm{LK}^{\infty}$ (resp. $\mu \mathrm{LJ}{ }^{\infty}$) proof of $\vdash \Gamma$ (resp. $\left.\Gamma \vdash F\right)$, there exists a $\mu \mathrm{LL}{ }^{\infty}$ (resp. $\mu \mathrm{ILL}{ }^{\infty}$) proof of the translated sequents.

Theorem

There are productive cut-reduction strategies producing cut-free $\mu \mathrm{LK}^{\infty}$ (resp. $\mu \mathrm{LJ} \mathrm{J}^{\infty}$) proofs.

Conclusion

- To sum up:
- Fixed-point logics extending LL/LK/LJ with finite circular or non-wellfounded proofs;
- A parity condition to discriminate valid/invalid proofs;
- Syntactic cut elimination for various nwf sequent calculi: $\mu \mathrm{MALL}{ }^{\infty}, \mu \mathrm{LL}^{\infty}, \mu \mathrm{LJ} \mathrm{J}^{\infty}, \mu \mathrm{LK}^{\infty}$.

Thanks!

$\mu \mathrm{MALL}{ }^{\infty}$ Cut elimination

$\mu \mathrm{MALL}{ }^{\infty}$ Cut Elimination Theorem

Theorem (Baelde, Doumane \& S, 2016)
Fair μ MALL ${ }^{\infty} \quad$ cut-reduction sequences converge to cut-free $\mu \mathrm{MALL}^{\infty}$ proofs.

Previous result by Santocanale and Fortier for the purely additive fragment of $\mu \mathrm{MALL}^{\infty}$. Proof uses a locative treatment of occurrences.

- Strategy: "push" the cuts away from the root.
- Cut-Cut:

$$
\frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G}{\vdash \Gamma, \Delta, G}(\text { cut }) \vdash G^{\perp}, \Sigma(\text { cut }) \quad \longleftrightarrow \frac{\vdash F^{\perp}, \Delta, G \quad \vdash G^{\perp}, \Sigma}{\vdash F^{\perp}, \Delta, \Sigma}(\text { (cut) }
$$

$\mu \mathrm{MALL}{ }^{\infty}$ Cut Elimination Theorem

Theorem (Baelde, Doumane \& S, 2016)
Fair $\mu \mathrm{MALL}^{\infty}$ mcut-reduction sequences converge to cut-free $\mu \mathrm{MALL}^{\infty}$ proofs.

Previous result by Santocanale and Fortier for the purely additive fragment of $\mu \mathrm{MALL}^{\infty}$. Proof uses a locative treatment of occurrences.

- Strategy: "push" the cuts away from the root.
- Cut-Cut:

$$
\frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G}{\vdash \Gamma, \Delta, G}(c u t) \quad \vdash G^{\perp}, \Sigma\left(\text { cut) } \quad \rightarrow \frac{\vdash \Gamma, F \quad \vdash F^{\perp}, \Delta, G \quad \vdash G^{\perp}, \Sigma}{\vdash \Gamma, \Delta, \Sigma}\right. \text { (mcut) }
$$

Cut elimination procedure
External phase: Cut-commutation cases

$$
\begin{aligned}
& \frac{\vdash \Delta, F[\mu X . F / X]}{\frac{\vdash \Delta, \mu X . F}{\vdash \Sigma, \mu X . F}(\mu) \quad \cdots}(\text { mcut }) \quad \Rightarrow \quad \frac{\vdash \Delta, F[\mu X . F / X] \ldots}{\frac{\vdash \Sigma, F[\mu X . F / X]}{\vdash \Sigma, \mu X . F}} \text { (mcut) } \\
& + \text { additional cases }
\end{aligned}
$$

Cut-commutation steps are productive

Cut elimination procedure

Internal Phase: Key cases

$$
\begin{aligned}
& \frac{\frac{\vdash \Delta, F_{2} \vdash \Delta, F_{1}}{\vdash \Delta, F_{2} \& F_{1}}(\&) \quad \frac{\vdash \Gamma, F_{i}^{\perp}}{\vdash \Gamma, F_{1}^{\perp} \oplus F_{2}^{\perp}}}{\left(\oplus_{i}\right)}\left(\begin{array}{l}
(\text { mcut })
\end{array}\right. \\
& \Rightarrow \frac{\ldots \quad \vdash \Delta, F_{i} \quad \vdash \Gamma, F_{i}^{\perp}}{\vdash \Sigma}(\text { mcut }) \\
& \frac{\left.\frac{\vdash \Delta, F[\mu X . F / X]}{\vdash \Delta, \mu X . F} \text { (} \mu\right) \quad \frac{\vdash \Gamma, F^{\perp}\left[v X . F^{\perp} / X\right]}{\vdash \Gamma, v X . F^{\perp}} \text { (mcut) }}{\vdash \Sigma} \\
& \Rightarrow \frac{\cdots \quad \vdash \Delta, F[\mu X . F / X] \vdash \Gamma, F^{\perp}\left[v X . F^{\perp} / X\right]}{\vdash \Sigma} \text { (mcut) }^{\vdash}
\end{aligned}
$$

+ additional cases

Key cases are not productive

Cut elimination algorithm

- Internal phase: Perform key case reductions as long as you cannot do anything else.
- External phase: Build a part of the output tree by applying cut-commutation steps as soon possible, being fair.
- Repeat.

Cut elimination algorithm

- Internal phase: Perform key case reductions as long as you cannot do anything else.
- External phase: Build a part of the output tree by applying cut-commutation steps as soon possible, being fair.
- Repeat.

Remark: We consider a fair strategy ie. every reduction which is available at some point will be performed eventually.

Theorem

Internal phases always halt. Cut-elimination produces a pre-proof.

Theorem

The pre-proof obtained by the cut elimination algorithm is valid.
$\mu \mathrm{LL}{ }^{\omega}$ is not stable by cut-elimination
Eliminating cuts from a $\mu \mathrm{LL}^{\omega}$ proof (circular) may result in a $\mu \mathrm{LL}^{\infty}$, non circular, proof.

Cut elimination is productive

Theorem
Internal phase always halts.

Cut elimination is productive

Theorem
Internal phase always halts.
Proof by contradiction: Suppose that there is a proof of F for which the internal phase does not halt.

Cut elimination is productive

Theorem
Internal phase always halts.
Proof by contradiction: Consider the trace of this divergent reduction.

Cut elimination is productive

Theorem

Internal phase always halts.
Proof by contradiction: No rule on F is applied in the trace, otherwise the internal phase would halt.

Cut elimination is productive

Theorem
Internal phase always halts.
Proof by contradiction: We can eliminate the occurrences of F from the trace. This yields a "proof" of \vdash.

Cut elimination is productive

Theorem
Internal phase always halts.
Proof by contradiction: We show that the proof system is sound. Contradiction.

Cut elimination produces a proof

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

Cut elimination produces a proof

Theorem

The pre-proof obtained by the cut elimination algorithm is valid.
Proof: Let π^{\star} be the pre-proof obtained from $\pi \vdash \Delta$ by cut elimination. Suppose that a branch b of π^{\star} is not valid.

- Let θ be the sub-derivation of π explored by the reduction that produces b.
- Fact: Threads of θ are the threads of b, together with threads starting from cut formulas.
- The validity of θ cannot rely on the threads of b.
- θ^{μ} is θ where we replace in Δ any v by a μ and any $1, \top$ by $\perp, 0$.
- Show that formulas containing only $\mu, \perp, 0$ and $M A L L$ connectives are false.
- θ^{μ} proves a false sequent which contradicts soundness.

