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uLL™:
circular and non-wellfounded

proofs for linear logic with
least and greatest fixed-points
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Non-Wellfounded Sequent Calculus

Consider your favourite logic .¢ & add fixed points as in the p-calculus

Pre-proofs are the trees coinductively generated by:

I FluX.F/X]F A M FIVX.F/X]F A |
I Vi
@ _Z inference rules MuX.FrA rvX.FrEA
@ inference for u,v: M+ FluX.F/X],A M- FlvX.F/X],A
rraxra M TrooxFa o M

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely
many sub-(pre)proofs.

Pre-proofs are unsound!! :
Need for a validity condition Fax.X

[u] [v]
[v]

[Cut]

FVvX.X,F
Faxx FVvX.X,F
FF
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wLL™ Non-Wellfounded Sequent Calculus

Consider your favourite logic LL & add fixed points as in the p-calculus

ULL” Pre-proofs are the trees coinductively generated by:

@ LL inference rules

@ inference for u,v: FFluX.F/X],A FFlvX.F/X],A

CuxFa vxFa M

Circular (pre-)proofs: the regular fragment of infinite (pre-)proofs, ie finitely

many sub-(pre)proofs. uLL®
Pre-proofs are unsound!! : 4] : ]
Need for a validity condition THXX o TYXXE 0]
FuX.X FVvX.X,F
[Cut]
FF

Involutive negation, ( )*: operator on formula, not a connective.
One-sided sequents as lists: - Az,..., Ap. (TF A is a short for FT+ A)

u and v are dual binders. Ex (VX X®@X)t=uX.X%X.
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uLK® Inferences

Inference Rules

i FT.G,F.A
ey G FrFGa
EF,FT Fr
TR 9 FREr Y
() FFRT FGT Tl .
FT,T Fencr Y Favagr
- GIvX.G/X],T FFluX.F/X],T
Fvx.Gr FaxFr W




uLL™ Inferences

uLL formulas

al| T|L|FBF|F&F|?F
|a-|0| 1| FRF|Fa&F|IF
| X | uX.F|vX.F

F

negative LL
positive LL

formulas
formulas
Ifp & gfp

ULL™ Inference Rules

() FT.F_FFLA "LGRA
FFF FTA (cut) FTFGA
FF,T FF,r F?F,?F,T Fr

©) —rr © (w)
F2F,T FIF, 2T F?F,T F?F,T

FFT  FG,T FALT

(T) , 5 i i~ le for 0

=TT FF&G T e @) (nomiefor0)
Fr FF,G,T FFT  FGA 4

L) —_— — (®) 1 ©)
FL,r FFRG,T FFRG,T,A

 G[vX.G/X],T FFluX.F/X],T
FvX.G,T FuX.F,T

How to distinguish valid nwf proofs from invalid ones?



uLL™ Inferences

uLL formulas

F == a|T|L F®F|F&F|?F negative LL formulas
|at |0|1| F®F|F®F|!F positive LL formulas
| X | uX.F|vX.F Ifp & gfp

ULL™ Inference Rules (with ancestor relation)

() FLF EFLA 1§14 .,
FFF N @ FTFGA
FF.N FF 2, 7F, 7 R

O (" — sz o (c (w)
F2F,0 HIF, 2T F2F, F?FT

FARN 6/ A,

M : £ @ - ®; le for 0

FTr FRBT Y Taeax @ (morefrl)
L FREL . FAR SG6A .
FLY ~Facr O FretN,d ©  rl
GV X.G/XI FR[UX.F /XL
Foxe @ FXGF, T

How to distinguish valid nwf proofs from invalid ones?

4/31



Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

Gix Gy € FL(F) = Gy, G € FL(F) for x € {®,&,%,®};
oX.Be FL(F)= Bl[oX.B/X] € FL(F) for 6 € {u,v};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.
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FL(F) is the least set of formula occurrences such that:

F € FL(F);
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Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

Gix Gy € FL(F) = Gy, G € FL(F) for x € {®,&,%,®};
oX.Be FL(F)= Bl[oX.B/X] € FL(F) for 6 € {u,v};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

Example: F=vX.((a®at)@(IXouY.X))

FL(F)={F (a®a")®(IFQuUY.F), }
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Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

Gix G € FL(F) = Gy, Gs € FL(F) for x € {&,&,3,&};
6X.B € FL(F) = B[oX.B/X] € FL(F) for o € {u,Vv};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

FL(F)={F (a®a')®(!FQuUY.F)

)

Example: F=vX.((a®at)@(IXouY.X))

a%as

IFQuUY.F,
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Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

Gix Gy € FL(F) = Gy, G € FL(F) for x € {®,&,%,®};
oX.Be FL(F)= Bl[oX.B/X] € FL(F) for 6 € {u,v};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

Example: F=vX.((a®at)@(IXouY.X))

a®at n
FL(F)={F (aBa‘)®(IF®uUY.F), a
IFouY.F, pY.F
IF
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Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

F € FL(F);

Gix G € FL(F) = Gy, Gs € FL(F) for x € {&,&,3,&};
6X.B € FL(F) = B[oX.B/X] € FL(F) for o € {u,Vv};
mG € FL(F) = G € FL(F) for me {!,7}.

FL(F) is a finite set for any formula F.

FL(F)=F —(a®a')® (IFQuY.F)

Example: F=vX.((a®at)@(IXouY.X))

S IF

2 a7?aL<

a
aJ_

NFRUY.F— pY.F
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Infinite threads, validity

F=vX.((a%® a")a(IXeouY.X)).

G=uY.F A thread on an infinite
branch (Ij)ice is an infinite
sequence of formula occur-
rences (F;)i>k such that for
any i >k, Fjeljand Fiqqis
an immediate ancestor of F;.

FIFRG .
F(a®at)@(F®G)
FE ™)
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Infinite threads, validity

F=vX.((a%® a")a(IXeouY.X)).

G=uY.F A thread on an infinite
branch (Ij)ice is an infinite
sequence of formula occur-

FF
o @ rences (F;)i>k such that for
FIFRG any i>k, F;el;and Fiyqis
- (a3 L)@ (IFEG) “ an immediate ancestor of F;.
— . ™

HE

A thread is valid if it unfolds infinitely many v. More precisely, if the
minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.
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Infinite threads, validity

F=vX.((a®a')®(1X®G))

G=uYvX.((a®at)a(IXxY)) A thread on an infinite
branch (Ij)ice is an infinite
sequence of formula occur-

FF
o @ rences (F;)i>k such that for
FIFRG any i>k, F;el;and Fiyqis
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Infinite threads, validity

F=vX.((a%® a")a(IXeouY.X)).

G=uY.F A thread on an infinite
branch (Ij)ice is an infinite
sequence of formula occur-

FF
o @ rences (F;)i>k such that for
FIFRG any i>k, F;el;and Fiyqis
- (a3 L)@ (IFEG) “ an immediate ancestor of F;.
— . ™

HE

A thread is valid if it unfolds infinitely many v. More precisely, if the
minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.
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Fixed-point encoding the exponentials

Consider the following encoding of LL exponentials:

7*F
I°F

AL
Y

UX.Fo(La (X% X))
VX.F&(1&(X® X))
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Fixed-point encoding the exponentials

Consider the following encoding of LL exponentials:

7*F
I°F

AL
Y

UX.Fo(La (X% X))
VX.F&(1&(X® X))

The exponential inferences can be derived:

Dereliction (7d®): Contraction (?c*) : Weakening (7w*) :
F7OF,2F,A FA
e r A D (1)
FF.A \ 7 FR7°F,A ) FLA (o)
FFa(Le(FarR),A ) FL@ (7 FR7F),A ““)’ FLo(F7F),A "(%)
F7°F.A @) FFa(L®(?*F37°F)), A (©2) FFo(La(?*F?7°F),A
rEA Q) FIFA ®
Promotion (!p*):
FIFF,2°A I A
1 ® NN NN
we ?ct
A FLea FeFerF A )
oF e )1 (&), (&)
FIF,7°A
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Fixed-point encoding the exponentials
Consider the following encoding of LL exponentials:

*F A2 X Fa(Le(XBX))
I'F 2 VX F&(1&(X®X))

Preservation of validity

7 is a valid gMLL" pre-proof of I iff
7°® is a valid uMALL®™ pre-proof of FT°.

Preservation of provability

If =T is provable in pMLL™ (resp. uMLL®),
then FT* is provable in uMALL* (resp. uMALL®).
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Fixed-point encoding the exponentials
Consider the following encoding of LL exponentials:

*F A2 X Fa(Le(XBX))
I'F 2 VX F&(1&(X®X))

Preservation of validity

7 is a valid gMLL" pre-proof of I iff
7°® is a valid uMALL®™ pre-proof of FT°.

Preservation of provability

If =T is provable in pMLL™ (resp. uMLL®),
then FT* is provable in uMALL* (resp. uMALL®).

Shortcomings of this encoding

No soundness result for the encoding: converse result for the
preservation of provability. Loss of Seely isomorphisms, etc.

8/31



Circular & finitary proofs

From finitary to circular proofs

Theorem
Finitary proofs can be transformed to (valid) circular proofs.

J

The key translation step is the following:
[m] F S vXIF

(re
m i FSLF[S] FF[S]{F[VX.F](
I t
FFS  ESYHFS] = [m) F S FIvX.F
FILVX.F v Taoxe ¥
VA FI,S FShVXIF

(cut)

FTLVXF

From circular to finitary proofs
Open problem for uLL®.
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Cut-elimination for pulLL”
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Examples of circular proofs
N =uX.16X

Tdouble =




Examples of circular proofs

N =puX.13X
—
F1 @
1on & Tt
ey W
Tldouble =

LY T, T

k Fliltsucc (cut) —* Mest k }_I\(/iouble (cut) —* Mok

11/31



Examples of circular proofs

N = uX.1leX
Tlsucc Tlsucc 0DE)
—_— [E— ’ ’ 4 T ., . !
i Y (p)s(@1),(1) YA Ell))s((z)),(l) N+ N/®N, N{@NZ/ F N;®N, cn
= 1), u
dup 1r N;®N, N'+ N;®N,

Nt N,@N, (),(&)

U

FT

=
WNat() =1 T NET
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Examples of circular proofs

N = uX.10X
Tlsuce Tlsuce 0DE)
i m (p),(@1),(1) m Eu);((:)),(l) N’ + N/®N, Nl/®N2/ F N;®N; « l)
= 1), u
dup 1r N;®N, N'+ N;®N,

Nt N,@N, (),(&)

.
T
(1)
WNat(z) =1+T NET @)
1oNET
(v)
N-T
T Tldup N Ttk Tk (®) T WNat(ﬂ:) N KA
TNON NoN (cut) FNoN B — (cut) e
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Examples of circular proofs
S = vX.(1& (N@X))

enum Nat — Stream
enum(n) = n:: enum(succ(n))
ﬂsucc
NE=N
nEn
(ax) 0]
NEN @ INHIN INFS (cut)
- INFN INFS ®)
e IN,INFN®S
e ™ INFN®S

INF1&(N®S)
INFS ™

(&)



Examples of circular proofs
S = vX.(1& (N@X))

enum : Nat — Stream
enum(n) = n:: enum(succ(n))
ﬂSUCC
NE=N
)
(o) INFN 0
NEN DD OINEIN eSS o
Tonum = INFN INES
1 “z ) IN,INFN@S
INF1 INFN&S
INF1&(N®S)
INFS ™ .
Tkt2 FS
— () e (®
1 FN®S
—r e ). (&)
Tk @ L Tk41 FS
FIN Y T —0 @ FN®S &(®)
—_— ut
s (cut) - rs V), (&)
— (1) —— e ©)
1 FN®S )
F1&(N®S)
Fs K
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Cut-elimination for puLL*™

Theorem (Baelde, Doumane & S, 2016)

Fair uUMALL® cut-reduction sequences converge to cut-free
UMALL® proofs.
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Cut-elimination for puLL*™

Theorem

Fair uLL>™ mcut-reduction sequences converge to cut-free uLL*
proofs.

ldea
The proof goes by:

o considering the following encoding of LL exponential
modalities:

*F = uX.Fae(lae(X®X))
'F = vX.F&(1&(X®X))
@ translating uLL* sequents and proofs in uMALL®,

@ simulating uLL*” cut-reduction sequences in tMALL* and

o applying tMALL* cut-elimination theorem.

14 /31



Encoding uLL*™ in uMALL®™
PE=uXFo(Lo(XBX)) 1PF=vX.F&1&X®X))
UMALL®™ derivability of the exponential rules (?7d®,7c®, 7w*®, Ip®):

Dereliction : Contraction : Weakening :
RO, 7F,A FA
e ™) W
N FFR7°F,A FLA
(@) — (@) — (@)
FFo(La(?Fa?°F)),A FLa(PFRTF).A FLe@FrHA
F2F,A W CFaaerr).a | FFelo@Fare)a
FEA ® FELA )

FPETA RMETA

R FEFRIF A TA

Promotion: 1 e G B B 9
omotio FErA LA M FrFarF A )

V), (&), (&)

FIF A

Preservation of validity

7 is a valid gMLL" pre-proof of - I iff
7® is a valid uMALL®> pre-proof of FT°.
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Simulation of uLL™ cut-elimination steps

ULL*” cut-elimination steps can be simulated by the previous
encoding.

For instance, the following reduction can be simulated by applying
the external reduction rule (it)/(cut) followed by the external
reduction rule (&)/(cut).

-F,G,T FF,GT  FGHA
e ~ = (%) n 2 (cut)
F7F,G.T -G A — CFT.A
cu _— ?2d°®
FPFL A () 2Fra U9

Challenge: to show that the simulation of derivation also holds

(i) for the reductions involving [!p] as well as
(ii) for reductions occurring above a promotion rule (aka. in a
box) since the encoding of [!p] uses an infinite, circular derivation.
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Simulation of uLL™ cut-elimination steps

Cut-commutation rules

FRGT FFGT FGhA
N A YN 2T FFELA (cu)
FFLTA (et 7 rra "
*FT, F7°F.T,A
F?*F,7°F,G,T FPF,7°F,G,T FGHA
— () n 3 P (cut)
F7°F,G,T FGhA — F7°F,7°F,T,A
LA (cu) =T AN
»FLT, F7°F,T, A
L TLIAN G FGhA
FFGT T EGha N
. (cut) ——— (W)
R LA F7F,T, A
-G, 70
FF,7°G,7°T FG, A Tl pen 9
ST ) e 00 JFFRGT FIGL A
FI*F,7°G,7°T HeGh,2°A — (cut)
s (cut) FF2°T,7°A
FI*F, 7T, 7°A A TS
FI*F, 7T, 7°A
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Simulation of uLL™ cut-elimination steps

Key-cut rules

/

T . 7r x
FFL A 5 =
:?.Fl_lrr (72d*) CrEL7op () —2FF,T  FFH?°A
M A 5 e R
CRT__EEELTA Ta (cut)
T ) o
ToeE e E T 1 7e
}—?FI;,,?: f;r (e H (1p*) —ydintdx#Dext
— trea @
b ’ ' r’
P2 PFT RIFL A RIfFL 70A
. o (mcut)
FLPAA
Trrea O
T T i
— L e T
=T (w) FFo7A (1) —s3int3x#Aext [ .
FRET T RrEL A Frea O
A (cut) h
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Cut-elimination for uLL*™

@ Consider a fair cut-reduction sequence 6 = (7j)jce in ULL™
from .

@ o converges to a cut-free LL* pre-proof. By contradiction:
Otherwise, a suffix T of o would contain only key-cut steps.
The encoding of 7 in gMALL*, 7° would either be
unproductive or would produce an infinite tree of encodings of
?w,?c containing no v inference. This would contradict
UMALL® cut-elimination theorem.
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Cut-elimination for puLL*™

@ Consider a fair cut-reduction sequence 6 = (7j)jce in ULL™
from .

@ o converges to a cut-free uLL* pre-proof.

© As o is productive and since reduction only occurs above cuts,
it strongly converges to some uLL* cut-free pre-proof @'.

@ o° is a transfinite sequence from 7® strongly converging to
7'*: because 7’® — the encoding of @’ — is cut-free and
because only ! commutations and reductions above a
promotion create infinite reductions: boxes are simulated by
strongly converging sequences.
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Cut-elimination for puLL*™

Consider a fair cut-reduction sequence 6 = (7j)jce in uLL™
from 7.

o converges to a cut-free uLL* pre-proof.

As o is productive and since reduction only occurs above cuts,
it strongly converges to some uLL™ cut-free pre-proof @'

c
.

is a transfinite sequence from 7* strongly converging to

The compression lemma applies: there exists p an @-indexed
UMALL™ cut-reduction sequence converging to 7'°.

Fairness of o transfers to p: p is a fair uMALL* cut-red
sequence.
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Cut-elimination for puLL*™

@ Consider a fair cut-reduction sequence 6 = (7j)ice in uLL™
from 7.

@ o converges to a cut-free uLL™ pre-proof.

© As o is productive and since reduction only occurs above cuts,
it strongly converges to some uLL™ cut-free pre-proof @'

@ o° is a transfinite sequence from 7° strongly converging to
T’

© The compression lemma applies: there exists p an @-indexed
UMALL™ cut-reduction sequence converging to 7'°.

O Fairness of ¢ transfers to p: p is a fair uMALL*™ cut-red
sequence.

@ Therefore, by uMALL* cut-elimination thm, p has a limit,
7’*, which is a valid cut-free uMALL® proof.

@ Using preservation of validity, 7" is a valid cut-free
uLL=-proof. L]
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About Seely isomorphisms

Two conjunctions and two disjunctions in LL: additives and multiplicatives.
In LK, they are interderivable thanks to structural rules. One has:

a— ax — ax —_— ax —_— ax

A Sy ErE G ara ) Bre )

A BF A ABFB . ANBLA ANBEB
A BFAN?B " AN B, AN BF AN B
AamBrang ) AN BFAA™B (<)

A, B are weakened on the left, AA? B is contracted on the left.
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About Seely isomorphisms

Two conjunctions and two disjunctions in LL: additives and multiplicatives.
In LK, they are interderivable thanks to structural rules. One has:

— (ax) — (ax) — (ax) — (ax)
AFA B+ B AFA 1 B+ B >
— (W) — W) —— (AY) — (")
ABFA A BFB AN BFA AN BF B (Am
A r
A BFANB ’ AN B,ANB-ANTB

—_— (AP G
armgraneg ) AN B AA™ B (@)
A, B are weakened on the left, AA? B is contracted on the left.

In LL, we do not have free structural rules, but only thanks to exponentials, so
we need to mark formulas with exponentials where structural rules are needed,

leading to: TA®! B+ (A& B).

ara &) 55 ara @ Bre %
LA A '(W IB-B ‘(W) A&BF A @ A& B+ B @
ns:!A,!BFA IA,IBF B o ﬂ/:!(A&B)#A ] (A& B)+ B
IAIBFAB ° I(A&B)F A I(A&B)+1B
A 1B+ (A& B) "

o) (A& B),|(A&B)F 1 A2! B

IA®!BF (A& B) (A& B)F1A®!B
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About Seely isomorphisms
1 A1 B 1(A& B)

(ax) = (&) (ax) (ax)
lAPA @) BFB ) _AFA (&1) _BFB (®2)
IAFA (w BB (w) A&BFA @ A& B\ B @
LA IBF A IA,|BFB (A&B)FA (A& B)FB

s = &) A= (! — ()

1A,BFA&B ) (A&B)F1A (A&B)F !B

IAIBF (A& B) ('7? (A& B),|(A&B)F 1 AQ!B ®)
lAQ!BF (A& B) " (A& B)F!Ag!B ()
_B 5
IA®!BF1A®! B
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About Seely isomorphisms
1 A1 B 1(A& B)

AFA BrB (a?X) AF A (()) BFB (a?ge)
IAFA ('()W IBFB ('()W) ALBF A (71) A&BI B (72)
o AIBEA IA,|BFB . n[ﬁ!(A&B))—A 'I (A& B)FB
o IAIBFA&B ) * T WA&B)FIA (A&B)- 1B )
IA1BF (A& B) ('??) (A& B), /(A& B)F 1 A®! B ?
IA®IBF (A& B) (A& B)F1A®!B ()
ax —_— ax
AFA ((7)) BFB ((7))
IAFA IBFB
(w) — (W)
. o 1AIBEA |AIBFB
S N — _ (!
— 5 (cut) e IAIBFIA IAIB-1B
IA®!BF1AR!B
IAIB,IAIBF1ARIB (o
Cc
IA,1B1A®!B )
1A2IBF1AR!B
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About Seely isomorphisms
What about the fixed-point encoding?

(ms)*  (7s)®

I*AR!I*BFI*AQ!*B

(cut)

The left occurrences of A, B require two unfolding of the fixed-point, while the
right occurrences of A, B require only one unfolding of the fixed-point.

The fixed-point unfolding structure tracks te history of the structural rules.
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About Seely isomorphisms
What about the fixed-point encoding?

e ax —_— ax
AF A ((7)) BFB ((7))
PAFA *B-B
e W e (W)
. e I"AI°BF A I*AI°BFB
(7s) (ms) o — (! — 00 ()
(cut) —at 1®AIBHIA I*AI*BFI°B
I*AQ!* B 1° AR!* B (®)
IPAIBI*AIBRICARI'B
Cc

I*AI*BFI*AR!*B
IPAR!I*BFI*A®!*B

)

The left occurrences of A, B require two unfolding of the fixed-point, while the
right occurrences of A, B require only one unfolding of the fixed-point.

The fixed-point unfolding structure tracks te history of the structural rules.
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Cut-elimination for uLK*, uLJ*
The usual call-by-value embedding of LJ in ILL (intuitionnistic LL) can be
lifted to uLJ*™: indeed, the translation of proofs does not introduce cuts.
For uLK*, it is slightly trickier as the well-known T/Q-translations
introduce cuts breaking validity. An alternative translation which does
not introduce cuts can be used.

Moreover, one gets the skeleton of a uLL™ (resp. pILL™) proof which is
a ULK* (resp. uLJ=) proof, simply by erasing the exponentials
(connectives and inferences), preserving validity.

The skeleton of a uLL*™ (resp. plLL™) cut-reduction sequence is a uLK*
(resp. uLJ™) cut-reduction sequence. As a result, one has:

Theorem

If wis an uLK> (resp. ulLJ>) proof of T (resp. [ F), there exists a
ULL™ (resp. pILL™) proof of the translated sequents.

Theorem

There are productive cut-reduction strategies producing cut-free LLK*
(resp. uLJ=) proofs.
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Conclusion

@ To sum up:

o Fixed-point logics extending LL/LK/LJ with finite circular or
non-wellfounded proofs;

e A parity condition to discriminate valid/invalid proofs;

e Syntactic cut elimination for various nwf sequent calculi:
UMALL™, puLL*=, uLJ=, uLK=.

23/31



Thanks!
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UMALL” Cut elimination
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UMALL™ Cut Elimination Theorem

Theorem (Baelde, Doumane & S, 2016)

Fair uUMALL*™  cut-reduction sequences converge to cut-free UMALL*
proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of uMALL®.
Proof uses a locative treatment of occurrences.

@ Strategy: “push” the cuts away from the root.

@ Cut-Cut:
FMLF FFLAG FFYAG o FGHE
e S S (cut) n (cut)
FTAG FG- X > FT,F FFHAY
(cut) (cut)
S RVAYDN FTLAY
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UMALL™ Cut Elimination Theorem

Theorem (Baelde, Doumane & S, 2016)

Fair uUMALL*” mcut-reduction sequences converge to cut-free UMALL*
proofs.

Previous result by Santocanale and Fortier
for the purely additive fragment of uMALL®.
Proof uses a locative treatment of occurrences.

@ Strategy: “push” the cuts away from the root.
@ Cut-Cut:

FMF FFLAG
—————— (cut) n FILF FFYLAG FGHY
FILAG FGH X — (mecut)
(cut) FILAY
FILAL
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Cut elimination procedure

External phase: Cut-commutation cases

FALF.G FAF.G ..
—— = () = (meut)
FAFRG = FLFG
FY FRG {meut) N E T
FAF FALG FAF L FALG ..
" @) " (mewt)  ————"" (meut)
FAF&G =~  FLF PG
FY. F&G (mewt) FY. F&G (&)
- A, FluX.F/X] - A, FuX.F/X]
—_— mcut
FAauXF Y = FEFlxF/x] e
- Y, uX.F (meu) F Y uX.F

+ additional cases
Cut-commutation steps are productive
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Cut elimination procedure

Internal Phase: Key cases

FAR AR ki
—_— (&) ﬁ (ﬂ'\‘:)
FAR&F FTLFE @ F3
Cy (mcut)
FAF TR
= (mcut)
Fx
F A FluX.F/X] IR vX.FL/X] »
- - - @@ - -_— v
FauxF W FTLVXFL
Fy (mecut)
N FAFluX.F/X] FT,FLvX.FL/X]
(mcut)
Fx

-+ additional cases

Key cases are not productive
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Cut elimination algorithm

@ Internal phase: Perform key case reductions as long as you
cannot do anything else.

@ External phase: Build a part of the output tree by applying
cut-commutation steps as soon possible, being fair.

@ Repeat.
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Cut elimination algorithm

@ Internal phase: Perform key case reductions as long as you
cannot do anything else.

@ External phase: Build a part of the output tree by applying
cut-commutation steps as soon possible, being fair.

@ Repeat.

Remark: We consider a fair strategy ie. every reduction which is
available at some point will be performed eventually.

Theorem
Internal phases always halt. Cut-elimination produces a pre-proof.

Theorem
The pre-proof obtained by the cut elimination algorithm is valid.

uLL? is not stable by cut-elimination

Eliminating cuts from a uLL® proof (circular) may result in a pLL>, non
circular, proof.
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Cut elimination is productive
Theorem J

Internal phase always halts.
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Cut elimination is productive

Theorem
Internal phase always halts. J

Proof by contradiction: Suppose that there is a proof of F for
which the internal phase does not halt.

FF
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Cut elimination is productive

Theorem J

Internal phase always halts.

Proof by contradiction: Consider the trace of this divergent
reduction.

FF
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Cut elimination is productive

Theorem
Internal phase always halts. J

Proof by contradiction: No rule on F is applied in the trace,
otherwise the internal phase would halt.

=F

FF
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Cut elimination is productive

Theorem
Internal phase always halts. J

Proof by contradiction: We can eliminate the occurrences of F
from the trace. This yields a "proof" of |-
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Cut elimination is productive

Theorem
Internal phase always halts. J

Proof by contradiction: We show that the proof system is sound.
Contradiction.
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Cut elimination produces a proof

Theorem
The pre-proof obtained by the cut elimination algorithm is valid. J
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Cut elimination produces a proof

The pre-proof obtained by the cut elimination algorithm is valid.

Theorem J

Proof: Let ©* be the pre-proof obtained from @+ A by cut
elimination. Suppose that a branch b of ©* is not valid.

Let 6 be the sub-derivation of 7w explored by the reduction
that produces b.

Fact: Threads of 6 are the threads of b, together with
threads starting from cut formulas.

The validity of 8 cannot rely on the threads of b.

6" is O where we replace in A any v by a  and any 1, T by
1,0.

Show that formulas containing only p, 1,0 and MALL
connectives are false.

6 proves a false sequent which contradicts soundness.
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