Unique solution techniques for bisimilarity

Adrien Durier

With Daniel Hirschkoff (ENS Lyon), Davide Sangiorgi (Università di Bologna)

Rencontres GéoCal-LAC, 28 novembre 2016
This talk

• About proof techniques for coinductive equivalences

• **Bisimilarity** comes with bisimulation
 → Bisimulation enhancements (up-to techniques)

• Proof techniques based on equations and unique solutions
 → General idea: **Guardedness** guarantees unique solution
 → Historical **syntactic** criteria
 → **Here:** (general) non-syntactic criteria for unique solutions
Unique solutions of equations (as a proof technique)

- \equiv: equivalence between programs
- x: ranges over programs
- f: function over program, program context

Equation: $x = f[x]$
Unique solutions of equations (as a proof technique)

- \(\equiv \): equivalence between programs
- \(x \): ranges over programs
- \(f \): function over program, program context

Equation: \(x = f[x] \)

\(f \) has a **unique solution** (for \(= \)):
\[
\begin{align*}
x &= f[x] \\
y &= f[y]
\end{align*}
\]

Then \(x = y \)
Calculus of Communicating Systems

channels: a, b, c . . .

\[P, Q := 0 | \mu P | P | Q | K | \nu a P \]

Milner, *Communication and concurrency*, 1989

Only models *synchronizations*
Calculus of Communicating Systems

channels: a, b, c...

\[P, Q \ := \ 0 \ | \ \mu P \ | \ P \ | \ Q \ | \ K \ | \ \nu a P \]

\[\mu P \ \xrightarrow{\mu} \ P \]

\[\mu \ := \]

- a: Receives on channel a
- \(\bar{a} \): Emits on channel a
- \(\tau \): Internal action (invisible)

Example: \(\bar{a} \cdot 0 \ \xrightarrow{\bar{a}} \ 0 \)
Calculus of Communicating Systems

channels: \(a, b, c \ldots \)

\[
P, Q \; := \; 0 \mid \mu.P \mid P \mid Q \mid K \mid \nu a \; P
\]

\[
\mu.P \xrightarrow{\mu} P
\]

Example: \(a.0 \mid b.0 \)

\[
a \xrightarrow{0} b.0
\]

\[
b \xrightarrow{a.0 \mid 0}
\]
Calculus of Communicating Systems

channels: \(a, b, c \ldots \)

\[
P, Q ::= 0 \mid \mu P \mid P \mid Q \mid K \mid \nu a P
\]

\[
\mu P \xrightarrow{\mu} P
\]

\[
P \xrightarrow{a} P' \quad Q \xrightarrow{\overline{a}} Q'
\]

\[
P \mid Q \xrightarrow{\tau} P' \mid Q'
\]

Example: \(a \cdot 0 \mid \overline{a} \cdot b \cdot 0 \)

\[
0 \mid b \cdot 0 \quad a \cdot 0 \mid b \cdot 0
\]

\[
0 \mid \overline{a} \cdot b \cdot 0
\]
Calculus of Communicating Systems

channels: $a, b, c \ldots$

$$P, Q ::= 0 \mid \mu P \mid P \mid Q \mid K \mid \nu a P$$

Constants: $K ::= P$

For example, $K_a ::= a.K_a$

$$K_a \xrightarrow{a} K_a$$
Calculus of Communicating Systems

channels: a, b, c . . .

\[P, Q := 0 \mid \mu.P \mid P \mid Q \mid K \mid \nu a P \]

\[\nu a P \not\rightarrow \]

Example: \[\nu a (\bar{a} \mid a) \rightarrow 0 \]
Bisimulations (weak)

\[
P \xrightarrow{\mu} P' \\
\overrightarrow{\mu} \\
R \\
\overrightarrow{\mu} \\
Q \xrightarrow{\hat{\mu}} Q'
\]

\[
\hat{\mu} := \begin{cases}
\tau \xrightarrow{*} \mu \xrightarrow{*} \tau \xrightarrow{*} & \text{if } \mu \neq \tau \\
\tau \xrightarrow{*} & \text{if } \mu = \tau
\end{cases}
\]

weak transitions: \(\tau\) is invisible
Bisimulations (weak)

\[
\begin{array}{ccc}
P & & Q \\
\Downarrow & \mathcal{R} & \Downarrow \\
\hat{\mu} & & \mu \\
P' & & Q' \\
\end{array}
\]

\[
\hat{\mu} := \begin{cases}
\tau \rightarrow^* \mu \rightarrow^* \tau & \text{if } \mu \neq \tau \\
\tau \rightarrow^* & \text{if } \mu = \tau
\end{cases}
\]

weak transitions: \(\tau \) is invisible
Bisimulations (weak)

\[P \approx Q \]

\[P' \approx Q' \]

\[\approx = \bigcup \mathcal{R} \]

\[\approx: \text{bisimilarity} \]
Bisimulations (weak)

Examples

\[X \approx \tau.X \]

\[\forall P, \quad P \approx \tau.P \]

(not a constant: \(K_\tau \ ::= \tau. K_\tau \xrightarrow{\tau} \xrightarrow{\tau} \xrightarrow{\tau} \ldots \))
<table>
<thead>
<tr>
<th>Background</th>
<th>Equations</th>
<th>Unique solutions and divergences</th>
<th>Generalization</th>
</tr>
</thead>
</table>

Equations and unique solutions
Equations and unique solutions

\[X \approx E[X] \]

Unique solutions:

If \(P \approx E[P] \) and \(Q \approx E[Q] \),

Then \(P \approx Q \)
Equations and unique solutions

\[X \approx E[X] \]

Example

\[X \approx a \tau X \]

Solutions \(\approx a.a.a.a.a \ldots \)
Equations and unique solutions

\[X \approx E[X] \]

Unique solutions:

If \(P \approx E[P] \) and \(Q \approx E[Q] \)

Then \(P \approx Q \)

Solutions:

- Consider the constant \(K_E := E[K_E] \)
- \(K_E = E[E[E[E[\ldots]]]] \) is always solution

\(E^\infty: \) syntactic solution
Equations do not always have a unique solution

\[X \approx X \text{ or } X \approx \tau.X \] do not have unique solutions:

\[\forall P, \; P \approx \tau.P \]
Equations do not always have a unique solution

\[X \approx X \text{ or } X \approx \tau.X \] do not have unique solutions:

\[\forall P, P \approx \tau.P \]

1. **No prefix** to constrain behavior
2. **Weak prefix** (\(\tau\)) does not constrain behavior

\[X \approx a\overline{b}.X \]

Unique solution: \(a\overline{b}.a\overline{b}.a\ldots\)
Equations do not always have a unique solution

\[X \approx X \text{ or } X \approx \tau.X \] do not have unique solutions:

\[\forall P, P \approx \tau.P \]

1. **No prefix** to constrain behavior
2. **Weak prefix** (\(\tau\)) does not constrain behavior

\[X \approx a.b.X \]

Unique solution: \(a.b.a.b.a\ldots\)

Is this enough?
Failure of unique solutions

\[X = b. \nu b (\bar{b} \mid X) \]

\(b. P \) is a solution for any \(P \) (st \(b \not\in \text{fn}(P) \))
Failure of unique solutions

\[X = b. \nu b (\overline{b} \mid X) \]

\(b.P \) is a solution for any \(P \) (st \(b \not\in \text{fn}(P) \))

\[
\begin{align*}
\downarrow b & \quad \approx & \quad \downarrow b \\
\downarrow P & \quad \approx & \quad \nu b (\overline{b} \mid b. P)
\end{align*}
\]
Failure of unique solutions

\[X = b. \nu b (\bar{b} \mid X) \]

\(b. P \) is a solution for any \(P \) \((\text{st } b \not\in \text{fn}(P))\)

\[
\begin{array}{ccc}
b. P & \approx & b. \nu b (\bar{b} \mid b. P) \\
b \downarrow & & \downarrow b \\
P & \approx & \nu b (\bar{b} \mid b. P) \\
\equiv & \tau. P & \approx P
\end{array}
\]
Milner’s unique solutions

Theorem (Milner, ’89 CCS book)

A system of equations that is **strongly guarded** and **sequential** has a **unique solution** for \approx.

- **Strongly guarded** if each variable underneath a *visible* prefix
 - reasonable hypothesis
- **Sequential** if variables not underneath parallel compositions
 - way too constraining

Examples:
- $X \approx \tau.X$ is sequential, but not strongly guarded
- $X \approx (a.X) \mid \overline{b}$ and $X \approx a.(\overline{b} \mid X)$ are strongly guarded, but not sequential

Unique solution techniques for bisimilarity
Milner’s unique solutions

Theorem (Milner, ’89 CCS book)

A system of equations that is *strongly guarded* and *sequential* has a *unique solution* for \approx.

- **Strongly guarded** if each variable underneath a *visible* prefix
 - reasonable hypothesis
- **Sequential** if variables not underneath parallel compositions
 - way too constraining

Examples:

- $X \approx \tau.\overline{X}$ is *sequential*, but not *strongly guarded*
- $X \approx (a.X) | \overline{b}$ and $X \approx a.(\overline{b} | X)$ are *strongly guarded*, but not *sequential*
A uniqueness result for divergence-free equations
Divergences and unique solutions

\[X \approx \tau \cdot X \]

- \[E^\infty = \tau \cdot \tau \cdot \tau \cdot \tau \ldots \]
Divergences and unique solutions

$$X \approx \bar{b} \mid b.X$$

- Solutions: $$\forall P, \boldsymbol{P} \mid \bar{b} (\mid b.\bar{b})^\omega$$
- $$\mathbf{E}^\infty = \bar{b} \mid b.(\bar{b} \mid b.(\bar{b} \mid b \ldots)) \xrightarrow{T} \xrightarrow{T} \xrightarrow{T} \ldots$$
Divergences and unique solutions

\[X \approx \overline{b} \mid b.X \]

- Solutions: \(\forall P, P \mid \overline{b} \mid b.(\overline{b} \mid b.\overline{b})^\omega \)
- \(E^\infty = \overline{b} \mid b.(\overline{b} \mid b.\overline{b} \mid b \ldots)) \overrightarrow{T} \overrightarrow{T} \overrightarrow{T} \overrightarrow{T} \ldots \)
- **Divergence**: infinite sequence of \(\overrightarrow{T} \) transitions
Unique solutions for divergence free equations

Theorem (Unique solutions for divergence free equations)

If E^∞ has no divergences, then guarded equation $X \approx E[X]$ has a unique solution.

- P has a divergence: $P \xrightarrow{\mu_1} \xrightarrow{\mu_2} \ldots \xrightarrow{\mu_n} \xrightarrow{T} \xrightarrow{T} \ldots \xrightarrow{T} \ldots$

- **Syntactic solution** $E^\infty := E[E[E[\ldots]]]$
Unique solution and context transitions

\[P \approx E[P] \quad E[Q] \approx Q \]

\textbf{P} are \textbf{Q} solutions of \(X \approx E[X] \).

We show unique solution:

\[P \approx Q \]
Unique solution and context transitions

\[P \approx E[P] \approx E[Q] \approx Q \]

Challenges of \(P \)

Unique solution techniques for bisimilarity

Adrien Durier
Unique solution and context transitions

\[P \approx E \left[P \right] \approx E \left[Q \right] \approx Q \]
Unique solution and context transitions

This transition is a context transition of E:
Unique solution and context transitions

This transition is a context transition of E: $E[Q]$ can match it;
Unique solution and context transitions

This transition is a context transition of E: $E[Q]$ can match it; Q too.
Unique solution and context transitions

\[C[P] \approx C[E[P]] \approx C'[P] \]
\[C[Q] \approx C'[Q] \]

We keep playing the game, so we need to close by contexts...
Unique solution and context transitions

Context transitions

- Transitions **that are independent from the process inside:**
 \[C[\cdot] \xrightarrow{\mu} C'[\cdot] \text{ if } \forall P, \; C[P] \xrightarrow{\mu} C'[P] \]

- General notion, independent of the language

- Related to **guardedness** in CCS
 (guarded context \(\Rightarrow\) context transition)
Unique solution and context transitions

\[
P \approx E^n[P] \quad \Downarrow \hat{\mu} \approx C'[P]
\]
\[
E^n[Q] \approx Q \quad \Downarrow \hat{\mu} \approx C'[Q]
\]

P is also solution of \(X \approx E^n[X] \)
Unique solution and context transitions

\[
C[P] \cong C[E^n[P]] \quad C[E^n[Q]] \cong C[Q]
\]

\[
\hat{\mu} \quad \hat{\mu} \quad \hat{\mu} \quad \hat{\mu}
\]

\[
\cong \quad \cong \quad \cong
\]

Unique solution if any transition of \(C[P] \) can be matched by a \(C[E^n[\cdot]] \):

\('
E[\cdot] \) protects its solutions’
A divergence-free equation protects its solutions

\[C[P] \approx C[E[P]] \]

Idea: \(E_n \cdot E \) cannot always catch up to \(P \); the transition eventually only depends on \(E_n \cdot E \) is guarded. Therefore we can reproduce this transition in the context \(E_n \).

And we start again.
A divergence-free equation protects its solutions

\[C[P] \approx C[E[P]] \]

\(E[\cdot] \) is guarded
A divergence-free equation protects its solutions

\[C[P] \approx C[E[P]] \approx C[E^2[P]] \]

\[P' \approx T_1 \]
A divergence-free equation protects its solutions

\[C[P] \approx C[E[P]] \approx C[E^2[P]] \]

We complete by bisimilarity
A divergence-free equation protects its solutions

\[C[P] \approx C[E[P]] \approx C[E^2[P]] \]

And we start again…
A divergence-free equation protects its solutions

\[C[P] \approx C[E[P]] \approx C[E^2[P]] \approx C[E^3[P]] \]

And we start again…
A divergence-free equation protects its solutions

\[C[P] \approx C[E[P]] \approx C[E^2[P]] \approx C[E^3[P]] \approx \ldots \]
A divergence-free equation protects its solutions

\[
C[P] \approx C[E[P]] \approx C[E^2[P]] \approx C[E^3[P]] \approx \ldots \approx C[E^n[P]]
\]

Idea:

\[E^n[\cdot] \text{ cannot always catch up to } P; \text{ the transition eventually only depends on } E^n[\cdot] \]

Therefore we can reproduce this transition in the context \(E^2[\cdot]\)

We complete by bisimilarity

And we start again.

Unique solution techniques for bisimilarity

Adrien Durier
Limit

If the construction never stops:

⇒ divergence of E^∞

\[
C[E[\cdot]] \quad C[E^2[\cdot]] \quad \ldots \quad C[E^n[\cdot]] \quad \ldots \\
C[E^\infty]
\]

Unique solution techniques for bisimilarity

Adrien Durier
A theorem for unique solutions

- Divergence-free equation \rightarrow build context transitions
- With context transitions \rightarrow $P \approx Q$ (Unique solution)

Theorem

\[
\text{If } X \approx E[X] \text{ is guarded and } E^\infty \text{ has no divergences, then } X \approx E[X] \text{ has a unique solution for } \approx.
\]
Generalization
Generalization

- **Guardedness** and **non-divergence** guarantee a **unique solution**

- **What we need:**
 - **Context transitions**
 \[c \xrightarrow{\mu} c' \iff \forall x, c(x) \xrightarrow{\mu} c'(x) \]
 - **Guarded contexts**
 \[c(x) \xrightarrow{\mu} y \Rightarrow \exists c', c \xrightarrow{\mu} c' \text{ and } y = c'(x) \]
 - Contexts are **congruences**
 \[x \approx y \Rightarrow c(x) \approx c(y) \]
 - Contexts **compose**, and composition respects guardedness

- Hence, works with any **1st order LTS**, asynchronous \(\pi\)-calculus, trace equivalence, behavioral preorders...
Generalization

- **Guardedness** and non-divergence guarantee a unique solution

- What we need:
 - Context transitions
 \[c \xrightarrow{\mu} c' \iff \forall x, c(x) \xrightarrow{\mu} c'(x) \]
 - Guarded contexts
 \[c(x) \xrightarrow{\mu} y \Rightarrow \exists c', c \xrightarrow{\mu} c' \text{ and } y = c'(x) \]
 - Contexts are congruences
 \[x \approx y \Rightarrow c(x) \approx c(y) \]
 - Contexts compose, and composition respects guardedness

- Hence, works with any 1st order LTS, asynchronous \(\pi \)-calculus, trace equivalence, behavioral preorders...
Correspondence with up-to techniques

- **Up-to techniques**: widely studied bisimulation enhancements

- 'Up to context techniques and unique solutions are the same’ [Sangiorgi15]

- This theorem is inspired by a theorem for CSP due to Roscoe (fixpoints in CSP), but is still essentially an up-to technique