On two Notions of Higher-Order Model-Checking Geocal Meeting

N. Kobayashi <u>E. Lozes</u> F. Bruse

November 29th, 2016

Two Higher-Order Extensions of Model-Checking

H. O. Recursion Schemes

higher-order models

functional programs verification

model-checking is complicated

[Knapik& al, 2001] [Ong, 2006]

[Hague& al, 2008] [Kobayashi& Ong, 2009]

H. O. Fixpoint Logic

higher-order **properties**

rely-guarantee reasonning non-regular properties

model-checking is easy

 $[Viswanathan\&\ Viswanathan,\ 2004]$

[Axelson,Lange,Somla, 2007] [Lange,Lozes, 2014]

How are they related?

Why the Question Matters

• we don't have a simple proof of HORS decidability

but if we can reduce HORS model-checking to HFL model-checking, we may give a new, simpler proof of the decidability of HORS model-checking.

we don't have an efficient model-checker for HFL

but if we can reduce HFL model-checking to HORS model-checking, we can use existing HORS model-checkers.

A Simple Answer

Theorem [Ong, 2006] The HORS model-checking problem is k-EXPTIME complete at order k.

Theorem [Axelson,Lange,Somla, 2007] The HFL model-checking problem is k-EXPTIME complete at order k.

 \Rightarrow the two problems can be reduced one to each other.

But... encoding a k-EXPTIME Turing machine is not what we are looking for.

The Big Picture

The Big Picture

Recursion Schemes

$$\mathcal{S}$$
 \models φ Its HFL formula

Recursion Schemes

terminals (order ≤ 1)

- $a:\star\to\star\to\star$
- $b:\star\to\star$
- $c:\star$

non-terminals

$$F: (\star \rightarrow \star) \rightarrow \star$$

$$B: (\star \to \star) \to \star \to \star$$

rules

$$S \rightarrow F b$$

$$F \times \rightarrow a c (x (F (B b)))$$

$$B \times y \rightarrow b (x y)$$

reductions

$$S \rightarrow F b$$

 $\rightarrow a c (b (F (B b)))$
 $\rightarrow a c (b (a c (B b (F (B (B b))))))$
 $\rightarrow ...$

limit tree

$$\mathcal{S}$$
 \models φ Its HFL formula

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, \Omega)$$
 with

- $\delta(q, x) \in \mathsf{Bool}^+(\mathit{Dir}(x) \times Q)$ where $\mathit{Dir}(x) = \{1, \dots, \mathsf{arity}(x)\}$
- ex: $\delta(q_0, b) = (1, q_1)$: move to first child and state q_1
- ex: $\delta(q_0, a) = (1, q_0) \wedge (2, q_0)$
- $\Omega: Q \to \{0, \dots, p-1\}$: priority function
- ex: $\Omega(q_0) = 0$, $\Omega(q_1) = 1$

acceptance game on a given tree

- a play π is a path of T labeled with states
- parity condition: prover wins if
 - ullet either π is finite
 - or $\pi = s_0 s_1 \dots s_i \dots$ with $\limsup_{i \to \infty} \Omega(s_i)$ even
- $T \in L(A)$ if prover has a winning strategy

ex: accepting

ex: non-accepting

Higher-Order Fixpoint Logic

$$\mathcal{S}$$
 \models φ Its HFL formula

Higher-Order Fixpoint Logic

$$\begin{array}{lll} \eta & ::= & \bullet \mid \eta_1 \rightarrow \eta_2 & (\text{simple types}) \\ \varphi, \psi & ::= & \top \mid \bot & (\text{true,false}) \\ \mid \varphi \lor \psi & (\text{disjunction}) \\ \mid \varphi \land \psi & (\text{conjunction}) \\ \mid \langle a \rangle \varphi & (\text{may modality}) \\ \mid [a] \varphi & (\text{must modality}) \\ \mid X & (\text{variable}) \\ \mid \mu X^{\eta}. \ \varphi & (\text{h.o least fixed point}) \\ \mid \nu X^{\eta}. \ \varphi & (\text{h.o greatest fixed point}) \\ \mid \lambda X^{\eta}. \ \varphi & (\text{abstraction}) \\ \mid \varphi \ \psi & (\text{function application}) \end{array}$$

remark: negation is admissible [Lozes, FICS'2015]

Examples

• predicate transformers

$$\lambda X. \ p \lor \langle a \rangle X \qquad \lambda X. \ \lambda Y. \ X \lor \langle a \rangle Y$$

Examples

predicate transformers

$$\lambda X. \ p \lor \langle a \rangle X \qquad \lambda X. \ \lambda Y. \ X \lor \langle a \rangle Y$$

higher-order predicate transformers

$$\lambda F.\lambda X. F (F X)$$

Examples

predicate transformers

$$\lambda X. \ p \lor \langle a \rangle X \qquad \lambda X. \ \lambda Y. \ X \lor \langle a \rangle Y$$

higher-order predicate transformers

$$\lambda F.\lambda X. F (F X)$$

recursive predicate transformers

$$\mu F.\lambda X. \ X \lor \bigvee_{a \in \Sigma} \langle a \rangle (F \ (\langle a \rangle X))$$

Non-Regular Properties

The semantics of

$$\mu F.\lambda X. \ X \lor \bigvee_{a \in \Sigma} \langle a \rangle (F \ (\langle a \rangle X))$$

can be computed by its approximants

$$F^{0} X = \bot$$

$$F^{1} X = X$$

$$F^{2} X = X \lor \bigvee_{a \in \Sigma} \langle a \rangle \langle a \rangle X$$

$$F^{3} X = F^{2} X \lor \bigvee_{a,b \in \Sigma} \langle a \rangle \langle b \rangle \langle b \rangle \langle a \rangle X$$
...
$$F^{\omega} X = \bigvee_{\text{palindrome } w} \langle w \rangle X$$

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. \ X \wedge [a]F \ \langle b \rangle X$$

Χ	$\mid F^0 X$	
Ø		
$\{s_0\}$ $\{s_1\}$		
$\{s_1\}$		
$\{s_0,s_1$	}	

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. \ X \wedge [a]F \ \langle b \rangle X$$

X	$\int F^0 X$	
Ø	Ø	
$\{s_0\}$ $\{s_1\}$		
$\{s_1\}$		
$\{s_0, s_1\}$		

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. \ X \wedge [a]F \ \langle b \rangle X$$

X	$F^0 X$	
Ø	Ø	
$\{s_0\}$	Ø	
$\{s_1\}$		
$\{s_0,s_1\}$		

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. X \wedge [a]F \langle b \rangle X$$

X	$F^0 X$	
Ø	Ø	
$\{s_0\}$ $\{s_1\}$ $\{s_0, s_1\}$	Ø	
$\{s_1\}$	$\{s_1\}$	
$\{s_0,s_1\}$		

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. \ X \wedge [a]F \ \langle b \rangle X$$

X	$\int F^0 X$	$F^1 X$	
Ø	Ø		
$\{s_0\}$ $\{s_1\}$	Ø		
$\{s_1\}$	$\{s_1\}$		
$\{s_0,s_1\}$	$\{s_1\}$		

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. \ X \wedge [a]F \ \langle b \rangle X$$

X	$F^0 X$	$F^1 X$	
Ø	Ø	Ø	
$\{s_0\}$	Ø		
$\{s_1\}$	$\{s_1\}$		
$\{s_0,s_1\}$	$\{s_1\}$		

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. \ X \wedge [a]F \ \langle b \rangle X$$

	Χ	$F^0 X$	$F^1 X$	
•	Ø	Ø	Ø	
	$\{s_0\}$	Ø	$\{s_0\}$	
	$\{s_1\}$	$\{s_1\}$		
	$\{s_0,s_1\}$	$\{s_1\}$		

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. \ X \wedge [a]F \ \langle b \rangle X$$

X	$F^0 X$	$F^1 X$	
Ø	Ø	Ø	
$\{s_0\}$	Ø	$\{s_0\}$	
$\{s_1\}$	$\{s_1\}$	$\{s_1\}$	
$\{s_0,s_1\}$	$\{s_1\}$		

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. X \wedge [a]F \langle b \rangle X$$

X	$F^0 X$	$F^1 X$	
Ø	Ø	Ø	
$\{s_0\}$	Ø	$\{s_0\}$	
$\{s_1\}$	$\{s_1\}$	$\{s_1\}$	
$\{s_0,s_1\}$	$\{s_1\}$	$\{s_0,s_1\}$	

- represent functions in extension
- compute fixpoints by their approximants

$$\mu F.\lambda X. X \wedge [a]F \langle b \rangle X$$

X	$F^0 X$	$F^1 X$	$F^2 X$
Ø	Ø	Ø	Ø
$\{s_0\}$	Ø	$\{s_0\}$	$\{s_0\}$
$\{s_1\}$	$\{s_1\}$	$\{s_1\}$	$\{s_1\}$
$\{s_0,s_1\}$	$\{s_1\}$	$\{s_0,s_1\}$	$\{s_0,s_1\}$

From HORS Model-Checking to HFL Model-Checking

From HORS Model-Checking to HFL Model-Checking

Encoding an automaton as a LTS

Recursion Schemes as HFL Formulas

Notation

The sequence $\mathcal{E}:=X_1^{\eta_1}=_{\alpha_1}\varphi_1;\ldots;X_n^{\eta_n}=_{\alpha_n}\varphi_n$ stands for the formula $toHFL(\mathcal{E})$ defined as

$$\begin{array}{l} \operatorname{toHFL}(X^{\eta} =_{\alpha} \varphi) = \alpha X^{\eta}.\varphi \\ \operatorname{toHFL}(\mathcal{E}; X^{\eta} =_{\alpha} \varphi) = \operatorname{toHFL}([\alpha X^{\eta}.\varphi/X]\mathcal{E}). \end{array}$$

example:

$$A =_{\mu} \langle a \rangle (B \ A);$$
 stands for $\mu A. \langle a \rangle ((\nu B.\lambda X. \ A \lor \langle b \rangle X) \ A).$ $B =_{\nu} \lambda X. \ A \lor \langle b \rangle X$

Note: in general, the order of the equations matters.

From HORS to HFL

naive idea

• for every rule

$$F x_1 \dots x_n \to t$$

introduce an equation

$$F =_{\nu} \lambda x_1 \dots x_n. (t)^{\dagger}$$

.

- the formula $(t)^{\dagger}$ mimicks the term t
 - a non-terminal F becomes a recursive variable
 - a parameter x becomes a λ -bound variable
 - a terminal a becomes a formula that forces to move along the transition of the LTS that encodes the transitions $\delta(-,a)$ of the automaton.

Example

assume a is of arity 2

$$S \rightarrow F a$$

$$F \times \rightarrow x (F \times) (F \times)$$

with

$$\delta(q_i, a) = (1, q_1) \wedge (2, q_2)$$

 $\Omega(q_i) = 0$

becomes

with

$$S =_{\nu} F (\lambda x. \lambda y. \langle a_0 \rangle (\langle 1 \rangle x \wedge \langle 2 \rangle y))$$

$$F =_{\nu} \lambda x. x (F x) (F x)$$

Trivial Automata

An alternating parity tree automaton is *trivial* if $\Omega(q) = 0$ for all states q.

Theorem

Let $\mathcal{E}(\mathcal{G})$ be the HES obtained by the naive translation of the HORS \mathcal{G} . Let \mathcal{A} be a trivial APTA and let $\mathcal{S}(\mathcal{A})$ be its associated LTS. Then

$$tree(\mathcal{G}) \in L(\mathcal{A})$$
 iff $\mathcal{S}(\mathcal{A}) \models \mathcal{E}(\mathcal{G})$

Issues:

- how to deal with non-trivial automata?
- how to prove this theorem simply?

Main Technical Tool: HFL Typing Games

similar to Kobayashi-Ong typing games [Kobayashi,Ong, 2009] but a bit simpler

- no priorities in the intersection types
- simpler parity condition: the outermost recursive variable that is unfolded infinitely often determines the winner

$$\tau ::= s \mid \tau_1 \wedge \cdots \wedge \tau_n \to \tau'$$

- the type s refines the type of formulas that denote predicates $\vdash \varphi : s$ if $\varphi : \bullet$ and $s \models \varphi$
- $\vdash \varphi : \tau_1 \land \cdots \land \tau_n \rightarrow \tau'$ if for all ψ such that $\vdash \psi : \tau_i$ for all $i = 1, \dots, n$, it holds that $\vdash \varphi \ \psi : \tau'$

Example

$$S =_{\mu} X;$$

$$Y =_{\nu} \lambda Z. \langle a \rangle (Z \wedge X);$$

$$X =_{\mu} \langle a \rangle (Y X).$$

Ingredients of the Proof

Theorem

HFL typing games capture HFL semantics: $\vdash \varphi : s$ is derivable (i.e. Prover has a winning strategy in the typing game) if and only if $s \models \varphi$.

Theorem

The translation $(.)^{\dagger}$ preserves typability: for trivial automata \mathcal{A} , $\vdash (t)^{\dagger} : q$ in the HFL typing game iff $\vdash t : q$ in the KO typing game for trivial automata.

A Taste of the Case of Non-Trivial Automata

Same idea, but in order to account for priorities

- non-terminals get duplicated
- arguments get duplicated

example

$$S \to F b$$

 $F \times X \to X (F \times X)$

becomes

$$\begin{split} S^{\sharp 1} &=_{\mu} F^{\sharp 1} \ b^{\sharp 1} \ b^{\sharp 1}; \\ F^{\sharp 1} &=_{\mu} \lambda X^{\sharp 1}.\lambda X^{\sharp 0}. \quad X^{\sharp 1} \quad (F^{\sharp 1} \ X^{\sharp 1} \ X^{\sharp 1}) \quad (F^{\sharp 0} \ X^{\sharp 1} \ X^{\sharp 0}); \\ S^{\sharp 0} &=_{\nu} F^{\sharp 0} \ b^{\sharp 1} \ b^{\sharp 0}; \\ F^{\sharp 0} &=_{\nu} \lambda X^{\sharp 1}.\lambda X^{\sharp 0}. \quad X^{\sharp 0} \quad (F^{\sharp 1} \ X^{\sharp 1} \ X^{\sharp 1}) \quad (F^{\sharp 0} \ X^{\sharp 1} \ X^{\sharp 0}) \end{split}$$

A Taste of the Case of Non-Trivial Automata (2)

Why argument duplication is needed can be illustrated at the level of types. Remember KO types [Kobayashi,Ong,2009] are

$$\theta ::= q \mid (\theta_1, m_1) \wedge \cdots \wedge (\theta_n, m_n) \rightarrow \theta$$

where m_i are priorities.

The translation relies on

- KO type q being mapped to HFL type q
- KO type

$$igwedge_{j \in J_0} (heta_j, 0) \wedge \cdots \wedge igwedge_{j \in J_p} (heta_j, p)
ightarrow heta$$

being mapped to

$$\bigwedge_{j\in J_0}\theta_j\to\cdots\to\bigwedge_{j\in J_p}\theta_j\to\theta$$

From HFL Model-Checking to HORS Model-Checking

Main Ideas

- on LTS with n states, a HFL formula φ of order k is equivalent to a non-recursive formula $\varphi^{(\alpha)}$ obtained by $\alpha=2^n_k$ unfoldings
- ullet we create a HORS that generates the syntax tree of $arphi^{(lpha)}$
- the APTA evaluates the syntax tree of the formula over the LTS.

- challenge: generate $\varphi^{(\alpha)}$ at order k:
- we used Jones encoding of large numbers [Jones, JFP 2001]

Conclusion

no free lunch today

- new proof of HORS MC decidability, but not really simpler (unless perhaps for trivial automata)
- not clear that HORS model-checkers can be used for HFL model-checking, because of our use of large numbers encoding
- not clear that we cannot do better for HFL→HORS

but

- interesting type system for HFL
- answers the question of local model-checking in HFL
- possibly more intuitive than original KO types

Related Work?

• Florian Bruse. Alternating Parity Krivine Automata. MFCS 2014.

 Sylvain Salvati, Igor Walukiewicz. A model for behavioural properties of higher-order programs. CSL 2015.

 Charles Grellois, Paul-André Melliès. An Infinitary Model of Linear Logic. FOSSACS 2015.