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Two Higher-Order Extensions of Model-Checking

H. O. Recursion Schemes

higher-order models

functional programs verification

model-checking is complicated

[Knapik& al, 2001] [Ong, 2006]

[Hague& al, 2008] [Kobayashi& Ong, 2009]

H. O. Fixpoint Logic

higher-order properties

rely-guarantee reasonning
non-regular properties

model-checking is easy

[Viswanathan& Viswanathan, 2004]

[Axelson,Lange,Somla, 2007] [Lange,Lozes, 2014]

. How are they related? .
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Why the Question Matters

we don’t have a simple proof of HORS decidability

but if we can reduce HORS model-checking to HFL model-checking, we may

give a new, simpler proof of the decidability of HORS model-checking.

we don’t have an efficient model-checker for HFL

but if we can reduce HFL model-checking to HORS model-checking, we can

use existing HORS model-checkers.
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A Simple Answer

Theorem [Ong, 2006] The HORS model-checking problem is k-EXPTIME
complete at order k .

Theorem [Axelson,Lange,Somla, 2007] The HFL model-checking problem
is k-EXPTIME complete at order k .

⇒ the two problems can be reduced one to each other.

But... encoding a k-EXPTIME Turing machine is not what we are looking
for.
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The Big Picture

recursion scheme

tree(G) is accepted by A

altern. parity tree autom.

S

lts

|= ϕ

HFL formula
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Recursion Schemes

recursion scheme

tree(G) is accepted by A

altern. parity tree autom.

S

lts

|= ϕ

HFL formula

recursion scheme

tree(G)
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Recursion Schemes

terminals (order≤ 1)
a : ?→ ?→ ?
b : ?→ ?
c : ?

non-terminals
S : ?
F : (?→ ?)→ ?
B : (?→ ?)→ ?→ ?

rules
S → F b
F x → a c (x (F (B b)))
B x y → b (x y)

reductions
S → F b
→ a c (b (F (B b)))
→ a c (b (a c (B b (F (B (B b))))))
→ . . .

limit tree a

c b

a

c b2

a

c b3

· · ·
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Alternating Parity Tree Automaton

recursion scheme

tree(G) is accepted by A

altern. parity tree autom.

S

lts

|= ϕ

HFL formula

altern. parity tree autom.

A
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Alternating Parity Tree Automaton

q0

0

∧ >

q1

1

a1
2

c

1

b a

b

c

A = (Q,Σ, δ, q0,Ω) with

δ(q, x) ∈ Bool+(Dir(x)× Q)
where
Dir(x) = {1, . . . , arity(x)}
ex: δ(q0, b) = (1, q1): move to
first child and state q1

ex: δ(q0, a) = (1, q0) ∧ (2, q0)

Ω : Q → {0, . . . , p − 1}: priority
function

ex: Ω(q0) = 0, Ω(q1) = 1
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Alternating Parity Tree Automaton

q0

0

∧ >

q1

1

a1
2

c

1

b a

b

c

acceptance game on a given tree
T

a play π is a path of T labeled
with states

parity condition: prover wins if

either π is finite
or π = s0s1 . . . si . . . with
lim supi→∞ Ω(si ) even

T ∈ L(A) if prover has a
winning strategy
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Alternating Parity Tree Automaton

q0

0

∧ >

q1

1

a1
2

c

1

b a

b

c

aq0

c bq0

aq1

cq0 b

b

a

c b3

· · ·

ex: accepting
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Alternating Parity Tree Automaton

q0

0

∧ >

q1

1

a1
2

c

1

b a

b

c

aq0

c bq0

aq1

c bq0

bq1

aq1

c b3q0q
2
1

· · ·

ex: non-accepting
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Higher-Order Fixpoint Logic

recursion scheme

tree(G) is accepted by A

altern. parity tree autom.

S

lts

|= ϕ

HFL formulaHFL formula

ϕ
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Higher-Order Fixpoint Logic

η ::= • | η1 → η2 (simple types)

ϕ,ψ ::= > | ⊥ (true,false)
| ϕ ∨ ψ (disjunction)
| ϕ ∧ ψ (conjunction)
| 〈a〉ϕ (may modality)
| [a]ϕ (must modality)
| X (variable)
| µX η. ϕ (h.o least fixed point)

| νX η. ϕ (h.o greatest fixed point)

| λX η. ϕ (abstraction)
| ϕ ψ (function application)

remark: negation is admissible [Lozes, FICS’2015]
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Examples

predicate transformers

λX . p ∨ 〈a〉X λX . λY . X ∨ 〈a〉Y

higher-order predicate transformers

λF .λX . F (F X )

recursive predicate transformers

µF .λX . X ∨
∨
a∈Σ

〈a〉(F (〈a〉X ))
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Non-Regular Properties

The semantics of
µF .λX . X ∨

∨
a∈Σ

〈a〉(F (〈a〉X ))

can be computed by its approximants

F 0 X = ⊥
F 1 X = X

F 2 X = X ∨
∨
a∈Σ

〈a〉〈a〉X

F 3 X = F 2 X ∨
∨

a,b∈Σ

〈a〉〈b〉〈b〉〈a〉X

. . .

Fω X =
∨

palindrome w

〈w〉X
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Global Model-Checking

recursion scheme

tree(G) is accepted by A

altern. parity tree autom.

S

lts

|= ϕ

HFL formula

S

lts

ϕ

HFL formula

|=
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Global Model-Checking

represent functions in extension

compute fixpoints by their approximants

s0 s1

a

b

µF .λX . X ∧ [a]F 〈b〉X

X F 0 X

F 1 X F 2 X

∅

∅ ∅ ∅

{s0}

∅ {s0} {s0}

{s1}

{s1} {s1} {s1}

{s0, s1}

{s1} {s0, s1} {s0, s1}
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From HORS Model-Checking to HFL Model-Checking

recursion scheme

tree(G) is accepted by A

altern. parity tree autom.

S

lts

|= ϕ

HFL formula
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Encoding an automaton as a LTS

q0

0

∧ >

q1

1

a1
2

c

1

b a

b

c

q0

q1∧

(1, q0)

(2, q0)

(1, q1) tt

a0

a1
a
n
d

a
n
d

1

2
b0

b1

1

c0

c1

true
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Recursion Schemes as HFL Formulas

recursion scheme

tree(G) is accepted by A

altern. parity tree autom.

S

lts

|= ϕ

HFL formula
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Notation

The sequence E := X η1
1 =α1 ϕ1; . . . ;X ηn

n =αn ϕn stands for the formula
toHFL(E) defined as

toHFL(X η =α ϕ) = αX η.ϕ
toHFL(E ;X η =α ϕ) = toHFL([αX η.ϕ/X ]E).

example:

A =µ 〈a〉(B A);
B =ν λX . A ∨ 〈b〉X

stands for µA. 〈a〉
(
(νB.λX .A ∨ 〈b〉X ) A

)
.

Note: in general, the order of the equations matters.
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From HORS to HFL

naive idea

for every rule
F x1 . . . xn → t

introduce an equation

F =ν λx1 . . . xn. (t)†

.

the formula (t)† mimicks the term t

a non-terminal F becomes a recursive variable
a parameter x becomes a λ-bound variable
a terminal a becomes a formula that forces to move along the transition
of the LTS that encodes the transitions δ(−, a) of the automaton.
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Example

assume a is of arity 2

S → F a
F x → x (F x) (F x)

with δ(qi , a) = (1, q1) ∧ (2, q2)
Ω(qi ) = 0

becomes

q1

∧

q2
a0 a0

1 2

with S =ν F (λx .λy . 〈a0〉(〈1〉x ∧ 〈2〉y))
F =ν λx . x (F x) (F x)
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Trivial Automata

An alternating parity tree automaton is trivial if Ω(q) = 0 for all states q.

Theorem

Let E(G) be the HES obtained by the naive translation of the HORS G.
Let A be a trivial APTA and let S(A) be its associated LTS.
Then

tree(G) ∈ L(A) iff S(A) |= E(G)

Issues:

how to deal with non-trivial automata?

how to prove this theorem simply?
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Main Technical Tool: HFL Typing Games

similar to Kobayashi-Ong typing games [Kobayashi,Ong, 2009] but a bit
simpler

no priorities in the intersection types

simpler parity condition: the outermost recursive variable that is
unfolded infinitely often determines the winner

τ ::= s | τ1 ∧ · · · ∧ τn → τ ′

the type s refines the type • of formulas that denote predicates
` ϕ : s if ϕ : • and s |= ϕ

` ϕ : τ1 ∧ · · · ∧ τn → τ ′ if for all ψ such that ` ψ : τi for all
i = 1, . . . , n, it holds that ` ϕ ψ : τ ′
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Example

S =µ X ;
Y =ν λZ .〈a〉(Z ∧ X );
X =µ 〈a〉(Y X ).

with
s

a

X : s
E(S) : s

Y : s → s X : s
Y X : s

〈a〉(Y X ) : s

E(X ) : s

Z : s ` Z : s X : s
Z : s ` Z ∧ X : s

Z : s ` 〈a〉(Z ∧ X ) : s

E(Y ) : s → s
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Ingredients of the Proof

Theorem

HFL typing games capture HFL semantics: ` ϕ : s is derivable (i.e. Prover
has a winning strategy in the typing game) if and only if s |= ϕ.

Theorem

The translation (.)† preserves typability: for trivial automata A, ` (t)† : q
in the HFL typing game iff ` t : q in the KO typing game for trivial
automata.
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A Taste of the Case of Non-Trivial Automata

Same idea, but in order to account for priorities

non-terminals get duplicated

arguments get duplicated

example
S → F b
F x → x (F x)

becomes

S ]1 =µ F ]1 b]1 b]1;

F ]1 =µ λX
]1.λX ]0. X ]1 (F ]1 X ]1 X ]1) (F ]0 X ]1 X ]0);

S ]0 =ν F ]0 b]1 b]0;

F ]0 =ν λX
]1.λX ]0. X ]0 (F ]1 X ]1 X ]1) (F ]0 X ]1 X ]0)
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A Taste of the Case of Non-Trivial Automata (2)

Why argument duplication is needed can be illustrated at the level of
types. Remember KO types [Kobayashi,Ong,2009] are

θ ::= q | (θ1,m1) ∧ · · · ∧ (θn,mn)→ θ

where mi are priorities.

The translation relies on

KO type q being mapped to HFL type q

KO type ∧
j∈J0

(θj , 0) ∧ · · · ∧
∧
j∈Jp

(θj , p)→ θ

being mapped to ∧
j∈J0

θj → · · · →
∧
j∈Jp

θj → θ
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From HFL Model-Checking to HORS Model-Checking

recursion scheme

tree(G) is accepted by A

altern. parity tree autom.

S

lts

|= ϕ

HFL formula
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Main Ideas

on LTS with n states, a HFL formula ϕ of order k is equivalent to a
non-recursive formula ϕ(α) obtained by α = 2nk unfoldings

we create a HORS that generates the syntax tree of ϕ(α)

the APTA evaluates the syntax tree of the formula over the LTS.

challenge: generate ϕ(α) at order k :

we used Jones encoding of large numbers [Jones, JFP 2001]
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Conclusion

no free lunch today

new proof of HORS MC decidability, but not really simpler (unless
perhaps for trivial automata)

not clear that HORS model-checkers can be used for HFL
model-checking, because of our use of large numbers encoding

not clear that we cannot do better for HFL→HORS

but

interesting type system for HFL

answers the question of local model-checking in HFL

possibly more intuitive than original KO types
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