Semi-automatic proof of Strong connectivity

jean-jacques.levy@inria.fr

journées PPS, 12-10-2017
Plan

• motivation
• algorithm
• formal proof
• other systems
• conclusion

.. joint work (in progress) with Ran Chen [VSTTE 2017]
also cooperation with Cyril Cohen, Laurent Théry, Stephan Merz
Motivation

• nice algorithms \rightarrow simple formal proofs
• fully published in articles or journals
• how to publish formal proofs?
• formal proofs should be exact and readable (by human)
• mix automatic and interactive proofs
• first-order logic is easy to understand, but not expressive
• algorithms on graphs = a good testbed
One-pass linear-time algorithm

[tarjan 1972]
Depth-first-search

graph

spanning tree (forest)
The algorithm (1/3)

3 SCCs (strongly connected components) 3 vertices are their bases
The algorithm (2/3)

\[
LOWLINK(x) = \min \left(\{num[x]\} \cup \{num[y] \mid x \overset{*}{\rightarrow} y \wedge x \text{ and } y \text{ are in same connected component} \} \right)
\]
The algorithm (3/3)

successive values of the working stack

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
```

increasing rank

0 1 2 3 4 5 6 7 8 9
The program

```plaintext
let rec printSCC (x: int) (s: stack int) (num: array int) (sn: ref int) =
  Stack.push x s;
  num[x] ← !sn; sn := !sn + 1;
  let low = ref num[x] in
  foreach y in (successors x) do
    let m = if num[y] = -1 then printSCC y s num sn
           else num[y] in
    low := Math.min m !low
  done;

if !low = num[x] then begin
  repeat
    let y = Stack.pop s in
    Printf.printf "%d " y;
    num[y] ← max_int;
    if y = x then break;
  done;
  Printf.printf "\n";
  low := max_int;
end;
return !low;
```

- print each component on a line
Proof in algorithms books (1/2)

- consider the spanning trees (forest)
- tree structure of strongly connected components
- 2-3 lemmas about ancestors in spanning trees

Lemma 10. Let v and w be vertices in G which lie in the same strongly connected component. Let F be a spanning forest of G generated by repeated depth-first search. Then v and w have a common ancestor in F. Further, if u is the highest numbered common ancestor of v and w, then u lies in the same strongly connected component as v and w.

$$LOWLINK(x) = \min \left(\{num[x]\} \cup \{num[y] \mid x \xrightarrow{\ast} y \wedge x \text{ and } y \text{ are in same connected component}\} \right)$$

Lemma 12. Let G be a directed graph with $LOWLINK$ defined as above relative to some spanning forest F of G generated by depth-first search. Then v is the root of some strongly connected component of G if and only if $LOWLINK(v) = v$.
Proof in algorithms book (2/2)

- give the program

- proof ↔ program

- that part of the proof is very informal
Our program (1/3)

```ocaml
let rec dfs1 x e = 
  let n = e.sn in 
  let (n1, e1) = dfs (successors x) (add_stack_incr x e) in 
  let (s2, s3) = split x e1.stack in 
  if n1 < n then (n1, e1) else 
    (max_int(), {stack = s3; sccs = add (elements s2) e1.sccs; 
                  sn = e1.sn; num = set_max_int s2 e1.num})

with dfs roots e = if is_empty roots then (max_int(), e) else 
  let x = choose roots in 
  let roots’ = remove x roots in 
  let (n1, e1) = if e.num[x] ≠ -1 then (e.num[x], e) else dfs1 x e in 
  let (n2, e2) = dfs roots’ e1 in (min n1 n2, e2)

let tarjan () = 
  let e0 = {stack = Nil; sccs = empty; sn = 0; num = const (-1)} in 
  let (_, e’) = dfs vertices e0 in e’.sccs

returns LOWLINK(x) and new environment
```

Functional programming
Formal proof
Plan of proof (1/2)

- define **reachability** in graphs and SCCs
- prove a few lemmas about positions in stacks (**ranks**)
- define **invariants** on environments
- give **pre-post conditions** for functions
- add a few intermediate **assertions** in function bodies

- avoid paths, prefer edges
Plan of proof (2/2)

• vertices have colors
 - white = unvisited
 - gray = being visited
 - black = visited

• invariant on environment

vertex in stack reaches all vertices with higher rank
Invariants

type env = {ghost blacks: set vertex; ghost grays: set vertex;
 stack: list vertex; sccs: set (set vertex);
 sn: int; num: map vertex int}
Invariants

type env = {ghost blacks: set vertex; ghost grays: set vertex;
 stack: list vertex; sccs: set (set vertex);
 sn: int; num: map vertex int}

predicate wf_color (e: env) =
 let {stack = s; blacks = b; grays = g; sccs = ccs} = e in
 subset (union g b) vertices \`
 inter b g == empty \`
 elements s == union g (diff b (set_of ccs)) \`
 subset (set_of ccs) b
Invariants

type env = {ghost blacks: set vertex; ghost grays: set vertex;
 stack: list vertex; sccs: set (set vertex);
 sn: int; num: map vertex int}

predicate wf_color (e: env) =
 let {stack = s; blacks = b; grays = g; sccs = ccs} = e in
 subset (union g b) vertices /
 inter b g == empty /
 elements s == union g (diff b (set_of ccs)) /
 subset (set_of ccs) b

predicate wf_num (e: env) =
 let {stack = s; blacks = b; grays = g; sccs = ccs; sn = n; num = f} = e in
 (forall x. -1 <= f[x] < n <= max_int() \ f[x] = max_int()) /
 n = cardinal (union g b) /
 (forall x. f[x] = max_int() <-> mem x (set_of ccs)) /
 (forall x. f[x] = -1 <-> not mem x (union g b)) /
 (forall x y. lmem x s -> lmem y s -> f[x] < f[y] <-> rank x s < rank y s)
Invariants

```haskell
type env = {ghost blacks: set vertex; ghost grays: set vertex;
  stack: list vertex; sccs: set (set vertex);
  sn: int; num: map vertex int}

predicate wf_color (e: env) =
  let {stack = s; blacks = b; grays = g; sccs = ccs} = e in
  subset (union g b) vertices \/
  inter b g == empty \/
  elements s == union g (diff b (set_of ccs)) \/
  subset (set_of ccs) b

predicate wf_num (e: env) =
  let {stack = s; blacks = b; grays = g; sccs = ccs; sn = n; num = f} = e in
  (forall x. -1 <= f[x] < n <= max_int() \/
   f[x] = max_int()) \/
  n = cardinal (union g b) \/
  (forall x. f[x] = max_int() <-> mem x (set_of ccs)) \/
  (forall x. f[x] = -1 <-> not mem x (union g b)) \/
  (forall x y. lmem x s -> lmem y s -> f[x] < f[y] <-> rank x s < rank y s)

predicate no_black_to_white (blacks grays: set vertex) =
  forall x x'. edge x x' -> mem x blacks -> mem x' (union blacks grays)
```
Invariants

type env = {ghost blacks: set vertex; ghost grays: set vertex;
 stack: list vertex; sccs: set (set vertex);
 sn: int; num: map vertex int}

predicate wf_color (e: env) =
 let {stack = s; blacks = b; grays = g; sccs = ccs} = e in
 subset (union g b) vertices \/
 inter b g == empty \/
 elements s == union g (diff b (set_of ccs)) \/
 subset (set_of ccs) b

predicate wf_num (e: env) =
 let {stack = s; blacks = b; grays = g; sccs = ccs; sn = n; num = f} = e in
 (forall x. -1 <= f[x] < n <= max_int() \/
 f[x] = max_int()) \/
 n = cardinal (union g b) \/
 (forall x. f[x] = max_int() <-> mem x (set_of ccs)) \/
 (forall x. f[x] = -1 <-> not mem x (union g b)) \/
 (forall x y. lmem x s -> lmem y s -> f[x] < f[y] <-> rank x s < rank y s)

predicate no_black_to_white (blacks grays: set vertex) =
 forall x x'. edge x x' -> mem x blacks -> mem x' (union blacks grays)

predicate wf_env (e: env) = let {stack = s; blacks = b; grays = g} = e in
 wf_color e \/
 wf_num e \/
 no_black_to_white b g \/
 (forall x y. mem x g -> lmem y s -> rank x s <= rank y s -> reachable x y) \/
 (forall y. lmem y s -> exists x. mem x g \/
 rank x s <= rank y s \/
 reachable y x)
Pre/Post-conditions

let rec dfs1 x e =

requires {mem x vertices} (* R1 *)
requires {access_to e.grays x} (* R2 *)
requires {not mem x (union e.blacks e.grays)} (* R3 *)
let rec dfs1 x e =
requires {mem x vertices} (* R1 *)
requires {access_to e.grays x} (* R2 *)
requires {not mem x (union e.blacks e.grays)} (* R3 *)
(* invariants *)
requires {wf_env e} (* I1a *)
requires {forall cc. mem cc e.sccs <-> subset cc e.blacks /\ is_scc cc} (* I2a *)
returns {(_, e') -> wf_env e'} (* I1b *)
returns {(_, e') -> forall cc. mem cc e'.sccs <-> subset cc e'.blacks /\ is_scc cc} (* I2b *)
let rec dfs1 x e =
requires {mem x vertices} (* R1 *)
requires {access_to e.grays x} (* R2 *)
requires {not mem x (union e.blacks e.grays)} (* R3 *)
(* invariants *)
requires {wf_env e} (* I1a *)
requires {forall cc. mem cc e.sccs <-> subset cc e.blacks \ is_scc cc} (* I2a *)
returns {(_, e') -> wf_env e'} (* I1b *)
returns {(_, e') -> forall cc. mem cc e'.sccs <-> subset cc e'.blacks \ is_scc cc} (* I2b *)

(* monotony *)
returns {(_, e') -> subenv e e'}
Pre/Post-conditions

let rec dfs1 x e =
requires {mem x vertices} (* R1 *)
requires {access_to e.grays x} (* R2 *)
requires {not mem x (union e.blacks e.grays)} (* R3 *)
(* invariants *)
requires {wf_env e} (* Ila *)
requires {forall cc. mem cc e.sccs <-> subset cc e.blacks \ is_scc cc} (* I2a *)
returns {(_, e') -> wf_env e'} (* I1b *)
returns {(_, e') -> forall cc. mem cc e'.sccs <-> subset cc e'.blacks \ is_scc cc} (* I2b *)

(* monotony *)
returns {(_, e') -> subenv e e'}
Pre/Post-conditions

let rec dfs1 x e =

requires {mem x vertices} (* R1 *)
requires {access_to e.grays x} (* R2 *)
requires {not mem x (union e.blacks e.grays)} (* R3 *)
(* invariants *)
requires {wf_env e} (* Il.a *)
requires {forall cc. mem cc e.sccs <-> subset cc e.blacks \ is_scc cc} (* I2a *)
returns {(_, e') -> wf_env e'} (* Il.b *)
returns {(_, e') -> forall cc. mem cc e'.sccs <-> subset cc e'.blacks \ is_scc cc} (* I2b *)
(* post-cond *)
returns {(_, e') -> n <= e'.num[x]} (* PC1 *)
returns {(_, e') -> n = max_int() \ num_of_reachable n x e'} (* PC2 *)
returns {(_, e') -> forall y. xedge_to e'.stack e.stack y -> n <= e'.num[y]} (* PC3 *)
returns {(_, e') -> mem x e'.blacks} (* PC4 *)
(* monotony *)
returns {(_, e') -> subenv e e'}

\[e'.sccs \subseteq e'.sccs\]
\[e.blacks \subseteq e'.blacks\]
\[e.grays = e'.grays\]
let n = e.sn in
let (n1, e1) =
 dfs' (successors x) (add_stack_incr x e) in
let (s2, s3) = split x e1.stack in

if n1 < n then begin
 (n1, add_blacks x e1) end
else begin

 (max_int(), { blacks = add x e1.blacks; grays = e.grays;
 stack = s3; sccs = add (elements s2) e1.sccs;
 sn = e1.sn; num = set_max_int s2 e1.num}) end

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]
let n = e.sn in
let (n1, e1) =
 dfs' (successors x) (add_stack_incr x e) in
let (s2, s3) = split x e1.stack in
assert { is_last x s2 /
 \ s3 = e.stack /
 \ subset (elements s2) (add x e1.blacks)};
assert { is_subscpp (elements s2)};
if n1 < n then begin
 (n1, add_blacks x e1) end
else begin

(max_int()), {blacks = add x e1.blacks; grays = e.grays;
 stack = s3; sccs = add (elements s2) e1.sccs;
 sn = e1.sn; num = set_max_int s2 e1.num}) end

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]
let n = e.sn in
let (n1, e1) =
 dfs' (successors x) (add_stack_incr x e) in
let (s2, s3) = split x e1.stack in
assert {is_last x s2 \ s3 = e.stack \ subset (elements s2) (add x e1.blacks)};
assert {is_subsc (elements s2)};
if n1 < n then begin
 assert {exists y. mem y e.grays \ lmem y e1.stack \ e1.num[y] < e1.num[x] \ reachable x y};
 (n1, add_blacks x e1) end
else begin

(max_int(), {blacks = add x e1.blacks; grays = e.grays; stack = s3; sccs = add (elements s2) e1.sccs; sn = e1.sn; num = set_max_int s2 e1.num}) end

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]
let n = e.sn in
let (n1, e1) =
 dfs' (successors x) (add_stack_incr x e) in
let (s2, s3) = split x e1.stack in
assert {is_last x s2 \ s3 = e.stack \ subset (elements s2) (add x e1.blacks)};
assert {is_subsc (elements s2)};
if n1 < n then begin
 assert {exists y. mem y e.grays \ lmem y e1.stack \ e1.num[y] < e1.num[x] \ reachable x y};
 (n1, add_blacks x e1) end
else begin
 assert {forall y. in_same_scc y x -> lmem y s2};
 assert {is_scc (elements s2)};
 assert {inter e.grays (elements s2) = empty by inter e.grays (elements s2) == empty};
 (max_int(), {blacks = add x e1.blacks; grays = e.grays;
 stack = s3; sccs = add (elements s2) e1.sccs;
 sn = e1.sn; num = set_max_int s2 e1.num}) end

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]
let n = e.sn in
let (n1, el) =
 dfs' (successors x) (add_stack_incr x e) in
let (s2, s3) = split x el.stack in
assert {is_last x s2 \ s3 = e.stack \ subset (elements s2) (add x el.blacks)};
assert {is_subsc (elements s2)};
if n1 < n then begin
 assert {exists y. mem y e.grays \ lmem y el.stack \ el.num[y] < el.num[x] \ reachable x y};
 (n1, add_blacks x el) end
else begin
 assert {forall y. in_same_scc y x -> lmem y s2};
 assert {is_scc (elements s2)};
 assert {inter e.grays (elements s2) = empty by inter e.grays (elements s2) == empty};
 (max_int(), {blacks = add x el.blacks; grays = e.grays;
 stack = s3; sccs = add (elements s2) el.sccs;
 sn = el.sn; num = set_max_int s2 el.num}) end

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]
assertions

let n = e.sn in
let (n1, el) =
 dfs' (successors x) (add_stack_incr x e) in
let (s2, s3) = split x el.stack in
assert {is_last x s2 /
 s3 = e.stack /
 subset (elements s2) (add x el.blacks)};
assert {is_subsc (elements s2)};
if n1 < n then begin
 assert {exists y. mem y e.grays /
 lmem y el.stack /
 el.num[y] < el.num[x] /
 reachable x y};
 (n1, add_blacks x el) end
else begin
 assert {forall y. in_same_scc y x -> lmem y s2};
 assert {is_scc (elements s2)};
 assert {inter e.grays (elements s2) = empty by inter e.grays (elements s2) == empty};
 (max_int(), {blacks = add x el.blacks; grays = e.grays;
 stack = s3; sccs = add (elements s2) el.sccs;
 sn = el.sn; num = set_max_int s2 el.num}) end

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]
let n = e.sn in
let (n1, e1) =
 dfs' (successors x) (add_stack_incr x e) in
let (s2, s3) = split x e1.stack in
assert {is_last x s2 \ s3 = e.stack \ subset (elements s2) (add x e1.blacks)};
assert {is_subsc (elements s2)};
if n1 < n then begin
 assert {exists y. mem y e.grays \ lmem y e1.stack \ el1.num[y] < el1.num[x] \ reachable x y};
 (n1, add_blacks x e1) end
else begin
 assert {forall y. in_same_scc y x \ lmem y s2};
 assert {is_scc (elements s2)};
 assert {inter e.grays (elements s2) = empty by inter e.grays (elements s2) == empty};
 (max_int(), {blacks = add x e1.blacks; grays = e.grays;
 stack = s3; sccs = add (elements s2) e1.sccs;
 sn = e1.sn; num = set_max_int s2 e1.num}) end
Assertions

```
assert {forall y. in_same_scc y x -> lmem y s2};
```

• proof by contradiction: \(\exists y, \text{ in_same_scc} \ y \ x \land y \not\in s2 \)

• \(\exists x'y', \text{ reachable} \ x \ x' \land \text{ edge} \ x' \ y' \land \text{ reachable} \ y' \ y \land x' \in s2 \land y' \not\in s2 \)
Assertions

\[\text{assert} \ {\textit{forall} \ y. \ \text{in_same_scc} \ y \ x \rightarrow \ \text{lmem} \ y \ s2};\]

- proof by contradiction: \(\exists y, \ \text{in_same_scc} \ y \ x \land y \notin s2\)
- \(\exists x'y', \ \text{reachable} \ x \ x' \land \text{edge} \ x' y' \land \text{reachable} \ y' \ y \land x' \in s2 \land y' \notin s2\)
- 3 cases:
Assertions

assert {forall y. in_same_scc y x -> lmem y s2};

- proof by contradiction: $\exists y, \text{in_same_scc} \ y \ x \land y \notin s2$
- $\exists x'y', \text{reachable} \ x \ x' \land \text{edge} \ x' \ y' \land \text{reachable} \ y' \ y \land x' \in s2 \land y' \notin s2$
- 3 cases:

 [1] y' is white

 $x' = x$ then $y' \in \text{successors} x \rightarrow y'$ is black

 $x' \neq x$ then x' is black $\rightarrow \neg \text{no_black_to_white} \ b1 \ g1$
Assertions

assert \{\text{forall } \forall y. \text{ in_same_scc } y \times \rightarrow \text{lmem } y \text{ s2}\};;

• proof by contradiction: \(\exists y, \text{ in_same_scc } y \times \land y \notin s2\)

• \(\exists x'y', \text{ reachable } x \times' \land \text{ edge } x'y' \land \text{ reachable } y'y \land x' \in s2 \land y' \notin s2\)

• 3 cases:

 [1] \(y'\) is white
 \(x' = x\) then \(y' \in \text{ successors } x \rightarrow y'\) is black
 \(x' \neq x\) then \(x'\) is black \(\rightarrow \neg \text{ no_black_to_white } b1 g1\)

 [2] \(y' \in e1.\text{sccs}\) then \(\text{ in_same_scc } y' \times \rightarrow x\) is black
Assertions

assert {forall y. in_same_scc y x -> lmem y s2};

• proof by contradiction: \(\exists y, \; \text{in_same_scc} \; y \; x \; \land \; y \not\in s2 \)

• \(\exists x'y', \; \text{reachable} \; x \; x' \; \land \; \text{edge} \; x' \; y' \; \land \; \text{reachable} \; y' \; y \; \land \; x' \in s2 \; \land \; y' \not\in s2 \)

• 3 cases:

 1. \(y' \) is white

 \begin{align*}
 & x' = x \quad \text{then} \quad y' \in \text{successors} \; x \quad \rightarrow \quad y' \text{ is black} \\
 & x' \neq x \quad \text{then} \quad x' \text{ is black} \quad \rightarrow \quad \neg \text{no_black_to_white} \; b1 \; g1
 \end{align*}

 2. \(y' \in e1\text{.sccs} \)

 \[\text{then} \quad \text{in_same_scc} \; y' \; x \quad \rightarrow \quad x \text{ is black} \]

 3. \(y' \in s3 \)

 \begin{align*}
 & \text{rank} \; y' \; s1 \; < \; \text{rank} \; x \; s1 \quad \rightarrow \quad e1\text{.num}[y'] \; < \; e1\text{.num}[x] = e\text{.num}[x] = n \\
 & x' = x \quad \text{then} \quad y' \in \text{successors} \; x \quad \rightarrow \quad n1 \; \leq \; e1\text{.num}[y'] \\
 & x' \neq x \quad \text{then} \quad \text{xedge_to} \; s1 \; (\text{Cons} \; x \; s3) \; y'
 \end{align*}
Proof stats

<table>
<thead>
<tr>
<th>prover</th>
<th>Alt-Ergo</th>
<th>CVC3</th>
<th>CVC4</th>
<th>Coq</th>
<th>E-prover</th>
<th>Spass</th>
<th>Yices</th>
<th>Z3</th>
<th>all</th>
<th>#VC</th>
<th>#PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 lemmas</td>
<td>2.35</td>
<td>0.23</td>
<td>5.79</td>
<td>0.66</td>
<td>0.75</td>
<td>0.21</td>
<td>9.99</td>
<td>77</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>split</td>
<td>0.09</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>add_stack_incr</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>add_blacks</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>set_max_int</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>dfs1</td>
<td>53.52</td>
<td>12.88</td>
<td>36.39</td>
<td>3.06</td>
<td>28.06</td>
<td></td>
<td>9.01</td>
<td>142.92</td>
<td>218</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>dfs</td>
<td>4.6</td>
<td>0.23</td>
<td>11.63</td>
<td></td>
<td></td>
<td>0.31</td>
<td>16.77</td>
<td>51</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tarjan</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.44</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>61.04</td>
<td>13.54</td>
<td>53.81</td>
<td>3.06</td>
<td>28.72</td>
<td>0.75</td>
<td>0.21</td>
<td>9.32</td>
<td>170.45</td>
<td>371</td>
<td>112</td>
</tr>
</tbody>
</table>

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]
Other systems
Coq / ssreflect

[cyril cohen, laurent théry, JJL]

• port in 1 week
• graphs and finite sets already in mathematical components
• problems with termination (hacky & higher-order)
• 920 lines

[http://github.com/CohenCyril/tarjan]
Isabelle / HOL

[stephan merz]

• port in 1 month
• use many strategies (metis, blast, sledgehammer)
• still problems with proving termination
• 31 pages

• start discuss with them

• Z3 single automatic prover

• ??
Conclusion
Future work

• library for formal proofs on graphs
• other graph algorithms
• beyond graphs …
• teaching formal methods on test cases
• imperative programs

[http://jeanjacqueslevy.net/why3]