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PCF with discrete probabilistic distributions

∆, x : A ` x : A

∆, x : A ` M : B

∆ ` λxA.M : A⇒ B
∆ ` M : A⇒ B ∆ ` N : A

∆ ` (MN) : B
∆ ` M : A⇒ A
∆ ` (YM) : A

r ∈ N
∆ ` n : Nat

∆ ` M : Nat

∆ ` succ(M) : Nat

∆ ` M : Nat

∆ ` pred(M) : Nat

∆ ` P : Nat ∆ ` M : Nat ∆ ` N : Nat

∆ ` ifz(P,M,N) : Nat

∆ ` Coin : Nat

∆ ` M : Nat ∆, x : Nat ` N : Nat

∆ ` let(x ,M,N) : Nat

Operational semantics Red : Λ× Λ→ [0,1]

Red(M,N) =


δN({E [T ]}) if M = E [R], R → T and R 6= Coin,

1
2δN({E [0],E [1]}) if M = E [Coin],

δN({M}) if M normal form.

Prob(M,V ) =
∞

sup
n=0

(
Redn(M,V )

)
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How do we model types,
e.g. JNatK, JNat⇒ NatK?
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A probabilistic coherence space A = (|A| ,P (A))

R+|A|

P (A)

|A| a countable set, called web

P (A) ⊆ (R+)|A| s.t. P (A)⊥⊥ = P (A), with:

P⊥ =

{
v ∈ R+|A| ; ∀u∈P,

∑
a∈|A|

vaua ≤ 1
}

(+completeness, boundedness)

Example

|Unit| = {skip} P (Unit) = [0, 1]

|Bool| = {t,f} P (Bool) = {(p, q) ; p + q ≤ 1}

|Nat| = {0, 1, 2, 3, . . . } P (Nat) = {v ∈ [0, 1]N ;
∑

n vn ≤ 1}

|Bool⇒ Unit| =Mf ({t,f})

P (Bool⇒ Unit) =

v ; ∀p ∈ [0, 1],
∞∑

n,m=0

v[tn,fm ]p
n(1− p)m ≤ 1


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How do we model programs ?
e.g. JΓ ` M : AK : JΓK 7→ JAK
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A morphism f : A 7→ B

R+|A|

P (A)

R+|B|

P (B)
f

The map f is given by a matrix in R+Mf(|A|)×|B|, i.e.:

f (x)b =
∑

[a
n1
1 ,...,a

nk
k ]∈Mf(|A|)

f
[a

n1
1 ,...,a

nk
k ],bxn1

a1
. . . xnk

ak

We require that: ∀x ∈ P (A) , f (x) ∈ P (B).

Example
Let T = Y(λfx .ifz(x ,ifz(pred(x), 0, fx),ifz(x , 0, fx))) then:

JT K0 =
∞∑

n,m=0

2(n + m)!

n!m!
x2n+1

0 x2m+1
1 , JT Kn+1 = 0
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What do we gain with
Probabilistic Coherence Spaces?
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The benefits of having a (fully-abstract!) model

Compositional definition of contextual equivalence:

Theorem (Ehrhard,P.,Tasson 2014)
For every type A and terms P,Q : A,

∀C context, Prob(C[P], 0) = Prob(C[Q], 0) iff JPK = JQK

I A variant for call-by-push-value in (Ehrhard-Tasson 2017)

More tools for program analysis:
I derivation, Taylor expansion, norm, distance. . .

Ehrhard, Pagani, Tasson (IRIF, Paris Diderot) Stability and probabilistic programs PPS, Paris 2017 9 / 21



How to extend
Probabilistic Coherence Spaces

to continuous data types?
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PCF with continuous probabilistic distributions as well

∆, x : A ` x : A

∆, x : A ` M : B

∆ ` λxA.M : A⇒ B
∆ ` M : A⇒ B ∆ ` N : A

∆ ` (MN) : B
∆ ` M : A⇒ A
∆ ` (YM) : A

r ∈ R
∆ ` r : Real

f meas. Rn → R ∆ ` Mi : Real,∀i≤n
∆ ` f (M1, . . . ,Mn) : Real

∆ ` P : Real ∆ ` M : Real ∆ ` N : Real

∆ ` ifz(P,M,N) : Real

∆ ` sample : Real

∆ ` M : Real ∆, x : Real ` N : Real

∆ ` let(x ,M,N) : Real

Operational semantics Red : Λ× ΣΛ → [0,1]

Red(M,U) =


δE [N](U) if M = E [R], R → N and R 6= sample,
λ{r ∈ [0, 1] s.t. E [r ] ∈ U} if M = E [sample],
δM (U) if M normal form.

Prob(M,U) =
∞

sup
n=0

(
Redn(M,U)

)
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Examples

Coin = let(x ,sample, x ≤ 0.5)

normal = let(x ,sample,let(y ,sample, (−2 log(x))
1
2 cos(2πy)))

truncated_normal = Y(λy .let(x ,normal,ifz(x ∈ [−1.5, 1.5], x , y)))
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How do we model types,
e.g. the type Real of real numbers?
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A probabilistic coherence space A = (|A| ,P (A))

R+|A|

P (A)

|A| a countable set, called web

P (A) ⊆ (R+)|A| s.t. P (A)⊥⊥ = P (A), with:

P⊥ =

{
v ∈ R+|A| ; ∀u∈P,

∑
a∈|A|

vaua ≤ 1
}

(+completeness, boundedness)

Example

|Unit| = {skip} P (Unit) = [0, 1]

|Bool| = {t,f} P (Bool) = {(p, q) ; p + q ≤ 1}

|Nat| = {0, 1, 2, 3, . . . } P (Nat) = {v ∈ [0, 1]N ;
∑

n vn ≤ 1}

|Bool⇒ Unit| =Mf ({t,f})

P (Bool⇒ Unit) =

v ; ∀p ∈ [0, 1],
∞∑

n,m=0

v[tn,fm ]p
n(1− p)m ≤ 1


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Complete cones (Selinger 2004)

Normed cone: an R+-semimodule P with R+-valued function ‖_‖P s.t.:
x + y = x + y ′ ⇒ y = y ′

‖αx‖P = α‖x‖P

‖x‖P = 0⇒ x = 0
‖x + x ′‖P ≤ ‖x‖P + ‖x ′‖P

‖x‖P ≤ ‖x + x ′‖P ,
where x ≤P y is defined as ∃z ∈ P, x + z = y .

Complete cone: a normed cone P s.t.:
the unit ball B(P) = {x ∈ P ; ‖x‖P ≤ 1} is complete wrt. ≤P .

R+|A| ⋃
α αP (A)

P (A)

Any A = (|A| , P (A)) gives a complete cone:⋃
α∈R+ αP (A),

‖x‖A = inf{α > 0 ; 1
α

x ∈ P (A)}.
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The complete cone Meas(R) of the bounded measures over R

Given a measurable space (X ,ΣX ), we define:

Meas(X ,ΣX ) = {µ : ΣX 7→ R+ ; µ is a (bounded) measure}

Meas(X ,ΣX ) is endowed with a structure of complete cone:

(µ+ µ′)(U) = µ(U) + µ′(U), (αµ)(U) = αµ(U), ‖µ‖ = µ(X )

In particular,

B(Meas(X ,ΣX )) = the set of sub-probability distributions over (X ,ΣX ).

We denote by Meas(R) the complete cone given by the Lebesgue σ-algebra over R.

JRealK = Meas(R)
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How do we model programs, e.g
Jx :Real `M :RealK : Meas(R) 7→ Meas(R)?
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A morphism f : A 7→ B

R+|A|

P (A)

R+|B|

P (B)
f

The map f is given by a matrix in R+Mf(|A|)×|B|, i.e.:

f (x)b =
∑

[a
n1
1 ,...,a

nk
k ]∈Mf(|A|)

f
[a

n1
1 ,...,a

nk
k ],bxn1

a1
. . . xnk

ak

We require that: ∀x ∈ P (A) , f (x) ∈ P (B).

Example
Let T = Y(λfx .ifz(x ,ifz(pred(x), 0, fx),ifz(x , 0, fx))) then:

JT K0 =
∞∑

n,m=0

2(n + m)!

n!m!
x2n+1

0 x2m+1
1 , JT Kn+1 = 0
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An instructive failure: Scott-continuous functions

B(P ⇒ Q) =
{

f : BP → BQ ; f Scott-continuous
}

4 it yields a complete cone
⋃
α αB(P ⇒ Q) with the operations defined point-wise,

4 it gives a cartesian category:

P ×Q = {(x , y) ; x ∈ P, y ∈ Q}, ‖(x , y)‖P×Q = max(‖x‖P , ‖y‖P)

8 it is not cartesian closed:

Example (wpor : Unit× Unit⇒ Unit)

[0, 1]× [0, 1] [0, 1]
(x , y) 7→ x + y − xy

I wpor is a Scott-continuous function, so in Unit× Unit⇒ Unit

I however, its currying λx .λy .wpor is not Scott-continuous,
I in fact, it is neither non-decreasing in Unit⇒ Unit⇒ Unit:

F (λx.λy.wpor)1 6≥Unit⇒Unit (λx.λy.wpor)0

F in fact, (λx.λy.wpor)1− (λx.λy.wpor)0
which is y 7→ 1− y
is not non-decreasing in y , so not in Unit⇒ Unit.
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Non-decreasingness of all iterated differences
i.e. absolute monotonicity

Given a function f : BP → BQ, we say:
f 0-non-decreasing: whenever f is non-decreasing,

f (n + 1)-non-decreasing: whenever f is non-decreasing and ∀x ∈ P, the function

∆x f : x ′ 7→ f (x + x ′)− f (x ′)

is n-non-decreasing (of domain {x ′ ∈ P ; x ′ + x ∈ BP}).
f absolutely monotone: whenever f n-non-decreasing for every n ∈ N.

Example (wpor)
wpor : (x , y) 7→ x + y − xy is not absolutely monotone (in fact not 1-non-decreasing).

Theorem (Ehrhard,P.,Tasson, 2017)
The category of complete cones and absolutely monotone and Scott-continuous
functions is a cpo-enriched cartesian closed category.

So:

JReal⇒ RealK = {f : B(Meas(R))→ Meas(R) ; f absolutely monote and Scott-contin.}
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Conclusion

We call the absolutely monotone and Scott-continuous functions

the stable functions

in fact, this notion “corresponds” to Berry’s stability in this quantitative setting,
to convince you:

I take the usual coherence space model

I replace + with disjoint union, − with set-theoretical difference

I the algebraic order is then ⊆
I the absolutely monotone and Scott-continuous functions are exactly the stable

functions between cliques

then, stability has much to do with analyticity and not only with sequentiality
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