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This is not a slide

"This statement is false."
"Set of all sets that don’t contain themselves."
S ∈ S⇒ S 6∈ S⇒ S ∈ S . . .
"Consistency of a system cannot be proved within itself."

Proof theory is the study of proofs as formal mathematical
objects. In this thesis, we study the theory of infinitary and
self-referencial proof techniques like infinite descent.
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Sequent calculus 101

ϕϕ

Γ1 ` ∆1 . . . Γn ` ∆n (r)
Γ ` ∆

Axioms
Sequents are

objects of the
shape Γ ` ∆ where
Γ,∆ are collections

of formulasPremisses

Conclusion
Formula to
be proved

A special rule

Γ, ϕ ` ∆ Γ′ ` ∆′, ϕ
(cut)

Γ, Γ′ ` ∆,∆′
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Linear logic with fixed points:
Truth semantics, complexity, & parallel syntax

What does it
mean to be
true?

How hard is
it to prove

something?

When are
two proofs
the same?



Linear logic with fixed points:
Truth semantics, complexity, & parallel syntax

What?



Structural rules

` ∆, ϕ, ϕ′,∆′

` ∆, ϕ′, ϕ,∆′ (ex)
` ∆, ϕ, ϕ
` ∆, ϕ (c)

` ∆
` ∆, ϕ(w)

Exchange: sequents as lists→ sequents as multisets
Contraction: sequent as multisets→ sequent as sets

Substructural logics
Logics where one or more of the structural rules are absent or
only allowed under controlled circumstances.
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Linear logic (MALL)

conjunction disjunction "true" "false"
multiplicative ⊗ O 1 ⊥

additive N ⊕ > 0

(id)
` ϕ,ϕ⊥

` Γ1, ϕ ` Γ2, ϕ
⊥

(cut)
` Γ1, Γ2

` Γ, ϕ1, ϕ2 (O)
` Γ, ϕ1Oϕ2

` Γ1, ϕ1 ` Γ2, ϕ2 (⊗)
` Γ1, Γ2, ϕ1 ⊗ ϕ2

` Γ, ϕi (⊕i)` Γ, ϕ1 ⊕ ϕ2

` Γ, ϕ1 ` Γ, ϕ2 (N)
` Γ, ϕ1Nϕ2

(1)
` 1

` Γ (⊥)
` Γ,⊥

(>)
` Γ,> No rule for 0

Exchange Contraction Weakening
X × ×
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Linear logic with fixed points:
Truth semantics, complexity, & parallel syntax

What?



Fixed points

Fixed point of a function ϕ is an x that satisfies f (x) = x.

ϕ(x) = x3

3 − x + 1

µϕ

νϕ

Post-fixed point: x ≥ ϕ(x)

Pre-fixed point: ϕ(x) ≤ x

8 53



σx.ϕ = ϕ(σx.ϕ)

Fixed point operator Function over x

Fixed point of that function

This talk

µ and ν operators such that µx.ϕ = ¬νx.¬ϕ for least fixed
point and greatest fixed point
Proof-theory of such logics
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Linear logic with fixed points:
Truth semantics, complexity, & parallel syntax

Why?



Different logics, different reasons

Extensions of propositional modal logics: LTL, µ-calculus, . . .

to express richer specifications: "something happens infinitely
often", "something happens after some time" and so on
Extensions of first-order logic: FO[LFP], FO[IFP], . . .

to define richer classes of finite models and their descriptive
complexity
Extensions of categorical grammar: Kleene Algebra, Action
algebra, . . .

to algebraically define various classes of formal languages
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Why linear logic with fixed points?

Automated reasoning
On the provability
level
Prove theorems using
(co)induction

Programming language theory

Curry-Howard correspondence

1. formulas↔ types.
2. proof objects↔ programs.
3. normalisation↔

computation/reduction.

Several (co)inductive types are
primitive:

N := µx.1⊕ x
Lists L := µx.⊥⊕ (data⊗ x)
Streams S := νx.data⊗ x
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Explicit (co)induction

Γ, ψ ` ∆ ϕ[ψ/x] ` ψ
(µ`)

Γ, µx.ϕ ` ∆
Γ ` ϕ[µx.ϕ/x],∆

(µr)
Γ ` µx.ϕ,∆

µ` expresses µx.ϕ is smaller than any pre-fixed point of ϕ.
µr expresses that µx.ϕ is indeed a pre-fixed point of ϕ.
Hence it is the smallest pre-fixed point.
Dual rules for νx.ϕ expresses it is the largest post-fixed
point.

Γ, ϕ[νx.ϕ/x] ` ∆
(ν`)

Γ, νx.ϕ ` ∆
Γ ` ψ,∆ ψ ` ϕ[ψ/x]

(νr)
Γ ` νx.ϕ,∆

Di�cult to automate!
Cut admissibility does not guarantee subformula property.

14 53



Explicit (co)induction

Γ, ψ ≤ ψ ϕ[ψ/x] ≤ ψ
(µ`)

Γ, µx.ϕ ≤ ψ
ϕ[µx.ϕ/x] ≤ ϕ[µx.ϕ/x],∆

(µr)
ϕ[µx.ϕ/x] ≤ µx.ϕ,∆

µ` expresses µx.ϕ is smaller than any pre-fixed point of ϕ.
µr expresses that µx.ϕ is indeed a pre-fixed point of ϕ.
Hence it is the smallest pre-fixed point.
Dual rules for νx.ϕ expresses it is the largest post-fixed
point.

Γ, ϕ[νx.ϕ/x] ` ∆
(ν`)

Γ, νx.ϕ ` ∆
Γ ` ψ,∆ ψ ` ϕ[ψ/x]

(νr)
Γ ` νx.ϕ,∆

Di�cult to automate!
Cut admissibility does not guarantee subformula property.

14 53



Implicit (co)induction

Γ, ϕ[µx.ϕ/x] ` ∆
(µl)Γ, µx.ϕ ` ∆

Γ ` ϕ[µx.ϕ/x],∆
(µr)

Γ ` µx.ϕ,∆
Γ, ϕ[νx.ϕ/x] ` ∆

(νl)Γ, νx.ϕ ` ∆
Γ ` ϕ[νx.ϕ/x],∆

(νr)
Γ ` νx.ϕ,∆

µ` and µr expresses that µx.ϕ is a pre-fixpoint and
post-fixpoint of ϕ respectively. So, it is a fixed point.
Similarly for ν` and νr.

Not complete!
νx.x cannot be proven.
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Notion of subformulas

Subformulas

ϕ = νx.(a ∨ ¬a) ∧ x

(a ∨ ¬a) ∧ x

a ∨ ¬a x

a ¬a

Fischer-Ladner subformulas

ϕ = νx.(a ∨ ¬a) ∧ x

(a ∨ ¬a) ∧ ϕ

a ∨ ¬a

a ¬a
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Non-wellfounded proofs

Let’s allow proof trees of infinite height.
Now νx.x can be proved:

... (ν)
` νx.x (ν)
` νx.x

Not sound!
Any sequent can be proven now:

... (µ)
` µx.x

(µ)
` µx.x

... (ν)
` νx.x, Γ

(ν)
` νx.x, Γ

(cut)
` Γ
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Circular proofs

Progress condition
Along every branch, there is a thread such that the smallest
formula (in the subformula ordering) principal infinitely often is
a ν-formula.

Circular proofs := Non-wellfounded proofs that have finitely
many distinct subtrees.

Regularisation conjecture
Circular proofs are as powerful as non-wellfounded proofs.
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µMALL and its proof systems

µMALL = MALL + fixed points

Wellfounded system := µMALLind Circular system := µMALL�

Non-wellfounded system := µMALL∞
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Provability problem of a system L
Given a formula ϕ is it provable in L?

Examples

1. Classical propositional logic: decidable, co-NP complete
[Cook-Levine’71]

2. First-order logic on finite models: undecidable
[Trakhtenbrot’50]

Proof-system independent
Important to be tractable for applications like model
checking, automated theorem proving...

21 53



Provability of linear logic

Fragment of linear logic Complexity of Provability
MLL NP complete [Kanovich’91]
MALL PSPACE complete [LMSS’90]
MELL ?
LL Undecidable [LMSS’90]

Exponentials can be encoded in µMALL. So, we expect it to
be at least as hard as LL.
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Linear logic with fixed points:
Truth semantics, complexity, & parallel syntax

What?

Coming up: complexity of µMALL∞a

aAnupam Das, Abhishek De, and Alexis Saurin. Decision Problems for Linear Logic
with Least and Greatest Fixed Points (FSCD 2022)



Counter machines

Counter a,b, c, . . . containing elements of N0.
Operations inc(a) and dec(a) such that dec(a) fails if a = 0

p q

r

inc(a);dec(a) fails

dec(a) succeeds

inc(a);dec(a) succeeds

dec(a) fails

dec(a)

inc(a)

Halting problem of one-counter automata is decidable.
[Folklore]
Halting problem of two-counter automata Σ0

1 -complete
[Minsky’62]
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Reduction to Minsky machine

p q

r

inc(a);dec(a) fails

dec(a) succeeds

inc(a);dec(a) succeeds

dec(a) fails

dec(a)

inc(a)

Jinc(a)K := p⊥ ⊗ (aOq)

` p,p⊥
` a,a,a,q

(O)
` a,a,aOq

(⊗)
` a,a,p,p⊥ ⊗ (aOq)

Encode dec.

ϕ := νx.⊥N(
⊕
I∈M

JIKOx)

Theorem (Thm. 6.3.2, pp. 103)
` p, ϕ provable i�M is
non-halting.

Proof idea

(⇐) This relies on being able to
use JIK for every I ∈M.

(⇒) This relies on cut
admissibility and focussing
(the ability to apply certain
rules context-freely).
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The regularisation conjecture does not hold!

Theorem (Thm. 6.4.3, pp. 106)
µMALL� ( µMALL∞

Proof idea

µMALL∞ is Π0
1 -hard.

µMALL� is in Σ0
1 .

(circular proofs are finitely representable, hence enumerable)
If µMALL∞ = µMALL�, then Π0

1 ⊆ Σ0
1 . Contradiction!

26 53



Linear logic with fixed points:
Truth semantics, complexity, & parallel syntax

What?



Truth semantics

Establishes a semantic meaning of truth.
Gives a mapping J•K : Formulas→ Mathematical Object such
that a formula is provable i� its interpretation satisfies some
property.
Via CH, corresponds to type inhabitation.

Example

Truth semantics of LK : Boolean algebras
Truth semantics of LJ : Heyting algebras
Truth semantics of S4 : Boolean algebras with an interior
operator
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Truth semantics of MALL

Phase space
A phase space is a commutative monoid M along with a ⊥⊥⊆ M.
Let X, Y ⊆ M. Define

XY := {xy | x ∈ X, y ∈ Y} X⊥ := {z | ∀x ∈ X.xz ∈⊥⊥}

X is called a fact if X⊥⊥ = X.

We interpret formulas (and sequents) on facts.
Jϕ⊗ ψK = (JϕK.JψK)⊥⊥ JϕNψK = JϕK ∩ JψK

Theorem (Girard’87)
Γ is provable in MALL i� for all models 1 ∈ JΓK
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Syntactic model

Definition
Pr(ϕ) := {Γ | ` Γ, ϕ is provable}

Let M = Set of all sequents.
Let Γ,∆ ∈ M. Then, Γ · ∆ = Γ,∆.
Therefore, (M, ·,∅) is a monoid.
Let ⊥⊥= Pr(⊥) and we have a phase space.

Lemma (Adequation lemma)
JΓK ⊆ Pr(Γ)

Completeness proof
∅ ∈ JΓK⇒ ∅ ∈ Pr(Γ)⇒ ` Γ,∅ is provable.
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Linear logic with fixed points:
Truth semantics, complexity, & parallel syntax

How?

Coming up: phase semantics of µMALLind a

aAbhishek De, Farzad Jafarrahmani, and Alexis Saurin. Phase semantics for linear
logic with least and greatest fixed points (FSTTCS’22)



Phase semantics of µMALLind

Fact
The set of facts is a complete lattice.

∴ We can interpret fixed point formulas as:

Jµx.ϕK = lfp(λX.ϕ(X)) Jνx.ϕK = gfp(λX.ϕ(X))

The interpretations are facts by Knaster-Tarski theorem.

Too liberal!
Not every fact is an image of J•K. So, Jϕ(X)K doesn’t necessarily
correspond to the interpretation of any formula.

Sound but not complete!
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Soundness and completeness

Restrict to a subset of fact closed under µMALL operations.

Theorem (Lemma 5.1.3, pp. 73 and Thm. 5.1.2, pp. 75)
Γ is provable in µMALLind i� 1 ∈ JΓK

Proof idea

(⇒) Soundness is an easy induction on the proof.
(⇐) For completeness, we start from the syntactic monoid but

induction on formulas does not work (due to absence of
subformula property)! We use Girard’s candidates of
reducibility.
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MLL proof-nets

MLL Proof Structure (Girard’87)
A directed finite multigraph composed of:

A A⊥ A B A B

A A⊥
ax cut

A⊗ B
⊗

AOB
O

There are proof structures that represent no sequent proof

A A⊥
ax

cut
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Desequentialisation

Sequentialisation

Proofs

Proof structures

Proof-nets

Theorem
Two proofs are equivalent up to permutation of rules i� they have
the same proof-net.
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Theory of proof-nets: correctness

Switch one premisse of every O.

A
B

A⊥
B⊥ax

ax

O ⊗

O

c

A proof structure is correct if it is acyclic and connected after
every switching.
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Proofs are sequential objects

...
` µx.x, νx.x

(ν)
` µx.x, νx.x

(µ)
` µx.x, νx.x ∼

...
` µx.x, νx.x

(ν)
` µx.x, νx.x

(µ)
` µx.x, νx.x

Threads are parallel objects
Progress condition is defined using threads

To study the progress condition, it makes sense to work on more
parallel proof objects.
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Linear logic with fixed points:
Truth semantics, complexity, & parallel syntax

What?

Coming up: theory of proof-nets for µMLL∞a,b

aAbhishek De and Alexis Saurin. Infinets: the parallel syntax for non-wellfounded
proof-theory (TABLEAUX 2019)

bAbhishek De, Luc Pellissier, and Alexis Saurin. Canonical proof-objects for
coinductive programming: infinets with infinitely many cuts. (PPDP 2021)



µMLL∞ proof structures

Allow the following types of nodes:

A[µx.A/x] A[νx.A/x]

µx.A
µ

νx.A
ν

Is that enough?
No, quotients more than equivalence by permutation.
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Algebraic presentation due to Curien’05

Proof structure = Formula tree + axiom links + cut links

A
B

A⊥
B⊥ax

ax

O ⊗

O

c

= (AOB)O(A⊥ ⊗ B⊥) + {{ll, rl}, {lr, rr}} + ∅

Axiom links

FL(ϕn)

Cut links
ϕϕ1 . . . ϕϕn−1 ϕϕn
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Infinite axioms

Let F = νx.(AOA⊥)⊗ x.

(ax)
A,A⊥

(O)
AOA⊥ ` F, B

(⊗)
(AOA⊥)⊗ F, B

(ν)
` F, B

Infinite axioms are invariants of
infinite branches in proofs.

A A⊥

...

A A⊥

A A⊥

B

ax

ax

ax

ax∞
inf

O

⊗

νO

⊗

ν

O

⊗

F
ν

c c
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Simple proof structures

(id)
` F, F⊥

` F, νx.x
(ν)

` F, νx.x
(cut)

` F, νx.x

F F⊥ F F⊥
...

...
ax ax ax∞

inf

cut cut

νx.x
ν

νx.x
ν

c

c

We restrict ourselves to simple proofs and proof structures that
do not contain such paths.

Theorem (Prop. 8.2.1, pp. 135)
Simple proofs desequentialise to simple proof structures. If 2 proofs are
equal up to rule perm., then they desequentialise to the same structure.

Is that enough to ensure DR-correctness?
No, we can encode mix and weakening.
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Crucially disconnected

`µx.x, νx.x ` µx.x, νx.x
(cut)

` µx.x, νx.x
(µ)

` µx.x, νx.x
(ν)

`µx.x, νx.x

...
...

...
...

... . . .
...

ax∞
inf ax∞

inf ax∞
inf ax∞

inf ax∞
inf ax∞

inf

νx.x
ν

νx.x
ν

νx.x
ν

µx.x
µ

µx.x
µ

µx.x
µ

νx.x
ν

νx.x
ν

νx.x
ν

µx.x
µ

µx.x
µ

µx.x
µ

cut cutc c

DR-correctness is not right notion!
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Can DR-correct simple proof structures be sequentialised? No!

Lock-free
Every node depends on at most finitely many other nodes.

Infinets
DR-correct & lock-free simple proof structures.

Desequentialisation

Sequentialisation
(Thm. 8.3.3, pp. 141)

Simple
Proofs

Simple proof structures

Infinets
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Theory of proof-nets: dynamics

Cut reductions steps form a graph rewriting system:

A A⊥ A −→ A
ax

cut

A B A⊥ B⊥ −→ A A⊥ B B⊥
⊗ O

cut

cut cut

Theorem (Girard’87)
Every step preserves correctness. This system is confluent and
terminating.
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Towards µMLL∞ cut elimination

Cut reduction is now an infinite rewriting system.
Termination replaced by productivity: finite prefixes of the
limit should be produced in finite time.
New rules for new operators:

F[x/F] F⊥[x/F⊥]

F[x/F] F⊥[x/F⊥]µx.F
µ

νx.F⊥ −→
ν

cut cut

Need a notion of fairness so that a rule is applied on every
cut in finite time.
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The cut/ax rule

No reduction rule from here:

F F⊥ . . .
cut

ax∞
inf

Two solutions

1. Work in a fragment where this case does not occur.
2. Devise a new rule for this case.

49 53



Cut elimination with new rule

Kingdom
Given F, k(F) is the smallest sub-infinet with F as the conclusion.

π′5
` Γ, F⊥

... (ν)
` νx.x, F

(ν)
` νx.x, F

(cut)
` Γ, νx.x

F⊥ ∆ −→ Γ ∆

k(F)

Γ F
cut

ax∞
inf ax∞

inf

Theorem (Thm. 9.3.1 , pp. 167)
(Fair) reduction sequences starting from progressing infinets
converges to (cut-free) progressing infinets.
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Cut elimination in axiom-free infinets

Axiom-free infinets
No finite axioms, no formulas in infinite axioms (only infinite
branches).

Guess the normal form:

cut

−→

Theorem (Thm. 9.1.2, pp. 154)
Fair reduction sequences starting from progressing axiom-free
infinets converges to the normal form.
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Summary of contributions

Linear logic with fixed points:
Truth semantics, complexity, & parallel syntax

Chapter 3 Chapter 4

Chapter 5 Chapter 6 Chapter 7,8, & 9

Extensional
µMALLind and µMALL� are
Σ0

1 -complete
µMALL∞ is (Σ0

1 ∪ Π0
1 )-hard

µMALL� ( µMALL∞
Phase semantics of
µMALLind

Intentional

The theory of proof-nets
for µMLL∞

Cut-elimination on µMLL∞
proof-nets
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Future directions

Complexity of µMALL∞.
Phase semantics of µMALL� and µMALL∞.
Brotherston-Simpson conjecture for µMALL.
Devise bouncing thread progress condition for µMLL∞
proof-nets and prove cut-elimination on these proof-nets.
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Towards the Brotherston-Simpson hypothesis

Brotherston-Simpson hypothesis
Explicit (co)induction is as powerful as implicit (co)induction.

⇒ µMALLind ?= µMALL�

Idea
` Γ in µMALLind i� for all models 1 ∈ JΓK i� ` Γ in µMALL�



An infinitary calculus

What if we approximate lfp and gfp by their ω-th approximation?

Jµx.ϕK =

 ⋃
n≥0

Jϕn(0)K

⊥⊥ Jνx.ϕK =
⋂

n≥0
Jϕn(>)K

This gives us an idea for new inference rules for fixed points:

` Γ,
n︷ ︸︸ ︷

ϕ(ϕ(· · · (ϕ(0)) · · · )
(µω)

` Γ, µx.ϕ
` Γ,> ` Γ, ϕ(>) ` Γ, ϕ(ϕ(>)) . . .

(νω)
` Γ, νx.ϕ

We call this system µMALLω.



An infinitary calculus

Theorem (DJS’22)
The new intepretation is sound and complete wrt µMALLω.
µMALLω admits cuts.

Advantage Completeness is easy since there is a (sort-of)
subformula property.

Disadvantage Does not prove the same theorems as µMALLind .



Bouncing

Bouncing thread progress condition (Baelde et al.’22)
Along every branch, there is a bouncing thread such that the
smallest formula (in the subformula ordering) principal infinitely
often is a ν-formula.

π ∼ π′

π0 diverges

Need to make the bouncing thread progress condition stable
under permutation of rules.
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