LINEAR LOGIC WITH FIXED POINTS

Truth Semantics, Complexity, \& Parallel Syntax
Abhishek De

1ST DECEMBER 2022

THIS IS NOT A SLIDE

■ "This statement is false."
■ "Set of all sets that don't contain themselves."

■ "Consistency of a system cannot be proved within itself."

Proof theory is the study of proofs as formal mathematical objects. In this thesis, we study the theory of infinitary and self-referencial proof techniques like infinite descent.

THIS IS NOT A SLIDE

■ "This statement is false."
■ "Set of all sets that don't contain themselves."
$S \in S \Rightarrow S \notin S \Rightarrow S \in S \ldots$
■ "Consistency of a system cannot be proved within itself."

Proof theory is the study of proofs as formal mathematical objects. In this thesis, we study the theory of infinitary and self-referencial proof techniques like infinite descent.

Sequent calculus 101

Sequents are objects of the

A special rule

$$
\frac{\Gamma, \varphi \vdash \Delta \Gamma^{\prime} \vdash \Delta^{\prime}, \varphi}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}}(\mathrm{cut})
$$

LINEAR LOGIC WITH FIXED POINTS:

Truth semantics, complexity, \& parallel syntax

What does it mean to be true?

How hard is it to prove something?

When are two proofs the same?

What?

LINEAR LOGIC WITH FIXED POINTS:
Truth semantics, complexity, \& parallel syntax

Structural rules

$$
\frac{\vdash \Delta, \varphi, \varphi^{\prime}, \Delta^{\prime}}{\vdash \Delta, \varphi^{\prime}, \varphi, \Delta^{\prime}}(\mathrm{ex}) \quad \frac{\vdash \Delta, \varphi, \varphi}{\vdash \Delta, \varphi}(\mathrm{c}) \quad \frac{\vdash \Delta}{\vdash \Delta, \varphi}(\mathrm{w})
$$

■ Exchange: sequents as lists \rightarrow sequents as multisets
■ Contraction: sequent as multisets \rightarrow sequent as sets

Substructural logics

Logics where one or more of the structural rules are absent or only allowed under controlled circumstances.

Linear logic (MALL)

	conjunction	disjunction	"true"	"false"
multiplicative	\otimes	8	$\mathbf{1}$	\perp
additive	$\&$	\oplus	\top	$\mathbf{0}$

$$
\begin{array}{ccc}
\frac{\vdash \Gamma_{1}, \varphi \vdash \Gamma_{2}, \varphi^{\perp}}{\vdash \varphi, \varphi^{\perp}}(\mathrm{id}) & \frac{\vdash \Gamma_{1}, \Gamma_{2}}{}(\mathrm{cut}) \\
\frac{\vdash \Gamma, \varphi_{1}, \varphi_{2}}{\vdash \Gamma, \varphi_{1} \not ४ \varphi_{2}}(8) & \frac{\vdash \Gamma_{1}, \varphi_{1} \vdash \Gamma_{2}, \varphi_{2}}{\vdash \Gamma_{1}, \Gamma_{2}, \varphi_{1} \otimes \varphi_{2}}(\otimes) & \frac{\vdash \Gamma, \varphi_{i}}{\vdash \Gamma, \varphi_{1} \oplus \varphi_{2}}\left(\oplus_{i}\right)
\end{array} \frac{\vdash \Gamma, \varphi_{1} \vdash \Gamma, \varphi_{2}}{\vdash \Gamma, \varphi_{1} \& \varphi_{2}}(\&)
$$

Exchange	Contraction	Weakening
\checkmark	\times	\times

What?
LINEAR $\overbrace{\text { LOGIC WITH FIXED POINTS: }}$
Truth semantics, complexity, \& parallel syntax

FIXED POINTS

Fixed point of a function φ is an x that satisfies $f(x)=x$.

Fixed point of that function

Fixed point operator

This talk

- μ and ν operators such that $\mu x . \varphi=\neg \nu X . \neg \varphi$ for least fixed point and greatest fixed point
■ Proof-theory of such logics

Fixed point of that function

Fixed point operator Function over x

This talk

- μ and ν operators such that $\mu x . \varphi=\neg \nu x . \neg \varphi$ for least fixed point and greatest fixed point
■ Proof-theory of such logics

Fixed point of that function

$$
\sigma X \cdot \varphi=\phi(0 x, p)
$$

Fixed point operator

This talk

- μ and ν operators such that $\mu x . \varphi=\neg \nu x . \neg \varphi$ for least fixed point and greatest fixed point
■ Proof-theory of such logics

Why?
 LINEAR LOGIC WITH FIXED POINTS:
 Truth semantics, complexity, \& parallel syntax

DIFFERENT LOGICS, DIFFERENT REASONS

■ Extensions of propositional modal logics: LTL, μ-calculus, ... to express richer specifications: "something happens infinitely often", "something happens after some time" and so on
■ Extensions of first-order logic: FO[LFP], FO[IFP], ...
to define richer classes of finite models and their descriptive complexity
■ Extensions of categorical grammar: Kleene Algebra, Action algebra, ...
to algebraically define various classes of formal languages

WHY LINEAR LOGIC WITH FIXED POINTS?

Programming language theory

Curry-Howard correspondence

1. formulas \leftrightarrow types.
2. proof objects \leftrightarrow programs.
3. normalisation \leftrightarrow computation/reduction.

Several (co)inductive types are primitive:

■ $\mathbb{N}:=\mu x .1 \oplus x$
■ Lists $\mathbb{L}:=\mu x . \perp \oplus($ data $\otimes x)$
■ Streams $\mathbb{S}:=\nu x$.data $\otimes x$

How?

LINEAR $\overbrace{\text { LOGIC WITH FIXED POINTS: }}$
Truth semantics, complexity, \& parallel syntax

EXPLICIT (co)INDUCTION

$$
\frac{\Gamma, \psi \vdash \Delta \quad \varphi[\psi / x] \vdash \psi}{\Gamma, \mu x . \varphi \vdash \Delta}\left(\mu_{\ell}\right) \quad \frac{\Gamma \vdash \varphi[\mu x . \varphi / x], \Delta}{\Gamma \vdash \mu x . \varphi, \Delta}\left(\mu_{r}\right)
$$

- μ_{ℓ} expresses $\mu x . \varphi$ is smaller than any pre-fixed point of
- μ_{r} expresses that $\mu x . \varphi$ is indeed a pre-fixed point of φ. Hence it is the smallest pre-fixed point.
- Dual rules for $\nu x . \varphi$ expresses it is the largest post-fixed point.

$$
\frac{\Gamma, \varphi[\nu x . \varphi / x] \vdash \Delta}{\Gamma, \nu x . \varphi \vdash \Delta}\left(\nu_{\ell}\right) \quad \frac{\Gamma \vdash \psi, \Delta \psi \vdash \varphi[\psi / x]}{\Gamma \vdash \nu x . \varphi, \Delta}\left(\nu_{r}\right)
$$

Difficult to automate!

Cut admissibility does not guarantee subformula property.

EXPLICIT (co)Induction

$$
\frac{\Gamma \psi \leq \psi \varphi[\psi / X] \leq \psi}{\Gamma \mu x \cdot \varphi \leq \psi}\left(\mu_{\ell}\right) \quad \frac{\varphi[\mu \mathrm{X} \cdot \varphi / \mathrm{x}] \leq \varphi[\mu \mathrm{X} \cdot \varphi / \mathrm{X}] \Delta}{\varphi[\mu \mathrm{x} \cdot \varphi / \mathrm{X}] \leq \mu \mathrm{X} \cdot \varphi \cdot \Delta}\left(\mu_{r}\right)
$$

- μ_{ℓ} expresses $\mu x . \varphi$ is smaller than any pre-fixed point of φ.
- μ_{r} expresses that $\mu x . \varphi$ is indeed a pre-fixed point of φ. Hence it is the smallest pre-fixed point.
■ Dual rules for $\nu x . \varphi$ expresses it is the largest post-fixed point.

$$
\frac{\Gamma, \varphi[\nu X . \varphi / X] \vdash \Delta}{\Gamma, \nu X \cdot \varphi \vdash \Delta}\left(\nu_{\ell}\right) \quad \frac{\Gamma \vdash \psi, \Delta \psi \vdash \varphi[\psi / x]}{\Gamma \vdash \nu X \cdot \varphi, \Delta}\left(\nu_{r}\right)
$$

Difficult to automate!

Cut admissibility does not guarantee subformula property.

IMPLICIT (co)INDUCTION

$$
\begin{array}{ll}
\frac{\Gamma, \varphi[\mu x . \varphi / x] \vdash \Delta}{\Gamma, \mu x \cdot \varphi \vdash \Delta}\left(\mu_{l}\right) & \frac{\Gamma \vdash \varphi[\mu x . \varphi / x], \Delta}{\Gamma \vdash \mu x \cdot \varphi, \Delta}\left(\mu_{r}\right) \\
\frac{\Gamma, \varphi[\nu x \cdot \varphi / x] \vdash \Delta}{\Gamma, \nu x \cdot \varphi \vdash \Delta}\left(\nu_{l}\right) & \frac{\Gamma \vdash \varphi[\nu x . \varphi / x], \Delta}{\Gamma \vdash \nu x \cdot \varphi, \Delta}\left(\nu_{r}\right)
\end{array}
$$

- μ_{ℓ} and μ_{r} expresses that $\mu x . \varphi$ is a pre-fixpoint and post-fixpoint of φ respectively. So, it is a fixed point.
■ Similarly for ν_{ℓ} and ν_{r}.

Not complete!

$\nu x . x$ cannot be proven.

Notion of SUBFORMULAS

Subformulas

$$
\varphi=\nu x .(a \vee \neg a) \wedge x
$$

$(a \vee \neg a) \wedge x$

FISCHER-LADNER SUBFORMULAS

$$
\varphi=\nu x .(a \vee \neg a) \wedge x
$$

NON-WELLFOUNDED PROOFS

■ Let's allow proof trees of infinite height.
■ Now νx.x can be proved:

$$
\frac{\vdots}{\frac{\vdash \nu X . X}{\vdash \nu X . X}(\nu)}(\nu)
$$

Not sound!

Any sequent can be proven now:

CIRCULAR PROOFS

Progress condition

Along every branch, there is a thread such that the smallest formula (in the subformula ordering) principal infinitely often is a ν-formula.

> Circular proofs := Non-wellfounded proofs that have finitely many distinct subtrees.

Regularisation conjecture

Circular proofs are as powerful as non-wellfounded proofs.

μ MALL AND ITS PROOF SYSTEMS

μ MALL $=$ MALL + fixed points

Wellfounded system := μ MALL $^{\text {ind }} \quad$ Circular system $:=\mu$ MALL $^{\circlearrowright}$

Non-wellfounded system := μ MALL ${ }^{\infty}$

LINEAR LOGIC WITH FIXED POINTS:

Truth semantics, $\underbrace{\text { complexity }}$ \& parallel syntax
What?

Provability problem of a system \mathcal{L}

Given a formula φ is it provable in \mathcal{L} ?

Examples

1. Classical propositional logic: decidable, co-NP complete [Cook-Levine'71]
2. First-order logic on finite models: undecidable [Trakhtenbrot'50]

■ Proof-system independent
■ Important to be tractable for applications like model checking, automated theorem proving...

Provability of Linear logic

Fragment of linear logic Complexity of Provability
 MLL
 MALL
 MELL
 LL
 NP complete [Kanovich'91]
 PSPACE complete [LMSS'90]
 Undecidable [LMSS'90]

■ Exponentials can be encoded in μ MALL. So, we expect it to be at least as hard as LL.

LINEAR LOGIC WITH FIXED POINTS:
 Truth semantics, $\underbrace{\text { complexity }}_{\text {What? }}$ \& parallel syntax

Coming up: complexity of μ MALL ${ }^{\infty a}$

${ }^{a}$ Anupam Das, Abhishek De, and Alexis Saurin. Decision Problems for Linear Logic with Least and Greatest Fixed Points (FSCD 2022)

COUNTER MACHINES

■ Counter a, b, c, \ldots containing elements of \mathbb{N}_{0}.
■ Operations inc(a) and $\operatorname{dec}(a)$ such that $\operatorname{dec}(a)$ fails if $a=0$

■ Halting problem of one-counter automata is decidable. [Folklore]
■ Halting problem of two-counter automata Σ_{1}^{0}-complete [Minsky'62]

Reduction to Minsky machine

$\llbracket i n c(a) \rrbracket:=p^{\perp} \otimes(a 8 q)$

$$
\frac{\vdash p, p^{\perp} \frac{\vdash a, a, a, q}{\vdash a, a, a \& q}(8)}{\vdash a, a, p, p^{\perp} \otimes(a \& q)}(\otimes)
$$

Encode dec.

$$
\varphi:=\nu x . \perp \&\left(\bigoplus_{I \in \mathcal{M}} \llbracket 1 \rrbracket>x\right)
$$

Theorem (Thm. 6.3.2, pp. 103)

$\vdash p, \varphi$ provable iff \mathcal{M} is non-halting.

Proof idea

(\Leftarrow) This relies on being able to use $\llbracket 1 \rrbracket$ for every $I \in \mathcal{M}$.
(\Rightarrow) This relies on cut admissibility and focussing (the ability to apply certain rules context-freely).

The regularisation conjecture does not hold!

Theorem (Thm. 6.4.3, pp. 106)
$\mu \mathrm{MALL}^{\circ} \subsetneq \mu \mathrm{MALL}^{\infty}$

Proof idea

- μ MALL ${ }^{\infty}$ is Π_{1}^{0}-hard.
- μ MALL ${ }^{\circ}$ in Σ_{1}°.
(circular proofs are finitely representable, hence enumerable)
■ If $\mu \mathrm{MALL}^{\infty}=\mu \mathrm{MALL}^{0}$, then $\Pi_{1}^{0} \subseteq \Sigma_{1}^{0}$. Contradiction!

LINEAR LOGIC WITH FIXED POINTS:
 $\underbrace{\text { Truth semantics, complexity, \& parallel syntax }}$
 What?

TRUTH SEMANTICS

■ Establishes a semantic meaning of truth.
■ Gives a mapping $\llbracket \bullet \rrbracket$: Formulas \rightarrow Mathematical Object such that a formula is provable iff its interpretation satisfies some property.
■ Via CH, corresponds to type inhabitation.

Example

- Truth semantics of LK: Boolean algebras

■ Truth semantics of LJ : Heyting algebras
■ Truth semantics of S4: Boolean algebras with an interior operator

TRUTH SEMANTICS OF MALL

Phase space

A phase space is a commutative monoid M along with a $\Perp \subseteq M$. Let $X, Y \subseteq M$. Define

$$
X Y:=\{x y \mid x \in X, y \in Y\} \quad X^{\perp}:=\{z \mid \forall x \in X . x z \in \Perp\}
$$

X is called a fact if $X^{\perp \perp}=X$.
We interpret formulas (and sequents) on facts.

$$
\llbracket \varphi \otimes \psi \rrbracket=(\llbracket \varphi \rrbracket . \llbracket \psi \rrbracket)^{\perp \perp} \quad \llbracket \varphi \& \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket
$$

Theorem (Girard'87)
\ulcorner is provable in MALL iff for all models $1 \in \llbracket\ulcorner\rrbracket$

SYNTACTIC MODEL

Definition

$\operatorname{Pr}(\varphi):=\{\Gamma \mid \vdash \Gamma, \varphi$ is provable $\}$

- Let $M=$ Set of all sequents.

■ Let $\Gamma, \Delta \in M$. Then, $\Gamma \cdot \Delta=\Gamma, \Delta$.

- Therefore, (M, \cdot, \varnothing) is a monoid.

■ Let $\Perp=\operatorname{Pr}(\perp)$ and we have a phase space.

Lemma (Adequation lemma)

$\llbracket\ulcorner\rrbracket \subseteq \operatorname{Pr}(\Gamma)$

Completeness proof

$\varnothing \in \llbracket \Gamma \rrbracket \Rightarrow \varnothing \in \operatorname{Pr}(\Gamma) \Rightarrow \vdash \Gamma, \varnothing$ is provable. \square

LINEAR LOGIC WITH FIXED POINTS:
 $\underbrace{\text { Truth semantics }}$ complexity, \& parallel syntax
 How?

Coming up: phase semantics of μ MALL ind a

${ }^{a}$ Abhishek De, Farzad Jafarrahmani, and Alexis Saurin. Phase semantics for linear logic with least and greatest fixed points (FSTTCS'22)

Phase semantics of μ MALL ${ }^{\text {ind }}$

Fact

The set of facts is a complete lattice.
\therefore We can interpret fixed point formulas as:

$$
\llbracket \mu x . \varphi \rrbracket=\lfloor f p(\lambda X . \varphi(X)) \quad \llbracket \nu X . \varphi \rrbracket=g f p(\lambda X . \varphi(X))
$$

The interpretations are facts by Knaster-Tarski theorem.

Too liberal!

Not every fact is an image of $\llbracket \bullet \rrbracket$. So, $\llbracket \varphi(X) \rrbracket$ doesn't necessarily correspond to the interpretation of any formula.

Sound but not complete!

Soundness and completeness

Restrict to a subset of fact closed under μ MALL operations.

Theorem (Lemma 5.1.3, pp. 73 and Thm. 5.1.2, pp. 75)

「 is provable in $\mu \mathrm{MALL}^{\text {ind }}$ iff $1 \in \llbracket\ulcorner\rrbracket$

Proof idea

(\Rightarrow) Soundness is an easy induction on the proof.
(\Leftarrow) For completeness, we start from the syntactic monoid but induction on formulas does not work (due to absence of subformula property)! We use Girard's candidates of reducibility.

LINEAR LOGIC WITH FIXED POINTS:

Truth semantics, complexity, \& $\underbrace{\text { parallel syntax }}_{\text {What? }}$

MLL PROOF-NETS

MLL Proof Structure (Girard'87)

A directed finite multigraph composed of:

$$
f_{A}^{a \times A^{\perp}}
$$

There are proof structures that represent no sequent proof

Theorem

Two proofs are equivalent up to permutation of rules iff they have the same proof-net.

THEORY OF PROOF-NETS: CORRECTNESS

■ Switch one premisse of every 8 .

- A proof structure is correct if it is acyclic and connected after every switching.

THEORY OF PROOF-NETS: CORRECTNESS

■ Switch one premisse of every 8 .

- A proof structure is correct if it is acyclic and connected after every switching.

LINEAR LOGIC WITH FIXED POINTS:

Truth semantics, complexity, \& $\underbrace{\text { parallel syntax }}_{\text {Why? }}$

■ Proofs are sequential objects

- Threads are parallel objects

■ Progress condition is defined using threads
To study the progress condition, it makes sense to work on more parallel proof objects.

LINEAR LOGIC WITH FIXED POINTS:

Truth semantics, complexity, \& $\underbrace{\text { parallel syntax }}$ What?

Coming up: theory of proof-nets for $\mu \mathrm{MLL}^{\infty a, b}$

${ }^{a}$ Abhishek De and Alexis Saurin. Infinets: the parallel syntax for non-wellfounded proof-theory (TABLEAUX 2019)
${ }^{b}$ Abhishek De, Luc Pellissier, and Alexis Saurin. Canonical proof-objects for coinductive programming: infinets with infinitely many cuts. (PPDP 2021)

$\mu \mathrm{MLL}^{\infty}$ PROOF STRUCTURES

Allow the following types of nodes:

Is that enough?

No, quotients more than equivalence by permutation.

Algebraic presentation due to Curien'05

Proof structure = Formula tree + axiom links + cut links

$$
=(A \otimes B) \otimes\left(A^{\perp} \otimes B^{\perp}\right)+\{\{l l, r l\},\{l r, r r\}\}+\varnothing
$$

INFINITE AXIOMS

Let $F=\nu x .\left(A>A^{\perp}\right) \otimes x$.

Infinite axioms are invariants of infinite branches in proofs.

INFINITE AXIOMS

Let $F=\nu x .\left(A>A^{\perp}\right) \otimes x$.

Infinite axioms are invariants of infinite branches in proofs.

SIMPLE PROOF STRUCTURES

We restrict ourselves to simple proofs and proof structures that do not contain such paths.

Theorem (Prop. 8.2.1, pp. 135)

Simple proofs desequentialise to simple proof structures. If 2 proofs are equal up to rule perm., then they desequentialise to the same structure.

Is that enough to ensure DR-correctness?
No, we can encode mix and weakening.

SIMPLE PROOF STRUCTURES

We restrict ourselves to simple proofs and proof structures that do not contain such paths.

Theorem (Prop. 8.2.1, pp. 135)

Simple proofs desequentialise to simple proof structures. If 2 proofs are equal up to rule perm., then they desequentialise to the same structure.

Is that enough to ensure DR-correctness?
No, we can encode mix and weakening.

CRUCIALLY DISCONNECTED

DR-correctness is not right notion!

Can DR-correct simple proof structures be sequentialised? No!

Lock-free

Every node depends on at most finitely many other nodes.

Infinets

DR-correct \& lock-free simple proof structures.

THEORY OF PROOF-NETS: DYNAMICS

Cut reductions steps form a graph rewriting system:

$$
f_{A}^{\sqrt{a \times x}}
$$

Theorem (Girard'87)
Every step preserves correctness. This system is confluent and terminating.

TOWARDS μ MLL $^{\infty}$ CUT ELIMINATION

■ Cut reduction is now an infinite rewriting system.

- Termination replaced by productivity: finite prefixes of the limit should be produced in finite time.
■ New rules for new operators:

■ Need a notion of fairness so that a rule is applied on every cut in finite time.

The cut/ax rule

No reduction rule from here:

Two solutions

1. Work in a fragment where this case does not occur.
2. Devise a new rule for this case.

CUT ELIMINATION WITH NEW RULE

Kingdom

Given $F, k(F)$ is the smallest sub-infinet with F as the conclusion.

Theorem (Thm. 9.3.1, pp. 167)
(Fair) reduction sequences starting from progressing infinets converges to (cut-free) progressing infinets.

CUT ELIMINATION IN AXIOM-FREE INFINETS

Axiom-free infinets

No finite axioms, no formulas in infinite axioms (only infinite branches).

Guess the normal form:

Theorem (Thm. 9.1.2, pp. 154)
Fair reduction sequences starting from progressing axiom-free infinets converges to the normal form.

SUMMARY OF CONTRIBUTIONS

Chapter 3 Chapter 4

LINEAR LOGIC WITH FIXED POINTS:

$\underbrace{\text { Truth semantics }}, \underbrace{\text { complexity, }} \& \underbrace{\text { parallel syntax }}$
Chapter 5 Chapter 6 Chapter 7, 8, \& 9

Extensional

- μ MALL ${ }^{\text {ind }}$ and μ MALL $^{\circ}$ are Σ_{1}^{0}-complete
- $\mu \mathrm{MALL}^{\infty}$ is $\left(\Sigma_{1}^{0} \cup \Pi_{1}^{0}\right)$-hard
- $\mu \mathrm{MALL}^{\circ} \subsetneq \mu \mathrm{MALL}^{\infty}$

■ Phase semantics of μ MALL ${ }^{\text {ind }}$

Intentional

- The theory of proof-nets for $\mu \mathrm{MLL}^{\infty}$

■ Cut-elimination on $\mu \mathrm{MLL}^{\infty}$ proof-nets

FUTURE DIRECTIONS

■ Complexity of $\mu \mathrm{MALL}^{\infty}$.
■ Phase semantics of μ MALL ${ }^{\circ}$ and μ MALL $^{\infty}$.
■ Brotherston-Simpson conjecture for μ MALL.
■ Devise bouncing thread progress condition for $\mu \mathrm{MLL}^{\infty}$ proof-nets and prove cut-elimination on these proof-nets.

TOWARDS THE BROTHERSTON-SIMPSON HYPOTHESIS

Brotherston-Simpson hypothesis

Explicit (co)induction is as powerful as implicit (co)induction.
$\Rightarrow \mu \mathrm{MALL}^{\text {ind }} \stackrel{?}{=} \mu \mathrm{MALL}^{\circ}$
Idea
$\vdash \Gamma$ in $\mu \mathrm{MALL}^{\text {ind }}$ iff for all models $1 \in \llbracket \Gamma \rrbracket$ iff $\vdash \Gamma$ in μ MALL

AN INFINITARY CALCULUS

What if we approximate lfp and gfp by their ω-th approximation?

$$
\llbracket \mu x . \varphi \rrbracket=\left(\bigcup_{n \geq 0} \llbracket \varphi^{n}(0) \rrbracket\right)^{\perp \perp} \quad \llbracket \nu x . \varphi \rrbracket=\bigcap_{n \geq 0} \llbracket \varphi^{n}(T) \rrbracket
$$

This gives us an idea for new inference rules for fixed points:

$$
\frac{\vdash \Gamma, \overbrace{\varphi(\varphi(\cdots(\varphi}(0)) \cdots)}{\vdash \Gamma, \mu x \cdot \varphi}\left(\mu_{\omega}\right) \quad \frac{\vdash \Gamma, T \vdash \Gamma, \varphi(T) \vdash \Gamma, \varphi(\varphi(T)) \cdots}{\vdash \Gamma, \nu X \cdot \varphi}\left(\nu_{\omega}\right)
$$

We call this system $\mu \mathrm{MALL}_{\omega}$.

AN INFINITARY CALCULUS

Theorem (DJS'22)

The new intepretation is sound and complete wrt $\mu \mathrm{MALL}_{\omega}$. $\mu \mathrm{MALL}_{\omega}$ admits cuts.

Advantage Completeness is easy since there is a (sort-of) subformula property.
Disadvantage Does not prove the same theorems as $\mu \mathrm{MALL}^{\text {ind }}$.

Bouncing

Bouncing thread progress condition (Baelde et al.'22)

Along every branch, there is a bouncing thread such that the smallest formula (in the subformula ordering) principal infinitely often is a ν-formula.

■ Need to make the bouncing thread progress condition stable under permutation of rules.

