
Introduction to Proof Theory

Abhishek De
&

Iris van der Giessen

Lecture notes for Midlands Graduate School 2024
Leicester, UK

School of Computer Science
University of Birmingham

Abstract

Proof theory is one of the major branches of logic that studies proofs as bona fide
mathematical objects. It was born out of Hilbert’s program for the foundations of
mathematics but after a century of research has seen applications in mathematics
(proof mining, proof assistants), computer science (verification, programming language
theory), and linguistics (formal natural language semantics). The course is designed to
give a taste of the intuitions and techniques bespoke to proof theory emphasising the
structural side. The student will become familiar with the history of structural proof
theory, sequent calculi, cut-elimination, and its application. The course is intended to
be introductory, and no prior knowledge of the topic is expected.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Acknowledgements

We are grateful to the organisers of MGS 2024 for giving us the opportunity to offer this
course. We are indebted to Anupam Das and Sonia Marin for their constant support and
encouragement. We thank Anupam Das and Raheleh Jalali for their helpful comments
on the first draft of these notes.

We thank Tom de Jong for the template. The portrait of David Hilbert on the title
page is by Matthew Leadbeater.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 History . 1
1.2 Roadmap . 3

2 The sequent calculus 4
2.1 Propositional logic . 4
2.2 First-order logic . 8

3 Properties of sequent calculus 14
3.1 Derivability . 14
3.2 Admissibility . 16

4 Applications of cut-elimination 20
4.1 Consistency and subformula property 20
4.2 Herbrand’s theorem . 21
4.3 Interpolation . 24

5 Cut elimination 28
5.1 The need for a syntactic proof . 28
5.2 Cut elimination as a rewriting system 29
5.3 The problem with structural rules . 31
5.4 Putting everything together . 33

A Additional background 38
A.1 Capture-avoiding substitution . 38
A.2 First-order theories . 39
A.3 Rewriting theory . 40

Bibliography 41

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Chapter 1

Introduction

1.1 History
Proof theory has had a long history in philosophy and subsequently developed into a
relatively new branch on the peripheries of mainstream mathematics.

Prehistory

In all ancient philosophical traditions such as the Greek, the Hindu, and the Buddhist, a
major preoccupation was epistemology or the nature of gaining knowledge. Various
methods of gaining knowledge are debated such as perception, guess, analogy, and
inference. Aristotle is often credited with making the prototypical correct inference
by concluding “All Greeks are mortal” from the premises “All men are mortal” and
“All Greeks are men.” Consequently, the notion of a proof as a series of inferences was
formulated.

The Greek philosophers soon realised that allowing arbitrary principles or arbitrary
steps in a proof trivialises the proof and the idea of axiomatic systems with carefully
chosen basic principles and permissible steps was borne. The first axiomatic system,
Euclid’s postulates for geometry, satisfied this desideratum.

During the Islamic golden age, philosophers like Ibn Sina defined the quantification
of predicates and developed a proto-temporal logic with modifiers such as “at all times”,
“at most times”, and “at some time”. However, proof theory did not take off on the
mathematical side, since a proof was seen as a vehicle of thought, not an object of
formal investigation.

The birth of modern proof theory

Proof theory really started in 1879, when Gottlob Frege introduced the first mathematical
notation for proofs, which he called Begrifftschrift in German. Frege compared this

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

1.1. History 2

ideography to a microscope which translates vernacular proofs exchanged between
mathematicians into formal proofs which may be studied like any other mathematical
object. Despite his extraordinary insight and formal creativity, Frege remained largely
unnoticed by the mathematical community of his time.

Since Isaac Newton and Gottfried Leibniz invented calculus, the notion of an in-
finitesimal had been under attack for not being rigorous enough. About 200 years later,
Frege’s contemporaries like Augustin-Louis Cauchy, Karl Weierstrass, Georg Cantor,
Richard Dedekind, and others finally formalised calculus rigorously with the (𝜀, 𝛿)
definition of limits and set theory. However, set theory opened a whole new can of
worms. The entire foundation of mathematics was shaken by antinomies such as the
Burali-Forti paradox (1897) and Russell’s paradox (1901)! In this context of the founda-
tional crisis, David Hilbert, Bertrand Russell and Alfred Whitehead sparked renewed
interest in Frege’s work.

In 1899, Hilbert provided a modern foundation of Euclidean geometry in his book
Grundlagen der Geometrie by postulating twenty axioms that he proved to be consistent
(i.e. without contradiction) and complete. Encouraged by this success, he planned to
take on number theory next. Indeed, at the 1900 International Congress of Mathematics,
Hilbert raised the purely proof-theoretic problem in his famous communication of
twenty-three open problems: to show by purely finite combinatorial arguments that
number theory is consistent.

Parallelly, the foundational crisis triggered another movement. In 1918, in his book
Das Kontinuum, Hermann Weyl criticised set theory and analysis as “a house built on
sand” and developed a system in which large portions of analysis can be carried out.
This foundational position is called predicativity. In 1921, Weyl discovered the new
foundational proposal that L.E.J Brouwer had meanwhile championed: intuitionism.
This radical proposal urged the abandonment of the principle of the excluded middle
for infinite totalities and of non-constructive mathematics, and thus most of infinitary
mathematics. The costs to be paid were high: the intuitionistic reconstruction of
mathematics had to sacrifice a great deal of classical mathematics. Hilbert rejected this
revisionist approach to mathematics and his program was supposed to establish the
foundations of mathematics in a way that even intuitionists would accept it.

However, Kurt Gödel established in 1931, with his incompleteness theorem that
Hilbert’s program was a hopeless dream: consistency of arithmetic cannot be established
by purely arithmetical arguments.

Hilbert’s dream was fruitful nonetheless: Gerhard Gentzen, a student of Hermann
Weyl, established the consistency of arithmetic in 1936, by a purely combinatorial argu-
ment on the structure of proofs. This result seems to contradict Gödel’s incompleteness
theorem; however, Gentzen used in his argument a transfinite induction up to Cantor’s
ordinal 𝜀0 – and this part of the reasoning lies outside arithmetic.

Meanwhile, intuitionism acquired a more tangible form after Arendt Heyting’s
proposal for intuitionistic logic in 1930 and Andrei Kolmogorov’s development of an
axiomatic system that championed the idea that proofs are effectively constructed.

The foundational crisis is not as grave as it used to be in the early 20th century.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

3 Chapter 1. Introduction

However, Gentzen’s work on consistency and the idea of effective construction of
proofs laid out by intuitionism led to the foundation of proof theory as a subject.

Recent trends

In modern proof theory, what matters today is not the consistency result in itself, but
rather the method invented by Gentzen to establish this result. It is based on a formal
innovation, the sequent calculus, and a fundamental discovery, the cut-elimination
theorem. About a century of active research since Gentzen has seen proof theory
mature into various directions:

• The study of various proof syntaxes such as sequent calculus, deep inference,
combinatorial proofs, proof-nets, etc. is called structural proof theory. The goal is
to obtain structural invariants to facilitate automated deduction, model checking,
the study of complexity classes, and the identity of proofs.

• Gentzen’s method of proving consistency gave a bound on the amount of transfi-
nite induction used to prove consistency of arithmetic. The study of such bounds
for various other theories is called ordinal analysis.

• One can carefully analyse the size of proofs. In particular, the study of lower
bounds on the size of any proof of a theorem leads to interesting connections
with complexity theory in the area of proof complexity.

• The idea of effectively constructing proofs (BHK interpretation) has been for-
malised into the Curry-Howard isomorphism and has led several advancements in
programming language theory.

• Various other proof interpretations have been devised; for example, the Dialectica
interpretation reduces classical theories to intuitionistic ones. This has found
application in proof mining where seemingly non-constructive proofs are mined
to obtain explicit bounds, ranges or rates of convergence.

• Finally, techniques from proof theory have been applied to determine exactly
which axioms are required to prove everyday theorems of mathematics in a field
called reverse mathematics.

1.2 Roadmap
These notes are supposed to serve as an introduction to structural proof theory. We
will base it on Gentzen’s sequent calculus and prove his cut elimination theorem. We
have decided to treat classical logic for two reasons:

1. the semantics of classical logic based on truth values is easy to understand;
2. the structural concerns are the same for classical and intuitionistic logic.
The notes are organised as follows. The sequent calculus systems for classical

propositional and first-order logic are introduced in Chapter 2. We discuss various
properties of the sequent calculus such as derivability and admissibility in Chapter 3.
One of the major results of proof theory is cut elimination. We first see some applications
of the theorem in Chapter 4 and finally prove it Chapter 5. For the sake of readability,
some finickity details are relegated to the appendix.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Chapter 2

The sequent calculus

2.1 Propositional logic
Fix a countable set of atomic propositions A = {𝑎, 𝑏, . . . }.

Definition 2.1. Propositional formulas (denoted 𝜑,𝜓, . . .) are given by the fol-
lowing grammar.

𝜑,𝜓 ::= ⊤ | ⊥ | 𝑎 ∈ A | ¬𝜑 | 𝜑 ∨𝜓 | 𝜑 ∧𝜓

The set of all formulas is denoted by Form.

Note that this is essentially an inductive definition of the set of formulas. We can
unfold it to make it more explicit: Form is the smallest set such that

• ⊤ ∈ Form and ⊥ ∈ Form;
• For all 𝑎 ∈ A, 𝑎 ∈ Form;
• If 𝜑 ∈ Form, then ¬𝜑 ∈ Form;
• If 𝜑 ∈ Form and𝜓 ∈ Form are formulas, then 𝜑 ∨𝜓 ∈ Form and 𝜑 ∧𝜓 ∈ Form.
Classical logic is the logic of truth values. In our notation, ⊤ denotes the truth value

true and ⊥ denotes the truth value false.

Exercise 2.2. For 𝑖 ∈ {1, 2, . . . , 𝑛 + 1} and 𝑗 ∈ {1, 2, . . . , 𝑛} let the atomic proposition
𝑎𝑖 𝑗 denote “the 𝑖th pigeon is placed in the 𝑗 th pigeonhole”. Write a formula expressing
the Pigeonhole Principle.

To assign meaning to formulas, we will assign truth values to atoms and define the
satisfaction relation over assignments and formulas. This is also known as truth table
semantics.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

5 Chapter 2. The seqent calculus

Definition 2.3. Let 𝜄 : A → {⊤,⊥} an assignment of atomic propositions. The
satisfaction relation |=⊆ 2A × Form is defined inductively as follows.

• 𝜄 |= ⊤;
• 𝜄 ̸ |= ⊥;
• 𝜄 |= 𝑎 iff 𝜄 (𝑎) = ⊤;
• 𝜄 |= ¬𝜑 iff 𝜄 ̸ |= 𝜑 ;
• 𝜄 |= 𝜑 ∨𝜓 iff 𝜄 |= 𝜑 or 𝜄 |= 𝜓 ;
• 𝜄 |= 𝜑 ∧𝜓 iff 𝜄 |= 𝜑 and 𝜄 |= 𝜓 .

Definition 2.4. A formula 𝜑 is said to be satisfiable if there exists 𝜄 such that 𝜄 |= 𝜑 .
A formula 𝜑 is said to be valid if for every valuation 𝜄, 𝜄 |= 𝜑 . We write |= 𝜑 to
indicate that 𝜑 is valid. Valid formulas are sometimes referred to as tautologies.

Theorem 2.5 ([Coo71; Lev73]). Checking satisfiability is NP-complete.

Exercise 2.6. Show that 𝜑 is valid if and only if ¬𝜑 is unsatisfiable.

Define the material implication 𝜑 ⊃ 𝜓 := ¬𝜑 ∨ 𝜓 denoting “if 𝜑 then 𝜓”. The
peculiarity of a material implication is the vacuous case viz. when 𝜄 ̸ |= 𝜑 , then 𝜄 |= 𝜑 ⊃ 𝜓 .
Several paradoxes arise from reasoning with material implication; consequently, other
forms of conditionals have been considered in both mathematical and philosophical
logic. However, material implication is at the heart of reasoning in classical logic, the
subject of our study, so we will not debate its merits (or lack thereof) any further.

Define equivalence 𝜑 ≡ 𝜓 := (𝜑 ⊃ 𝜓) ∧ (𝜓 ⊃ 𝜑).

Exercise 2.7. 𝜑 and 𝜓 are said to be equisatisfiable when 𝜑 is satisfiable iff 𝜓 is
satisfiable. Show that 𝜑 ≡ 𝜓 is valid iff 𝜑 and𝜓 are equisatisfiable.

Exercise 2.8. Show that the following are valid formulas.
(i) (Involution of negation) ¬¬𝜑 ≡ 𝜑 ;

(ii) (De Morgan’s law) ¬(𝜑 ∨𝜓) ≡ ¬𝜑 ∧ ¬𝜓 and ¬(𝜑 ∧𝜓) ≡ ¬𝜑 ∨ ¬𝜓 .

A sequent is an expression of the form Γ ⇒ Δ where Γ and Δ are finite lists of
formulas. Γ is called the antecedent and Δ is called its succedent. They are both
referred to as cedents.

The intended meaning of a sequent 𝜑1, . . . , 𝜑𝑚 ⇒ 𝜓1, . . . ,𝜓𝑛 is

𝑚∧
𝑖=1

𝜑𝑖 ⊃
𝑛∨
𝑗=1

𝜓 𝑗 .

We adopt the convention that an empty conjunction (say, when𝑚 = 0 above) is ⊤
and an empty disjunction (say, when 𝑛 = 0 above) is ⊥.

We are now ready to define the propositional sequent calculus proof system PK
(standing for Propositional Kalkül).

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

2.1. Propositional logic 6

Definition 2.9. A PK proof is a rooted tree, in which the nodes are sequents,
generated inductively from inference rules in Figure 2.1. The root of the tree is called
the endsequent and is the sequent proved by the proof. Subtrees of a proof are
called subproofs. We write ⊢PK Γ ⇒ Δ and ⊢PK 𝜑 if there is an PK proof for Γ ⇒ Δ
and if ⊢PK ∅ ⇒ 𝜑 respectively.

An inference rule is an expression of the form

S1 S2 . . . S𝑛
S

where S and S𝑖s are sequents. The upper sequents are called premisse(s) and the lower
sequent is called the conclusion. The distinguished formula in the conclusion is called
the principal formula. A rule with no premisses is called an axiom. The intended
reading is from top to bottom viz. assuming the premisses, the conclusion is true.

Inference rules are building blocks of proofs. In other words, each rule should be
understood as a rule schema that represents many instances of the rule. For example,
the following are two instances of the ∧𝑟 rule:

𝑐 ⇒ ¬𝑎, 𝑎 𝑐 ⇒ ¬𝑎, 𝑏
∧𝑟

𝑐 ⇒ ¬𝑎, 𝑎 ∧ 𝑏

⇒ 𝑎 ⇒ 𝑏 ∨ 𝑐
∧𝑟 ⇒ 𝑎 ∧ (𝑏 ∨ 𝑐)

Proofs vs. programs correspondence

The proofs vs. programs correspondence or the Curry-Howard isomorphism is a deep
concept in logic. Roughly, it states that formulas correspond to data types and proofs
of those formulas correspond to programs. For example, conjunction corresponds to
product type, disjunction to sum type, and implication to function type. For more
details, see [SU06].

We will now briefly discuss each type of rule:
Identity rules. These rules contain repeated occurrences of schema variables: in

the initial rule, the formula 𝜑 is repeated in the conclusion, and in the cut rule, the
formula 𝜑 is repeated in the premises. Checking if an application of one of these
rules is correct requires comparing the identity of two occurrences of formulas.
The cut rule corresponds to the composition of functions by the Curry-Howard
isomorphism.

Structural Rules. Structural rules do the equivalent of resource management in
programs. The exchange rule allows one to use resources in any order, contraction
allows one to duplicate resources, and weakening allows one to discard resources.

Introduction rules. Using the left introduction rules, one can form a function
with complex input using function(s) over simple input(s). Dually, using the right
introduction rules, one can form a function with complex output using function(s)
over simple output(s).

Example 2.10 (Law of excluded middle).
The following is a PK proof of the law of excluded middle, an unabashed classical

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

7 Chapter 2. The seqent calculus

Identity rules:

init
𝜑 ⇒ 𝜑

Γ ⇒ Δ, 𝜑 𝜑, Γ′ ⇒ Δ′
cut

Γ, Γ′ ⇒ Δ,Δ′

Left structural rules:

Γ ⇒ Δ
w𝑙

𝜑, Γ ⇒ Δ

𝜑, 𝜑, Γ ⇒ Δ
c𝑙

𝜑, Γ ⇒ Δ

Γ,𝜓, 𝜑, Γ′ ⇒ Δ
ex𝑙

Γ, 𝜑,𝜓, Γ′ ⇒ Δ

Right structural rules:

Γ ⇒ Δ
w𝑟

Γ ⇒ Δ, 𝜑

Γ ⇒ Δ, 𝜑, 𝜑
c𝑟

Γ ⇒ Δ, 𝜑

Γ ⇒ Δ,𝜓, 𝜑,Δ′
ex𝑟

Γ ⇒ Δ, 𝜑,𝜓,Δ′

Left introduction rules:

⊥𝑙 ⊥, Γ ⇒ Δ

Γ ⇒ Δ, 𝜑
¬𝑙 ¬𝜑, Γ ⇒ Δ

𝜑, Γ ⇒ Δ 𝜓, Γ ⇒ Δ
∨𝑙

𝜑 ∨𝜓, Γ ⇒ Δ

𝜑, Γ ⇒ Δ
∧0
𝑙
𝜑 ∧𝜓, Γ ⇒ Δ

𝜓, Γ ⇒ Δ
∧1
𝑙
𝜑 ∧𝜓, Γ ⇒ Δ

Right introduction rules:

⊤𝑟

Γ ⇒ Δ,⊤
Γ, 𝜑 ⇒ Δ

¬𝑟

Γ ⇒ Δ,¬𝜑
Γ ⇒ Δ, 𝜑

∨0
𝑟

Γ ⇒ Δ, 𝜑 ∨𝜓

Γ ⇒ Δ,𝜓
∨1
𝑟

Γ ⇒ Δ, 𝜑 ∨𝜓

Γ ⇒ Δ, 𝜑 Γ ⇒ Δ,𝜓
∧𝑟

Γ ⇒ Δ, 𝜑 ∧𝜓

Figure 2.1: Inference rules of PK

principle (i.e. it doesn’t hold in some non-classical logics).

init
𝜑 ⇒ 𝜑

∨0
𝑟

𝜑 ⇒ 𝜑 ∨ ¬𝜑
¬𝑟 ⇒ 𝜑 ∨ ¬𝜑,¬𝜑

∨1
𝑟 ⇒ 𝜑 ∨ ¬𝜑, 𝜑 ∨ ¬𝜑
c𝑟 ⇒ 𝜑 ∨ ¬𝜑

Exercise 2.11. (Modus ponens) Give a PK proof for the sequent 𝜑 ⊃ 𝜓,𝜑 ⇒ 𝜓 .

Theorem 2.12 (Soundness). If ⊢PK 𝜑 then |= 𝜑 .

Theorem 2.13 (Completeness). If |= 𝜑 then ⊢PK 𝜑 .

Proof-theorists are generally reluctant to justify the definition of their sequent

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

2.2. First-order logic 8

calculus by the external notion of “truth value” of a formula since proofs for them are
first-class citizens. However, the notion of “truth value” has been much emphasised by
the likes of Tarski and is widespread in logic, especially in model theory.

The soundness and completeness result serves as a bridge between proof theory and
model theory. It is, therefore, not a theorem of proof theory but of mathematical logic,
in general. We will not prove it here and will point the interested reader to standard
references [Kle52; Joh87].

Exercise 2.14. Show that for any formula 𝜑 , 𝜑 ∧ ¬𝜑 is not provable.

2.2 First-order logic
First-order logic is an extension of propositional logic and allows us to express and
prove more (mathematical) statements. Within mathematical practice, key items are
properties of and relations between mathematical objects. Think of statements like, “𝑛 is
even”, “8 is prime”, “𝑓 (𝑥) = 0”, and “list [𝑎, 𝑏, 𝑐] is the reverse of list [𝑐, 𝑏, 𝑎]”.

The power of first-order logic is that we can prove statements that hold for all
objects in a given domain, or that there exists an object such that a statement holds.
This is called quantification. Examples are, “for all natural numbers 𝑛, 𝑛 is even or 𝑛 is
odd”, “there exists an 𝑥 such that 𝑓 (𝑥) = 0”, and “for all finite lists there exists a reverse
list”. With this powerful language, first-order logic provides a framework to capture
mathematical structures such as groups, ordered sets, and arithmetic.

The predicate symbols are there to express properties of and relations between
objects. For example we could write 𝐸 (𝑛) to mean “𝑛 is even”, 𝑂 (𝑛) to mean “𝑛 is
odd” or 𝑅(𝑙1, 𝑙2) to mean that “finite list 𝑙1 is the reverse of finite list 𝑙2. The arity of a
predicate symbol and relation symbol denote the number of arguments the symbol
takes. So 𝐸 and𝑂 in the example have arity 1, and 𝑅 has arity 2. Formally, we introduce
a first-order signature as follows.

Definition 2.15. A first-order signature is a pair 𝜎 = (R,F) where:
• R = {𝑃,𝑄, 𝑅, . . . } is a countable set of predicate symbols;
• F = {𝑓 , 𝑔, ℎ, . . . } is countable set of function symbols.

Each function and predicate symbol has a fixed arity 𝑛 ∈ N. 0-ary predicate symbols
are propositional atoms and 0-ary function symbols are called constants.

The signature defines the non-logical symbols of the logic. For the rest of the section,
fix a signature 𝜎 = (R,F) such that there is a special binary predicate =∈ R called
equality.

The signature provides the building blocks of terms and formulas introduced below.
Informally speaking, terms denote concepts as individual entities that in itself cannot
be true or false. In the text above, “𝑛”, “0”, and “𝑓 (𝑥)” are terms. Formulas denote
statements that in principal can be true or false. Examples of formulas from above in
the language of first-order logic are “𝑓 (𝑥) = 0”, “∀𝑛(𝐸 (𝑛) ∨𝑂 (𝑛))”, “∃𝑥 (𝑓 (𝑥) = 0)”, and
“∀𝑙∃𝑘.𝑅(𝑘, 𝑙)”.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

9 Chapter 2. The seqent calculus

Definition 2.16. Let V = {𝑥,𝑦, 𝑧, . . . } be a countable set of variables. Terms
(denoted 𝑡, 𝑡 ′, . . .) are given by the following grammar.

𝑡, 𝑡 ′ ::= 𝑥 ∈ V | 𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑛)

where 𝑓 is an 𝑛-ary function symbol.

Remark 2.17. By definition, constants are terms.

Definition 2.18. If 𝑃 is an 𝑛-ary predicate symbol and 𝑡1, . . . , 𝑡𝑛 are terms, then
𝑃 (𝑡1, . . . , 𝑡𝑛) is an atomic formula. The set of atomic formulas is denoted by A.
First-order formulas (denoted 𝜑,𝜓, . . .) are given by the following grammar.

𝜑,𝜓 ::= ⊤ | ⊥ | 𝑎 ∈ A | ¬𝜑 | 𝜑 ∨𝜓 | 𝜑 ∧𝜓 | ∃𝑥𝜑 | ∀𝑥𝜑

Example 2.19 (Uniqueness). The following formula expresses that there is a unique 𝑥
such that 𝜑 (𝑥) holds.

∃𝑥 (𝜑 (𝑥) ∧ ∀𝑦 (𝜑 (𝑦) ⊃ 𝑥 = 𝑦))

Exercise 2.20. Write a first-order formula that expresses that the binary predicate 𝑃
represents a total unary function.

We will now assign truth values to first-order formulas i.e. define what it means
for a first-order formula to be valid. We will first assign ‘meaning’ to the non-logical
symbols. Fix a signature 𝜎 = (R,F).

Definition 2.21. A first-order structure for 𝜎 (or, a 𝜎-structure) is a pair M =

(𝐷, 𝜄) where 𝐷 is a non-empty set called the domain and 𝜄 is a function over R ∪ F
called interpretation such that:

• For each 𝑛-ary predicate symbol 𝑃 , 𝜄 (𝑃) ⊆ 𝐷𝑛 .
(For a 0-ary relation symbol 𝑃 , 𝜄 (𝑃) is independent of 𝐷 and is either ∅ or a
singleton set with a designated element (not in 𝐷), say {∗}. This corresponds
to assignment of truth values ⊥ and ⊤ to propositional atoms.)

• For each 𝑛-ary function symbol 𝑓 , 𝜄 (𝑓) : 𝐷𝑛 → 𝐷 is a function.
(So, for constants 𝑐 , 𝜄 (𝑐) ∈ 𝐷 .)

For convenience, we often denote 𝜄 (𝑃) and 𝜄 (𝑓) by 𝑃M and 𝑓M respectively.

Let 𝜌 : V → 𝐷 be an assignment of variables. Given a 𝜎-structure M, this assign-
ment can be extended to arbitrary terms as follows.

𝜌 (𝑓 (𝑡1, . . . , 𝑡𝑛) = 𝑓M(𝜌 (𝑡1), . . . 𝜌 (𝑡𝑛))

Definition 2.22. Fix a 𝜎-structure M = (𝐷, 𝜄). The satisfaction relation |=⊆
𝐷V × Form is defined inductively as follows.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

2.2. First-order logic 10

M, 𝜌 |= (𝑡 = 𝑡 ′) iff 𝜌 (𝑡) = 𝜌 (𝑡 ′)
M, 𝜌 |= 𝑃 (𝑡1, . . . , 𝑡𝑛) iff (𝜌 (𝑡1), . . . , 𝜌 (𝑡𝑛)) ∈ 𝑃M

M, 𝜌 ̸ |= ⊥
M, 𝜌 |= ⊤
M, 𝜌 |= ¬𝜑 iff M, 𝜌 ̸ |= 𝜑

M, 𝜌 |= 𝜑 ∧𝜓 iff M, 𝜌 |= 𝜑 and M, 𝜌 |= 𝜓

M, 𝜌 |= 𝜑 ∨𝜓 iff M, 𝜌 |= 𝜑 or M, 𝜌 |= 𝜓

M, 𝜌 |= ∀𝑥𝜑 iff M, 𝜌 [𝑥 ↦→ 𝑑] |= 𝜑 for all 𝑑 ∈ 𝐷

M, 𝜌 |= ∃𝑥𝜑 iff M, 𝜌 [𝑥 ↦→ 𝑑] |= 𝜑 for some 𝑑 ∈ 𝐷

where 𝜌 [𝑥 ↦→ 𝑑] denotes the interpretation which agrees with 𝜌 for all variables
different from 𝑥 , and maps 𝑥 to 𝑑 .

Remark 2.23. We caution the reader to not conflate the syntactic and semantic equality
in Definition 2.22.

Definition 2.24. A 𝜎-structure M is a model for a formula 𝜑 , denoted M |= 𝜑 , if
for all assignments 𝜌 , M, 𝜌 |= 𝜑 . A sentence 𝜑 is satisfiable if it has a model. A
sentence 𝜑 is valid, written |= 𝜑 , if M |= 𝜑 for every structure M.

Proposition 2.25. A formula 𝜑 is valid if and only if ¬𝜑 is unsatisfiable.

Example 2.26. Let 𝜑 = ∃𝑥∃𝑦¬(𝑥 = 𝑦) and 𝜓 = ∃𝑥∃𝑦 (𝑥 = 𝑦). M is a model of 𝜑
whenever the domain of M has cardinality greater than 1. On the other hand,𝜓 is
valid.

Theorem 2.27 ([Tra50]). Satisfiability of first-order logic (with at least one binary
predicate symbol) over the class of all finite models is undecidable (Σ0

1-complete).

Exercise 2.28. Show the following are valid.
1. (De Morgan’s law) ¬∃𝑥𝜑 ≡ ∀𝑥¬𝜑 ;
2. (Prenexing) (∃𝑥𝜑) ◦𝜓 ≡ ∃𝑥 (𝜑 ◦𝜓) and (∀𝑥𝜑) ◦𝜓 ≡ ∀𝑥 (𝜑 ◦𝜓) where ◦ = {∧,∨}.

Remark 2.29. There is a long philosophical debate about the inclusion (or exclusion)
of empty domains. One of the tangible effects of having empty domains is that we
no longer have (∃𝑥𝜑) ∨𝜓 ≡ ∃𝑥 (𝜑 ∨𝜓).

From this exercise, one can show the following.

Theorem 2.30 (Prenex normal form). A formula is said to be in prenex normal form
if it is of the form 𝑄1𝑥1𝑄2𝑥2 . . . 𝑄𝑚𝑥𝑚𝜓 where 𝑄𝑖 ∈ {∀, ∃} and𝜓 is quantifier-free. For
every first-order formula 𝜑 , there is an equisatisfiable formula𝜓 such that𝜓 is in prenex
normal form.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

11 Chapter 2. The seqent calculus

To introduce the proof system for first-order logic, we first need to define some
notions.

Definition 2.31. The set of free variables FV(𝑡) of term 𝑡 is inductively defined as
follows.

FV(𝑥) := {𝑥}
FV(𝑓 (𝑡1, . . . , 𝑡𝑛)) := FV(𝑡1) ∪ · · · ∪ FV(𝑡𝑛).

The set of free variables FV(𝜑) of formula 𝜑 is inductively defined by:

FV(𝑃 (𝑡1, . . . , 𝑡𝑛)) := FV(𝑡1) ∪ · · · ∪ FV(𝑡𝑛)
FV(⊥) = FV(⊤) := ∅

FV(¬𝜑) := FV(𝜑)
FV(𝜑 ∧𝜓) = FV(𝜑 ∨𝜓) := FV(𝜑) ∪ FV(𝜓)

FV(∀𝑥𝜑) = FV(∃𝑥𝜑) := FV(𝜑) \ {𝑥}.

The sets of bound variables BV(𝑡) and BV(𝜑) respectively of a term 𝑡 and formula 𝜑
respectively are defined exactly as above except in the following cases.

BV(𝑥) := ∅
BV(∀𝑥𝜑) = BV(∃𝑥𝜑) := BV(𝜑) ∪ {𝑥}.

Remark 2.32. Note that constants and propositional atoms have no free or bound
variables.

Definition 2.33. A formula 𝜑 is called open if FV(𝜑) ≠ ∅ and closed otherwise.
Closed formulas are also called sentences. We say that a variable 𝑥 is fresh for a
formula 𝜑 if 𝑥 ∉ FV(𝜑).

Example 2.34. Suppose 0, 𝑓 ∈ F such that 0 is a constant and 𝑓 is a unary function
symbol. Then, 𝑓 (𝑥) = 0 is an open formula with free variable 𝑥 , and ∃𝑥 (𝑓 (𝑥) = 0) is
a sentence.

Remark 2.35. A variable can be both bound and free in a formula. For example,
𝑥 is both free and bound in ∀𝑥𝑃 (𝑥) ∧ ∀𝑦 (𝑄 (𝑦, 𝑥) ∨ 𝑄 (𝑥,𝑦)). Throughout the text,
we will adopt the convention to rename bound variables to maintain the invariant
FV(𝜑) ∩ BV(𝜑) = ∅ for all formulas 𝜑 .

Finally, 𝜑 [𝑡/𝑥] denotes𝜑 where every occurrence of the variable 𝑥 has been replaced
by term 𝑡 . In order to prevent that some 𝑦 ∈ FV(𝑡) may become bound by a quantifier
∀𝑦 or ∃𝑦 in 𝜑 , we work with capture-avoiding substitution as discussed in Appendix A.1.

We are now ready to extend PK, to define a sequent calculus system LK1 (standing
for Logistischer klassischer Kalkül) for first-order logic.

1LK usually refers to the sequent calculus for pure first-order logic i.e. without equality.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

2.2. First-order logic 12

Left quantifier introduction rules:

𝜑 [𝑡/𝑥], Γ ⇒ Δ
∀𝑙 ∀𝑥𝜑, Γ ⇒ Δ

𝜑 [𝑦/𝑥], Γ ⇒ Δ
∃𝑙 𝑦 is fresh

∃𝑥𝜑, Γ ⇒ Δ

Right quantifier introduction rules:

Γ ⇒ Δ, 𝜑 [𝑦/𝑥]
∀𝑟 𝑦 is fresh

Γ ⇒ Δ,∀𝑥𝜑
Γ ⇒ Δ, 𝜑 [𝑡/𝑥]

∃𝑟
Γ ⇒ Δ, ∃𝑥𝜑

Equality rules:

=𝑟 ⇒ 𝑡 = 𝑡

Γ [𝑠/𝑡] ⇒ Δ[𝑠/𝑡]
=𝑙

𝑠 = 𝑡, Γ ⇒ Δ

Figure 2.2: Quantifier rules and equality rules of LK. In ∃𝑙 and ∀𝑟 , 𝑦
is called an eigenvariable and the side condition “𝑦 is fresh” means
that 𝑦 is not free in any of the formulas in the conclusion of the rule.
The =𝑙 rule is known as Leibniz rule.

Definition 2.36. The sequent calculus LK consists of the rules for PK presented
in Figure 2.1 and the rules presented in Figure 2.2. All notions of proof, endsequent,
conclusion, and premisse are defined analoguous to Definition 2.9. We write
⊢LK Γ ⇒ Δ and ⊢LK 𝜑 if there is an LK proof for Γ ⇒ Δ and if ⊢LK ∅ ⇒ 𝜑

respectively.

Exercise 2.37 (Symmetry and transitivity of equality). Give LK proofs showing that
equality is symmetric and transitive.

Intuitively, the ∀𝑟 rule states that to prove ∀𝑥𝜑 , it is enough to show 𝜑 [𝑦/𝑥] for an
arbitrarily chosen 𝑦. The freshness condition on 𝑦 captures the idea that 𝑦 is arbitrary.
For example, in the following ‘proof’, the eigenvariable in the step marked ∗ is not fresh
and ends up establishing an absurd statement.

=𝑟 ⇒ 𝑦 = 𝑦
∀𝑟 ∗
⇒ ∀𝑧 (𝑦 = 𝑧)

∀𝑟 ⇒ ∀𝑥∀𝑧 (𝑥 = 𝑧)

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

13 Chapter 2. The seqent calculus

Example 2.38.

init
𝜑 [𝑧/𝑥,𝑢/𝑦] ⇒ 𝜑 [𝑢/𝑦, 𝑧/𝑥]

∀𝑙 ∀𝑦𝜑 [𝑧/𝑥] ⇒ 𝜑 [𝑢/𝑦] [𝑧/𝑥]
∃𝑟 ∀𝑦𝜑 [𝑧/𝑥] ⇒ ∃𝑦𝜑 [𝑢/𝑦]
∀𝑟 𝑢 is fresh

∀𝑦𝜑 [𝑧/𝑥] ⇒ ∀𝑦∃𝑥𝜑
∃𝑙 𝑧 is fresh

∃𝑥∀𝑦𝜑 ⇒ ∀𝑦∃𝑥𝜑

Consider the sequent ∀𝑥∃𝑦𝜑 ⇒ ∃𝑥∀𝑦𝜑 . At first glance, it might seem that this
could be proved by the same recipe. However, that is absurd since among other things,
it would mean pointwise continuity implies uniform continuity. We will later show
that it is not provable.

Exercise 2.39 (Drinker’s paradox). The drinker’s paradox states that “There is some-
one in the pub such that, if he is drinking, then everyone in the pub is drinking.”
This is expressed as 𝜑 = ∃𝑥 (D(𝑥) ⊃ ∀𝑦 (D(𝑦))) in first-order logic where D is a unary
predicate symbol denoting its argument is drinking. Show that ⊢LK 𝜑 .

Theorem 2.40 (Soundness). If ⊢LK 𝜑 then |= 𝜑 .

Theorem 2.41 (Gödel’s Completeness). If |= 𝜑 then ⊢LK 𝜑 .

Gödel’s completeness is a milestone result in mathematical logic, first proved by
Kurt Gödel in 1929. The proof has been subsequently simplified by Leon Henkin and
Gisbert Hasenjaeger. As before, we will not prove it here and will point the interested
reader to standard references [Her73].

Exercise 2.42. Show that if 𝑥,𝑦 ∈ FV(𝜑), then ̸⊢LK ∀𝑥∃𝑦𝜑 ⇒ ∃𝑥∀𝑦𝜑 .

Corollary 2.43. The set of valid first-order formulas is recursively enumerable.

Exercise 2.44 (Finite model property does not hold). Show that there is a first-order
sentence 𝜑 that is not valid but every finite first-order structure is a model of 𝜑 .

First-order logic provides a language to formalise mathematical structures such as
groups, ordered sets, and arithmetic. This is done by adding extra axioms resulting
in first-order theories. A small introduction to first-order theories is provided in the
Appendix A.2.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Chapter 3

Properties of sequent calculus

In this chapter, we will closely inspect the rules of the sequent calculus. We will see if
some variants can replace them and will wonder if there are any redundant rules. We
will introduce Hauptzats or the main result. It is the cornerstone of proof theory and
we will discuss its various applications in Chapter 4.

3.1 Derivability
A sequent calculus is a set of rules. Recall that a rule should be understood as a rule
schema with many instances of the rule.

Definition 3.1. Let 𝑟 be the following rule schema.

S1 S2 . . . S𝑛
𝑟

S

Then, 𝑟 is said to be derivable in a sequent calculus SC if for every instance of 𝑟 ,

𝑠1 𝑠2 . . . 𝑠𝑛
𝑟

𝑠

there is a proof of the sequent 𝑠 from the sequents 𝑠𝑖 using the rules from SC. (One
can view this as a proof in SC where 𝑠𝑖s might occur as leaves.)

Example 3.2. Consider the following rule (known as the multiplicative right con-
junction introduction rule)

Γ ⇒ Δ, 𝜑 Γ′ ⇒ Δ′,𝜓
∧𝑚
𝑟

Γ, Γ′ ⇒ Δ,Δ′, 𝜑 ∧𝜓

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

15 Chapter 3. Properties of seqent calculus

Additive rules Multiplicative rules

Γ ⇒ Δ, 𝜑 𝜑, Γ ⇒ Δ
cut𝑎

Γ ⇒ Δ

Γ ⇒ Δ, 𝜑 𝜑, Γ′ ⇒ Δ′
cut

Γ, Γ′ ⇒ Δ,Δ′

𝜑, Γ ⇒ Δ 𝜓, Γ ⇒ Δ
∨𝑙

𝜑 ∨𝜓, Γ ⇒ Δ

𝜑, Γ ⇒ Δ 𝜓, Γ′ ⇒ Δ′
∨𝑚
𝑙

𝜑 ∨𝜓, Γ, Γ′ ⇒ Δ,Δ′

Γ ⇒ Δ, 𝜑
∨0
𝑟

Γ ⇒ Δ, 𝜑 ∨𝜓

Γ ⇒ Δ,𝜓
∨1
𝑟

Γ ⇒ Δ, 𝜑 ∨𝜓

Γ ⇒ Δ, 𝜑,𝜓
∨𝑚
𝑟

Γ ⇒ Δ, 𝜑 ∨𝜓

𝜑, Γ ⇒ Δ
∧0
𝑙
𝜑 ∧𝜓, Γ ⇒ Δ

𝜓, Γ ⇒ Δ
∧1
𝑙
𝜑 ∧𝜓, Γ ⇒ Δ

𝜑,𝜓, Γ ⇒ Δ
∧𝑚
𝑙
𝜑 ∧𝜓, Γ ⇒ Δ

Γ ⇒ Δ, 𝜑 Γ ⇒ Δ,𝜓
∧𝑟

Γ ⇒ Δ, 𝜑 ∧𝜓

Γ ⇒ Δ, 𝜑 Γ′ ⇒ Δ′,𝜓
∧𝑚
𝑟

Γ, Γ′ ⇒ Δ,Δ′, 𝜑 ∧𝜓

Figure 3.1: Additive and multiplicative rules in LK

It is derivable in LK.

Γ ⇒ Δ, 𝜑
ex∗

𝑙
,w∗

𝑙
,ex∗𝑟 ,w

∗
𝑟

Γ, Γ′ ⇒ Δ,Δ′, 𝜑

Γ′ ⇒ Δ′,𝜓
w∗
𝑙
,ex∗𝑟 ,w

∗
𝑟

Γ, Γ′ ⇒ Δ,Δ′,𝜓
∧𝑟

Γ, Γ′ ⇒ Δ,Δ′, 𝜑 ∧𝜓

The left conjunction and disjunction rules also have multiplicative versions. On the
other hand, the cut has an additive version (cf. Figure 3.1). The rationale behind the
nomenclature ‘multiplicative’ and ‘additive’ is beyond the scope of these notes. In the
sequent calculi we introduced, we presented additive conjunction and disjunction rules,
and the multiplicative cut rule.

Exercise 3.3. Show that the multiplicative conjunction and disjunction rules, and
the additive cut rule are derivable in LK.

In fact, the multiplicative and additive rules are interderivable. This can be succinctly
schematised as follows.

additive multiplicative

weakening

contraction

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

3.2. Admissibility 16

Proposition 3.4. The cut rule is not derivable in LK \ {cut}.

Proof. Let 𝑎 and 𝑏 be distinct atoms. From the hypotheses 𝑎 ⇒ 𝑏 and ⇒ 𝑎, it is
impossible to derive ⇒ 𝑏 in LK \ {cut} since no rules can be applied to 𝑏 to get 𝑎.

3.2 Admissibility

Definition 3.5. Let 𝑟 be the following rule schema.

S1 S2 . . . S𝑛
𝑟

S

Then, 𝑟 is said to be admissible in a sequent calculus SC if for every instance of 𝑟 ,

𝑠1 𝑠2 . . . 𝑠𝑛
𝑟

𝑠

if sequents 𝑠𝑖 is provable in SC for all 𝑖 ≤ 𝑛, then sequent 𝑠 is provable in SC.

Remark 3.6. When we add an admissible rule to a sequent calculus, we cannot prove
new sequents, i.e. if rule 𝑟 is admissible in sequent calculus SC, then sequent 𝑠 is
provable in SC ∪ {𝑟 } if and only if 𝑠 is provable in SC.

Remark 3.7 (Admissibility vs. Eliminability). Admissibility is sometimes stated in
terms of eliminability i.e. a rule 𝑟 is admissible in a sequent calculus SC \ {𝑟 } if and
only if it can be eliminated in SC ∪ {𝑟 }.

Remark 3.8. Every derivable rule is admissible, but not vice versa in general (for
example, cut; cf. Proposition 3.4 and Theorem 3.17).

We look at some admissible rules which will be useful later.

Proposition 3.9 (Axiom expansion). The init rule is admissible in LK\{init}∪{a-init}
where a-init is defined as follows and 𝑎 is any atomic formula.

a-init
𝑎 ⇒ 𝑎

Proof. The init rule has no premises, so its admissibility means that for every for-
mula 𝜑 , the sequent 𝜑 ⇒ 𝜑 is provable in LK \ {init} ∪ {a-init}. The proof proceeds
by induction on the structure of 𝜑 .
The base case is when𝜑 is atomic. This is provable by the a-init rule. For the induction
case, there are several subcases.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

17 Chapter 3. Properties of seqent calculus

Case 1. 𝜑 = ¬𝜓 :

𝐼𝐻

𝜓 ⇒ 𝜓
ex,¬𝑟 ⇒ ¬𝜓,𝜓
¬𝑙 ¬𝜓 ⇒ ¬𝜓

Case 2. 𝜑 = 𝜓0 ∧𝜓1:

𝐼𝐻

𝜓0 ⇒ 𝜓0
∧0
𝑙
𝜓0 ∧𝜓1 ⇒ 𝜓0

𝐼𝐻

𝜓1 ⇒ 𝜓1
∧1
𝑙
𝜓0 ∧𝜓1 ⇒ 𝜓1

∧𝑟

𝜓0 ∧𝜓1 ⇒ 𝜓0 ∧𝜓1

Case 3. 𝜑 = 𝜓0 ∨𝜓1: This is symmetric to the previous case.
Case 4. 𝜑 = ∃𝑥𝜓

𝐼𝐻

𝜓 [𝑦/𝑥] ⇒ 𝜓 [𝑦/𝑥]
∃𝑟

𝜓 [𝑦/𝑥] ⇒ ∃𝑥𝜓
∃𝑙 ∃𝑥𝜓 ⇒ ∃𝑥𝜓

Case 5. 𝜑 = ∀𝑥𝜓 : This is symmetric to the previous case.

Exercise 3.10. Show that the w𝑟 rule is admissible in LK \ {w𝑟 } ∪ {a-w} where a-w
is defined as follows and 𝑎 is any atomic formula.

Γ ⇒ Δ
a-w

Γ ⇒ Δ, 𝑎

Proposition 3.11. The c𝑟 rule is not admissible in LK \ {c𝑟 } ∪ {a-c𝑟 } where a-c𝑟 is
defined as follows and 𝑎 is an atomic formula.

Γ ⇒ Δ, 𝑎, 𝑎
a-c𝑟

Γ ⇒ Δ, 𝑎

Proof. Consider the law of excluded middle. We showed in Example 2.10 that it is
provable in PK (and hence in LK). If there were a proof of the sequent in LK \ {c𝑟 } ∪
{a-c𝑟 }, there would be one in LK \ {c𝑟 , cut} ∪ {a-c𝑟 } by cut-admissibility stated in
Theorem 3.17. The bottom-most rule on a cut-free proof can only be ∨𝑟 or w𝑟 . We
obtain that there is no cut-free proof in LK \ {c𝑟 } ∪ {a-c𝑟 }.

Remark 3.12. Symmetric results hold for the left structural rules.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

3.2. Admissibility 18

Definition 3.13. A rule 𝑟 with 𝑛 premises

S1 S2 . . . S𝑛
𝑟

S

is said to be invertible if for all 𝑖 ≤ 𝑛 the rule

S
S𝑖

is admissible. In other words, rule 𝑟 is invertible when for each instance of the rule:
if the conclusion is provable then so are all the premisses.

Example 3.14 (Right conjunction rule is invertible). We show that the inverse of
the rule is derivable, and hence admissible in LK.

Γ ⇒ Δ, 𝜑 ∧𝜓

init
𝜑 ⇒ 𝜑

∧0
𝑙
𝜑 ∧𝜓 ⇒ 𝜑

cut
Γ ⇒ Δ, 𝜑

Exercise 3.15. Show that:
(i) multiplicative right disjunction is invertible; and

(ii) multiplicative right conjunction is not invertible.

Implication ⊃ is not a primitive symbol in these lecture notes, but is defined as
𝜑 ⊃ 𝜓 := ¬𝜑 ∨𝜓 . The following exercise shows that the sequent arrow ⇒ could be
viewed as an external implication.

Exercise 3.16. Prove the following fact using invertible rules:

⊢LK Γ ⇒ Δ, 𝜑 ⊃ 𝜓 iff ⊢LK Γ, 𝜑 ⇒ Δ,𝜓

The structural rules in LK capture resource management in programs. Other formu-
lations of the sequent calculus relax some of these structural rules while still obtaining
a calculus for classical first-order logic. We briefly discuss two directions without going
into actual proofs.

Multisets and sets. A sequent Γ ⇒ Δ is defined on the basis of lists Γ and Δ. One
can also consider multisets instead of lists. A multiset is a collection of objects
in which elements may occur more than once, but in which the order does not
matter. When using multisets, applications of the exchange rules ex𝑙 , ex𝑟 will be
implicit. We can even further relax the structure by assuming Γ and Δ to be sets
in which in addition the contraction rules c𝑙 , c𝑟 become implicit.

Admissible rules. When using multisets some of the rules in LK can be changed
so that weakening and contraction become admissible, hence becoming implicit.
For example, the weakening rules w𝑙 and w𝑟 become admissible when we replace

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

19 Chapter 3. Properties of seqent calculus

the additive rules ∧0
𝑟 ,∧1

𝑟 and ∨0
𝑙
,∨1

𝑙
in LK by the multiplicative rules ∧𝑚

𝑟 and ∨𝑚
𝑙

,
respectively, and rule init by the following rule:

init′

Γ, 𝜑 ⇒ Δ, 𝜑

One of the major theorems of proof theory is the admissibility of cuts i.e. if a sequent
is provable in LK then it is provable in LK without cuts. This is known as the Hauptsatz
by Gerard Gentzen in 1935.

Theorem 3.17 (Cut-admissibility). The cut rule is admissible in LK \ {cut}.

One might wonder what is the point of cuts if one can get rid of them. We list some
main reasons.

(i) Cuts are useful from the proofs vs. programs correspondence since they represent
the composition of functions.

(ii) Cuts can give up to a non-elementary reduction in the size of proofs as stated in
Theorem 3.18 below.

(iii) Moreover, cut-admissibility is a highly non-trivial result and it is not a priori
clear that we can eliminate cuts.

Theorem 3.18 ([Sta79; Ore82]). There is a sequent Γ ⇒ Δ such that there is an LK
proof of Γ ⇒ Δ of size 𝑛 and all cut-free LK proofs of Γ ⇒ Δ of size at least Tower(𝑛)
where Tower is inductively defined as Tower(1) = 2 and Tower(𝑛 + 1) = 2Tower(𝑛) .

However, cut-admissibility also has many advantages. We will discuss some of them
in Chapter 4.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Chapter 4

Applications of cut-elimination

4.1 Consistency and subformula property

Theorem 4.1 (Consistency). ̸⊢LK ⊥

Proof. If there were a proof, there would be a cut-free proof. The only rule that can
be applied is ⊥𝑟 , and then we have an empty sequent which is neither an axiom nor
can any rule be applied. Therefore, it is not provable.

Corollary 4.2. For all 𝜑 , either ̸⊢LK 𝜑 or ̸⊢LK ¬𝜑 .

Proof. Suppose ⊢LK 𝜑 and ⊢LK ¬𝜑 . Then, ⊢LK ⊥ as follows. Contradiction!

∅ ⇒ 𝜑
w𝑟

∅ ⇒ ⊥, 𝜑
∅ ⇒ ¬𝜑

¬𝑙

𝜑 ⇒ ∅
cut

∅ ⇒ ⊥

Cut-free proofs are analytic i.e. proofs that do not go beyond their subject matter.
The term was first used by Bernard Bolzano, who was unhappy with his proof of the
intermediate value theorem that relied on geometric intuitions. In modern proof theory,
‘concepts’ are interpreted as subformulas.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

21 Chapter 4. Applications of cut-elimination

Definition 4.3. Fix a signature 𝜎 . Let the set of all 𝜎-terms be T. Let 𝜑 be a first-order
formula. The set of subformulas of 𝜑 , denoted SF(𝜑), is the smallest set such that:

• 𝜑 ∈ SF(𝜑);
• If ¬𝜓 ∈ SF(𝜑), then𝜓 ∈ 𝜑 ;
• If𝜓0 ◦𝜓1 ∈ SF(𝜑), then {𝜓0,𝜓1} ⊆ 𝜑 where ◦ ∈ {∨,∧};
• If 𝑄𝑥𝜓 ∈ SF(𝜑), then𝜓 [𝑡/𝑥] ∈ 𝜑 for all 𝑡 ∈ T where 𝑄 ∈ {∃,∀}.

Theorem 4.4 (Subformula property). Let 𝜋 ⊢LK Γ ⇒ Δ where 𝜋 is cut-free. Then any
formula occurring in 𝜋 is a subformula of one of the formulas in Γ ∪ Δ.

One immediate corollary of the subformula property is that proof-search is decidable
for propositional logic.

Theorem 4.5 (Decidability). Given a propositional formula 𝜑 , it is decidable whether
⊢PK 𝜑 .

Proof. The set of subformulas of a propositional formula is linear in its size. Con-
sequently, the height of a cut-free proof (construing cedents as sets) of a sequent
is linear in its size. One can check all possible ‘proofs’ of a certain height in finite
time.

Remark 4.6. A first-order formula may have infinitely many subformulas even over
the empty signature since we assume an infinite supply of variables and 𝜑 [𝑦/𝑥] and
𝜑 [𝑧/𝑥] cannot be identified because they can be simultaneously used in the same
sequent.

4.2 Herbrand’s theorem
Herbrand’s theorem is a fundamental result of mathematical logic that essentially
allows a certain kind of reduction of first-order logic to propositional logic. It is thus
the logical foundation for most automatic theorem provers. What follows is a simple
proof of Herbrand’s theorem. However, sequent calculus and cut-elimination were
not known at the time of Herbrand and he had to prove his theorem in a much more
complicated way. We will first prove the mid-sequent lemma and Herbrand’s theorem
will follow immediately.

Lemma 4.7 (Mid-sequent lemma). Let ⊢LK Γ ⇒ Δ where Γ,Δ only contain formulas
in prenex normal form. Then there exists a cut-free proof Γ ⇒ Δ that can be factored as

𝜋 ′

Γ′ ⇒ Δ′

𝜋

Γ ⇒ Δ

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

4.2. Herbrand’s theorem 22

such that (i) 𝜋 only contains instances of structural and quantifier rules; and (ii) Γ′,Δ′

contain only quantifier-free formulas. Here Γ′ ⇒ Δ′ is called themid-sequent.

Proof. By Theorem 3.17, Proposition 3.9, and Exercise 3.10, let 𝜋 be a cut-free LK
proof of Γ ⇒ Δ with identity and weakening only on atomic formulas. We will
transform 𝜋 in a proof [𝜋] of the requisite shape by induction on 𝜋 .
The base case is when the last rule applied in 𝜋 is an instance of init, ⊥𝑙 , ⊤𝑟 , and =𝑟 .
In all these cases, [𝜋] = 𝜋 . For the induction case, suppose 𝜋 of the form:

𝜋1

𝑠1 . . .

𝜋𝑛

𝑠𝑛
𝑟

Γ ⇒ Δ

There are three subcases.
Case 1. 𝑟 is a quantifier or a structural rule. Then, 𝑛 = 1 and [𝜋] is obtained from

[𝜋1] by applying 𝑟 .
Case 2. 𝑟 is unary . Assume it is a right rule (It is symmetric for left unary rules). Let

the principal formula be 𝜑 . Since Δ are in prenex normal form, 𝜑 is quantifier-
free. Let Δ = Σ, 𝜑 . Note that 𝑛 = 1 and let𝜓 be the subformula of 𝜑 in 𝑠1. Wlog
𝑠1 is of the form Γ ⇒ Σ,𝜓 . By hypothesis, [𝜋1] can be factored as

𝜋 ′

Γ′ ⇒ Σ′,𝜓

𝛿 (𝜓)

Γ ⇒ Σ,𝜓

where 𝛿 (𝜓) only contains quantifier and structural rules and Γ′ ⇒ Σ′,𝜓 is
quantifier-free. Then, [𝜋] is:

𝜋 ′

Γ′ ⇒ Σ′,𝜓
𝑟

Γ′ ⇒ Σ′, 𝜑

𝛿 (𝜑)

Γ ⇒ Σ, 𝜑

Case 3. 𝑟 is binary. As before assume it is a right rule and let Δ = Σ, 𝜑 where 𝜑 is
the quantifier-free principal formula. Note that 𝑛 = 2 and let𝜓1 and𝜓2 be the
subformulas of 𝜑 in 𝑠1 and 𝑠2 respectively. Wlog 𝑠𝑖 is of the form Γ ⇒ Σ,𝜓𝑖 . By
hypothesis, [𝜋𝑖] can be factored as

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

23 Chapter 4. Applications of cut-elimination

𝜋 ′
𝑖

Γ𝑖 ⇒ Σ𝑖,𝜓𝑖

𝛿𝑖 (𝜓𝑖)

Γ ⇒ Σ,𝜓𝑖

where 𝛿𝑖 (𝜓𝑖) only contains quantifier and structural rules and Γ𝑖 ⇒ Σ𝑖,𝜓 is
quantifier-free for 𝑖 ∈ {1, 2}. Then, [𝜋] is:

𝜋 ′
1

Γ1 ⇒ Σ1,𝜓1
a-w∗

𝑙
,a-w∗

𝑟

Γ1, Γ2 ⇒ Σ1, Σ2,𝜓1

𝜋 ′
2

Γ2 ⇒ Σ2,𝜓2
a-w∗

𝑙
,a-w∗

𝑟

Γ1, Γ2 ⇒ Σ1, Σ2,𝜓2
𝑟

Γ1, Γ2 ⇒ Σ1, Σ2, 𝜑

𝛿2 (𝜑)

Γ1, Γ ⇒ Σ1, Σ, 𝜑

𝛿1 (𝜑)

Γ, Γ ⇒ Σ, Σ, 𝜑
c∗
𝑙
,c∗𝑟

Γ ⇒ Σ, 𝜑

Theorem 4.8 (Herbrand’s theorem). Let ⊢LK ∃®𝑥𝜑 with 𝜑 quantifier-free. Then, there
exist sequences of terms ®𝑡1, . . . , ®𝑡𝑛 such that ⊢LK 𝜑 [®𝑡1/®𝑥], . . . , 𝜑 [®𝑡𝑛/®𝑥].

Proof. By the mid-sequent theorem, there is a proof of ⇒ ∃®𝑥𝜑 that can be factored
as

𝜋 ′

⇒ Γ

𝜋

⇒ ∃®𝑥𝜑
such that 𝜋 contains only quantifier and structural rules, and Γ is quantifier-free.
Therefore, Γ is of the form 𝜑 [®𝑡1/®𝑥], . . . , 𝜑 [®𝑡𝑛/®𝑥].

Exercise 4.9 (Strengthening and generalising is difficult).
1. Show that Herbrand’s Theorem cannot be strengthened by taking 𝑛 = 1.
2. Let 𝜑 = ∀𝑥 (𝑅(𝑦) ∨ ¬𝑅(𝑥)). Show that ⊢LK ∃𝑦𝜑 but for all terms 𝑡1, . . . , 𝑡𝑛,

̸⊢LK 𝜑 [®𝑡1/®𝑥], . . . , 𝜑 [®𝑡𝑛/®𝑥].

Universal quantifiers can be removed by adding more symbols to the language in a
process called Herbrandisation. This is outside the scope of the current note.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

4.3. Interpolation 24

4.3 Interpolation
Craig’s interpolation theorem states that for each provable implication 𝜑 ⊃ 𝜓 there is
an interpolant 𝜃 such that 𝜑 ⊃ 𝜃 , 𝜃 ⊂ 𝜓 , and the non-logical symbols in 𝜃 occur in 𝜑

and in𝜓 . The theorem represents in a way the ‘end of history’ as it seems to be the last
significant property of first-order logic that has come to light [vBen08]. Interestingly,
despite seeming like a bespoke metalogical result, interpolation has found applications
in model checking and query reformulation in databases.

Definition 4.10. The vocabulary of a formula 𝜑 , denoted Voc(𝜑), is the set of
non-logical symbols in 𝜑 . For a cedent Γ, Voc(Γ) = ⋃

𝜑∈Γ Voc(𝜑).

Remark 4.11. For a propositional formula 𝜑 , Voc(𝜑) ⊂ A, the set of atomic proposi-
tions. For a first-order formula 𝜑 , Voc(𝜑) ⊆ R ∪ F , where (R,F) is the signature.

Theorem 4.12 (Craig’s interpolation theorem). Suppose ⊢LK 𝜑 ⊃ 𝜓 . Then, there is a
formula 𝜃 such that:

1. Voc(𝜃) ⊆ Voc(𝜑) ∩ Voc(𝜓),
2. ⊢LK 𝜑 ⊃ 𝜃 , and
3. ⊢LK 𝜃 ⊃ 𝜓 .

The formula 𝜃 is called an interpolant.

Example 4.13 (Interpolants are not necessarily unique). Let 𝜑 = (𝑎 ∧ 𝑏) ∨ (¬𝑐 ∧ 𝑑)
and 𝜓 = 𝑒 ∨ 𝑎 ∨ 𝑏 ∨ ¬𝑐 . We have ⊢PK 𝜑 ⊃ 𝜓 and that Voc(𝜑) ∩ Voc(𝜓) = {𝑎, 𝑏, 𝑐}.
There are multiple interpolants viz. 𝑎 ∨ ¬𝑐 , 𝑏 ∨ ¬𝑐 , and 𝑎 ∨ 𝑏 ∨ ¬𝑐 .

Several proofs of interpolation are known in the literature. We will present a proof-
theoretic technique known as Maehara’s method. We will only prove Theorem 4.12 for
the propositional case. First, we will set up some notation.

Definition 4.14. Let Γ, Γ′, Δ, and Δ′ be cedents and 𝜃 be a formula such that
Voc(𝜃) ⊆ Voc(Γ,Δ) ∩ Voc(Γ′,Δ′), ⊢PK Γ ⇒ Δ, 𝜃 , and ⊢PK 𝜃, Γ′ ⇒ Δ′. We write this
as Γ; Γ′

𝜃
=⇒ Δ;Δ′ and Γ; Γ′ ⇒ Δ;Δ′ is called a split sequent.

Lemma 4.15. Suppose ⊢PK Γ, Γ′ ⇒ Δ,Δ′. Then, there exists 𝜃 ∈ Form such that

Γ; Γ′
𝜃
=⇒ Δ;Δ′.

The propositional version of Theorem 4.12 follows immediately from Lemma 4.15.

Proof of Theorem 4.12. By Exercise 3.16, we have that ⊢PK 𝜑 ⇒ 𝜓 . Plugging Γ = 𝜑 ,
Γ′ = ∅, Δ = ∅, and Δ′ = 𝜓 in Lemma 4.15, we have that there exists 𝜃 such that
𝜑 ;∅

𝜃
=⇒ ∅;𝜓 . Using Exercise 3.16 again, we are done.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

25 Chapter 4. Applications of cut-elimination

Remark 4.16. Note that if Γ; Γ′
𝜃
=⇒ Δ;Δ′, we have,

Γ ⇒ Δ, 𝜃 𝜃, Γ′ ⇒ Δ
cut

Γ, Γ′ ⇒ Δ,Δ′

So, the proof of Lemma 4.15 can be seen as “reverse cut-elimination”.

Proof of Lemma 4.15. Suppose ⊢PK Γ, Γ′ ⇒ Δ,Δ′. By Theorem 3.17, there is a cut-free
proof 𝜋 . We will construct an interpolant 𝜃 by induction on the structure of 𝜋 .
The base case is an application of the init, ⊤𝑟 , or ⊥𝑙 rule. However, since we have split
sequents we have several cases, depending on which side of the split the formulas
are. We will treat one salient case:

𝜋 = init
;𝜑 ⇒;𝜑

We claim that 𝜃 = ⊤. Indeed, Voc(⊤) = ∅ ⊆ Voc(∅) ∩ Voc(𝜑) = ∅, ⊢PK⇒ ⊤ and
⊢PK 𝜑 ⇒ 𝜑 .
For the induction step, there are several subcases based on the bottommost rule of 𝜋 .
Again, the cases are doubled because of the split sequents. We will treat two salient
cases.

• The bottom-most rule is an instance of ¬𝑙 of the following form.

𝜋 =
𝜋 ′

Γ; Γ′ ⇒ 𝜑,Δ;Δ′
¬𝑙 ¬𝜑, Γ; Γ′ ⇒ Δ;Δ′

By applying induction hypothesis on 𝜋 ′, we have Γ; Γ′
𝜃 ′
==⇒ 𝜑,Δ;Δ′ for some 𝜃 ′.

We claim that 𝜃 = 𝜃 ′.

Voc(𝜃) ⊆ Voc(Γ, 𝜑,Δ) ∩ Voc(Γ′,Δ′) [By induction hypothesis]
= Voc(¬𝜑, Γ,Δ) ∩ Voc(Γ′,Δ′) [Voc(𝜑) = Voc(¬𝜑)]

We have ⊢PK ¬𝜑, Γ ⇒ Δ, 𝜃 as follows and ⊢PK 𝜃, Γ′ ⇒ Δ′ directly from induction
hypothesis.

𝐼𝐻

Γ ⇒ 𝜑,Δ, 𝜃
¬𝑙 ¬𝜑, Γ ⇒ Δ, 𝜃

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

4.3. Interpolation 26

• The bottom-most rule is an instance of ∨𝑙 of the following form.

𝜋 =
𝜋1

𝜑, Γ; Γ′ ⇒ Δ;Δ′
𝜋2

𝜓, Γ; Γ′ ⇒ Δ;Δ′
∨𝑙

𝜑 ∨𝜓, Γ; Γ′ ⇒ Δ;Δ′

By applying induction hypothesis on 𝜋1 and 𝜋2, we have 𝜑, Γ; Γ′
𝜃1
==⇒ Δ;Δ′ and

𝜓, Γ; Γ′
𝜃2
==⇒ Δ;Δ′ for some 𝜃1, 𝜃2. We claim that 𝜃 = 𝜃1 ∨ 𝜃2.

Voc(𝜃) = Voc(𝜃1) ∪ Voc(𝜃2) (1)
⊆ (Voc(𝜑, Γ,Δ) ∩ Voc(Γ′,Δ′)) ∪ (Voc(𝜓, Γ,Δ) ∩ Voc(Γ′,Δ′)) (2)
= (Voc(𝜑, Γ,Δ) ∪ Voc(𝜓, Γ,Δ)) ∩ Voc(Γ′,Δ′)
= Voc(𝜑 ∨𝜓, Γ,Δ) ∩ Voc(Γ′,Δ′) (3)

(1) and (3) hold since Voc(𝜑1 ∨ 𝜑2) = Voc(𝜑1) ∪ Voc(𝜑2) and (2) holds by
induction. We have ⊢PK 𝜑 ∨𝜓, Γ ⇒ Δ, 𝜃 and ⊢PK 𝜃, Γ′ ⇒ Δ′ as follows.

𝐼𝐻

𝜑, Γ ⇒ Δ, 𝜃1
∨0
𝑟

𝜑, Γ ⇒ Δ, 𝜃

𝐼𝐻

𝜑, Γ ⇒ Δ, 𝜃2
∨1
𝑟

𝜓, Γ ⇒ Δ, 𝜃
∨𝑙

𝜑 ∨𝜓, Γ ⇒ Δ, 𝜃

𝐼𝐻

𝜃1, Γ
′ ⇒ Δ′

𝐼𝐻

𝜃2, Γ
′ ⇒ Δ′

∨𝑙

𝜃, Γ′ ⇒ Δ′

The interpolant for each case is summarised in Figure 4.1. The reader is encouraged
to verify them.

Remark 4.17. Cut-freeness is crucial for the proof since it is not clear how to obtain
an interpolant for the conclusion of an instance of the cut from the interpolants
of the premisses. Furthermore, note that our proof is constructive and it gives a
non-deterministic algorithm to construct interpolants. However, it has been shown
that it is not possible to use this algorithm to generate all possible interpolants.

Exercise 4.18. Verify Example 4.13 using the algorithm implicit in the proof
of Lemma 4.15. Which interpolant do you find? Can you find another interpolant by
Maehara’s method?

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

27 Chapter 4. Applications of cut-elimination

Initial rule:

init

;𝜑
⊤
=⇒;𝜑

init

𝜑 ;
𝜑
=⇒;𝜑

init

;𝜑
¬𝜑
==⇒ 𝜑 ;

init

𝜑 ;
⊥
=⇒ 𝜑 ;

Boolean rules:

⊥𝑙

;⊥ ⊤
=⇒;

⊥𝑙

⊥;
⊥
=⇒;

⊤𝑟

;
⊤
=⇒;⊤

⊤𝑟

;
⊥
=⇒ ⊤;

Disjunction rules:

𝜑, Γ; Γ′
𝜃1
==⇒ Δ;Δ′ 𝜓Γ; Γ′

𝜃2
==⇒ Δ;Δ′

∨𝑙

𝜑 ∨𝜓, Γ; Γ′
𝜃1∨𝜃2
=====⇒ Δ;Δ′

Γ; Γ′, 𝜑
𝜃1
==⇒ Δ;Δ′ Γ, ; Γ′,𝜓

𝜃2
==⇒ Δ;Δ′

∨𝑙

Γ; Γ′, 𝜑 ∨𝜓
𝜃1∧𝜃2
=====⇒ Δ;Δ′

Γ, Γ′
𝜃
=⇒ 𝜑,Δ;Δ′

∨0
𝑟

Γ, Γ′
𝜃
=⇒ 𝜑 ∨𝜓,Δ;Δ′

Γ, Γ′
𝜃
=⇒ Δ;Δ′, 𝜑

∨0
𝑟

Γ, Γ′
𝜃
=⇒ Δ;Δ′, 𝜑 ∨𝜓

Γ, Γ′
𝜃
=⇒ 𝜓,Δ;Δ′

∨1
𝑟

Γ, Γ′
𝜃
=⇒ 𝜑 ∨𝜓,Δ;Δ′

Γ, Γ′
𝜃
=⇒ Δ;Δ′,𝜓

∨1
𝑟

Γ, Γ′
𝜃
=⇒ Δ;Δ′, 𝜑 ∨𝜓

Conjunction rules:

𝜑, Γ; Γ′
𝜃
=⇒ Δ;Δ′

∧0
𝑙

𝜑 ∧𝜓, Γ; Γ′
𝜃
=⇒ Δ;Δ′

Γ; Γ′, 𝜑
𝜃
=⇒ Δ;Δ′

∧0
𝑙

Γ; Γ′, 𝜑 ∧𝜓
𝜃
=⇒ Δ;Δ′

𝜓, Γ; Γ′
𝜃
=⇒ Δ;Δ′

∧1
𝑙

𝜑 ∧𝜓, Γ; Γ′
𝜃
=⇒ Δ;Δ′

Γ; Γ′,𝜓
𝜃
=⇒ Δ;Δ′

∧1
𝑙

Γ; Γ′, 𝜑 ∧𝜓
𝜃
=⇒ Δ;Δ′

Γ; Γ′
𝜃1
==⇒ 𝜑,Δ;Δ′ Γ; Γ′

𝜃2
==⇒ 𝜓,Δ;Δ′

∧𝑟

Γ; Γ′
𝜃1∨𝜃2
=====⇒ 𝜑 ∧𝜓,Δ;Δ′

Γ; Γ′
𝜃1
==⇒ Δ;Δ′, 𝜑 Γ; Γ′

𝜃2
==⇒ Δ;Δ′,𝜓

∧𝑟

Γ; Γ′
𝜃1∧𝜃2
=====⇒ Δ;Δ′, 𝜑 ∧𝜓

Negation rules:

Γ; Γ′
𝜃
=⇒ 𝜑,Δ;Δ′

¬𝑙

¬𝜑, Γ; Γ′
𝜃
=⇒ Δ;Δ′

Γ; Γ′
𝜃
=⇒ Δ;Δ′, 𝜑

¬𝑙

Γ; Γ′,¬𝜑 𝜃
=⇒ Δ;Δ′

𝜑, Γ; Γ′
𝜃
=⇒ Δ;Δ′

¬𝑟

Γ; Γ′
𝜃
=⇒ ¬𝜑,Δ;Δ′

Γ; Γ′, 𝜑
𝜃
=⇒ Δ;Δ′

¬𝑟

Γ; Γ′
𝜃
=⇒ Δ;Δ′,¬𝜑

Figure 4.1: Construction of interpolants of split sequents in PK.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Chapter 5

Cut elimination

The proof of cut elimination is quite involved and is probably one of the trickiest
termination arguments in all of graduate maths. One of the difficulties stems from the
fact that the cut rule is not derivable (Proposition 3.4).

“The cut rule is not a derivable rule in the system obtained from LK by deleting the
cut rule. That is, it is impossible to replace the cut rule in a uniform way by repeated
applications of other rules, as each application of the cut rule will play a different role
in a given proof. Therefore, we have to eliminate the cut rule depending on how it is
applied.” [Ono98]

5.1 The need for a syntactic proof
The completeness of first-order logic implicitly gives us cut admissibility. In particular,
given |= Γ ⇒ Δ, Schütte’s proof [Sch77] of the theorem gives a cut-free proof of Γ ⇒ Δ.
So, given a proof 𝜋 of Γ ⇒ Δ (possibly with cuts), going through soundness and
completeness as black boxes, we magically obtain a cut-free proof 𝜋0 of Γ ⇒ Δ.

Can we demystify this black box that inputs 𝜋 and produces 𝜋0? Can we see this
as a procedure? Given a different proof 𝜋 ′ of the same endsequent, does it produce a
different cut-free proof 𝜋 ′

0? Unfortunately, not! Any proof of completeness is inherently
non-constructive and no information of 𝜋 is retained. However, we can give more
direct proofs of cut elimination that are more procedural. These sorts of proofs are more
informative:

1. by the proofs vs programs correspondence, the cut elimination procedure on 𝜋

corresponds to evaluating the program corresponding to 𝜋 ;
2. the size of 𝜋 gives an upper bound on the size of 𝜋0.
One can now see that if 𝜋 and 𝜋 ′ correspond to different programs or are of different

sizes, then 𝜋0 ≠ 𝜋 ′
0.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

29 Chapter 5. Cut elimination

Remark 5.1. For the rest of this chapter, we will construe cedents as multisets (rather
than lists). A multiset is a collection of objects in which elements may occur more
than once, but in which the order does not matter. So applications of rule ex will be
implicit.

5.2 Cut elimination as a rewriting system
To obtain a constructive proof, we will define a rewriting system over proofs such
that cut-free proofs will be normal forms and cut elimination will correspond to weak
normalisation i.e. starting from a proof, we will give a strategy for transforming it into a
cut-free proof into finitely many steps. See Appendix A.3 for background on rewriting
theory.

What is the most trivial situation when we can immediately get rid of a cut?1

init
𝜑 ⇒ 𝜑

𝜋

𝜑, Γ ⇒ Δ
cut

𝜑, Γ ⇒ Δ

⇝cut 𝜋

𝜑, Γ ⇒ Δ

Obviously, not all cuts appear in this format. What can we do then? We can simplify
cuts i.e. we can replace cuts on complex formulas with cuts on simpler formulas.

Definition 5.2. The degree 𝑑 (𝜑) of a formula 𝜑 is defined inductively as follows.

𝑑 (𝑎) := 0 if 𝑎 ∈ A
𝑑 (¬𝜑) := 𝑑 (𝜑) + 1

𝑑 (𝜑 ◦𝜓) := max(𝑑 (𝜑), 𝑑 (𝜓)) + 1 for ◦ ∈ {∧,∨}
𝑑 (Q𝑥𝜑) := 𝑑 (𝜑) + 1 for Q ∈ {∀, ∃}

The degree 𝑑 of an instance of the cut rule is the degree of the cut formula.

𝜋

Γ ⇒ Δ, 𝜑
∨0
𝑟

Γ ⇒ Δ, 𝜑 ∨𝜓

𝜋 ′

𝜑, Γ′ ⇒ Δ′
𝜋 ′′

𝜓, Γ′ ⇒ Δ′
∨𝑙

𝜑 ∨𝜓, Γ′ ⇒ Δ′
cut

Γ, Γ′ ⇒ Δ,Δ′

⇝cut
𝜋

Γ ⇒ Δ, 𝜑

𝜋 ′

𝜑, Γ′ ⇒ Δ′
cut

Γ, Γ′ ⇒ Δ,Δ′

Clearly, the cut degree decreases. Moreover, note that the subproof 𝜋 ′′ is deleted.
If the rule on the cut formula was ∨1

𝑟 instead of ∨0
𝑟 , then 𝜋 ′ would be deleted and 𝜋 ′′

would be retained.
1Throughout the rest of this chapter, cut formulas and their subformulas will be distinguished in

magenta and cyan.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

5.2. Cut elimination as a rewriting system 30

This is an instance of a key case of cut elimination (where cuts get simplified).
Depending on the outermost operator of the cut formula and the rule applied on it,
there are several key cases.

Exercise 5.3. Suppose we have the following where the principal formula in rules ◦𝑙
and ◦𝑟 is 𝜑 .

. . .
◦𝑟
Γ ⇒ Δ, 𝜑

. . .
◦𝑙
𝜑, Γ′ ⇒ Δ′

cut
Γ, Γ′ ⇒ Δ,Δ′

Write the key case for the following instances:
1. 𝜑 = ¬𝜓 and ◦ = ¬
2. 𝜑 = ∃𝑥𝜓 and ◦ = ∃

However, it might not always be the case that the cut formulas are principal imme-
diately. Consequently, we need some commutation cases. For instance, the following is
a commutation of ∨0

𝑟 with cut.

𝜋

Γ ⇒ Δ, 𝜑

𝜋 ′

𝜑, Γ′ ⇒ Δ′,𝜓0
∨0
𝑟

𝜑, Γ′ ⇒ Δ′,𝜓0 ∨𝜓1
cut

Γ, Γ′ ⇒ Δ,Δ′,𝜓0 ∨𝜓1

⇝cut

𝜋

Γ ⇒ Δ, 𝜑

𝜋 ′

𝜑, Γ′ ⇒ Δ′,𝜓0
cut

Γ, Γ′ ⇒ Δ,Δ′,𝜓0
∨0
𝑟

Γ, Γ′ ⇒ Δ,Δ′,𝜓0 ∨𝜓1

Not all commutation cases are so benign. For example, some commutation cases increase
the total number of cuts and copies subproofs:

𝜋

Γ ⇒ Δ, 𝜑

𝜋0

𝜑, Γ′ ⇒ Δ′,𝜓0

𝜋1

𝜑, Γ′ ⇒ Δ′,𝜓1
∧𝑟

𝜑, Γ′ ⇒ Δ′,𝜓0 ∧𝜓1
cut

Γ, Γ′ ⇒ Δ,Δ′,𝜓0 ∧𝜓1

⇝cut

𝜋

Γ ⇒ Δ, 𝜑

𝜋0

𝜑, Γ′ ⇒ Δ′,𝜓0
cut

Γ, Γ′ ⇒ Δ,Δ′,𝜓0

𝜋

Γ ⇒ Δ, 𝜑

𝜋1

𝜑, Γ′ ⇒ Δ′,𝜓1
cut

Γ, Γ′ ⇒ Δ,Δ′,𝜓1
∧0
𝑟

Γ, Γ′ ⇒ Δ,Δ′,𝜓0 ∧𝜓1

Note that in both of these reductions, the cut degree remained the same. What measure
decreases in commutation steps?

Definition 5.4. The left rank 𝑟𝑙 (right rank 𝑟𝑟 respectively) of an instance of a
cut is the maximum number of consecutive sequents from the left premisse (right
premisse, respectively) of the cut such that they all contain the cut formula. The
rank 𝑟 of a cut rule is 𝑟𝑙 + 𝑟𝑟 .

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

31 Chapter 5. Cut elimination

In commutation steps, the rank decreases.

Remark 5.5. We will only treat first-order logic without equality in this chapter. In
fact, it is not clear if cut elimination can be constructively proved with the equality
rules we have presented. For example, in the following proof, it is neither possible to
reduce the height of this cut nor the complexity of the cut formula in the standard
manner. See [Ind24] for a detailed discussion.

∅ ⇒ Δ[𝑠/𝑡], 𝑠 = 𝑢
=𝑙

𝑠 = 𝑡 ⇒ Δ, 𝑡 = 𝑢

Γ [𝑡/𝑢] ⇒ Σ[𝑡/𝑢]
=𝑙

𝑡 = 𝑢, Γ ⇒ Σ
cut

𝑠 = 𝑡, Γ ⇒ Δ, Σ

5.3 The problem with structural rules
One key case we have not accounted for till now is when a cut formula is principal in a
structural rule. We have the following (quite natural) rewrite rules:

𝜋

Γ ⇒ Δ, 𝜑

𝜋 ′

Γ′ ⇒ Δ′
w𝑙

𝜑, Γ′ ⇒ Δ′
cut

Γ, Γ′ ⇒ Δ,Δ′

⇝cut
𝜋 ′

Γ′ ⇒ Δ′
w∗
𝑙
,w∗

𝑟

Γ, Γ′ ⇒ Δ,Δ′

𝜋

Γ ⇒ Δ, 𝜑

𝜋 ′

𝜑, 𝜑, Γ′ ⇒ Δ′
c𝑙

𝜑, Γ′ ⇒ Δ′
cut

Γ, Γ′ ⇒ Δ,Δ′

⇝cut
𝜋

Γ ⇒ Δ, 𝜑

𝜋

Γ ⇒,Δ, 𝜑

𝜋 ′

𝜑, 𝜑, Γ′ ⇒ Δ′
cut

𝜑, Γ, Γ′ ⇒ Δ,Δ′
cut

Γ, Γ, Γ′ ⇒ Δ,Δ,Δ′
c∗
𝑙
,c∗𝑟

Γ, Γ′ ⇒ Δ,Δ′

However, these rules immediately pose a problem: they render the rewrite system
non-confluent and non-terminating respectively. Consider the following two rewritings.

𝜋

Γ ⇒ Δ
w∗
𝑙
,w∗

𝑟

Γ, Γ′ ⇒ Δ,Δ′

⇝cut

𝜋

Γ ⇒ Δ
w𝑟

Γ ⇒ Δ, 𝜑

𝜋 ′

Γ′ ⇒ Δ′
w𝑙

𝜑, Γ′ ⇒ Δ′
cut

Γ, Γ′ ⇒ Δ,Δ′

⇝cut
𝜋 ′

Γ′ ⇒ Δ′
w∗
𝑙
,w∗

𝑟

Γ, Γ′ ⇒ Δ,Δ′

This is known as Lafont’s counterexample and shows that cut elimination is
non-confluent and cannot be a meaningful basis for the identity of proofs since that
would equate all proofs.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

5.3. The problem with structural rules 32

Exercise 5.6 (Failure of strong normalisation).
Consider the following cut elimination step.

init
𝑎 ⇒ 𝑎

w2
𝑟

𝑎 ⇒ 𝑎, 𝜑, 𝜑
c𝑟

𝑎 ⇒ 𝑎, 𝜑

init
𝑏 ⇒ 𝑏

w2
𝑙
𝜑, 𝜑, 𝑏 ⇒ 𝑏

c𝑙
𝜑,𝑏 ⇒ 𝑏

cut
𝑎, 𝑏 ⇒ 𝑎, 𝑏

⇝cut

init
𝑎 ⇒ 𝑎

w2
𝑟

𝑎 ⇒ 𝑎, 𝜑, 𝜑
c𝑟

𝑎 ⇒ 𝑎, 𝜑

init
𝑎 ⇒ 𝑎

w2
𝑟

𝑎 ⇒ 𝑎, 𝜑, 𝜑
c𝑟

𝑎 ⇒ 𝑎, 𝜑

init
𝑏 ⇒ 𝑏

w2
𝑙
𝜑, 𝜑, 𝑏 ⇒ 𝑏

cut
𝜑, 𝑎, 𝑏 ⇒ 𝑎, 𝑏

cut
𝑎, 𝑎, 𝑏 ⇒ 𝑎, 𝑎, 𝑏

c𝑙 ,c𝑟
𝑎, 𝑏 ⇒ 𝑎, 𝑏

There are several options for the next step. Show that:
1. there exists a non-terminating rewriting sequence. (Hint: show that one can

always choose a cut to interact with a contraction to get larger and larger
proofs).

2. there exists a terminating rewriting sequence.

There are two ways to deal with non-confluence and non-termination.
• On one hand, one can construe these to be features and not bugs. In order, to

obtain weak normalisation in the presence of possible non-termination, one needs
to impose normalisation strategies that would ensure that following the strategy
from any proof, one can obtain a cut-free proof in finitely many steps. Several
strategies have been explored in the literature: for example, always reducing the
top-most cut, always reducing the most complex cut, and so on.

• On the other hand, one can seek to rectify these ‘defects’. Gentzen introduced a
generalised cut rule (called ‘mix’) to solve this issue.

Γ ⇒ Δ,

𝑚-times︷ ︸︸ ︷
𝜑, 𝜑, . . . , 𝜑

𝑛-times︷ ︸︸ ︷
𝜑, 𝜑, . . . , 𝜑, Γ′ ⇒ Δ′

mix (𝑚,𝑛 ≥ 0 and 𝜑 ∉ Δ ∪ Γ′)
Γ, Γ′ ⇒ Δ,Δ′

LK \ {cut} ∪ {mix} is strongly normalising. The proof is beyond the scope of
these notes.

Remark 5.7. We will use 𝜑𝑚 to denote𝑚 occurrences of 𝜑 .

Exercise 5.8. Show that mix is derivable in LK.

In the following section, we will show weak normalisation of LK with respect to
mix. The use of mix is convenient mostly because it provides an elegant way to deal
with contraction rules.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

33 Chapter 5. Cut elimination

5.4 Putting everything together
We will fix a cut-reduction strategy and design a measure that will decrease with each
step of reduction. In particular, we will eliminate top-most mix rules i.e. given a proof
𝜋 , we will consider subproofs of 𝜋 of following shape (where 𝜋𝑙 and 𝜋𝑟 are mix-free):

𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚
𝜋𝑟

𝜑𝑛, Γ′ ⇒ Δ′
mix 𝑚,𝑛 ≥ 0 and 𝜑 ∉ Δ ∪ Γ′

Γ, Γ′ ⇒ Δ,Δ′

Recall, in key reduction steps,𝑚 = 𝑛 = 1, the cut formula is principal in both the left
and right premise of the mix rules and the degree will reduce. In commutation reduction
steps, the degree remains the same and the rank reduces.2

Remark 5.9. For each top-most mix rule we have 𝑟 ≥ 2, because the cut formula
occurs at least once in the left premise (𝑟𝑙 ≥ 1) and at least once in the right premise
(𝑟𝑟 ≥ 1).

Example 5.10.

init
𝑎 ⇒ 𝑎

∧0
𝑙
𝑎 ∧ 𝑏 ⇒ 𝑎

∨0
𝑟

𝑎 ∧ 𝑏 ⇒ 𝑎 ∨ ¬𝑐

init
¬𝑐 ⇒ ¬𝑐

∨1
𝑟 ¬𝑐 ⇒ 𝑎 ∨ ¬𝑐

∧0
𝑙 ¬𝑐 ∧ 𝑑 ⇒ 𝑎 ∨ ¬𝑐

∨𝑙 (𝑎 ∧ 𝑏) ∨ (¬𝑐 ∧ 𝑑) ⇒ 𝑎 ∨ ¬𝑐

init
𝑎 ⇒ 𝑎

∨0
𝑟
∗

𝑎 ⇒ 𝑎 ∨ 𝑏 ∨ ¬𝑐

init
¬𝑐 ⇒ ¬𝑐

∨1
𝑟
∗

¬𝑐 ⇒ 𝑎 ∨ 𝑏 ∨ ¬𝑐
∨𝑙

𝑎 ∨ ¬𝑐 ⇒ 𝑎 ∨ 𝑏 ∨ ¬𝑐
mix

(𝑎 ∧ 𝑏) ∨ (¬𝑐 ∧ 𝑑) ⇒ 𝑎 ∨ 𝑏 ∨ ¬𝑐

The cut formula is 𝑎 ∨ ¬𝑐 and so we have degree 𝑑 = 2. For the rank we trace the cut
formulas upwards as indicated in blue. We see that 𝑟𝑙 = 3 and 𝑟𝑟 = 1, and so we have
rank 𝑟 = 4.

Lemma 5.11 (Mix reduction lemma). Let 𝜋 be a proof of the form

𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚
𝜋𝑟

𝜑𝑛, Γ′ ⇒ Δ′
mix

Γ, Γ′ ⇒ Δ,Δ′

where 𝜋0 and 𝜋1 do not contain mix. There is a reduction strategy that takes 𝜋 to a
proof 𝜋 ′ of the same end-sequent Γ, Γ′ ⇒ Δ,Δ′ which does not contain mix rules.

2Degree and rank is generalised straightforwardly to mix.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

5.4. Putting everything together 34

Proof. Let 𝑑 denote the degree of the mix rule in 𝜋 and let 𝑟 its rank. Below we
define each reduction step and we prove that each step reduces by induction on the
lexicographic order of (𝑑, 𝑟), i.e. either the degree reduces, or the degree stays the
same and the rank reduces. We distinguish between the following situations:

1. 𝑟 = 2. In this case we define reduction rules that reduce 𝑑 . When a logical rule
is applied, the reduction step will be a key reduction step.

2. 𝑟 > 2. In this case we define reduction rules that keep 𝑑 the same and reduce 𝑟 .
Here we distinguish between 𝑟𝑙 > 1 or 𝑟𝑟 > 1. The reduction steps will be
commutation steps.

Case 1 (𝑟 = 2): This means that 𝑛 =𝑚 = 1 and 𝜑 is principal in both premises. There
are different cases depending on the last rule applied in 𝜋𝑙 and 𝜋𝑟 . We treat
some cases:

• Suppose w𝑙 is applied to the right premise. The reduction is as follows:

𝜋𝑙

Γ ⇒ Δ, 𝜑

𝜋 ′

Γ′ ⇒ Δ′
w𝑙

𝜑, Γ′ ⇒ Δ′
mix

Γ, Γ′ ⇒ Δ,Δ′

⇝cut
𝜋 ′

Γ′ ⇒ Δ′
w∗
𝑙
,w∗

𝑟

Γ, Γ′ ⇒ Δ,Δ′

This results in a proof without mix.
• Suppose ¬𝜓 is the cut formula principal in ¬𝑟 and ¬𝑙 in the left and right

premise of the mix respectively. This results in the following key reduction
step:

𝜋 ′

𝜓, Γ ⇒ Δ
¬𝑟

Γ ⇒ Δ,¬𝜓

𝜋 ′′

Γ′ ⇒ Δ′,𝜓
¬𝑙 ¬𝜓, Γ′ ⇒ Δ′

mix
Γ, Γ′ ⇒ Δ,Δ′

⇝cut

𝜋 ′′

Γ′ ⇒ Δ′,𝜓

𝜋 ′

𝜓, Γ ⇒ Δ
mix

Γ−, Γ′ ⇒ Δ,Δ′−
w∗
𝑙
,w∗

𝑟

Γ, Γ′ ⇒ Δ,Δ′

where Γ− and Δ′ denote the multisets Γ and Δ respectively but without
occurrences of 𝜓 . Similarly for Δ′−. The new mix rule has a smaller
induction parameter. Indeed the cut degree is smaller than 𝑑 which
suffices to apply the induction hypothesis.

• Suppose ∀𝑥𝜓 is the cut formula and derived by ∀𝑟 and ∀𝑙 . The key reduc-
tion is defined as follows:

𝜋 ′ [𝑦]

Γ ⇒ Δ,𝜓 [𝑦/𝑥]
∀𝑟

Γ ⇒ Δ,∀𝑥𝜓

𝜋 ′′

𝜓 [𝑡/𝑥], Γ′ ⇒ Δ′
∀𝑙 ∀𝑥𝜓, Γ′ ⇒ Δ′

mix
Γ, Γ′ ⇒ Δ,Δ′

⇝cut

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

35 Chapter 5. Cut elimination

𝜋 ′ [𝑡]

Γ ⇒ Δ,𝜓 [𝑡/𝑥]
𝜋 ′′

𝜓 [𝑡/𝑥], Γ′ ⇒ Δ′
mix

Γ−, Γ′ ⇒ Δ,Δ′−
w∗
𝑙
,w∗

𝑟

Γ, Γ′ ⇒ Δ,Δ′

where Γ− and Δ′− denote the multisets Γ and Δ respectively but without
occurrences of 𝜓 [𝑡/𝑥]. The notation 𝜋 ′[𝑦] means the proof where we
indicate the fresh variable 𝑦 of ∀𝑟 . Since 𝑦 is fresh, substituting any term 𝑠

into its proof yield another valid proof 𝜋 ′[𝑠]. Here we substitute 𝑡 obtained
from the right premise. The cut degree is smaller than 𝑑 which suffices to
apply the induction hypothesis.

Case 2a (𝑟𝑟 > 1): We distinguish between the cases in which cut formula 𝜑 occurs
in the antecedent of the left premise or not.
If yes, we have the following reduction:

𝜋𝑙

𝜑, Γ ⇒ Δ, 𝜑𝑚
𝜋𝑟

𝜑𝑛, Γ′ ⇒ Δ′
mix

𝜑, Γ, Γ′ ⇒ Δ,Δ′

⇝cut

𝜋𝑟

𝜑𝑛, Γ′ ⇒ Δ′
w∗
𝑙
,w∗

𝑟

𝜑𝑛, 𝜑, Γ, Γ′ ⇒ Δ,Δ′
c∗
𝑙

𝜑, Γ, Γ′ ⇒ Δ,Δ′

This results in a proof without mix.
If not, we consider all possible rules applied to the right premise of mix. The
principal formula might be among the cut formulas but does not need to be.
We consider rules ∧𝑙 and c𝑙 , and leave the remaining cases to the reader.

• Suppose ∧𝑙 is applied to the right premise with principal formula𝜓0 ∧𝜓1.
There are multiple cases depending on the shape of 𝜑 :
- If 𝜑 ≠ 𝜓0 ∧𝜓1, the proof looks as follows

𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚

𝜋 ′

𝜑𝑛, Γ′,𝜓0 ⇒ Δ′
∧0
𝑙
𝜑𝑛, Γ′,𝜓0 ∧𝜓1 ⇒ Δ′

mix
Γ, Γ′,𝜓0 ∧𝜓1 ⇒ Δ,Δ′

which reduces to either of the following depending on the shape of 𝜑 :

If 𝜑 ≠ 𝜓0 : ⇝cut

𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚
𝜋 ′

𝜑𝑛, Γ′,𝜓0 ⇒ Δ′
mix

Γ, Γ′,𝜓0 ⇒ Δ,Δ′
∧0
𝑙
Γ, Γ′,𝜓0 ∧𝜓1 ⇒ Δ,Δ′

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

5.4. Putting everything together 36

If 𝜑 = 𝜓0 : ⇝cut

𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚
𝜋 ′

𝜑𝑛, Γ′,𝜓0 ⇒ Δ′
mix

Γ, Γ′ ⇒ Δ,Δ′
w𝑙

Γ, Γ′,𝜓0 ∧𝜓1 ⇒ Δ,Δ′

In both cases, the created mix rule has the same degree as 𝑑 , but its rank
is smaller than 𝑟 . This justifies the reduction steps.
- If 𝜑 = 𝜓0 ∨𝜓1 the proof to be reduced looks as follows, where 𝜓0 ∨𝜓1
does not occur in Γ′:

𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚

𝜋 ′

𝜑𝑛, Γ′,𝜓0 ⇒ Δ′
∧0
𝑙
𝜑𝑛, Γ′,𝜓0 ∧𝜓1 ⇒ Δ′

mix
Γ, Γ′ ⇒ Δ,Δ′

We define the following reduction:

⇝cut 𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚

𝜋 ′

Γ ⇒ Δ, 𝜑𝑚
𝜋 ′

𝜑𝑛, Γ′,𝜓0 ⇒ Δ′
mix

Γ, Γ′,𝜓0 ⇒ Δ,Δ′
∧𝑙

Γ, Γ′,𝜓0 ∧𝜓1 ⇒ Δ,Δ′
mix

Γ, Γ, Γ′ ⇒ Δ,Δ,Δ′
c𝑙 ,c𝑟

Γ, Γ′ ⇒ Δ,Δ′

To justify the reduction we have to take into account two mix rules. We
first argue that the upper mix rule can be replaced by a mix-free subproof.
This is the case because the degree is the same as 𝑑 , but its rank is lower
than 𝑟 . So by induction hypothesis there exists a mix-free subproof of
Γ, Γ′,𝜓0 ∧ 𝜓1 ⇒ Δ,Δ′. This allows us to examine the other mix rule.
Observe that again the cut degree remains the same. The cut rank is lower,
because its right rank is 1 as𝜓0 ∧𝜓1 ∉ Γ by assumption and𝜓0 ∧𝜓1 ∉ Γ′

by definition of the upper mix rule. So the total rank is 𝑟𝑙 + 1, which is
smaller than 𝑟 = 𝑟𝑙 + 𝑟𝑟 since we assumed 𝑟𝑟 > 1. Therefore, the induction
hypothesis also applies to the lower mix rule.

• Suppose rule c𝑙 is applied to the right premise with principal formula𝜓 .
There are two cases:
- If 𝜑 ≠ 𝜓 the proof and reduction look as follows:

𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚

𝜋 ′

𝜑𝑛, Γ′,𝜓,𝜓 ⇒ Δ′
c𝑙

𝜑𝑛, Γ′,𝜓 ⇒ Δ′
mix

Γ, Γ′,𝜓 ⇒ Δ,Δ′

⇝cut

𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚
𝜋 ′

𝜑𝑛, Γ′,𝜓,𝜓 ⇒ Δ′
mix

Γ, Γ′,𝜓,𝜓 ⇒ Δ,Δ′
c𝑙

Γ, Γ′,𝜓 ⇒ Δ,Δ′

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

37 Chapter 5. Cut elimination

The degree of mix remains the same as 𝑑 , but the rank is smaller than 𝑟 .
- If 𝜑 = 𝜓 the proof and reduction look as follows:

𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚

𝜋 ′

𝜑𝑛, Γ′,𝜓,𝜓 ⇒ Δ′
c𝑙

𝜑𝑛, Γ′,𝜓 ⇒ Δ′
mix

Γ, Γ′ ⇒ Δ,Δ′

⇝cut
𝜋𝑙

Γ ⇒ Δ, 𝜑𝑚
𝜋 ′

𝜑𝑛, Γ′,𝜓,𝜓 ⇒ Δ′
mix

Γ, Γ′ ⇒ Δ,Δ′

Again, the degree remains the same, but the rank reduces.
Case 2b (𝑟𝑙 > 1): This case is symmetric to the Case 2a, so we will not go into further

detail.

Theorem 5.12 (Mix elimination theorem). Every proof 𝜋 can be transformed to a
proof 𝜋 ′ without mix rules that proves the same endsequent as 𝜋 .

Proof. Let 𝑘 be the number of mix rules in 𝜋 . Take a top-most mix rule in 𝜋 .
By Lemma 5.11 we can eliminate this mix rule resulting in a proof 𝜋 ′ proving the
same end sequent but with 𝑘 − 1 mix rules. Repeating this process 𝑘 times, we obtain
a proof of the same endsequent that does not contain any mix rule.

We can analyse the blow-up in size of the proof in the mix reduction lemma, and
obtain the following result. (The degree of a proof is the maximum degree of a mix in
it.)

Theorem 5.13. Given a proof of height 𝑘 and degree 𝑛, one construct a cut-free proof
of height less than 𝑇 (𝑛, 𝑘) where 𝑇 (0, 𝑘) = 𝑘 and 𝑇 (𝑚 + 1, 𝑘) = 4𝑇 (𝑚,𝑘) .

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Appendix A

Additional background

A.1 Capture-avoiding substitution
A substitution 𝜑 [𝑡/𝑥] denotes the operation of substituting all free occurrences of
variable 𝑥 with term 𝑡 . However, 𝑦 ∈ FV(𝑡) may become bound by a quantifier ∀𝑦
or ∃𝑦 in 𝜑 . To take a concrete example, suppose 𝜑 = ∃𝑦 (𝑃 (𝑦, 𝑥) ∧ ¬𝑃 (𝑥, 𝑥)). Note
that ∀𝑥𝜑 is satisfiable. Naively substituting 𝑦 for 𝑥 in 𝜑 would result in 𝜑 [𝑦/𝑥] =

∃𝑦 (𝑃 (𝑦,𝑦) ∧ ¬𝑃 (𝑦,𝑦)) which is not satisfiable. To maintain meaningful invariants
under substitutions, we define capture-avoiding substitutions.

Definition A.1. We define capture avoiding substitution 𝜑 [𝑡/𝑥] by induction
on 𝜑 . Notation 𝑥 ∼ 𝑦 denotes that 𝑥 and 𝑦 are syntactically the same variable.

𝑦 [𝑡/𝑥] :=
{
𝑡 if 𝑦 ∼ 𝑥

𝑦 if 𝑦 ≁ 𝑥

𝑓 (𝑡1, . . . , 𝑡𝑛) [𝑡/𝑥] := 𝑓 (𝑡1 [𝑡/𝑥], . . . , 𝑡𝑛 [𝑡/𝑥])
(𝑡1 = 𝑡2) [𝑡/𝑥] := 𝑡1 [𝑡/𝑥] = 𝑡2 [𝑡/𝑥]

𝑃 (𝑡1, . . . , 𝑡𝑛) [𝑡/𝑥] := 𝑃 (𝑡1 [𝑡/𝑥], . . . , 𝑡𝑛 [𝑡/𝑥])
⊥[𝑡/𝑥] := ⊥ and ⊤[𝑡/𝑥] := ⊤

(¬𝜑) [𝑡/𝑥] := ¬𝜑 [𝑡/𝑥]
(𝜑 ◦𝜓) [𝑡/𝑥] := 𝜑 [𝑡/𝑥] ◦𝜓 [𝑡/𝑥]

(𝑄𝑦𝜑) [𝑡/𝑥] :=


𝑄𝑥𝜑 if 𝑦 ∼ 𝑥

𝑄𝑦𝜑 [𝑡/𝑥] if 𝑦 ≁ 𝑥 and 𝑦 ∉ FV(𝑡)
𝑄𝑧 (𝜑 [𝑧/𝑦]) [𝑡/𝑥] if 𝑦 ≁ 𝑥 and 𝑦 ∈ FV(𝑡) where 𝑧 is fresh

where ◦ ∈ {∧,∨}, 𝑄 ∈ {∃,∀}.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

39 Appendix A. Additional background

Example A.2. Let𝜑 = ∃𝑦 (𝑃 (𝑦, 𝑥)∧¬𝑃 (𝑥, 𝑥)). Then,𝜑 [𝑦/𝑥] = ∃𝑧 (𝑃 (𝑧,𝑦)∧¬𝑃 (𝑦,𝑦)).

Proposition A.3. Let ∃𝑥𝜑 be a formula such that the variable 𝑦 does not occur in it.
Then ⊢LK ∃𝑥𝜑 ≡ ∃𝑦 (𝜑 [𝑦/𝑥]).

The symmetric result holds for ∀𝑥𝜑 .

Corollary A.4. For any formula 𝜑 , there exists𝜓 such that FV(𝜓) ∩ BV(𝜓) = ∅ and
⊢LK 𝜑 ≡ 𝜓 .

A.2 First-order theories

Definition A.5. Fix a signature 𝜎 . A first-order theory𝑇 of 𝜎 is a set of 𝜎-sentences.
A first-order structure that satisfies all sentences in 𝑇 is said to be a model of 𝑇 . If 𝑇
is finite or recursively enumerable, it is said to be effective.

Example A.6. Let 𝜎 = ({=}, {◦}) where ◦ is a binary function symbol. Let 𝑇 be the
set of the following sentences.

∀𝑥∀𝑦∃𝑧 (◦(𝑥,𝑦) = 𝑧)
∀𝑥∀𝑦∀𝑧 (◦(◦(𝑥,𝑦), 𝑧) = ◦(𝑥, ◦(𝑦, 𝑧)))
∃𝑒∀𝑥 (◦(𝑥, 𝑒) = 𝑥 ∧ ◦(𝑒, 𝑥) = 𝑥)

𝑇 represents the theory of monoids. Similarly, we have first-order theories of other
algebraic structures such as groups, abelian groups, rings, and so on. Two of the most
important first-order theories in logic are Peano arithmetic and Zermelo-Frankel set
theory.

Definition A.7. Let 𝑇 be a first-order theory and 𝜑 be a first-order sentence. We
say that 𝜑 is a syntactic consequence of 𝑇 , denoted 𝑇 ⊢ 𝜑 , if 𝜑 is provable in LK
possibly using sentences in 𝑇 as axioms. We say that 𝜑 is a semantic consequence
of 𝑇 , denoted 𝑇 |= 𝑠 , if 𝜑 holds in every model of 𝑇 .

Gödel’s completeness can be strengthened to any first-order theory.

Theorem A.8 (Strong completeness). If 𝑇 |= 𝜑 then 𝑇 ⊢ 𝜑

Corollary A.9 (Compactness). Let 𝑇 be a theory. Then 𝑇 has a model if and only if
each finite set 𝑇 ′ ⊆ 𝑇 has a model.

Proof. The left to right is immediate. In the other direction, we reason by contraposi-
tion. Suppose 𝑇 has no model. Then, 𝑇 |= ⊥. By Theorem A.8, 𝑇 ⊢ ⊥. Let 𝑇 ′ be the
set of sentences in𝑇 used in this proof. Clearly,𝑇 ′ is finite and𝑇 ′ ⊢ ⊥. By soundness,

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

A.3. Rewriting theory 40

we obtain 𝑇 ′ |= ⊥.

A.3 Rewriting theory
An abstract rewrite systemA consists of a set of rules Φ defined on a particular set of
objects 𝐴, which in most cases consists of a language of terms. The rules of the system
determine how an object 𝑎 can be rewritten into 𝑏 (denoted 𝑎 → 𝑏). Rewriting theory
comes with its own set of bespoke terminology.

Definition A.10. Let A = (𝐴,Φ) be an abstract rewrite system.
1. Every element 𝑎 ∈ 𝐴 is called a normal form of 𝐴 if there is no 𝑏 ∈ 𝐴 such

that 𝑎 → 𝑏.
2. A has the diamond property (DP) if →◦ →⊆→ ◦ →i.e. for all 𝑎, 𝑏, 𝑐 ∈ 𝐴

there exists 𝑑 ∈ 𝐴 such that the following holds.

𝑎

𝑏 𝑐

𝑑

3. A is confluent (CR) if →∗ ◦ →∗⊆→∗ ◦ →∗ .
4. A is terminating or (strongly) normalising (SN) if there is no infinite

reduction sequences.
5. A is (weakly) normalising (WN) if every element in 𝐴 reduces to a normal

form.

See [Ter03] for more details.

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Bibliography

[Coo71] Stephen A. Cook. “The complexity of theorem-proving procedures”.
In: Proceedings of the Third Annual ACM Symposium on Theory of Computing.
STOC ’71.
Shaker Heights, Ohio, USA: Association for Computing Machinery, 1971,
pp. 151–158. isbn: 9781450374644. doi: 10.1145/800157.805047.
url: https://doi.org/10.1145/800157.805047 (cit. on p. 5).

[Her73] Hans Hermes. Introduction to Mathematical Logic.
Springer Berlin Heidelberg, 1973. isbn: 9783642871320.
doi: 10.1007/978-3-642-87132-0.
url: http://dx.doi.org/10.1007/978-3-642-87132-0 (cit. on p. 13).

[Ind24] Andrzej Indrzejczak. “The Logicality of Equality”. In:
Peter Schroeder-Heister on Proof-Theoretic Semantics.
Ed. by Thomas Piecha and Kai F. Wehmeier.
Cham: Springer Nature Switzerland, 2024, pp. 211–238.
isbn: 978-3-031-50981-0. doi: 10.1007/978-3-031-50981-07.
url: https://doi.org/10.1007/978-3-031-50981-07 (cit. on p. 31).

[Joh87] Peter T Johnstone. Notes on logic and set theory.
Cambridge University Press, 1987 (cit. on p. 8).

[Kle52] Stephen Cole Kleene. Introduction to metamathematics.
Elsevier Science Inc., 1952 (cit. on p. 8).

[Lev73] Leonid Anatolevich Levin. “Universal sequential search problems”.
In: Problemy Peredachi Informatsii 9.3 (1973), pp. 115–116 (cit. on p. 5).

[Ono98] Hiroakira Ono.
“Proof-theoretic methods in nonclassical logic–an introduction”.
In: Theories of types and proofs 2 (1998), pp. 207–254 (cit. on p. 28).

[Ore82] Vladimir P Orevkov. “Lower bounds for increasing complexity of
derivations after cut elimination”.
In: Journal of Soviet Mathematics 20 (1982), pp. 2337–2350 (cit. on p. 19).

[Sch77] K Schutte. Proof Theory. en.
Grundlehren der Mathematischen Wissenschaften.
Berlin, Germany: Springer, Sept. 1977 (cit. on p. 28).

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-642-87132-0
http://dx.doi.org/10.1007/978-3-642-87132-0
https://doi.org/10.1007/978-3-031-50981-0_7
https://doi.org/10.1007/978-3-031-50981-0_7
a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

Bibliography 42

[Sta79] Richard Statman. “Lower bounds on Herbrand’s theorem”. In: Proceedings
of the American Mathematical Society 75.1 (1979), pp. 104–107 (cit. on p. 19).

[SU06] Morten Heine Sørensen and Pawel Urzyczyn.
Lectures on the Curry-Howard Isomorphism.
Vol. 149 (Studies in Logic and the Foundations of Mathematics).
Elsevier Science Inc., 2006 (cit. on p. 6).

[Ter03] Terese. Cambridge tracts in theoretical computer science: Term rewriting
systems series number 55. en.
Cambridge tracts in theoretical computer science.
Cambridge, England: Cambridge University Press, Mar. 2003 (cit. on p. 40).

[Tra50] Boris A Trakhtenbrot.
“Impossibility of an algorithm for the decision problem for finite classes”.
In: Doklady Akademiia Nauk SSSR. Vol. 70. 1950, p. 569 (cit. on p. 10).

[vBen08] Johan van Benthem. “The many faces of interpolation”.
In: Synthese 164.3 (July 2008), pp. 451–460. issn: 1573-0964.
doi: 10.1007/s11229-008-9351-5.
url: http://dx.doi.org/10.1007/s11229-008-9351-5 (cit. on p. 24).

If you find an inaccuracy of any kind, write to us at {a.de@bham.ac.uk, i.vandergiessen@bham.ac.uk}.

https://doi.org/10.1007/s11229-008-9351-5
http://dx.doi.org/10.1007/s11229-008-9351-5
a.de@bham.ac.uk
i.vandergiessen@bham.ac.uk

	Abstract
	Acknowledgements
	Contents
	Introduction
	History
	Roadmap

	The sequent calculus
	Propositional logic
	First-order logic

	Properties of sequent calculus
	Derivability
	Admissibility

	Applications of cut-elimination
	Consistency and subformula property
	Herbrand's theorem
	Interpolation

	Cut elimination
	The need for a syntactic proof
	Cut elimination as a rewriting system
	The problem with structural rules
	Putting everything together

	Additional background
	Capture-avoiding substitution
	First-order theories
	Rewriting theory

	Bibliography

