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École doctorale de Sciences Mathématiques de Paris-Centre (ED 386)

Institut de Recherche en Informatique Fondamentale (IRIF)
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Abstract. The subject of this thesis is the proof theory of linear logic with the least and greatest fixed
points. In the literature, several systems have been studied for this language viz. the wellfounded sys-
tem that relies on Park’s induction rule, and systems that implicitly characterise induction such as
the circular system and the non-wellfounded system. This thesis contributes to the theory of these
systems with the ultimate goal of exactly capturing the provability relation of these systems and ap-
plication of these objects in programming languages supporting (co)inductive reasoning.

This thesis contains three parts. In the first part, we recall the literature on linear logic and the
main approaches to the proof theory of logics with fixed points. In the second part, we obtain truth
semantics for the wellfounded system, devise new wellfounded infinitely branching systems, and com-
pute the complexity of provability in circular and non-wellfounded systems. In the third part, we devise
non-wellfounded proof-nets and study their dynamics.

Résumé. Le sujet de cette thèse est la théorie de la preuve de la logique linéaire avec les plus petits
et les plus grands points fixes. Plusieurs systèmes ont été étudiés dans la littérature pour ce langage
: le système bien fondé qui repose sur la règle d’induction de Park, et des systèmes qui caractérisent
implicitement l’induction comme le système circulaire et son extension non bien fondée. Cette thèse
contribue à la théorie de ces systèmes avec pour but ultime de capturer exactement la relation de
prouvabilité de ces systèmes et de permettre l’application de ces objets dans les langages de program-
mation supportant le raisonnement (co)inductif.

Cette thèse contient trois parties. Dans la première partie, nous rappelons la littérature sur la
logique linéaire et les principales approches de la théorie de la preuve des logiques à points fixes.
Dans la deuxième partie, nous obtenons une sémantique de vérité pour le système bien fondé, nous
concevons de nouveaux systèmes infiniment ramifiés bien fondés, et nous calculons la complexité
de la prouvabilité dans les systèmes circulaires et non bien fondés. Dans la troisième partie, nous
concevons des réseaux de preuves non bien fondés et étudions leur dynamique.
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Preface

When logic and proportion
Have fallen sloppy dead

And the White Knight is talking backwards
And the Red Queen’s “Off with her head!”

Remember what the dormouse said:
Feed your head!
Feed your head!
Feed your head!

Grace Slick,White Rabbit

Taming the infinite and induction
Throughout the history of mathematics and logic, a lot of time has been devoted to comprehending
the concept of infinity. It is intrinsically counter-intuitive because there is little material need for a
concept of infinity in one’s daily life (besides possibly theological). One might need the number 56 to
convey how many goats they have or the number

√
2 to convey the distance between two corners of

the town square or even the number π to convey the length of rope required to wrap around a tree, but
not infinity. In fact, whenever we talk about something “infinite” in mathematics: there is a trade-off
between rigour and clarity. Take infinitesimals, for example. The concept dominated mathematics
since its conception by Newton/Leibnitz. Even now, high-school students are taught that in the
following, one can safely cancel (x−1) in the numerator and denominator since we are not cancelling
zeroes; rather something which is infinitesimally close to zero.

lim
x→1

x2 − 1

x− 1

However, sceptics as early as Bishop Berkeley have pointed out that this is not rigorous [Ber34].
On the other hand, a rigorous ε/δ definition of the limits of sequences loses out on clarity and is the
reason why they are not taught to high-school students. Consequently, a school of thought developed
in the early 20th century that advocated finitism: representing the infinite by the finite.

But how far can we go armed with only finite tools? We should at least be able to reason over
natural numbers, which is an infinite set 1. We claim that, instinctively, we employ finitist tools to
reason about them. For example, let us try to prove the assertion P defined as follows.

P := Every natural number is either even or odd.

Observe that P is an infinite conjunction of smaller propositions Pn asserting that n is either even
or odd. So, technically P has an infinite proof which is an infinite conjunction of the finite proofs of
each Pn.

However, the response of any high-school student on looking at P will be to prove by mathemat-
ical induction. Immediately, we realise that we have to prove only finitely many things viz.

• 1 is odd;

1The fact that infinite sets are well-defined is not derivable and needs to be stated explicitly as an axiom. The axiom of infinity
in Zermelo-Frankel set theory asserts that there is at least one infinite set viz. the set of all natural numbers.

7



8 Linear logic with fixed points

• n is odd implies n+ 1 is even; and

• n is even implies n+ 1 is odd.

Suppose in the induction case, we have n+1. By the induction hypothesis, n is either even or odd.
If it is odd then by item (3), n + 1 is even; otherwise, n is even and by (4), n + 1 is odd. Combining
these two, we have n+ 1 is even or odd.

Naturally, finitists like Wittgenstein would champion the latter method rather than the former [WRK78].
Although induction is obvious to a working mathematician, it does not come for free in logic. While
formalising number theory, it has to be included as a separate axiom (which are dictums like postu-
lates of Euclidean geometry). In fact, Poincaré [Poi05] labelled induction as a genuine synthetic a
priori i.e. it is not an obvious tautology but still a concept that is universally true.

Self-reference and circular proofs
One can imagine mathematical proofs as a game between two players: prover and denier. The denier
questions something and the prover provides an argument and the game goes on like this. If at some
point, the prover is unable to provide an argument, the statement we started with is false and if we end
up with statements which have been a priori accepted to be true, the denier has nothing to question;
he loses and the statement is deemed true.

Now imagine this game goes on forever. Who wins? Analogously, imagine a program running
forever. Is it intrinsically wrong? Suppose it is printing the output of ROOTTWO(0) defined as follows.

function ROOTTWO(n)
compute vn = the nth decimal place value of

√
2 (By the long-division method)

print vn
return ROOTTWO(n+ 1)

end function

Figure 1: A pseudocode for the printing
√

2 in decimal representation

This is indeed a meaningful program despite it running for an infinite time. But obviously, not
all programs running forever is meaningful (say it is because the programmer wrote the wrong exit
condition). We need to be able to distinguish between these two and what one needs to check is if
there has been some progress (i.e. one is not going around in circles). Therefore, the prover wins
even if she and the denier debate for an infinite time as long as they are making progress in reaching
a consensus. For example, the infinite proof of P mentioned above can be formulated as an infinite
prover-denier game: at every round, the denier keeps providing a number n and the prover proves Pn.
One can ensure that there is progress by asserting that the denier cannot ask about the same number
twice.

Recursion is a way to finitely represent infinite behaviour. For example, the program2 in Figure 1 is
a finite representation of the infinite decimal expansion of

√
2. Circular proofs are a finite presentation

of the infinite proofs presented above. They do so by way of self-reference (just like recursive function
call themselves). A circular proof of P will go as follows.

We first prove the same three things as before viz. 1 is odd, n is odd implies n+ 1 is even, and n is
even implies n+ 1 is odd. Then, we have the following 3:

(∵ 1 is odd)
n = 1 is even or odd

m is even or odd
(∵ m even⇒ m+ 1 odd)

m is odd or m+ 1 is odd
(∵ m odd⇒ m+ 1 even)

n = m+ 1 is even or odd

n is even or odd

Clearly, there are a lot of similarities between proofs by induction and circular proofs. A natural
question at this point is the following.

2Technically it is a corecursive program.
3This is a semi-formal presentation of a formal proof. See [BS10] for a formal proof.



Chapter 0 9

Is induction as powerful as circular proofs?

Self-reference is at the heart of several logical fallacies and developments of modern logic. Take
the Liar’s paradox. Let S be the following sentence. Is it true or false?

S := S is false

Now, consider Russell’s paradox. Let X be a set defined as follows. Does X ∈ X?

X := {Y | Y 6∈ Y }

Note that in both cases, the negation was crucial (replacing false with true in the definition of S
and replacing 6∈ by ∈ in the definition of X removes the apparent contradiction). In circular proofs,
the progress condition guarantees this positivity and ensures consistency.

Circular proofs have deep roots in the history of logic and mathematical reasoning: starting with
Euclid’s [Euc56] heuristic of infinite descent through the more rigorous studies of Fermat (notably his
August 1659 letter to Carcavi [dF94]). A systematic investigation of the connection between circular
proofs and reasoning by infinite descent has been carried out by Brotherston and Simpson [Bro06,
BS07, BS11].

The semantic notion of truth
Russell’s paradox triggered a foundational crisis. Russell and Whitehead spent a lot of time [DPPDD09]
trying to resolve it. Their efforts were the earliest examples of types (similar to what computer scien-
tists call datatypes) and started modern set theory.

In the 1900 International Congress of Mathematics, Hilbert announced his list of twenty-three
problems. The second problem in the list addressed not only the looming question of the founda-
tional crisis but was also a manifestation of his finitist ideology: he hoped to establish, by purely finite
combinatorial methods, that there exist no contradictions in mathematics.

In 1931, Gödel [Göd31] dashed Hilbert’s dreams: he proved that a powerful enough mathematical
theory could not establish its own consistency. Again, the problem was self-reference; we emphasise
that consistency of a system could be proved just not within itself. Put very informally, to prove
the consistency of a certain amount of mathematics, one must always use “more” mathematics.
Gentzen’s proof technique [Gen36] for consistency was ground-breaking since it only manipulated
formal proofs and nothing else. The foundational crisis may not be as grave anymore hence Gentzen’s
proof could have been just a “dusty trinket displayed in the cabinet of mathematical curiosity”4 but
the opposite happened: it opened the doors to a whole new world of logic called proof theory.

A key novelty of Gödel’s theorem was to encode number theoretic functions as numbers them-
selves in a sound way. For Gödel, the sole notion of the truth of a formula was provability. In particular,
incompleteness was expressed in terms of provability: a formula is neither provable nor unprovable.
There is, however, a semantic or external notion of truth: for example, the liar’s paradox is a semantic
fallacy since syntactically (i.e. in the case of natural languages, grammatically) the sentence makes
perfect sense.

A pervasive school of thought, championed by Tarski, within logic is to consider an external mean-
ing of truth. It has been very successful over the years and has come up as one of the major branches of
logic, model theory 5. Essentially one interprets a languageL in another metalanguageL′ and obtains
a semantic notion of truth. Tarski’s undefinability theorem [Tar33] shows that the Gödel encoding
cannot be done for semantic notions of truth i.e. no sufficiently rich language (viz. a language capable
of expressing negation and self-reference) can represent its own semantics.

To complete the story of self-reference in logic, Turing applied Gödel’s technique (viz. the idea
of encoding functions as natural numbers) to mechanical computing. He showed that the Halting
Problem is not effectively computable [Tur37] i.e. the function H defined as follows does not have
any algorithm that produces an output in finite time for all inputs.

4Melliès [Mel09]
5See [Gir11, VH67] for a perspective on the historic dispute between proof theory and model theory.



10 Linear logic with fixed points

H(P, i) =

{
1 if the program P halts on input i;
0 otherwise.

Self-reference is at the core of this result: a program H that can potentially accept itself as input.
This, parallelly with Church’s similar result [Chu36a, Chu36b] gave birth to the final major branch of
logic, computability theory.

In summary, self-reference has been instrumental to the development of all the four major
branches of logic: set theory, proof theory, model theory, and computability theory.

Hilbert’s 24th problem
Hilbert had a twenty-fourth problem [Thi03] that was not published as a part of his list of twenty-three
problems. The problem asks for a criterion of simplicity in mathematical proofs and the development
of a proof theory with the power to prove that a given proof is the simplest possible.

In his Ph.D. thesis, Brandes [Bra08] defined simplicity as follows. Suppose we want to prove a
theorem ϕ in an axiom system Σ with n axioms ϕ1, . . . , ϕn. Then, a proof of ϕ is simple with respect
to ϕi if it uses ϕi m times and all other proofs of ϕ uses ϕi more than m times.

This is the first instance of resource-consciousness in logic [Pam04]: caring not just about what
axioms are used in a proof but also how many times. Modern proof-theorists stop short of formalising
the notion of simplicity: rather they ask a fundamental question that is already implicit in Brandes’
formalisation:

When are two proofs the same?

A lot of it has got to do with design choices. Going back as far as Frege, logicians have tried
to formulate several methods to write formal proofs. In modern logic, there are several ways of writ-
ing formal proofs viz. the Hilbert-Frege style, Gentzen-style and so on. Comparing proofs is thus
challenging. Sometimes, the choice of the formal system has a deep impact on the proofs; at other
times, the differences are more superficial. Analogously, it is somewhat like comparing two programs
written in two different programming languages. In fact, in Frege’s lifetime, his formal systems were
dismissed as a reformulation of Boole’s algebraic account of logic “in the Japanese custom of writing
vertically” [Mel09].

In the system of formal proofs designed by Gentzen, two proofs [Cur52, Kle51] were deemed to
be equal if they were equivalent up to the order in which independent components were presented.
Exploiting this notion of equality has been helpful to understand the relationship between Gentzen-
style proofs and the λ-calculus, a model of computation [Her95].

Linear logic [Gir87a] is the quintessential resource-conscious logic and in the theory of linear
logic, there is an interesting formulation of the aforementioned equivalence of proofs. Linear logic
proofs can be presented geometrically using objects called proof-nets. The equality of proof-nets
is trivial from their structure. Moreover, they characterise exactly the same equivalence as that in
Gentzen-style proofs i.e. two proofs are equivalent by the aforementioned notion if and only if their
corresponding proof-nets are the same.

This work
This thesis aims at studying infinite, circular, and inductive proofs in the context of linear logic. We
build toward the semantic meaning of the truth of formulas provable by infinite/circular proofs. We
show that infinite proofs are strictly stronger than circular proofs. Finally, we develop the theory of
proof-nets in the context of infinite linear logic proofs.
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Résumé Détaillé

Cette thèse présente les éléments suivants.

La logique linéaire à points fixes possède une relation de prouvabilité complexe et l’étude de
son contenu calculatoire peut être faite de manière beaucoup plus systématique dans le cadre
des réseaux de preuves.

La logique linéaire est une logique sous-structurelle (c’est-à-dire que l’utilisation de règles struc-
turelles telles que l’affaiblissement et la contraction y est restreinte) inventée par Girard [Gir87a,
Gir95] lors de l’étude de la sémantique cohérence du Système F. Le cadre de cette thèse est la logique
µMALL, l’extension de la logique linéaire (additive multiplicative) par les opérateurs de plus petit et
de plus grand points fixes. La théorie des points fixes est omniprésente en informatique, notamment
en logique. La conception de systèmes déductifs pour les logiques à points fixes est une tâche difficile
mais gratifiante. Dans la littérature, trois systèmes ont été étudiés pour µMALL: µMALLind (basé
sur une (co)induction explicite), µMALL∞ (basé sur un raisonnement non bien fondé) et µMALL�

(basé sur un raisonnement circulaire). Cependant, une particularité de la théorie de la preuve non
bien fondée est que lorsque l’on considère toutes les dérivations possibles, le système résultant est
incohérent. En particulier, on peut dériver le séquent vide de la manière suivante:

...
(µ)

` µx.x
(µ)

` µx.x

...
(ν)

` νx.x
(ν)

` νx.x
(cut)

`

Par conséquent, un critère de progrès global est imposé pour séparer les preuves logiquement
valides de celles qui ne le sont pas. Typiquement, ce critère exige que chaque branche infinie con-
tienne un fil traçant une formule d’une manière ascendante et témoignant d’une infinité de points
de progrès d’une propriété coinductive. De plus, dans ce cadre non bien fondé, la terminaison de
la procédure d’élimination des coupures est remplacée par la productivité i.e. que des préfixes ar-
bitrairement grands du résultat puissent être calculés en un nombre fini d’étapes. La condition de
progrès susmentionnée est une condition suffisante, mais non nécessaire, pour la productivité de la
procédure de d’élimination des coupures.

Le système bien fondé a été introduit par Baelde et Miller dans [BM07] et étudié plus en détail
dans [BM07, Bae08, Bae12]. Santocanale [San02] a fourni la sémantique catégorique du fragment
additif de µMALL� et plus tard, avec Fortier [FS13, For14], il a prouvé un résultat d’élimination des
coupures pour le même système. Le système circulaire et non bien fondé pour le langage complet a
été introduit dans [BDS16] qui a également prouvé un résultat non trivial d’élimination de coupure
pour le système non bien fondé. Assez récemment, la sémantique cohérençe a été étudiée pour
µMALLind [EJ21] (des résultats préliminaires [EJS21] sur µMALL� ont également été obtenus).

Brotherston et Simpson ont conjecturé que (dans le cadre des définitions inductives de Martin Löf)
les preuves circulaires dérivent les mêmes énoncés que les preuves finitaires avec induction explicite.
La conjecture dite Brotherston-Simpson est restée ouverte pendant une dizaine d’années jusqu’à ce
que Berardi et Tatsuta [BT17a, BT19] y répondent négativement pour le cas général. D’autre part,
si la logique contient l’arithmétique, la conjecture est connue pour être vraie, ce qui a été prouvé
indépendamment par Simpson[Sim17] et Berardi et Tatsuta[BT17b]. La conjecture dépend fortement
de la logique de base puisque la disponibilité de règles structurelles ou de constructions modales induit
des différences subtiles.

13
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Pour µMALL, le problème est difficile. L’utilisation très restreinte des règles structurelles dans
le cadre linéaire induit une relation de prouvabilité beaucoup plus raffinée. Le seul travail dans cette
direction a été [NST18] qui a montré qu’un fragment de µMALL� avec une comptabilisation explicite
des dépliages de points fixes est équivalent à µMALLind . L’étude de la relation de prouvabilité des
systèmes µMALL n’est pas seulement un défi mathématique ; elle a des ramifications et conséquences
profondes. µMALLind a été établi comme une fondation pour le model checking et les situations
classiques de “model checking” sont réduites à la preuve des séquents de µMALLind [HM19]. D’autre
part, comme nous le verrons dans la section suivante, les formules µMALL constituent un système de
types naturel pour les programmes (co)récursifs. Un important problème de décision en théorie des
types est le problème d’habitation du types qui demande, étant donné un type τ et un environnement
de typage Γ, s’il existe un programme M tel queM est de type τ par rapport à Γ. Ceci est exactement
équivalent à la prouvabilité de la séquence Γ ` τ . Par conséquent, la décidabilité et la complexité de
la prouvabilité des systèmes µMALL sont des questions importantes du fait de leurs conséquences.

Il existe une différence flagrante entre la sémantique dénotationnelle des systèmes µMALL (telle
que la sémantique cohérençe) et la sémantique de vérité (telle que l’algèbre de Boole pour LK et
l’algèbre de Heyting pour LJ). La sémantique dénotationnelle interprète les formules ainsi que leurs
preuves, préservant ainsi leur contenu calculatoire. En revanche, la sémantique de vérité est une
interprétation plus grossière qui met sur un pied d’égalité toutes les preuves d’une même formule
et n’interprète que les formules. La sémantique des phases est une sémantique de vérité pour la
logique linéaire qui permet d’exprimer des invariants forts de la prouvabilité de la logique linéaire et
a notamment été utilisée pour prouver des résultats de décidabilité [Laf97, DM04] et des résultats
d’admissibilité de coupures [Oka96, Oka99]. On peut imaginer approcher la conjecture de Brotherston-
Simpson dans le cas de µMALL sémantiquement i.e. trouver des modèles de preuves µMALL� qui ne
sont les interprétations d’aucune preuve µMALLind .

Pour résumer, la conjecture de Brotherston-Simpson est une question profonde qui se trouve
au cœur de la théorie des preuves non bien fondées et, dans le cas de µMALL, particulièrement
difficile. Afin de la prouver ou de la réfuter, on peut utiliser des techniques de complexité et
de sémantique. Ainsi, la complexité de la prouvabilité et la sémantique de vérité de divers
systèmes de µMALL est une étape importante vers la résolution de cette conjecture.

Une idée centrale en logique est l’isomorphisme de Curry-Howard qui établit une correspondance
à trois niveaux entre la logique et la programmation fonctionnelle :

• les formules↔ les types.

• les preuves↔ les programmes

• normalisation/des coupures-élimination↔ calcul.

Une des utilisations significatives de cette correspondance est que l’on peut extraire un système
de preuve isomorphe à un langage de programmation typé et raisonner sur ce système plutôt que
directement sur les programmes. Typiquement, on peut exprimer logiquement des conditions telles
que la terminaison, l’absence d’impasse, la sécurité, etc. Inversement, on peut partir d’un système
de preuve connu et faire de la rétro-ingénierie sur un langage de programmation isomorphe avec de
bonne garanties [Har16].

En programmation fonctionnelle, le calcul sur des structures de données définies inductivement
se fait généralement par récursion. Les programmes corécursifs sont une généralisation de cette ap-
proche pour tenir compte des structures de données infinies, du calcul paresseux, des prédicats com-
municants concurrents, du calcul sur des flux de données, etc. L’état de l’art actuel est que plusieurs
assistants de preuve tels que Agda et Coq ont commencé à supporter les programmes coinductifs.
Pour les programmes récursifs, la terminaison est garantie par le fait que le programme est ty-
pable. Pour les programmes corécursifs, la terminaison est remplacée par la productivité : bien que
la terminaison du calcul ne soit pas garantie, des préfixes arbitrairement grands du résultat peuvent
néanmoins être calculés en un nombre fini d’étapes. Les langages supportant la corécursion utilisent
traditionnellement un vérificateur de type strict qui vérifie une condition de garde syntactique. La pro-
ductivité étant indécidable, les conditions de garde décidables sont toujours une sous-approximation
de l’ensemble de tous les programmes productifs. Par conséquent, la garde est généralement une
condition suffisante mais non nécessaire pour assurer la productivité. Cependant, les conditions de
garde actuelles sont trop restrictives - elles rejettent trop de programmes productifs - et trop rigides
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- il peut être non trivial de reformuler des programmes productifs non gardés sous forme gardée. Na-
turellement, la conception de conditions de garde réalisables qui peuvent accepter de plus en plus de
programmes productifs est un domaine de recherche important. Grâce à l’isomorphisme de Curry-
Howard, on peut imaginer utiliser la théorie de la preuve de µMALL pour y parvenir, la condition
de progression (ou de validité) correspondant à la condition de garde. La condition de progrès peut
en effet être étendue pour prendre en compte de plus grandes classes de preuves productives (par
conséquent, de programmes) en utilisant des fils rebondissants [BDKS22]. Cependant, une condition
de progression formulée à l’aide de fils rebondissants n’est pas robuste sous une permutation triviale
des règles d’inférence.

Les réseaux de preuves [Gir87a] sont un formalisme de preuve qui quotiente cette équivalence
exacte. Un proof-net peut être vu comme un graphe dont les nœuds sont des règles d’inférence, qui ne
sont donc pas ordonnées, et par conséquent moins séquentielles que les preuves du calcul de séquent.
Comme ils sont canoniques, les réseaux de preuves sont bien adaptés pour représenter le calcul. Par
conséquent, nous pensons que les réseaux de preuves sont le cadre approprié pour traiter la condition
de progression des fils rebondissants. Comprendre l’impact de ces permutations et la façon de les
quotienter correctement est une motivation profonde pour notre étude des réseaux de preuves pour
µMLL∞: nous voulons profiter de la canonicité des réseaux de preuves pour améliorer la dynamique
des dérivations non bien fondée quant à l’élimination des coupures.

Pour résumer, les conditions de garde pour assurer la productivité peuvent être améliorées
en prenant la motivation des conditions de progrès relaxées dans la théorie non bien fondée.
Cependant, ces conditions de progrès relaxées ne sont pas robustes en cas de permutation des
règles d’inférence et bénéficieront donc de l’étude de la dynamique des réseaux de preuves non
bien fondés.

Cette thèse est divisée en trois parties. La première partie est une revue du contexte et de la
littérature pertinente. Les deuxième et troisième parties contiennent les contributions originales de
l’auteur.

• Chapitre 2 : nous exposons les outils techniques et conceptuels qui seront très utiles tout au
long de la thèse.

• Chapitre 3 : nous introduisons le sujet de la théorie de la preuve et discutons de divers aspects de
la logique linéaire. Dans les Section 3.2 et Section 3.3, nous discutons respectivement le calcul
de séquents et la sémantique de vérité de la logique linéaire. Dans la Section 3.4, nous discutons
de diverses propriétés des preuves en logique linéaire telles que l’élimination des coupures et la
focalisation. Enfin, dans la Section 3.5, nous discutons de la syntaxe parallèle de la logique
linéaire dans le fragment multiplicatif sans unité.

• Chapitre 4 : il sert d’introduction formelle à la logique linéaire des points fixes et donne un aperçu
de certains résultats récents (et moins récents). Dans la Section 4.1, nous établissons la syn-
taxe de µMALL et la notion particulière de sous-formules dans ce contexte. Dans la Section 4.2,
nous présentons les trois systèmes de preuve pour µMALL et comparons leur expressivité rela-
tive dans la Section 4.3. Nous discutons de la propriété de focalisation de ces systèmes dans la
Section 4.4. Enfin, dans la Section 4.5, nous discutons brièvement des résultats d’élimination
des coupures pour ces systèmes et de leurs conséquences.

Dans la deuxième partie, notre objectif est d’étudier la relation de preuvabilité complexe susmen-
tionnée de divers systèmes de µMALL. En particulier, nous étudions la sémantique de vérité de ces
systèmes et la complexité du problème de décision “Cette formule est-elle prouvable ?”. Cette partie
se compose de deux chapitres (essentiellement indépendants).

• Chapitre 5 : dans ce chapitre, nous nous consacrons à la sémantique des phases de µMALL.
Dans Section 5.1, nous élaborons une sémantique de phase correcte et complète pourµMALLind .
Comme d’habitude, cela nous donne une admissibilité de la règle de coupure (non effective)
par une technique due à [Oka96, Oka99]. Par conséquent, ceci sert de preuve alternative de
l’admissibilité de la coupure µMALLind . Dans la Section 5.2, nous introduisons une famille de
calculs infiniment ramifiés bien fondés pour µMALL qui bénéficient d’une sémantique de phase
très naturelle. Ceci sert de pont vers l’exploration de la sémantique de phase des calculs circu-
laires et non bien fondés que nous discutons dans la Section 5.4.
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• Chapitre 6 : Dans ce chapitre, nous explorons les problèmes de décision sur les différents
systèmes de µMALL c’est à dire le problème de décider si une formule donnée (ou, de manière
équivalente, un sequent) est prouvable. Nous réduisons le problème de l’atteignabilité dans
diverses machines à compteur à ces questions. Par conséquent, nous pouvons calculer la
complexité précise de ces questions. Les résultats sont techniquement intéressants car ils
ś’appuient sur des applications non triviales de la focalisation. Ils ont également des impli-
cations profondes : ils permettent de séparer les systèmes comme des ensembles de théorèmes.
Dans la Section 6.1, nous présentons les machines à compteur pertinentes et explorons leurs
liens avec la logique linéaire. Dans la Section 6.2, nous montrons que µMALL∗ est indécidable
(par conséquent, µMALLind et µMALL∞ le sont aussi) et que le problème de prouvabilité pour le
fragment sans connecteur N de µMALL∗ est équivalent le problème de prouvabilité pour MELL.
Dans la Section 6.3, nous obtenons des bornes inférieures sur la prouvabilité de µMALL∞, ce
qui nous aide finalement à montrer que µMALLind prouve un ensemble de théorèmes strictement
plus grand que µMALL�. Nous montrons cela et construisons l’argument dans la Section 6.4.
De nombreuses parties de ce chapitre sont basées sur la publication [DDS22].

Le but de la troisième et dernière partie est de développer un formalisme de proof-net (i.e. une
syntaxe parallèle) pour le calcul non-wellfounded de µMALL. Alors que les réseaux de preuves ont
une théorie satisfaisante pour le fragment multiplicatif sans unité de la logique linéaire, leur exten-
sion aux additifs [JDNM11, Gir96], aux unités multiplicatives [HH16] et aux exponentielles [dC18]
est plus compliquée. Par conséquent, nous nous concentrerons sur le fragment multiplicatif sans
unités viz. µMLL∞. Nous développons progressivement la théorie des réseaux µMLL∞ (ou in-
finets). Une composante importante des infinets sont les “axiomes infinis” : de même que les ax-
iomes habituels contiennent l’information de savoir quelles formules aboutissent dans quelle feuille
de l’arbre de preuve, les axiomes infinis contiennent l’information de savoir quelles formules aboutis-
sent dans quelle branche infinie de l’arbre de preuve non bien fondé. Nous avons choisi de travailler
avec une présentation algébrique due à Curien [Cur06] au lieu de la présentation graphique habituelle
des réseaux de preuves. Bien que ce choix de conception puisse sembler insignifiant, il est crucial
lorsqu’il s’agit de modéliser des axiomes infinis. Cette partie se compose de trois chapitres basés
sur [DS19, DPS21] et développe de nouveaux matériaux qui sont jusqu’ici inédits :

• Chapitre 7 : dans ce premier chapitre, nous rappelons d’abord les réseaux de preuves MLL via
une présentation algébrique due à Curien [Cur05], dans la Section 7.1. Dans les réseaux de
preuves non bien fondés, il est nécessaire de connecter les nœuds par des chemins infiniment
longs. Pour formaliser de tels concepts dans la théorie des graphes infinitaires, une machinerie
topologique lourde est nécessaire. Nous sacrifions la clarté visuelle des graphes pour considérer
les réseaux de preuves non bien fondés (ou infinets) dans la présentation algébrique. Dans
la Section 7.2, nous améliorons directement cette présentation pour développer des réseaux de
preuves pour le fragment finitaire de µMLL∞ (viz. µMLL∗). Nous revenons brièvement à la
présentation graphique des réseaux de preuves dans la Section 7.3 pour discuter des réseaux
de preuves pour µMLLind et µMLL�. Dans la Section 7.4, nous discutons de manière semi-
informelle des différents pièges de l’adaptation des réseaux au cadre non bien fondé et des di-
verses constructions apparaissant dans le prochain chapitre.

• Chapitre 8 : dans ce chapitre, nous décrivons la première classe véritablement infinie de réseaux
de preuves µMLL. Nous considérons un fragment de µMLL∞ viz. celui qui n’a pas trips. Dans
la Section 8.1, nous formalisons ce fragment de µMLL∞. Dans la Section 8.2, nous définissons
la notion appropriée de réseaux de preuves pour ce fragment en généralisant les réseaux de
preuves du chapitre précédent. Le caractère non bien fondé pose plusieurs problèmes, dont l’un
est une condition de correction plus complexe. Cette condition de correction est introduite, et
on montre qu’elle est complète par rapport à la séquentialisation dans la Section 8.3. Dans
la Section 8.4, nous montrons que les objets que nous définissons sont effectivement canon-
iques. Enfin, dans les Section 8.5 et Section 8.6, nous restreignons et généralisons respective-
ment cette classe de réseaux de preuves non bien fondés. La Section 8.5 considère un fragment
finiment présenté et prouve certains résultats de décidabilité et des connexions avec les preuves
circulaires. Dans la Section 8.6, nous introduisons des réseaux de preuves généraux non bien
fondés qui contiennent potentiellement des objets correspondant à des voyages.

• Chapitre 9 : Dans ce chapitre, nous étudions la dynamique des réseaux infinis. Nous avons
étudié la dynamique des µMLL∗ réseaux de preuves dans la Section 7.2. Puisque les règles
d’inférence sont les mêmes pour µMLL∗ et µMLL∞, les règles de réduction pour les infinis sont
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un sur-ensemble des règles de réduction µMLL∗ réseaux de preuves. Dans la Section 9.1, nous
traitons les réseaux infinis comme un système de réécriture métrique. Nous devinons d’abord
la forme normale (big step) et montrons ensuite qu’une séquence de réduction infinie de petits
pas converge vers le résultat à grand pas à la limite. Pour deviner la limite, on doit sacrifier
une certaine structure viz. η-expanser tous les axiomes rendant le calcul sans atomes. Dans
la Section 9.1, nous traitons les infinets simples en toute généralité. Cependant, notre preuve
n’est pas complètement indépendante du calcul des séquents. En effet, pour obtenir les limites
des séquences de réductions infinies, nous passons par un résultat d’élimination des coupures
en calcul des séquents que nous prouvons dans la Section 9.2.

Enfin, nous concluons en indiquant des directions futures dans le Chapitre 10.



Chapter 1

Introduction
Fixed points and linear logic
The fixed point of a function F is a value x such that F (x) = x. Theorems implying that certain
kinds of functions have at least one fixed point have far-reaching implications in computer science.
We provide two illustrative examples. The existence of a solution of a non-cooperative game involving
two or more players (or Nash equilibrium [Nas50]) relies on fixed point theorems involving functions
over convex compact subsets of Rn. In programming language theory, the semantics of recursive
function relies on fixed point theorems involving functions over lattices [Kil73, Sco70].

In logic, fixed points were first introduced to capture inductive definitions [Acz77] which predates
its first application in computer science as an expressive database query language [AU79]. In order
to define the language of a fixed point logic, one introduces explicit fixed point construct(s) and takes
the closure under these construct(s) thus obtaining a richer language. For example, a popular choice
is two operators µ and ν which are duals of each other and depict the least and greatest fixed points
respectively. Over the years, fixed point logics have been studied from various motivations:

1. Perhaps, the most well-known is the (multi)modal µ-calculus [Koz88, Wal94, Niw97] (the ex-
tension of basic modal logic K with least and greatest fixed point operators). Introduced by
Scott and Bakker in an unpublished manuscript, the logic has been historically studied in for-
mal methods and verification community [CGP99].

2. First order logic extended with various fixed point operators has been extensively explored in
finite model theory [Lib04]. In particular, they seem to recur in descriptive complexity, a seminal
result being that the properties that can be expressed in first-order logic with a least fixed point
operator are exactly those which can be checked PTIME.

3. Another relevant case study is that of Kleene Algebra (and its extensions) where fragments of
the Lambek calculus are extended by a ‘Kleene star’ modelling iteration. Such theories have
received axiomatisations that have been proved complete (over relational and language mod-
els) [Koz91, Kro91, Bru20, DP18].

4. Finally, intensional modelling of inductive and coinductive reasoning has been studied using
various fixed point logics [Pau97, San02, BM07]. These works provide an alternate paradigm
to Martin-Löf’s inductive predicates [ML75, Bro05, BS10] for similar pursuits.

Proof theory is one of the main branches of mathematical logic. Its original purpose was to secure
the consistency of mathematics by finitary methods. This was part of Hilbert’s program; the main goal
was to show the correctness of mathematics using formal deductibility by means of a consistency
proof. Subsequently, it has broadened into the study of formal deduction systems in general from
various other motivations. Naturally, proof theory is syntactic in nature, in contrast to model theory,
which is semantic in nature. Our deductive system of choice is the sequent calculus.

In order to design sequent calculi for fixed point logics, there are some fundamental design choices
to be made. For instance, one can employ inference rules that explicitly express the (co)induction
invariant (cf. Figure 1.1).
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F (S) ` S
(µ)

µF ` S ;

S ` F (S)
(ν)

S ` νF

Figure 1.1: The Park (co)induction scheme [Par69]

The cut-elimination theorem is the backbone of modern proof theory. Its central position is illus-
trated by the fact that three fundamental properties of formal logic follow quite directly from this single
theorem:

• Subformula property: this means that deductions are modular in the sense that every provable
formula ϕ can be established by a proof in which only subformulas of ϕ appear.

• Consistency of the logic: this means that the logic is meaningful in the sense that it does not
prove the falsity or equivalently does not prove a formula and its negation.

• Completeness theorem: a formula can either be proved or refuted.

However, sequent calculi with explicit (co)induction do not have the subformula property in spite
of enjoying cut-elimination. In fact, it is generally accepted that we do not have true cut elimination
for any logic equipped with a theory of inductive definitions [ML71]. This poses a major challenge
when it comes to proof search since one has to essentially guess induction invariants. A more ro-
bust and natural alternative formalisation of inductive reasoning is implicit induction, which avoids
the need for explicitly specifying (co)induction invariants. This formalism generally recovers true cut
elimination but at the cost of infinitary axiomatisation of the fixed points.

There are two approaches to implicit (co)induction. The first approach is to consider a Tait-style
system i.e. infinitary wellfounded derivations which use a so-called ω-rule (cf. Figure 1.2) with in-
finitely many premises of finite approximations of a fixed point. Such rules arise in various areas of
logic, notably as Carnap’s rule [Car37] in arithmetic. A complete Tait-style system has been pro-
posed for fixed point logics viz. for the µ-calculus [Koz88] and star-continuous action lattices [Pal07]
(where the ω-rule construes the Kleene star as an ω-iteration of finite concatenations).

` P (0) ` P (1) ` P (2) . . .
(∀)

` ∀nP (n) ;

` > ` F (>) ` F 2(>) . . .
(ν)

` νF

Figure 1.2: Carnap’s rule in arithmetic and the ω-rule in fixed point logic.

The second approach is to define a non-wellfounded and/or a circular proof system with finitely
branching inferences [NW96, San02, DP17]. Such systems potentially admit greater proof-theoretic
expressivity while, at the same time, reinforcing connections between these logics and automata the-
ory. Moreover, as explained in later sections they are instrumental in checking the correctness of
(co)inductive programs. However, when considering all possible non-wellfounded derivations (aka
pre-proofs), the resulting system is inconsistent. In particular one can derive the empty sequent.

...
(µ)

` µx.x
(µ)

` µx.x

...
(ν)

` νx.x
(ν)

` νx.x
(cut)

`

Therefore, a global progress criterion is imposed to sieve the logically valid proofs from the un-
sound ones. Typically, it requires that every infinite branch is supported by some thread tracing some
formula in a bottom-up manner and witnessing infinitely many progress points of a coinductive prop-
erty. Furthermore, in this non-wellfounded setting, termination of the cut-elimination procedure shall
be replaced by productivity i.e. that arbitrarily large prefixes of the result can be computed in a finite
number of steps. The aforementioned progress condition is a sufficient, but non-necessary, condition
for the productivity of cut-elimination. The cut-elimination dynamics for least/greatest fixed point
rules is much simpler in the non-wellfounded setting and it restores the subformula property, making
non-wellfounded proofs more suitable to automated proof search.
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On the other hand, on account of their infinitude, non-wellfounded proofs have two major draw-
backs. Firstly, they cannot be communicated or checked in finite time; and, secondly, in order to be
used in an automated theorem prover or a proof assistant, we need finitely representable proof objects.
Consequently, we consider a fragment of non-wellfounded derivations viz. that of derivation trees
with finitely many distinct subtrees, known as circular, or cyclic, derivations. Therefore, instead of
giving an infinite proof, we give a finite description of an infinite proof, formulated in the meta-theory.
Note that computationally this is a strict fragment since because there is an uncountable number of
infinite proofs and any system of finite representation is countable.

The setting of this thesis is µMALL, the extension of (multiplicative additive) linear logic by least
and greatest fixed point operators. Coming back to µMALL, three systems have been studied in the
literature: µMALLind (based on explicit (co)induction), µMALL∞ (based on non-wellfounded reason-
ing) and µMALL� (based on circular reasoning). Girard [Gir87a, Gir95] reverse-engineered linear
logic from the coherence space semantics of System F. In that sense, it is a proto-categorical logic.
On the structural proof-theory side, it is (i) a substructural logic (i.e. the usage of structural rules
such as weakening and contraction is restricted) and consequently (ii) a resource conscious logic
(i.e. one is concerned about how many times an axiom is being used in a proof). In other words, the
sequents ` a and ` a, a are indeed different, giving the logic the ability to count. Interestingly, Lam-
bek [Lam58] was already using linear fragments of logic as early as 1958 in order to parse sentences
in natural languages; a formal connection between Lambek calculus and linear logic was observed
in [Abr90]. Resource consciousness provides a unique expressiveness to fixed point logics but also
gives rise to unique challenges to their study.

Fixed point theory is omnipresent in computer science notably in logic. Designing deductive
systems for fixed point logics is a difficult but rewarding task.

Expressivity of the various systems
Brotherston and Simpson conjectured that (in the setting of Martin Löf’s inductive definitions) cir-
cular proofs derive the same statements as finitary proofs with explicit induction. The so-called
Brotherston-Simpson conjecture remained open for about a decade until Berardi and Tatsuta [BT17a,
BT19] answered it negatively for the general case. On the other hand, if the logic contains arithmetic,
the conjecture is known to be true; proved independently by [Sim17] and [BT17b].

Note that the Brotherston-Simpson conjecture is heavily dependent on the base logic since the
availability of structural rules or modal constructs induce subtle differences. For instance, the modal
µ-calculus coincides on all systems. On the other hand, in Kleene Algebras, which is a substructural
logic, the wellfounded, circular, and Tait-style systems are indeed different [Bus06, DP17, Kuz18].
In terms of expressivity, µMALL can be seen as an amalgamation of the properties of µ-calculus and
Kleene Algebras. Like Kleene Algebras, µMALL is also ‘resource-conscious’ (indeed, Kleene Algebra
and extensions are just fragments of a non-commutative µMALL); and like the µ-calculus, µMALL
also allows for unrestricted interleaving of fixed points.

Consequently, for µMALL, the problem is rather difficult. The very restricted use of structural
rules in the linear setting induces a much more refined provability relation. The only work in this di-
rection has been [NST18] which showed that a fragment of µMALL� with explicit book-keeping of
fixed point unfoldings is equivalent to µMALLind . Studying the provability relation of µMALL sys-
tems is not just a mathematical challenge; it has deep ramifications. µMALLind has been established
as a foundation for model checking and classical model checking situations are reduced to proving
µMALLind sequents [HM19]. On the other hand, as we will see in the next section µMALL formulas
are a natural type system for (co)recursive programs. An important decision problem in type theory
is type inhabitation which asks, given a type τ and a typing environment Γ, does there exist a pro-
gram M such that M is of type τ with respect to Γ? This is exactly equivalent to the provability of
the sequent Γ ` τ . Therefore, the decidability and complexity of the provability of µMALL systems are
important questions.

Investigating the semantics of fixed point logics has been incredibly fruitful: in particular, [AL13],
building on [NW96], in the case of the µ-calculus, [DBHS16], building on [DHL06], in the case of
temporal logic, and [DDP18], building on [DP17], in the case of Kleene algebra. We note that this
is the style of truth semantics which, as opposed to denotational semantics, equates all proofs of
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the same formula; hence only interprets formulas. Categorical semantics of the additive fragment of
µMALL� have been studied in [San02]. More recently, coherence space semantics have been studied
for µMALLind [EJ21] (preliminary results [EJS21] on µMALL� have also been obtained). There is
a stark difference between these denotational semantics for the µMALL systems and the aforemen-
tioned truth semantics of µ-calculus, temporal logic, and Kleene Algebra. Denotational semantics
interpret formulas as well as their proofs thereby preserving their computational content. On the
other hand, truth semantics is a coarser interpretation that equates all proofs of the same formula
and only interprets formulas. Phase semantics is a truth semantic for linear logic that allows for ex-
pressing strong invariant of linear logic provability and has been notably used to prove decidability
results [Laf97, DM04] and cut admissibility results [Oka96, Oka99]. One can imagine approaching
the Brotherston-Simpson conjecture in the case of µMALL semantically i.e. coming up with models
of µMALL� proofs that are not the interpretations of any µMALLind proofs.

Studying the provability relation viz. the decidability and truth semantics of fixed point logics
is an extremely important topic.

Proof-nets for corecursive programs
A central idea in logic is the Curry-Howard isomorphism that establishes a three level correspondence
between logic and functional programming:

• formulas↔ types

• proofs↔ programs

• normalisation/cut-elimination↔ computation.

One of the significant uses of this correspondence is that one can extract an isomorphic proof sys-
tem from a typed programming language and reason on that system instead of directly on programs.
Typically one can logically express conditions such as termination, deadlock-freedom, security, and
so on. Conversely, one could start from a known proof system and reverse-engineer an isomorphic
programming language with good safety nets [Har16].

In functional programming, computation over inductively defined data structures is usually done
by recursion. Corecursive programs are a generalisation of this approach to account for infinite data-
structures, lazy computation, concurrent communicating predicates, computation on streams of data,
etc. Dating back to at least Bird [Bir84] (who credits John Hughes and Philip Wadler), corecursion
was developed in the concurrency and functional programming communities throughout the late ’80s
and ’90s [Hag87, All89, MT91]. This sparked interest in the metatheory of corecursion with several
foundational works formalising coinduction [BM96, MD97, Geu92, RT92]. In particular, infinite data
structures were investigated in proof assistants [LPM94, Coq94, Fro95] and coinductive proofs were
mechanised in higher-order logic (HOL) [Pau97]. The current state-of-the-art is that several proof
assistants such as Agda and Coq have started supporting coinductive programs.

For recursive programs, termination is guaranteed by the fact that the program is typable. For
corecursive programs, termination is replaced by productivity: while the computation is not guaran-
teed to terminate, arbitrarily large prefixes of the result can nonetheless be computed in a finite number
of steps. Languages supporting corecursion traditionally employ a strict type checker that checks for
a guard condition. Productivity is undecidable hence decidable guard conditions are always an under-
approximation of the set of all productive programs. Therefore, guardedness is usually a sufficient but
not necessary condition to ensure productivity. However, current guard conditions are too restrictive
(i.e. they reject too many productive programs) and are too rigid (i.e. it can be non-trivial to reshape
unguarded productive programs in guarded form). Naturally, designing tractable guard conditions
that can accept more and more productive programs is an important area of research.

In Figure 1.3, we consider several Coq coinductive definitions of functions from natural numbers
to infinite lists of natural numbers (a.k.a streams), which have seemingly minuscule syntactic dif-
ferences, nevertheless have wildly varying behaviour. We recall that for coinductive types in Coq, the
syntactic form of definitions is similar to inductive types with just the keyword CoFixpoint instead of
Fixpoint to trigger the correct guard condition [Coq].
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CoInductive Stream := Cons : nat→ Stream→ Stream.
CoFixpoint f0 (n : nat) : Stream := Cons n (f0 (n+1)).
CoFixpoint f1 (n : nat) : Stream := let s := f1 (n+1) in

Cons n (match s with Cons h t ⇒ Cons h t end).
CoFixpoint f2 (n : nat) : Stream := let s := f2 (n+1) in

(match s with Cons h t ⇒ Cons n (Cons h t) end).
CoFixpoint f3 (n : nat) : Stream := let s := f3 (n+1) in

(match s with Cons h t ⇒ Cons h (Cons n t) end).

Figure 1.3: Some productive and non-productive definitions

• f0 is the only valid Coq coinductive definition; (f0 n) computes the stream n::n+1::n+2::....

• f1 is a productive term, even though it is rejected by Coq type-checker as it fails to pass its
guard condition. It computes the same stream as f0.

• f2 is not productive, but one could introduce a commutation rule: match e1 with p⇒ Cons (h, t) 
Cons (h, match e1 with p⇒ t) (if pattern p does not occur free in h and symmetrically with t)
to make it so; it is then equivalent to f1.

• f3 is not productive: producing the first element of (f3 n) requires to already have produced
the first element of each stream (f3 k) for k > n.

Therefore the broad goal is as follows.

• extend the guard condition so that more programs are accepted;

• provide a more canonical representation of programs so that productivity is more robust.

Proof theory of fixed point logics can tell us about the computational behaviour of these programs:
following the guiding principles of the Curry-Howard correspondence, (co)inductive types can be en-
coded as µMALL formulas, and (co)recursive programs as µMALL� circular proofs. In the context of
circular sequent proofs, µMALL is the only logic which has enjoyed an intensional investigation (ex-
tensional studies of circular proofs are more traditional since their inception [SS02, SD03, Bro05]).
Another natural candidate would be intuitionistic natural deduction with fixed points, but the advan-
tage of µMALL is that it is rich enough to encode many types purely logically. For example, inductive
types such as natural numbers and lists can be encoded with a least fixed point.

N = µx.1⊕ x ; LN = µx.1⊕ (N⊗ x)

Every proof πn of N represents a natural number n, where the least fixed point is unfolded n + 1
times in πn. Analogously, a Church numeral λf.λx.fn(x) represents n, the number of applications
of f . On the other hand, coinductive types such as streams of natural numbers can be encoded with
a greatest fixed point S = νy.N ⊗ y. Indeed, one can encode the coinductive programs in Figure 1.3
as µMALL� proofs of N ` S, as shown in Figure 1.4: Φ0, Φ1, Φ2, and Φ3 represent f0, f1, f2 and f3

respectively. To compute the value of fi(n) one would need to consider the proof obtained by cutting
Φi with πn for i ∈ {1, 2, 3, 4}.

Πn
i =

πn5̀
N

Φi5
N ` S

(cut)
` S

This induces an infinite cut-reduction sequence. For the productivity of the cut-elimination pro-
cedure, the progress condition on Φi plays a crucial role. It acts as a sort of guard condition for
productivity. Naturally, Φ0 is progressing but the rest are not and indeed, by the cut-elimination re-
sult of [BDS16], Πn

0 converges to a proof of S for all n. Naturally, the condition is sufficient but not
necessary for productivity. In fact, it can be relaxed to account for more proofs: [BDKS22] defines a
bouncing thread progress condition that generalises the usual progress condition but ensures pro-
ductivity of cut-elimination. In particular, Φ1 satisfies the bouncing thread progress condition and Π1

converges to a proof of S.
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Φ0 = πdup

N ` N⊗ N

(id)
N ` N

πsucc

N ` N N ` S
(cut)

N ` S
(νr), (⊗r)N,N ` S

(⊗`)N⊗ N ` S
(cut)

N ` S

Φ1 =

πdup

N ` N⊗ N

πsucc

N ` N N ` S
(cut)

N ` S

(id)
N ` N

πCons

N,S ` S
(ν`), (⊗`)

S ` S
(νr), (⊗r)N,S ` S

(cut)
N,N ` S

(⊗`)N⊗ N ` S
(cut)

N ` S

Φ2 =

πdup

N ` N⊗ N

πsucc

N ` N N ` S
(cut)

N ` S

(id)
N ` N

πCons

N,S ` S
(νr), (⊗r)N,N,S ` S

(ν`), (⊗`)N,S ` S
(cut)

N,N ` S
(⊗`)N⊗ N ` S
(cut)

N ` S

Φ3 =

πdup

N ` N⊗ N

πsucc

N ` N N ` S
(cut)

N ` S

(id)
N ` N

(id)
N ` N

(id)
S ` S

(νr), (⊗r)N,S ` S
(νr), (⊗r)N,N,S ` S

(ν`), (⊗`)N,S ` S
(cut)

N,N ` S
(⊗`)N⊗ N ` S
(cut)

N ` S

Figure 1.4: µMALL∞ encodings of f0, f1, f2 and f3 from Figure 1.3. For ease of readability, some cut
formulas are depicted in blue. The subproofs πdup and πCons are simple circular proofs that duplicates
a natural number and appends a natural number to the head of a stream respectively.

On the other hand, every derivation that is reached by reduction sequence from Πn
2 will have a cut

as its last inference. Hence, cut cannot be eliminated from Πn
2 , it is a non-productive computation.

Interestingly, the difference between Φ1 and Φ2 is limited to the relative order of the (νr)(⊗r) infer-
ences and the (ν`)(O`) inferences in Figure 1.4 but this subtle difference is profound enough to for
cut-elimination in Πn

1 to be productive and in Πn
2 to be non-productive.

This phenomenon is related to the fact that the sequent calculus for LL is non-canonical: a LL
proof may be reduced to two cut-free proofs π and π′ which are different but guaranteed to be equal
up to irrelevant permutations of inference rules. Normalisation for LL sits thus in the middle between
classical sequent calculus LK — in which a proof (Lafont’s critical pair) can be reduced to any two
proofs of the same sequent and natural deduction [Pra65, Gir87a] or λ-calculus [CR36] normalisation
which are confluent. In other words, the permutations are denotationally trivial i.e. Jπ1K = Jπ2K in
any semantics. The non-canonicity of sequent calculus manifests itself more critically in µMALL∞:
as discussed above productivity of cut-elimination is not preserved by infinite permutative equiva-
lence [BDKS22]. Therefore the desideratum is a proof paradigm P such that:

• The Curry-Howard correspondence is preserved. In particular, there is a map Rep that takes
f1,f2,n to objects in P .

• Rep(f1) = Rep(f2) = K.

• Cut elimination productive in K cut against Rep(n) for all n
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Semantically, this desideratum is justified: since denotation is preserved by normalisation we have
JΦ1K = JΠ1K. Therefore, JΠ1K = JΦ2K hence asserting that K cut against Rep(n) is productive is
justified.

Proof-nets [Gir87a] were devised to achieve exactly this. A proof-net can be seen as a graph
whose nodes are inference rules, which are thus not ordered, and consequently less sequential than
sequent calculus proofs. As they are canonical, proof-nets are well-suited to represent computation.
Consequently, we believe that proof-nets are the proper framework for dealing with the bouncing
thread progress condition. Understanding the impact of those permutations and how to quotient
them properly is a deep motivation for our investigation of proof-nets for µMLL∞: we aim at benefiting
from the canonicity of proof-nets to improve the dynamics of non-wellfounded derivations wrt. cut-
elimination.

To sum up, guard conditions for ensuring productivity can be improved by taking motivation
from relaxed progress conditions in non-wellfounded proof theory. However, these relaxed
progress conditions are not robust under permutation of irrelevant inference rules and will
therefore benefit from the study of the dynamics of non-wellfounded proof-nets.

Contribution of the thesis
The elevator pitch of this thesis is as follows.

Linear logic with fixed points has an intricate provability relation and the study of its compu-
tational content can be done much more systematically in the framework of proof-nets.

Naturally, this thesis is split into two parts. In the first part, we study the aforementioned intricate
provability relation of various systems of µMALL. In the second part, we develop the theory of non-
wellfounded proof-nets and go on to prove cut-elimination in that framework. Before developing these
two parts containing our main contributions, we start with an introductory part which consists of three
chapters:

• Chapter 2: we expose the technical and conceptual tools that will be very useful in the thesis.

• Chapter 3: a case is made for proof theory in logic and then we breeze through the most impor-
tant ideas of linear logic.

• Chapter 4: serves as a formal introduction to linear logic with fixed points and a methodical
survey of some recent (and not-so-recent) results.

Part I
Our goal is to study the provability of the various systems of µMALL. In particular, we study the truth
semantics of these systems and the complexity of the decision problem, “Is this formula provable?”
This part consists of two (essentially independent) chapters.

• Chapter 5: we devise the phase semantics for µMALLind and introduce a family of infinitely
branching systems that enjoy cut admissibility. We conclude by discussing ideas to approach
the phase semantics of µMALL∞ via these systems. This chapter is based on the publica-
tion [DJS22].

• Chapter 6: we show that the provability of µMALL� and µMALL∞ have different complexities;
henceµMALL∞ is not conservative overµMALL�. We also identify a fragment ofµMALLind that
is provably equivalent to MELL whose decidability is open. This chapter is based on the publi-
cation [DDS22].
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Preliminaries

Chapter 3

Chapter 4

Chapter 5 Chapter 6Chapter 7

Chapter 8

Chapter 9

Figure 1.5: A roadmap through the chapters of this thesis depicting their dependencies. Partial de-
pendency is depicted by dashed edges.

Part II
The goal of this part is to develop a proof-net formalism (i.e. a parallel syntax) for the non-wellfounded
calculus of µMALL. While proof-nets have a satisfying theory for the unit-free multiplicative frag-
ment of linear logic, their extension to additives [JDNM11, Gir96], multiplicative units [HH16] and
exponentials [dC18] are more complicated. Consequently, we will concentrate on the multiplicative
fragment without units viz. µMLL∞. We incrementally develop the theory of µMLL∞ proof-nets (or
infinets). An important component of infinets are “infinite axioms”: Just as usual axioms encapsulate
the information of which formulas end up in which leaf of the proof tree, infinite axioms encapsulate the
information of which formulas end up in which infinite branch of the non-wellfounded proof tree. We
choose to work within an algebraic presentation due to Curien [Cur06] instead of the usual graphical
presentation of proof-nets. Although this design choice could seem insignificant, it is crucial when
it comes to modelling infinite axioms. This part consists of three chapters based on [DS19, DPS21]
and develops new material which is hitherto unpublished:

• Chapter 7: we introduce the proof-nets for ν-free µMLL in the aforementioned algebraic pre-
sentation. Then, we revert back to the graphical presentation to develop proof-nets for µMLLind

and µMLL� and discuss ways to extend them to µMLL∞.

• Chapter 8: we develop µMLL∞ proof-nets as an extension of the nets introduced in the previous
chapter and study their properties such as correctness and canonicity. We consider a finitely
presentable fragment and discuss some extensions.

• Chapter 9: is the culmination of our development of the theory of non-wellfounded proof-nets
where we obtain cut-elimination on these objects using techniques from the world of infinitary
rewriting theory.
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Preliminaries
In this chapter, we will introduce some standard notions and notations that will be used throughout
this thesis.

Formal language theory
In formal language theory, a language is a set of words and a regular language is a language that can
be defined by a regular expression. Alternatively, a regular language can be defined as a language
recognised by a finite state automaton. The equivalence of regular expressions and finite state au-
tomata is known as Kleene’s theorem. Fix a set Σ called the alphabet.

Definition 2.0.1. The set of regular languages over Σ is defined recursively as follows:

• The empty language ∅ is a regular language.

• For each a ∈ Σ, the singleton language {a} is a regular language.

• If A and B are regular languages, then A ∪ B and A · B = {ww′ | w ∈ A,w′ ∈ B} are
regular languages.

• If A is a regular language, then A∗ = {w1 . . . wn | ∀i ∈ [n], wi ∈ A} (Kleene star) is also
a regular language.

Definition 2.0.2. A finite state automatonA is a 5-tuple (Q,Σ,∆, q0, F ) where:

• Q is a finite set of states.

• Σ is a finite alphabet.

• ∆ ⊆ Q× Σ×Q is a transition relation.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of final states.

We do not define the semantics of regular expressions and finite state automata. We denote the
set of words accepted by a finite state automaton A by L(A). Clearly, L(A) ⊆ Σ∗, is the set of
all finite words over Σ. We note that the notion of a finite state automaton is robust insofar as the
expressiveness of finite state automata does not change with structural tweaks such as multiple initial
states, epsilon transitions, non-determinism and so on. Similarly, regular languages are a robust
notion insofar as they are closed under various operations such as intersection, complementation,
prefix, and division. Let A be a regular language and w be a word. Then, A = {u | ∃v.uv ∈ A} and
w−1A = {u | wu ∈ A} are called the prefix-closure of A and division of A by w respectively are
also regular.

Regular languages can be extended to infinite words. The infinite counterpart of the Kleene star
is the •ω operation: Aω = {w1w2w3 · · · | ∀i.wi ∈ A}. The set of all infinite words over Σ is therefore
Σω.

Definition 2.0.3. An ω-language L is ω-regular if it has one of the following forms:

• Aω where A is a regular language not containing the empty string.

26
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x1

x2

x3

x4

x5

...

Figure 2.1: A comb with black teeth and spine x1x2x3 . . .

• A ·B where A is a regular language and B is an ω-regular language.

• A ∪B where A and B are ω-regular languages

Automata over finite words can similarly be extended to infinite words. A Büchi automaton is
defined exactly like a finite state automaton except it has different semantics. In particular, accepting
runs are exactly those in which at least one of the infinitely often occurring states is final. Büchi’s
theorem states that an ω-language is recognised by a Büchi automaton iff it is ω-regular. Note that
although deterministic and non-deterministic finite state automata are equally expressive that is not
the case for Büchi automata: here, the deterministic is strictly less expressive than non-deterministic.

We denote Σ∞ as the set of all finite and infinite words over Σ i.e. Σ∞ = Σ∗ ∪Σω. Finally, a non-
standard notation that will be used throughout this thesis: two words w,w′ are said to be disjoint if
neither w is a prefix of w′ nor w′ is a prefix of w.

(Infinite) Graph theory
A graph is a pairG = (V,E) of sets such that E ⊆ V ×V . To avoid notational ambiguities, we shall
always assume tacitly that V ∩E = ∅. The elements of V are called the vertices or nodes of G and
the elements of E are its edges. If we allow E to be a multiset, then there can be more than one edge
between two vertices. Such graphs are called multigraphs. We will now introduce some notions of
infinite graph theory that will be useful in this thesis.

An infinite graph (V,E) such that V = {xi}i∈N and E = {(xi, xi+1) | i ∈ N} is called a ray,
and a double ray is an infinite graph (V,E) such that V = {xi}i∈Z and E = {(xi, xi+1) | i ∈ Z}.
Thus, up to isomorphism, there is only one ray and one double ray. Note that in the context of infinite
graphs, finite paths, rays and double rays are all called paths.

Definition 2.0.4. The subrays of a ray or double ray are said to be its tails.

Every ray has infinitely many tails, but any two of them differ only by a finite prefix. An interesting
infinite graph is a comb which has one ray and infinitely many maximal finite paths. Figure 2.1 is a
typical example.

An important concept in infinite graph theory is that of an end, which has no finite counterpart.

Definition 2.0.5. Let G = (V,E) be an infinite graph. Two rays are considered equivalent if, for
every finite set S ⊆ V , both have a tail in the same component of G − S. An end of a graph
G = (V,E) is an equivalence class of rays in G.

The ends of a tree are particularly simple: two rays in a tree are equivalent iff they share a tail.
Therefore, the infinite complete binary tree has continuum many ends. On the other hand, although
the comb in Figure 2.1 has infinitely many distinct rays, it has exactly one end.

Definition 2.0.6. A graph is said to be locally finite if all its vertices have finite degrees.

Proposition 2.0.1. A connected infinite graph contains a ray or is not locally finite.
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Induction and Coinduction

A recursive datatype is the smallest set containing some founders and closed under certain opera-
tions, called constructors. N is the simplest recursive type: it has one founder viz. 0 and one unary
constructor viz. succ. Another example is LA, the set of finite list over the type A: it has one founder
viz. the empty list [] and one binary constructor viz. :: such that if a is of type A and l is a list of
type LA, then a :: l is also a type of LA.

One can do induction over recursive types which is called structural induction. The reason one
can do induction over recursive types is that the relation which relates a recursively defined object x
with those objects of which x was constructed, is wellfounded. Note that structural induction over N
is the usual notion of mathematical induction.

From a programming perspective, recursion is a technique to define a function over recursive
datatypes by possibly invoking itself on the components of the constructors used to build data val-
ues. Most programming languages support recursion by allowing a function to call itself from within
its own code. It has been proved in computability theory that recursion is expressive enough to write
all programs that be can be written using constructs such as while and for.

Coming back to the example of lists, LA is the least fixed point of the function f where f is defined
as f(X) = [] + A × X . What if we consider the greatest fixed point? In that case, we will obtain
the set of finite and infinite lists over A. Suppose we want to define the set of infinite lists over A.
It is not difficult to guess that it is the greatest fixed point of the function f where f is defined as
f(X) = A ×X . This is the informal idea behind corecursive datatypes, which can be construed
as a dual of recursive types. In other words, a corecursive datatype is the greatest set closed under
certain operations, called destructors. For example, LωA, the set of infinite lists over the type A has
two destructors hd and tl such that if l is an infinite list of type LωA, then hd(l) of type of A and tl(l)
is an infinite list of type LωA.

The mathematical dual of structural induction is coinduction. Instead of giving a formal defi-
nition, we will give an example of a proof by coinduction. We come back to our example of infinite
lists. Assume that (A,≤) is a partially ordered set. Define the ordering <lex on objects of LωA as the
maximum relation R ⊆ LωA × LωA satisfying the following property: if `R`′, then

1. hd(`) ≤ hd(`′), and

2. if hd(`) = hd(`′), then tl(`)Rtl(`′).

We will show that <lex is transitive by coinduction on LωA × LωA.

Theorem 2.0.1. If ` <lex `′ and `′ <lex `′′ then ` <lex `′.

Proof. By property 1 of R,

hd(`) ≤ hd(`′) ≤ hd(`′′). (2.1)

By the the transitivity of ≤ on A, hd(`) ≤ hd(`′′). Thus, property 1 holds for ` and `′′. If
hd(`) = hd(`′′), then hd(`) = hd(`′) = hd(`′′) by Equation (2.1) and the antisymmetry of ≤ on
A. By the assumption and property 2, tl(`) <lex tl(`′) and tl(`′) <lex tl(`′′). By the coinduc-
tion hypothesis, tl(`) <lex tl(`′′). This establishes property 2 for `, `′′. Since <lex is the maximal
relation satisfying that properties 1 and 2, we are done.

The magical part is obviously the coinduction hypothesis which seems like induction on non-
wellfounded objects. Actually, one can formally show that the argument is sound. Intuitively, one can
appeal to the coinductive hypothesis as long as one has productivity i.e. there has been progress in
observing the elements of the infinite list (guardedness) and there is no further analysis of the tails
(opacity). We summarise the duality of recursion and corecursion in the following table.
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Recursion Corecursion
Recursively defined datatypes are
finite objects.

Corecursively defined datatypes
are potentially infinite objects.

Recursive definitions (usually)
come with founders and construc-
tors.

Corecursive definitions (usually)
come with destructors.

Recursive definitions compute a
least fixed point.

Corecursive definitions compute a
greatest fixed point.

We reason over recursive
datatypes by induction.

We reason over corecursive
datatypes by coinduction.

Recursive programs come with a
guarantee of termination.

Corecursive programs come with
a guarantee of productivity.

Ordinals
Invented by Cantor in 1883, ordinals are a generalisation of ordinal numerals (first, second, nth, etc.)
aimed to extend enumeration to infinite sets.

Definition 2.0.7. A set S is an ordinal if every element of S is also a subset of S and it is strictly
well-ordered with respect to membership.

Observe that defined this way, ordinals are the generalisation of Von Neumann’s definition of nat-
ural numbers as the following set.

{∅, {∅}, {∅, {∅}}, . . . }
In fact, the above set is an ordinal and denoted byω. Any ordinal different from ∅ has the minimum

element ∅ (simply called zero). However, ordinals do not necessarily have a maximum. For example,
the finite ordinal 42 has maximum 41 whereas ω does not have a maximum (since there is no largest
natural number).

Definition 2.0.8. If an ordinal has a maximum α, then it is called a successor ordinal, written
α+ 1. A non-zero ordinal that is not a successor is called a limit ordinal.

Just like natural numbers, every ordinal α has a successor viz. α ∪ {α}. However, contrary to
natural number, the class of all ordinals is not a set. This is known as the Burali-Forti paradox. The
class of all ordinals is denoted by Ord. One can now state the principle of transfinite induction viz.
a property P (α) is true for all ordinals α ∈ Ord if P (β) is true for all β < α, then P (α) is also true.
This can be proved in ZFC. Usually a proof by transfinite induction is broken down into three cases:

• (Base case) Prove that P (0) is true.

• (Successor case) Prove that for any successor ordinal α+ 1, P (α+ 1) follows from P (α).

• (Limit case) Prove that for any limit ordinal λ, P (λ) follows from P (β) for all β < λ.

It can be shown by transfinite induction that every well-ordered set is order-isomorphic to exactly
one ordinal. Hence, transfinite induction holds in any well-ordered set. Furthermore, by Zermelo’s
theorem every set can be well-ordered (one of the several statements equivalent to choice). Therefore,
in principle, one can induct on any set, provided one is privy to the recipe to well-order it.

Infinite trees
In this section, we will discuss infinite trees in the various ways they can be viewed and the insights
each of them provide. There are two distinct sources of infinitude for a tree: infinite branching (i.e.
a node may have infinitely many children) or non-wellfoundedness (i.e. there is an infinite path from
the root). In this thesis, we will only talk about finitely branching non-wellfounded trees and infinitely
branching wellfounded trees1.

Non-wellfounded trees can be defined as corecursive datatypes. To do this in full generality re-
quires a lot of work; we do this for complete binary trees.

1Hence the all discussion pertaining to non-wellfounded trees in this subsection implicitly assumes that they are finitely
branching.
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Definition 2.0.9. TωA, the set of infinite complete binary trees over the type A, is a corecursive
type given by three destructors, hd, lft, and rgt such that if t is an infinite complete binary
tree, then hd(t) is type A, and lft(t) and rgt(t) are of type TωA.

One can define distance over infinite trees. Let t, t′ be two infinite trees. Define d(t, t′) = 1
2d

where
d is the depth of the nodes at which they differ which are nearest from their respective roots. The set
of infinite trees is a complete metric space with respect to d.

Recall that a tree is essentially a special type of graph. Therefore, a non-wellfounded tree is a
special type of infinite graph. Consequently, one can define the subtree of a non-wellfounded tree as is
usual in graph theory. By Proposition 2.0.1, every non-wellfounded tree has an infinite branch. This
is known as König’s Lemma (which can be proved within ZF for countably infinite trees).

Definition 2.0.10. An infinite tree is said to be regular if it has finitely many distinct subtrees.

A regular tree may be transformed into a finite graph by “merging” all the nodes from which the
same subtrees start. These graphs can be unfolded into an infinite trees. Unfolding can be defined
as a corecursive process that produces an infinite tree. Note that Figure 2.1 is an example of an infinite
tree that is not regular.

With the huge success of automata theory leading up to Rabin’s basis theorem [Rab69, Rab72],
it is sometimes overlooked that the infinite trees that first appeared in the context of logic were (po-
tentially) infinitely branching and wellfounded. A good graph-theoretic way to think of the difference
between the two sorts of infinite trees is that for wellfounded infinitely branching tree, depth-first
search is productive while breadth-first search is not whereas for non-wellfounded finitely branching
trees, breadth-first is productive while depth-first search is not.

Wellfounded trees are inductively defined and hence one can induct on them. An important notion
in such infinite trees is that the rank of a tree which essentially measures how “long” that induction
is.

Definition 2.0.11. The rank of a wellfounded tree t over A, denoted rk(t), is defined inductively
as follows.

• rk(t) = 0, if t is tree consisting of just the root.

• rk(t) is the successor of the supremum of the ranks of the immediate subtrees of t, other-
wise.

Proposition 2.0.2. The supremum of the ranks of wellfounded trees overA is the cardinality of
the set of all subsets of A, and this supremum is not achieved.

In particular, the supremum of the ranks of well-founded trees on ω is ω1.

Fixed point theorems
In this section, we will recall some background on the fundamental fixed point theorems of lattice
theory. Not only will we use them several times in our technical proofs, but also, they provide intuition
about the design of proof systems with fixed point rules and their corresponding semantics. We first
recall Tarski’s theorem, a lattice-theoretic generalisation of Knaster-Tarski’s fixed point theorem on
sets.

For the rest of this section, let (S,6S ,∧,∨) be a complete lattice with the least element⊥ and the
greatest element>.

Theorem 2.0.2 (Tarski fixed point theorem). Let f : S → S be a monotonic function. The set of
fixed points of f is non-empty and equipped with6S forms a complete lattice.

Definition 2.0.12. Let (T,6T ,∧,∨) be a directed complete partial order. Let f : T → T be a
monotonic function. f is said to be Scott-continuous if for each directed subset T ′ we have
f(
∨
Ti∈T ′ Ti) =

∨
Ti∈T ′ f(Ti).

Theorem 2.0.3 (Kleene fixed point theorem). Every Scott-continuous function f has the least
fixed point

∨
n∈ω f

n(⊥).



Chapter 2 31

Observe that this is a constructive formulation of a fixed point. Cousot and Cousot [CC79] proved
a constructive version of Tarski’s theorem essentially showing that the set of fixed points of f is the
image of preclosure operations on S which is defined as limits of stationary transfinite iteration se-
quences.

Definition 2.0.13. Let f : S → S be a monotonic function. The upper iteration sequence
starting from x ∈ S is the sequence {Uα | α ∈ Ord} of elements of S defined by transfinite
induction as follows:

U0 = x;

Uα+1 = f(Uα);

Uλ =
∧
α<λ

Uα. [λ is a limit ordinal]

Dually the lower iteration sequence starting from x ∈ S is the sequence {Uα | α ∈ Ord} of
elements of S defined by transfinite induction as follows:

U0 = x;

Uα+1 = f(Uα);

Uλ =
∨
α<λ

Uα. [λ is a limit ordinal]

Theorem 2.0.4. Let f : S → S be a monotonic function. The lower iteration sequence starting
from ⊥ is increasing and there exists an ordinal θ, called the closure ordinal of f , such that
Uθ = Uθ+1. Moreover, Uθ is the least fixed point of f . Dually the upper iteration sequence
starting from> is decreasing and its limit is the greatest fixed point of f .

Remark 2.0.1. The closure ordinal of a Scott-continuous function is at most ω.

Recursion theory
Computability theory or recursion theory is concerned with the study of (un)computable functions
and their degrees of uncomputability. Informally, an algorithm (a function on ω) is a finite set of
instructions, which given x, after finite steps of computation outputs y = f(x). A function which
is defined on all arguments and can be specified by an algorithm is computable or recursive. In the
following, we will give a precise mathematical formulation of computable functions.

Definition 2.0.14. The set of primitive recursive functions C is the smallest set of functions of
the form Nk → N such that

• (Constant functions) for all m,n ∈ N, Cnm ∈ C where Cnm(x1, . . . , xn) = m;

• (Successor) succ ∈ C where succ(x) = x+ 1;

• (Projection) for all i, n ∈ N, Πn
i ∈ C where Πn

i (x1, . . . , xn) = xi;

• (Composition) If g1, g2, . . . , gm, h ∈ C, then

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is in C where g1, . . . , gm are n-ary functions and h is a m-ary function.

• (Primitive recursion) If g, h ∈ C and then f ∈ C where

f(0, x2, . . . , xn) = g(x2, . . . , xn)

f(x1 + 1, x2, . . . , xn) = h(x1, f(x1, x2, . . . , xn), x2, . . . , xn)

assuming g and h are functions of arity n− 1 and n+ 1 respectively.

Note that this is a recursively defined set where {Cnm}m,n∈N, succ, {Πn
i }i≤n∈N are founders, and

composition and primitive recursion are constructors. Although primitive recursive functions include
all the usual functions of elementary number theory, it fails to capture all computable functions, a
notable example being the Ackermann function. In order to characterise all computable function
one needs to generalise to partial functions over Nk.
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Definition 2.0.15. The set of general recursive functions is the smallest set containing con-
stant functions, successor, projections and closed under composition, primitive recursion and
minimisation operation µwhich is defined as follows. Given a (k+1)-ary function f , the k-ary
function µ(f) is defined by

µ(f)(x1, . . . , xk) = z
def⇐⇒ f(i, x1, . . . , xk) > 0 for i = 0, . . . , z − 1 and

f(z, x1, . . . , xk) = 0

A general recursive function is total if it is defined on all arguments. Intuitively, since minimisa-
tion does an unbounded search from 0 there is a possibility that the search never terminates and the
value is undefined. A function is said to be effectively computable or recursive if it is total.

By the Church-Turing thesis, general recursive functions are precisely the functions that can be
computed by Turing machines and the one that can be encoded in untyped λ-calculus. Totality corre-
sponds to halting in Turing machines and termination of β-reduction in untyped λ-calculus. In 1936,
Church and Turing independently demonstrated that the Entscheidungsproblem is not effectively
decidable. Consequently, there is no algorithmic procedure that can correctly decide whether a given
general recursive function is total or not.

A relationR ⊆ Nk, k ≥ 1, is recursive if its characteristic functionχR is recursive whereχR(x1, . . . , xn) =
1 if (x1, . . . , xn) ∈ R and 0 otherwise. Note that a set B ⊆ N corresponds to the case k = 1 so we
have the definition of a set being recursive. We are now ready to define degrees of uncomputability.

Definition 2.0.16. 1. A set B is in Σ0
0 (= Π0

0) iff B is recursive.

2. A set B is in Σ0
n if there is a recursive relation R ⊆ Nn+1 such that x ∈ B iff

∃y1.∀y2 . . . QynR(x, y1, . . . , yn),

where Q is ∃ if n is odd, and ∀ if n is even.

3. Likewise, B is in Π0
n if x ∈ B iff

∀y1.∃y2 . . . QynR(x, y1, . . . , yn),

where Q is ∃ or ∀ depending on the parity of n.

4. B ∈ ∆0
n if B ∈ Σ0

n ∩Π0
n

5. B is arithmetical if B ∈
⋃
n∈ω(Σ0

n ∪Π0
n).

An important notion in computability theory is that of Turing-reduction, which allows one to define
the relative computability of functions. In particular, an important concept is that of hardness, a set
B is said to be Σ0

n-hard if for all B′ ∈ Σ0
n there is a Turing reduction from B′ to B. Furthermore, B

is said to be Σ0
n-complete if B ∈ Σ0

n and B is Σ0
n-hard. Likewise, one can define Π0

n-hardness.

The arithmetical hierarchy assigns classifications to the formulas in the language of first-order
arithmetic. The analytical hierarchy is an extension of the arithmetical hierarchy that assigns
classifications to the formulas in the language of second-order arithmetic where one can quantify over
both natural numbers and the set of natural numbers.

(Infinitary) rewriting theory
Rewriting theory is to the λ-calculus what automata theory is to Turing machines. Rewrite systems,
since the λ-calculi, have been insightful formal models for computations. An abstract rewrite system
A consists of a set of rules Φ defined on a particular set of objectsA, which in most cases consists of a
language of terms. The rules of the system determine how an object a can be rewritten into b (denoted
a→ b). Rewriting theory comes with its own set of bespoke terminology.

Definition 2.0.17. LetA = (A,Φ) be an abstract rewrite system.

1. Every element a ∈ A is called a normal form of A if there is no b ∈ A such that a→ b.

2. A has the diamond property (DP) if →◦ →⊆→ ◦ →i.e. for all a, b, c ∈ A there exists
d ∈ A such that the following holds.
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a

b c

d

3. A is confluent (CR) if →∗ ◦ →∗⊆→∗ ◦ →∗ .

4. A is terminating or (strongly) normalising (SN) if there is no infinite reduction sequences.

5. A is (weakly) normalising (WN) if every element in A reduces to a normal form.

Rewrite systems can be generalised to account for infinitary reduction sequences. To this end, a
theoretical tool is needed to formalise the intuition of the limit of such sequences. One way to do that
is to assign metric spaces as a basis for transfinite reductions.

Definition 2.0.18. A metric rewrite system is a tupleM = (A,Φ, d, h) such that:

• (A,Φ) is an abstract rewrite system;

• d : A×A→ R≥0 is a function such that (A, d) is a metric space;

• h : Φ→ R≥0 is a function such that if ϕ ∈ Φ : a→ b, then d(a, b) ≤ h(ϕ).

The metric and the height, are needed to define the limit behaviour of transfinite reduction se-
quences viz. continuity and convergence, and to distinguish weak and strong variants thereof, re-
spectively.

Definition 2.0.19. Let S = {ai →hi ai+1}i<α be a reduction sequence in a metric rewrite system
M = (A,Φ, d, h). Then,

1. S is called weakly continuous if the sequence {ai}i<α is continuous in the metric space
(A, d). If, additionally, limi→λ hi = 0 for each limit ordinal λ < α then the sequence is
called strongly continuous.

2. S is called weakly convergent if it is weakly continuous and the sequence {ai}i<α con-
verges, say to some element a ∈ A.

3. S is called strongly convergent if it is weakly convergent and limi→α hi = 0 in case α is
a limit ordinal.

Finally, M is said to be WN∞ if for every a ∈ A, there is a strongly convergent reduction
sequence {ai → ai+1}i<α such that a0 = a and its limit is in the normal form.

Theorem 2.0.5. A strongly convergent reduction sequence has countable length.

Lemma 2.0.1 (Compression Lemma). For every reduction sequence {ai → ai+1}i<α strongly
converging to a, there is a reduction sequence {a′i → a′i+1}i<β such that:

• a′0 = a0,

• β ≤ ω, and

• it strongly converges to a.

Notes
See [Koz97] for a succinct introduction to formal language theory and [GTW03], specifically for au-
tomata on infinite words. See [Die08] for a comprehensive introduction to infinite graph theory. The
coinductive proof of Theorem 2.0.1 was adapted from [KS17]. For the history of coinduction in com-
puter science, see [San09].

Tarski’s theorem first appeared in [Tar55] which was a lattice-theoretic generalisation of Knaster-
Tarski’s fixpoint theorem on sets [KT27]. Infinite trees naturally arose in programming language the-
ory and were first methodically studied in [Cou82, Col82]. For ordinal arithmetic and recursion theory,
one can look at any of the standard texts [For03, Soa14]. For a quick survey of results in infinitary
rewriting theory, see [KSSdV05].
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Background on proof-theory
We used to think that if we knew one, we

knew two, because one and one are two. We
are finding that we must learn a great deal

more about ‘and’.

Arthur Eddington

In this chapter, we establish some background relevant to this thesis. In Section 3.1 we discuss
the philosophy behind the sequent calculus and introduce some standard terminology in a logic in-
dependent way. In Section 3.2 we introduce our base logic, propositional linear logic. In Section 3.2
we recall the truth semantics of linear logic. In Section 3.4 we discuss some proof-theoretic results
pertinent to linear logic, some of them being salient features of its resource consciousness like Curry-
Howard correspondence with π-calculus and focussing. Finally, we discuss a pearl of the linear logic
community, proof-nets, in Section 3.5.

3.1 A logic independent introduction to proof-theory
Proof theory is one of main branches of logic that studies proofs of logical formulas as independent
mathematical objects. Therefore, the actual “truth” of a logical formula is not essential to study its
proof.

Formally, proofs are usually presented as inductive datatypes like lists or trees comprised of ax-
ioms that represent truth and inference rules that preserve truth. The trio of a language (the
universe of all logical formulas), inference rules, and axioms is called a proof calculus.

Definition 3.1.1. A signature L is a triple (S, ar,A) of a finite set of symbols S, a function
ar : S → α for some α ∈ Ord that assigns to every symbol an ordinal less than α called its
arity, and a (possibly infinite) set of atoms. The language1, denoted FL, is the set of formulas
(ϕ,ψ, . . . ) over the signature L is defined inductively as follows:

• a ∈ FL for all a ∈ A;

• s ∈ FL for all s ∈ S such that ar(s) = 0;

• ϕ = s(〈ϕi〉i∈α) such that ar(s) = α and ϕi ∈ FL for all i ∈ α.

Hilbert’s announcement of twenty-three open problems at the 1900 Paris ICM2 was an important
mathematical event. The second problem of the list was what later came to be known as Hilbert’s
program. Stated anachronistically in the terminology above, it was the search for a proof calculus
such that:

• The language could express all mathematical statements.

• The set of axioms would be finite and any mathematical truth could be proved.

• The calculus would be consistent i.e. falsity could not be proved.

1This definition does not cover several types of logical languages such as first-order structures. However, it covers all the
logical languages that will be used in this thesis such as propositional fixed point logics and propositional second-order logic.

2International Congress of Mathematics

34
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In 1931, Gödel’s incompleteness theorem showed that Hilbert’s program was unattainable for
something as simple as Peano arithmetic. In 1936, Gentzen established the consistency of Peano
arithmetic by a purely combinatorial argument on the structure of proofs. This does not contradict
Gödel’s theorem since Gentzen’s proof uses transfinite induction up to Cantor’s ordinal ε0 which is
outside the perview of Peano arithmetic. What matters today is not the consistency result in of itself,
but rather Gentzen’s formal innovation: the sequent calculus and the cut-elimination theorem.
This framework improved in many ways the proof calculi previously developed by Frege, Russell, and
Hilbert and essentially gave birth to modern proof theory. Consequently, we divide proof calculi into
two groups:

Frege-Hilbert style. The global set of hypotheses is immutable.

Gentzen style. The global set of hypotheses can be modified at every step of the proof.

We view this distinction not as a binary but as a spectrum where on one extreme, the Frege-
Hilbert style proof calculi have many axioms and few inference rules, and on the other extreme, the
Gentzen style proof calculi have few axioms and many inference rules. In summary, from the ashes of
the Hilbert’s program, rose the phoenix of proof theory.

In this thesis, we will mainly deal with the sequent calculi, a Gentzen style proof calculi. In
sequent calculi, the smallest unit of a proof is a syntactic object of the form

ϕ1, . . . , ϕm ` ψ1, . . . , ψn (3.1)

called a sequent. The formulas on the left-hand side of the turnstile are called the antecedent,
and the formulas on the right-hand side are called the succedent or consequent. The left-hand
side or the right-hand side (or neither or both) may be empty. The sequent in Equation (3.1) should
be informally understood as the statement that the conjunction of all the formulas ϕ1 through ϕm
implies the disjunction of all the formulas ψ1 through ψn.

A sequent proof is a tree whose nodes are sequents such that the child relation respects the
inference rules and the leaves are axioms. A formula ϕ is said to be a theorem if ` ϕ has a proof. A
proof calculi is said to be decidable if the following problem is decidable.

Given ϕ, is ϕ a theorem?

Proof theorists are generally reluctant to justify the meaning of their sequents in some model. As
we mentioned before, the “actual truth” of a formula is inconsequential to the study of proof. Yet, as
one will see in Section 3.3, having a semantic notion of truth is actually quite useful for example to get
a handle on the above mentioned problem.

Gentzen classifies inference rules as follows.

• Axiom rule. The axiom rule is a sequent of the following shape somehow expressing the simple
tautology that ϕ implies ϕ.

(ax)
Γ, ϕ ` ∆, ϕ

• Logical rules. A logical rule is a sequence of sequents of the following form where Γi ⊆ Γ,
∆i ⊆ ∆, and ϕi, ψ′i are subformulas of ϕ (for some suitable notion of subformulas).

{Γi, ψi ` ∆i, ψ
′
i}i∈I (r)

Γ ` ∆, ϕ

The sequent(s) in a rule displayed above the line are premisse(s) and the unique sequent below
the line is the conclusion. The principal formula is the distinguished formula in its conclu-
sion. Auxiliary formulas are the formula occurrences distinguished in the premisse(s). An
active formula is either principal or auxiliary. Other formula occurrences in logical or fixed
point rules are side formulas.

• Structural rules. The structural rules manipulate the formulas of the sequent, but do not alter
them. We will discuss them in detail next.
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The cut rule is arguably the most fundamental inference rule. It reflects the most famous deduction
principle of logic: Modus Ponens.

Γ1 ` ∆1, ϕ Γ2, ϕ ` ∆2
(cut)

Γ1,Γ2 ` ∆1,∆2

The informal intuition is that in order to prove the conclusion, assume a lemma ϕ on the right-
hand premisse and then prove the lemmaϕ on the left. Cuts have had a central role in sequent calculus
since their advent in Gentzen’s works. A sequent calculi is said to be analytic if it has the property
that a sequent has a proof iff it has a proof without cuts. A cut-elimination theorem or Hauptsatz
basically grafts the proof of a lemma where-ever it is used to produce a large proof without any extra
lemmas. Gentzen proved the consistency of Peano arithmetic as a corollary of the analyticity of his
sequent calculi for first-order logic.

Finally, we first introduce three pairs of structural rules that respectively express the possibility to
forget, repeat, and use in any order the hypotheses during an argument. They are called weakening,
contraction, and exchange.

Γ ` ∆

Γ, ϕ ` ∆
(wl)

Γ ` ∆

Γ ` ϕ,∆
(wr)

Γ, ϕ, ϕ ` ∆

Γ, ϕ ` ∆
(cl)

Γ ` ϕ,ϕ,∆
Γ ` ϕ,∆

(cr)

Γ1, ϕ, ψ,Γ2 ` ∆

Γ1, ψ, ϕ,Γ2 ` ∆
(exl)

Γ ` ∆1, ϕ, ψ,∆2

Γ ` ∆1, ψ, ϕ,∆2
(exr)

Structurally speaking, these rules about the structure or the shape of the sequents. Note that
no formula in the conclusion of a structural rule is principal. This gives us a few design choices for
sequents:

1. Sequents as lists of formulas. The original definition of Gentzen, this is the most explicit
presentation of sequents. However, it is cumbersome to explicitly use the exchange rule all the
time .

2. Sequents as (multi)sets of formulas. The rules exl, exr tell us that the antecedents and
consequents of the sequents can be treated as multisets. The rules wl,wr, cl, cr tell us that the
multisets can simply be treated as sets (still requiring explicit weakening). Hence sequents can
be construed as (multi)sets of formulas if the proof calculi have the requisite structural rules.
Another downside of using (multi)sets is that they are not sufficient to exploit intensional be-
haviour of proofs via the Curry-Howard isomorphism. For instance, the following two proofs
correspond respectively to the λ-terms λxy.x and λxy.y but they will be identified in the se-
quents as multi-sets presentation.

(ax)
ϕ ` ϕ

(w`)
ϕ,ϕ ` ϕ ;

(ax)
ϕ ` ϕ

(w`)
ϕ,ϕ ` ϕ

(ex`)
ϕ,ϕ ` ϕ

Part I is of this thesis is about the extensional behaviour of proofs. Therefore, we will use this
presentation.

3. Sequents as sets of formula occurrences. In this presentation we will distinguish between
two occurrences of the same formula by giving them distinct names. This will our choice for
Part II which explores the intensional behaviour of proofs. We detail this next.

Definition 3.1.2. An address is a word over the alphabet {ai}i∈λ where λ is the supremum of
the arities of all connectives in the signature. Two addresses are said to be disjoint if neither
are prefixes of the other3. A formula occurrence (or simply, occurrence) is given by a formula
ϕ and an address α, and written ϕα.

3Identical to the definition of disjointness of words in Chapter 2
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In this thesis we will have a signature with a binary symbol and a unary symbol. We denote the
alphabet set of addresses as {l, r, i} standing for “left”, “right”, and “inside” respectively. Whenever
we will decompose an occurrence in a logical rule, the address of each of its subformulae will be
extended by r if it is the right subformula, by l if it is the left subformula and by i if the connective is
unary.

Remark 3.1.1. We use Greek lettersϕ,ψ, . . . for formulas and Latin lettersA,B, . . . for formula
occurrences.

We need to extend operations from formulas to occurrences. Define l⊥ = r, r⊥ = l, and i⊥ =

i. Consequently, this extends to the negation of an address α. Finally, we define (ϕα)
⊥

= ϕ⊥α⊥ .
Connectives are extended to occurrences as follows:

• For any binary symbol�, we set A�B = (ϕ� ψ)α where A = ϕαl and B = ϕαr.

• For any unary symbol η, we set ηF = ηϕα if F = ϕαi.

Finally, on the subject of the shape of sequents, if the logic has De Morgan duality (like LK), we
only need to consider formulas in negation normal form and can use the one-sided sequent presen-
tation. Modern research in structural proof theory teems with rival proof calculi: depending on one’s
need, one can either dial up the meta syntax in sequent calculi coming up with hypersequents and
nested sequents or one can tone down the meta syntax with some graphical syntax like proof-nets.
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Structural rules
(id)

` ϕ,ϕ⊥
` Γ1, ϕ ` Γ2, ϕ

⊥
(cut)

` Γ1,Γ2

Logical rules (multiplicative)

` Γ, ϕ1, ϕ2
(O)

` Γ, ϕ1Oϕ2

` Γ1, ϕ1 ` Γ2, ϕ2
(⊗)

` Γ1,Γ2, ϕ1 ⊗ ϕ2

Logical rules (additive)

` Γ, ϕi
(⊕i)` Γ, ϕ1 ⊕ ϕ2

` Γ, ϕ1 ` Γ, ϕ2
(N)

` Γ, ϕ1Nϕ2

Unit rules (multiplicative)
(1)

` 1

` Γ
(⊥)

` Γ,⊥

Unit rules (additive)
(>)

` Γ,> No rule for 0

Figure 3.1: Inference rules for MALL. Here i ∈ {1, 2}.

3.2 The syntax of linear logic
Substructural logics are logics lacking at least one of the usual structural rules (or disallowing their
unrestricted usage). Two of the most significant substructural logics are relevance logic and linear
logic. In linear logic, the use of structural rules like contraction and weakening is carefully con-
trolled (available only to formulas of a certain form). Connectives of propositional logic each have two
versions in linear logic: multiplicative and additive. Consequently, the units have multiplicative and
additive versions as well.

conjunction disjunction “true” “false”
multiplicative ⊗ O 1 ⊥

additive N ⊕ > 0

The symbols ⊗,O,⊕, and N are read as “tensor”, “par”, “plus”, and “with”. More formally, let A
be a countable set of propositional constants {a, b, . . . }.

Definition 3.2.1. MALL formulas are given by the following grammar:

ϕ,ψ ::= 0 | > | ⊥ | 1 | a | a⊥ | ϕOψ | ϕ⊗ ψ | ϕ⊕ ψ | ϕNψ

where a ∈ A.

Negation, (•)⊥, is not part of the syntax and is defined as a meta-operation on formulas. ϕ⊥ is
often read as “ϕ perp”.

Definition 3.2.2. Negation of a MALL formula is defined inductively as follows.

0⊥ = > >⊥ = 0

⊥⊥ = 1 1⊥ = ⊥

(a)
⊥

= a⊥ a⊥⊥ = a

(ϕOψ)
⊥

= ψ⊥ ⊗ ϕ⊥ (ϕ⊗ ψ)
⊥

= ψ⊥Oϕ⊥

(ϕ⊕ ψ)
⊥

= ψ⊥Nϕ⊥ (ϕNψ)
⊥

= ψ⊥ ⊕ ϕ⊥

Linear implication can be defined as a macro as follows ϕ( ψ := ϕ⊥Oψ. ϕ( ψ is colloquially
read as “ϕ lolli ψ”. We also denote linear equivalence ϕ˛ ψ as (ϕ( ψ)⊗ (ψ( ϕ).

The logical system thus obtained is called multiplicative-additive linear logic and abbreviated as
MALL. The inference rules of MALL are depicted in Figure 3.1 (sequents being construed as finite
multisets). Observe that in MALL neither do we have contraction and weakening nor are they deriv-
able. Operationally, this means that logical deduction is no longer merely about an ever-expanding
collection of persistent “truths”, but also a way of manipulating resources that cannot always be dupli-
cated or thrown away at will. In order to get back a correspondence with λ-calculus, one reintroduces
structural rules, but only on modal formulas of the form ?ϕ (and consequently on its dual !ϕ). These
are called exponential formulas. !ϕ is read as “bang ϕ” or “of course ϕ”. ?ϕ is read as “question mark
ϕ” or “why not ϕ”. MALL with exponentials is called full linear logic, or simply, LL.



Chapter 3 39

Definition 3.2.3. LL formulas are given by the following grammar:

ϕ,ψ ::= 0 | > | ⊥ | 1 | a | a⊥ | ϕOψ | ϕ⊗ ψ | ϕ⊕ ψ | ϕNψ |?ϕ |!ϕ

where a ∈ A.

Negation of LL formulas can defined by extending the definition of negation of MALL formulas
such that ! and ? are duals of each. They are called exponentials since they transform multiplicatives
into additives i.e. because the following formulas are provable:

!(ϕNψ) ˛ !ϕ⊗!ψ ?(ϕ⊕ ψ) ˛ ?ϕO?ψ

As to why the binary connectives are called multiplicative and additive, the reason is syntactically
opaque. An observation from coherence semantics is that multiplicatives correspond to Cartesian
product and additives correspond to direct sum.

Finally, the inference rules for the exponentials are as follows:

` Γ, ?ϕ, ?ϕ
(c)

` Γ, ?ϕ

` Γ
(w)

` Γ, ?ϕ

` Γ, ϕ
(d)

` Γ, ?ϕ

`?Γ, ϕ
(p)

`?Γ, !ϕ

The rules are called contraction, weakening, dereliction, and promotion respectively. Observe
that promotion is a non-local rule i.e. the rule depends on the shape of the context.

Definition 3.2.4. Let ϕ be a formula. The set of subformulas of ϕ, denoted SF(ϕ), is defined as
the smallest set such that:

• ϕ ∈ SF(ϕ)

• ψ � ψ′ ∈ SF(ϕ) =⇒ {ψ,ψ′} ⊆ SF(ϕ) for� ∈ {⊗,O,N,⊕}.

• �ψ ∈ SF(ϕ) =⇒ ψ ∈ SF(ϕ) for� ∈ {!, ?}.

This induces a natural ordering 4 called the subformula ordering on the set of formulas viz.
ψ 4 ϕ iff ψ ∈ SF(ϕ). Moreover, ψ is called an immediate subformula of ϕ if ψ 6= ϕ and for all
ψ′ 4 ϕ such that ψ 4 ψ′ we have ψ = ψ′.

Definition 3.2.5. The syntax tree of a formula ϕ, denoted T(ϕ), is the tree whose nodes are
SF(ϕ) and ψ → ψ′ if ψ′ is an immediate subformula of ψ.

The syntax tree is a graphical representation of the subformula partial order. Note that a syntax
tree T(ϕ) of an LL formula ϕ induces a prefix closed language Lϕ ⊂ {l, r, i}∗ such that there is a
natural bijection between the words in L and the set of all simple paths starting from the root of the
syntax tree.

A logic is said to have the subformula property if for all formulas ϕ, every sequent of every
cut-free proof of ϕ consists of subformulas of ϕ. At first glance, the subformula property implies the
finitude of the proof-search space. However, such finitude is a rather peculiar property in structural
proof theory at large and in general, a cut-free LL proof can have sequents of unbounded4 size.

Theorem 3.2.1. LL is undecidable.

The fragment of LL with just the multiplicative (respectively, additive) connectives, and multi-
plicative (respectively, additive) units is called multiplicative linear logic or, MLL (respectively, addi-
tive linear logic or, ALL). The fragment with multiplicative connectives, exponential modalities, and
multiplicative units is called multiplicative exponential linear logic or, MELL.

Theorem 3.2.2. MALL is PSPACE-complete. MLL is NP-complete.

Open Question

Is MELL decidable?

4unbounded in the size of the conclusion
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3.3 Phase semantics
Truth semantics interprets logical formulas in a mathematical structure. For instance, LK is inter-
preted in Boolean algebras, LJ is interpreted in Heyting algebras, the modal logic S4 is interpreted in
interior algebras, and so on. Similar to LJ and S4, linear logic is not based on an a priori existence of
truth values, but it has a truth value semantics, which is given by phase spaces.

In linear logic, denotational semantics is perhaps more popular which interprets not just formulas
but also proofs. While truth semantics asks the question “What does it mean for ϕ to be true?”,
denotational semantics asks “What does it mean that ϕ has a proof π?”. Phase semantics, at the very
least, establish safeguards against dubious category-theoretic isomorphisms like 0 ∼= > which to a
non-expert may seem to suggest that the logic is inconsistent.

To get a flavour of phase semantics, the truth semantics of linear logic, it is informative to char-
acterise the set of lists Γ of formulas that make a formula ϕ provable.

Definition 3.3.1. For a formula ϕ, define Pr(ϕ) = {Γ | MALL ` Γ, ϕ} and Prcf (ϕ) = {Γ |
MALL `cf Γ, ϕ} where MALL ` Γ, ϕ means that ` Γ, ϕ is provable in MALL and MALL `cf Γ, ϕ
means that `cf Γ, ϕ is cut-free provable in MALL.

Let us examine some properties of Pr(ϕ). First, notice that the axiom rule ensures that for any
ϕ, ϕ⊥ ∈ Pr(ϕ). Invertibility of the (⊥) rule gives us that Pr(⊥) is the set of all provable sequents.
Similar observations on the invertibility of the (N) rule inform that Pr(ϕNψ) = Pr(ϕ) ∩ Pr(ψ). For
the (non-invertible) connectives ⊗ and ⊕, we only have Pr(ϕ ⊗ ψ) ⊇ Pr(ϕ) · Pr(ψ) = {Γ,∆ | Γ ∈
Pr(ϕ),∆ ∈ Pr(ψ)} and Pr(ϕ⊕ψ) ⊇ Pr(ϕ)∪Pr(ψ). This suggests that the algebraic model for linear
logic should simultaneously be a monoid and lattice i.e. a residuated lattice.

Pr(⊥) plays a major role in this approach, especially when considering it together with the cut
inference. Indeed, for any ϕ, one has that Pr(ϕ⊥) = {Γ | ∀∆ ∈ Pr(ϕ),Γ,∆ ∈ Pr(⊥)}. This naturally
suggests to consider the operation S⊥ = {Γ | ∀∆ ∈ S,Γ · ∆ ∈ Pr(⊥)} which induces a closure
operator (•)⊥⊥ on the set of multisets of linear formulas. As we will soon see, Pr(ϕ) is closed under
the double negation operation for any ϕ.

These are the basic design principles of phase semantics: interpreting linear formulas as closed
subsets of a monoid for the closure operation induced by the orthogonality relation w.r.t. a specific
subset⊥⊥ of the monoid which is an abstraction of the set of all provable sequents.

Definition 3.3.2. A phase space is a 4-tupleM = (M, 1, ·,⊥⊥) where (M, 1, ·) is a commutative
monoid and⊥⊥⊆M . For X,Y ⊆M , define the following operations.

XY := {xy | x ∈ X, y ∈ Y }
X⊥ := {y | ∀x ∈ X,xy ∈⊥⊥}

A fact is defined asX ⊆M such thatX = X⊥⊥. Equivalently,X = Y ⊥ for some Y ⊆M . Given
a phase spaceM we define XM as the set of facts.

Example 3.3.1. Consider the additive monoid (Z, 0,+) and let ⊥⊥= {0}. For any set S ⊆ Z,
S⊥ = {y | ∀x ∈ S.x+ y = 0}. Therefore, if S is not singleton then S⊥ = ∅; so, S⊥⊥ = Z. On the
other hand, {x}⊥ = {−x}. The facts of this phase space are ∅, singleton sets, and Z.

Proposition 3.3.1. The following properties hold:

1. X ⊆ Y ⊥ ⇐⇒ XY ⊆ ⊥

2. XX⊥ ⊆ ⊥

3. X ⊆ Y =⇒ Y ⊥ ⊆ X⊥

4. X ⊆ X⊥⊥

5. X⊥⊥⊥ = X⊥

6. (X ∪ Y )
⊥

= X⊥ ∩ Y ⊥

We define the following operations on facts. Let X,Y be facts in the following.

X ⊗ Y := (XY )
⊥⊥

XOY := (X⊥Y ⊥)
⊥

XNY := X ∩ Y

X ⊕ Y := (X ∪ Y )
⊥⊥
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Proposition 3.3.2. Let X,Y be facts. Then, 1 ∈ XOY ⇐⇒ X⊥ ⊆ Y .

Fix a phase spaceM and let XM be its set of facts. Fix V : A → XM whereA is the set of atoms.
A phase space along with a valuation is called a phase model. The semantics JϕK of a MALL formula
ϕ is parameterised by a valuation (suppose, V ) which we will denote by JϕKV . We are now ready to
define the semantics which is defined inductively as follows:

JaKV = V (a) Ja⊥KV = JaKV
⊥

[a ∈ A]

J1KV = {1}⊥⊥ J⊥KV = ⊥⊥

J0KV = {∅}⊥⊥ J>KV = M

JA�BKV = JAKV � JBKV [� ∈ {⊗,O,N,⊕}]

When V is clear from the context, we shall simply drop it, writing JAK. Finally, we generalise the
definition to define the semantics of a finite multiset Γ = ϕ1, . . . , ϕn as JΓK = Jϕ1Oϕ2O . . .OϕnK.

Theorem 3.3.1 (Soundness for MALL). If the sequent Γ is provable in MALL then for all phase
models (M, 1, .,⊥⊥, V ), 1 ∈ JΓKV .

Example 3.3.2. To illustrate the utility of the phase semantic, we show that in any provable
multiplicative formula ϕ (i.e. a MALL formula with only multiplicative connectives), an atom
occurs exactly as many times as its negation. Fix an arbitrary atom a occurring in ϕ. Let
JϕKV be the interpretation of ϕ in the phase space in Example 3.3.1 w.r.t. the valuation V that
maps the atom a to {1} and every other atom to {0}. In this phase space, it is easy to see that
X ⊗ Y = XOY = {x+ y | x ∈ X, y ∈ Y }. By Theorem 3.3.1, if ϕ is provable, 0 ∈ JϕKV hence the
number of occurrences of a in ϕ is equal to the number of occurrences of a⊥.

Note that a syntactic proof would require the heavy tool of MALL cut-admissibility.

Definition 3.3.3. The syntactical model, denoted (MALL•,∅, ·,⊥⊥, V ), is a phase model defined
as follows:

• (MALL•,∅, ·), called syntactic monoid, is the free commutative monoid generated by all
formulas. In other words, MALL• is the set of all sequents construed as finite multisets,
the empty multiset ∅ is the monoid identity, and the multiset union is the monoid oper-
ation.

• ⊥⊥= Pr(⊥) i.e. ⊥⊥ is set of all provable sequents.

• V (a) = Pr(a) for all atoms a ∈ A.

For the syntactic model to be well-defined note that one needs to show that Pr(a) and Pr(⊥) are
facts in the phase space (MALL•,∅, ·,⊥⊥). We will prove something more general.

Proposition 3.3.3. For any formula ϕ, Pr(ϕ) is a fact in the syntactic model.

Proof. We will first show the following.

Pr(ϕ⊥) ⊆ Pr(ϕ)
⊥ (3.2)

Let Γ ∈ Pr(ϕ⊥). Then, there is a proof π of ` Γ, ϕ⊥. In order, to show that Γ ∈ Pr(ϕ)
⊥, we need to

show that for all ∆ ∈ Pr(ϕ), Γ,∆ ∈⊥⊥ i.e. for all ∆ such that there is a proof π′ of ` ∆, ϕ, we have
that Γ,∆ is provable. This can be obtained by a cut:

π

5
` Γ, ϕ⊥

π′

5
` ∆, ϕ

(cut)
` Γ,∆

Now we will show the following.

Pr(ϕ⊥)
⊥ ⊆ Pr(ϕ) (3.3)
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Let Γ ∈ Pr(ϕ⊥)
⊥

. Then, for all ∆ such that ` ∆, ϕ⊥ is provable, we have ` Γ,∆ is provable. Plugging
∆ = ϕ, we have ` Γ, ϕ is provable i.e. Γ ∈ Pr(ϕ). We combine these two results in the following way.

Pr(ϕ⊥) ⊆ Pr(ϕ)
⊥

[Equation (3.2)]

⇒ Pr(ϕ)
⊥⊥ ⊆ Pr(ϕ⊥)

⊥
[Proposition 3.3.1]

⇒ Pr(ϕ)
⊥⊥ ⊆ Pr(ϕ) [Equation (3.3)]

Lemma 3.3.1 (Adequation Lemma for MALL). For all formulas ϕ, JϕKV ⊆ Pr(ϕ).

Theorem 3.3.2 (Completeness for MALL). If for any phase model (M, V ), 1 ∈ JΓKV then ` Γ.

Proof. Suppose for any phase model (M, V ), 1 ∈ JΓKV . In particular, this holds for the syntactic
model. By Lemma 3.3.1, JΓKV ⊆ Pr(Γ) (construing Γ as a par formula). Therefore, ∅ ∈ Pr(Γ).
(Recall ∅ is the unit of syntactic monoid.) Hence, ` Γ.

Lemma 3.3.1 can be strengthened. Using the exact same proof, one can in fact prove that for all
formulas ϕ, JϕKV ⊆ Prcf (ϕ). This gives cut-free completeness:

Theorem 3.3.3 (Cut-free completeness for MALL). If for any phase model (M, V ), 1 ∈ JΓKV then
`cf Γ.

As a direct corollary of Theorem 3.3.3, we have the cut-admissibility of MALL:

Corollary 3.3.3.1. MALL admits cuts.

Finally, we note that this truth semantics can be extended to LL by suitably enriching the phase
model. A phase model can be constructed out of any monoid (M, 1, ·). To model exponentials we need
more structure on it viz. we designate a submonoid J satisfying ∀x ∈ J , {x}⊥⊥ = {xx}⊥⊥. One can
think of this as a sort of idempotence property. Note that any monoid (M, 1, ·) contains at least one
such that J viz. J = {1}. Let I = ⊥⊥ ∩ J . Then, we interpret the exponentials as follows.

J!ϕKV = (I ∩ JϕKV )
⊥⊥

J?ϕKV = (I ∩ JϕKV
⊥

)
⊥
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π

` Γ, ϕ
ax

` ϕ⊥, ϕ
(cut)

Γ, ϕ

→LL

π

` Γ, ϕ

(1)
` 1

π

` Γ
(⊥)

` ⊥,Γ
(cut)

` Γ

→LL
π

` Γ

π1

` Γ1, ϕ

π2

` Γ2, ψ
(⊗)

` Γ1,Γ2, ϕ⊗ ψ

π3

` ϕ⊥, ψ⊥,∆
(O)

` ϕ⊥Oψ⊥,∆
(cut)

` Γ1,Γ2,∆

→LL
π2

` Γ2, ψ

π1

` Γ1, ϕ

π3

` ϕ⊥, ψ⊥,∆
(cut)

` ψ⊥,Γ1,∆
(cut)

` Γ1,Γ2,∆

πi

` Γ, ϕi
(⊕i)` Γ, ϕ1 ⊕ ϕ2

π′1

` ϕ1
⊥,∆

π′2

` ϕ2
⊥,∆

(N)
` ϕ1

⊥Nϕ2
⊥,∆

(cut)
` Γ,∆

→LL

πi

` Γ, ϕi

π′i

` ϕi⊥,∆
(cut)

` Γ,∆

π1

`?Γ, ϕ
(p)

`?Γ, !ϕ

π2

` ϕ⊥,∆
(d)

`?ϕ⊥,∆
(cut)

`?Γ,∆

→LL

π1

`?Γ, ϕ

π2

` ϕ⊥,∆
(cut)

`?Γ,∆

π1

`?Γ, ϕ
(p)

`?Γ, !ϕ

π2

`?ϕ⊥, ?ϕ⊥,∆
(c)

`?ϕ⊥,∆
(cut)

`?Γ,∆

→LL

π1

`?Γ, ϕ
(p)

`?Γ, !ϕ

π1

`?Γ, ϕ
(p)

`?Γ, !ϕ

π2

?ϕ⊥, ?ϕ⊥,∆
(cut)

`?ϕ⊥, ?Γ,∆
(cut)

`?Γ, ?Γ,∆
(c)

`?Γ,∆
π1

`?Γ, ϕ
(p)

`?Γ, !ϕ

π2

` ∆
(w)

`?ϕ⊥,∆
(cut)

`?Γ,∆

→LL

π2

` ∆
(w)

`?Γ,∆

Figure 3.2: Key cases of cut-elimination in LL

3.4 Properties of proofs

3.4.1 Cut elimination
The cut-admissibility result of Theorem 3.3.3 shows that if Γ is provable then there exists a cut-free
proof of Γ. This existential is strongly non-constructive i.e. it does not shed any light on the cut-
elimination procedure. In particular, it is not discernible whether the cut-elimination equivalence
equates all proofs of a particular sequent. This is not desirable from a Curry-Howard perspective
since cut-elimination corresponds to computation (in an informal sense for now) and different cut-
free proofs of the same sequent potentially correspond to different programs.

Definition 3.4.1. The cut elimination relation→LL is the binary relation over proofs generated
by the key rules and commutation rules in Figure 3.2 and Figure 3.3 respectively. We denote the
reflexive transitive closure of→LL by→∗LL.

Note that if π →LL π
′ then π, π′ have the same conclusion. Moreover, if π is a proof that contains

an instance of the cut rule, then there exists π′ such that π →LL π
′. Construing the→LL relation as

the reduction relation of a rewriting system over proofs, the set of normal forms is exactly the set of
cut-free proofs. Therefore, all it remains to show is that→LL is normalising. We can in fact prove some
stronger viz. →LL is in fact terminating (modulo certain conditions on commutation) by showing a
bespoke termination measure to be wellfounded. Consequently, we have the following.
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π1

` ϕ,Γ
π2

` ψ,Γ′, ξ
(⊗)

` ϕ⊗ ψ,Γ,Γ′, ξ
π3

ξ⊥,∆
(cut)

` ϕ⊗ ψ,Γ,Γ′,∆

→LL

π1

` ϕ,Γ

π2

` ψ,Γ′, ξ
π3

ξ⊥,∆
(cut)

` ψ,Γ′,∆
(⊗)

` ϕ⊗ ψ,Γ,Γ′,∆
π1

` ϕ1, ϕ2,Γ, ξ
(O)

` ϕ1Oϕ2,Γ, ξ

π2

ξ⊥,∆
(cut)

` ϕ1Oϕ2,Γ,∆

→LL

π1

` ϕ1, ϕ2,Γ, ξ

π2

ξ⊥,∆
(cut)

` ϕ1, ϕ2Γ,∆
(O)

` ϕ1Oϕ2,Γ,∆
π1

` ϕ,Γ, ξ
π2

` ψ,Γ, ξ
(N)

` ϕNψ,Γ, ξ

π3

ξ⊥,∆
(cut)

` ϕNψ,Γ,∆

→LL

π1

` ϕ,Γ, ξ
π3

ξ⊥,∆
(cut)

` ϕ,Γ,∆

π2

` ψ,Γ, ξ
π3

ξ⊥,∆
(cut)

` ψ,Γ,∆
` ϕNψ,Γ,∆

πi

` ϕi,Γ, ξ
(⊕i)` ϕ1 ⊕ ϕ2,Γ, ξ

π2

ξ⊥,∆
(cut)

` ϕ1 ⊕ ϕ2,Γ,∆

→LL

πi

` ϕi,Γ, ξ
π2

ξ⊥,∆
(cut)

` ϕi,Γ,∆
(⊕i)` ϕ1 ⊕ ϕ2,Γ,∆

(>)
` >,Γ, ξ

π

ξ⊥,∆
(cut)

` >,Γ,∆
→LL

(>)
` >,Γ,∆

π1

` Γ, ξ
(⊥)

` ⊥,Γ, ξ
π2

ξ⊥,∆
(cut)

` ⊥,Γ,∆

→LL

π1

` Γ, ξ

π2

ξ⊥,∆
(cut)

` Γ,∆
(⊥)

` ⊥,Γ,∆
π1

` ϕ,Γ, ξ
(d)

`?ϕ,Γ, ξ

π2

ξ⊥,∆
(cut)

`?ϕ,Γ,∆

→LL

π1

` ϕ,Γ, ξ
π2

ξ⊥,∆
(cut)

` ϕ,Γ,∆
(d)

`?ϕ,Γ,∆
π1

`?ϕ, ?ϕ,Γ, ξ
(c)

`?ϕ,Γ, ξ

π2

ξ⊥,∆
(cut)

`?ϕ,Γ,∆

→LL

π1

`?ϕ, ?ϕ,Γ, ξ

π2

ξ⊥,∆
(cut)

`?ϕ, ?ϕ,Γ,∆
(c)

`?ϕ,Γ,∆
π1

` Γ, ξ
(w)

`?ϕ,Γ, ξ

π2

ξ⊥,∆
(cut)

`?ϕ,Γ,∆

→LL

π1

` Γ, ξ

π2

ξ⊥,∆
(cut)

` Γ,∆
(w)

`?ϕ,Γ,∆
π1

` ϕ, ?Γ, ?ξ
(p)

`!ϕ, ?Γ, ?ξ

π2

!ξ⊥, ?∆
(cut)

`!ϕ, ?Γ, ?∆

→LL

π1

` ϕ, ?Γ, ?ξ

π2

!ξ⊥, ?∆
(cut)

` ϕ, ?Γ, ?∆
(p)

`!ϕ, ?Γ, ?∆

Figure 3.3: Commutation cases of cut-elimination in LL
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Theorem 3.4.1. Let π be an LL proof. Then there exists π′ such that π →∗LL π′ such that π′ is
cut-free.

Corollary 3.4.1.1. LL has the subformula property.

Corollary 3.4.1.2. The empty sequent ` is not provable. Subsequently, it is impossible to prove
both a formula ϕ and its negation ϕ⊥; it is impossible to prove 0 or⊥.

However, note that→LL is not confluent. This is not a unique symptom of linear logic. In fact, in
LK, proof may be reduced to two completely different proofs along two different reduction sequences.
An example of such a situation is given by the following derivation, called Lafont’s critical pair.
This proof will reduce either to π1 or π2 depending on the direction we choose to reduce cuts.

π15̀
Γ

(w)
` Γ,Γ

(c)
` Γ →∗LK

π15̀
Γ

(w)
` Γ, ϕ

π25̀
Γ

(w)
` Γ, ϕ⊥

(cut)
` Γ,Γ

(c)
` Γ →∗LK

π25̀
Γ

(w)
` Γ,Γ

(c)
` Γ

Besides, in LL, the non-confluence is less critical since one can show that if a proof reduces to two
different proofs then they are equivalent up to trivial commutation of inference rules (consequently,
being denotationally equivalent). Confluence is recovered in the proof formalism called proof-nets.

3.4.2 Axiom expansion
In type theory, η-expansion refers to rule M  λx.Mx (where x 6∈ fv(M)). This rule asserts that
every term is a function and in fact, two functions are equivalent iff they evaluate to the same term
on all possible arguments. Via the Curry-Howard correspondence, just like there is a counterpart to
β-reduction in logic (viz. cut-elimination), there is a counterpart to η-expansion in logic (viz. axiom
expansion). Note that in this thesis which only talks about logic, η-expansion and axiom expansion
will be used interchangeably.

Proposition 3.4.1 (η-expansion). For every proof π of ` Γ, there is a proof π′ of ` Γ in which the
axiom rule is only used with atomic formulas. Moreover, if π is cut-free, then so is π′.

Proof. It suffices to prove that for every formula ϕ, the sequent ` ϕ,ϕ⊥ has a cut-free proof in which
the axiom rule is used only on atomic formulas. We prove this by induction on ϕ.

If ϕ is atomic, then ` ϕ,ϕ⊥ is an instance of the atomic axiom rule. If ϕ = ψ1 ⊗ ψ2 then we have

π25
` ψ1, ψ1

⊥

π25
` ψ2, ψ2

⊥
(⊗)

` ψ1 ⊗ ψ2, ψ1
⊥, ψ2

⊥
(O)

` ψ1 ⊗ ψ2, ψ1
⊥Oψ2

⊥

where π1 and π2 are cut-free proofs in which the axiom rule is used only on atomic formulas by induc-
tion hypothesis. Other connectives follow similarly.

Proposition 3.4.1 allows us to assume wlog that every subformula is principle in a logical rule
(except in the case where there is an occurrence of the (w) or (>)-rule). Such a ‘locality’ feature is
more intrinsic to proof formalisms like deep inference where even structural rules such as contraction
and cuts can be turned into their atomic versions.

3.4.3 Invertibility of inference rules and focussing
In structural proof theory, focussed proofs are a family of proofs that are more structural than usual
sequent calculus proofs. They arise through goal-directed proof search where the search space is
vastly reduced for focussed proofs. A sequent calculus is said to have the focussing property when
focussed proofs are complete with respect to provability.
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The starting point of focusing is the classification of the inference rules of linear logic into two
categories: invertible and non-invertible. The conclusion of an invertible inference rule is provable
iff its premises are provable. An inference rule is non-invertible if it is not invertible. For example,
the (O)-rule is invertible since we can derive its premisse from its conclusion using the following
derivation:

` Γ, ϕOψ

(id)
` ϕ⊥, ϕ

(id)
` ψ⊥, ψ

(⊗)
` ϕ⊥ ⊗ ψ⊥, ϕ, ψ

(cut)
` Γ, ϕ, ψ

Proposition 3.4.2. The O,N, and ⊥ rules of MALL are invertible. The ⊗ and ⊕ rules of MALL
are non-invertible.

Therefore, one can apply invertible rules without losing provability. Note that one can also apply
trivially apply the (>)-rule without losing provability. The invertible rules along with (>)-rule are
called the negative rules.

Let us now consider an invertible rule. Imagine we have the sequent ` aOb, a⊥ ⊗ b⊥. If we
apply the tensor rule immediately, we lose provability. Moreover, after the application of the par rule,
the tensor rule has to be of a certain shape: if the premisses are ` b, a⊥ and ` a, b⊥ then again we
lose provability. So, one cannot apply the tensor rule context-freely. Similarly, observe that one also
cannot apply the (1)-rule whenever one wants and needs to make sure if there are no side formulas.
The non-invertible rules along with the (1)-rule and (0) (vacuously since there is no rule for 0) are
called the positive rules. Hence, the intuition is that applying negative rules preserves provability
whereas applying positive rules may potentially lead to a loss of provability. By assigning arbitrary
polarities to atomic variables one can extend the notion of polarities to formulas.5

The crux of focusing is the following proof search strategy, called the focusing discipline:

• Negative phase: If the sequent contains a negative formula N , then decompose N .

• Positive phase: If the sequent contains only positive formulas, then some formula can be cho-
sen as a focus. Recursively select its positive subformulas as principal formulas until a negative
subformula is reached.

Theorem 3.4.2 (Focussing Theorem). MALL has the focusing property i.e. ` Γ has a proof iff
` Γ has a focussed proof.

This theorem ensures that the focussing discipline is a complete proof-search strategy. Note that
in this subsection we implicitly discuss only cut-free proofs since it is motivated by proof search and
we know that if there is a proof of ` Γ there is a cut-free proof of Γ.

5Historically positive and negative rules were called synchronous and asynchronous rules respectively.
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3.5 Proof-nets
In Section 3.4.1, we noted that although an LL proof may be reduced to two different cut-free proofs
we are guaranteed that they are equal up to irrelevant permutations of inference rules. In particular,
we would like to devise a proof formalism where the following two proofs π1 and π2 are the same.

π′

5
` ϕ1, ϕ2, ψ1, ψ2

(O)
` ϕ1, ϕ2, ψ1Oψ2

(O)
` ϕ1Oϕ2, ψ1Oψ2 ;

π′

5
` ϕ1, ϕ2, ψ1, ψ2

(O)
` ϕ1Oϕ2, ψ1, ψ2

(O)
` ϕ1Oϕ2, ψ1Oψ2

However, one must be careful that one does not quotient more than necessary i.e. equating two
proofs with distinct computational content. In particular, we would like to differentiate the following
two proofs in our formalism. (There are exactly two cut-free proofs of this sequent, and hence it is
an alternative encoding of booleans in LL without using units. Also note, that the exchange rule is
crucial; otherwise only one of the proofs would exist.)

(id)
` a, a⊥

(id)
` a, a⊥

(⊗)
` a, a, a⊥ ⊗ a⊥

(O)
` aOa, a⊥ ⊗ a⊥

(O)
` (aOa)O(a⊥ ⊗ a⊥) ;

(id)
` a, a⊥

(id)
` a, a⊥

(⊗)
` a, a, a⊥ ⊗ a⊥

(O)
` aOa, a⊥ ⊗ a⊥

(O)
` (aOa)O(a⊥ ⊗ a⊥)

Proof-nets are a geometrical method of representing proofs that were invented to eliminate such kind
of syntactic bureaucracy. A proof-net can be seen as a graph whose nodes are inference rules, which
are thus not ordered, and consequently less sequential than sequent calculus proofs. In particular,
proof-nets recover the confluence of cut-elimination.

In this subsection, we will recall proof-nets for MLL without units. Proof-nets for MLL with units
or MELL is not fully canonical and proof-nets for MALL are quite cumbersome and out of the scope of
this thesis.

Definition 3.5.1. AnMLL proof-structure is a vertex-labelled and edge-labelled directed multi-
graph where the nodes are labelled by rules {ax, cut,⊗,O, c} and the edges are labelled by
formulas such that:

• Nodes labelled ax have two incoming edges labelled ϕ and ϕ⊥ for some formula ϕ and
no outgoing edges.

• Nodes labelled cut have two outgoing edges labelled ϕ and ϕ⊥ for some formula ϕ and
no incoming edges.

• Nodes labelled ⊗ (respectively, O) have two outgoing edges labelled ϕ and ψ (from left
to right) and one incoming edge labelled ϕ⊗ ψ (respectively, ϕOψ), for some formula ϕ
and ψ.

• Nodes labelled c have exactly one outgoing edge and no incoming edges.

A sequent proof, π, in MLL can be translated into a proof-structure dsq(π) such that there is a
bijection between the internal nodes of dsq(π) and the inference rules of π.

Definition 3.5.2. Let π be a MLL proof. Desequentialisation of π, denoted dsq(π), is defined by
induction on the structure of π as follows. There are several cases based on the root node of π.

The root node is (id). The proof-structure corresponding to
(id)

` ϕ,ϕ⊥ is the graph contain-
ing a single node ax with incoming edges labelled ϕ and ϕ⊥ which have c nodes as tar-
gets.

ϕ ϕ⊥
ax

c c
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The root node is (cut). Let π be of the form

` Γ, ϕ ` ∆, ϕ⊥
(cut)

` Γ,∆ such thatR1 andR2 are the
desequentialisation of the subproofs rooted at ` Γ, ϕ and ` ∆, ϕ⊥ respectively. Then,
dsq(π) is obtained by removing the c nodes of R1 and R2 with outgoing edges e1, e2 la-
belled ϕ and ϕ⊥ respectively, and by introducing a new cut node with outgoing edges e1

and e2.

R1 R2

ϕ ϕ⊥

cut

The root node is (⊗). Let π be of the form

` Γ, ϕ ` ∆, ψ
(⊗)

` Γ,∆, ϕ⊗ ψ such thatR1 andR2 are the de-
sequentialisation of the subproofs rooted at ` Γ, ϕ and ` ∆, ψ respectively. Then, dsq(π)
is obtained by removing the c nodes of R1 and R2 with outgoing edges e1, e2 labelled ϕ
and ψ respectively, and by introducing a new ⊗ node with outgoing edges e1 and e2 and
an incoming edge labelled ϕ⊗ ψ whose source is a new c node.

R1 R2

ϕ ψ

ϕ⊗ ψ
⊗

c

The root node is (O) rule. Let π be of the form

` Γ, ϕ, ψ
(O)

` Γ, ϕOψ such thatR is the desequential-
isation of the subproof rooted at ` Γ, ϕ, ψ. Then, dsq(π) is obtained by removing the c
nodes of R with outgoing edges e1, e2 labelled ϕ and ψ respectively, and by introducing
a new O node with outgoing edges e1 and e2 and an incoming edge labelled ϕOψ whose
source is a new c node.

R

ϕ ψ

ϕOψ
O

c

Definition 3.5.3. A proof net is a proof-structure that is the desequentialisation of some proof.

Example 3.5.1. The desequentialisation of the proofs π1 and π2 discussed at the beginning of
this subsection are indeed the same.

dsq(π′)

ϕ1 ϕ2 ψ1 ψ2

ϕ1Oϕ2

O

c

ψ1Oψ2

O

c

The desequentialisation of the booleans are indeed different proof-nets R1 and R2. Note that
non-commutativity (i.e. absence of the exchange rule) corresponds to the planarity of the
proof-nets.
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a a⊥

a a⊥

ax

ax

aOa
O

a⊥ ⊗ a⊥
⊗

(aOa)O(a⊥ ⊗ a⊥)

O

c

a a⊥

a a⊥

ax

ax

aOa
O

a⊥ ⊗ a⊥
⊗

(aOa)O(a⊥ ⊗ a⊥)

O

c

Proof-structures, therefore, allow to present sequent proofs in a non-sequential way but the ob-
jects are not inductively presented anymore which makes their logical correctness non-trivial. Ob-
serve that not every proof-structure represents (or is the desequentialisation of) an MLL proof. For
example,

a a⊥
ax

a⊗ a⊥
⊗

c

Hence one imposes a correctness criterion to delineate a subset of “correct” proof-structures
which belong to the image of the translation dsq(•). There are several correctness criteria known
in the literature. We will discuss the most well-known criterion, the so-called Danos-Regnier crite-
rion.

Definition 3.5.4. A switching, sw, of a proof-structureR is a function from the set of O nodes
ofR to {left, right}. Given a switching sw ofR, the correction graph is defined as the undirected
graphR where for each O node p, its sw(p) outgoing edge has been deleted.

Definition 3.5.5. A proof-structure is said to be DR-correct if for every switching, the correc-
tion graph is acyclic and connected.

Example 3.5.2. We will show thatR1 from Example 3.5.1 is DR-correct. There are four switch-

ings viz.

a a⊥

a a⊥

ax

ax

aOa
O

a⊥ ⊗ a⊥
⊗

O

c

a a⊥

a a⊥

ax

ax

aOa
O

a⊥ ⊗ a⊥
⊗

O

c

a a⊥

a a⊥

ax

ax

aOa
O

a⊥ ⊗ a⊥
⊗

O

c

a a⊥

a a⊥

ax

ax

aOa
O

a⊥ ⊗ a⊥
⊗

O

c

Note that each of these graphs is acyclic and connected. Therefore,R1 is DR-correct.

Theorem 3.5.1. A proof-structure is a proof net iff it is DR-correct.

Definition 3.5.6. The cut elimination relation→MLL is the binary relation over proof-nets gen-
erated by the following set of graph rewrite rules.

ϕ ϕ⊥ ϕ →MLL

ϕ

ax

cut

ϕ ψ ϕ⊥ ψ⊥ →MLL ϕ ϕ⊥ ψ ψ⊥

⊗ O

cut

cut cut
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Lemma 3.5.1 (Correctness preservation). Let R be a proof-net and R →MLL R′. Then R′ is a
proof-net.

Theorem 3.5.2. →MLL is confluent and terminating.

Notes
Linear logic was invented by Girard in [Gir87a] motivated comes from a semantical analysis of the
models of System F. Many of the results and concepts stated here were born in that seminal paper.

For a survey of decidability results in linear logic, see [Lin95]. Many of the results were obtained
by Lincoln during his PhD [Lin92]. Interestingly, a decidability proof for MELL was published but
later the status of the problem was reverted when a crucial bug [Str19] was noticed. Girard pub-
lished a book providing many insights into linear logic [Gir11]. A general technical survey is due to
Curien [Cur05].

See [Avr88] for an alternative to phase semantics with regards to truth semantics of linear logic.
See [AD93] for Kripke models of linear logic.

Focussing was invented and studied by Andreoli in his PhD thesis [And92]. Saurin [Sau08] ob-
served that every proof could be focussed by simply permuting inference rules.

The correctness condition presented here was introduced in [DR89] (thus the “DR” in our pre-
sentation stands for “Danor-Regnier”). The original correctness condition of Girard is called the
long-trip condition.

The Curry-Howard aspect of linear logic has not been mentioned in this brief summary. Natu-
ral deduction of linear logic was studied [Tro95, BACJ98] with the motivation to interpret λ-terms.
Herbelin [Her95] provided a proofs vs programs correspondence directly in sequent proofs. A recent
breakthrough has been interpreting sequent proofs as processes in π-calculus [Mil93, CP10].
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Linear logic with fixed points
What is Matter? - Never mind.

What is Mind? - No matter.

Punch, or The London Charivari (Vol. 29)

This chapter serves as a survey on µMALL, the extension of propositional linear logic with the
least and greatest fixed points. In Section 4.1 we will establish the syntax of µMALL and the pe-
culiar notion of subformulas in this context. There are several sequent calculi for µMALL. The first
one is a wellfounded system with the so-called Park’s rules, which are rules directly inspired by the
(co)induction principle. The second approach is inspired by the infinite descent proof technique that
yields a non-wellfounded system and a circular system. We introduce these proof systems in Sec-
tion 4.2 and compare the relative expressiveness in Section 4.3. Finally, we discuss the focussing
property of these systems in Section 4.4. In Section 4.5 we briefly discuss the cut-elimination results
for these systems and their consequences.

4.1 Linear logic with fixed points
In order to define a fixed point logic, one introduces explicit fixed point construct(s) and closes the
language under these construct(s) thus obtaining a (potentially) richer logic. In this subsection, we
will introduce µMALL, the extension of MALL with the least and greatest fixed point operators.

Definition 4.1.1. Fix a countable set of propositional constants A = {a, b, . . . } and variables
V = {x, y, . . . } such thatA∩V = ∅. µMALL pre-formulas are given by the following grammar:

ϕ,ψ ::= 0 | > | ⊥ | 1 | a | a⊥ | x | ϕOψ | ϕ⊗ ψ | ϕ⊕ ψ | ϕNψ | µx.ϕ | νx.ϕ

where a ∈ A, x ∈ V , and µ, ν bind the variable x in ϕ. Free and bound variables, and capture-
avoiding substitution are defined as usual. The subformula ordering is denoted 4 and fv(•)
denotes free variables. When a pre-formula is closed (i.e. no free variables), we simply call it
a formula.

Negation, (•)⊥, defined as a meta-operation on pre-formulas, will be used only on formulas. As
expected, the least and greatest fixed points are the dual of each other.

Definition 4.1.2. Negation of a pre-formula is defined inductively as follows.

0⊥ = >; >⊥ = 0;

⊥⊥ = 1; 1⊥ = ⊥;

(a)
⊥

= a⊥; a⊥⊥ = a; [a ∈ A]

x⊥ = x; [x ∈ V]

(ϕOψ)
⊥

= ψ⊥ ⊗ ϕ⊥; (ϕ⊗ ψ)
⊥

= ψ⊥Oϕ⊥;

(ϕ⊕ ψ)
⊥

= ψ⊥Nϕ⊥; (ϕNψ)
⊥

= ψ⊥ ⊕ ϕ⊥;

(µx.ϕ)
⊥

= νx.ϕ⊥; (νx.ϕ)
⊥

= µx.ϕ⊥.

51



52 Linear logic with fixed points

One might be surprised to see that variables are self-dual i.e. x = x⊥. One can choose an
alternate presentation: in lieu of such a condition, one imposes a positivity condition viz. fixed point
operators are only applied on a positive1 formula wrt. to the binder where positive formulas are defined
as follows.

Definition 4.1.3. The occurrence of a variable is positive if it occurs within an even number of
(•)⊥ nestings. A formula ϕ is said to be positive wrt. a variable x if every occurrence of x is
positive in ϕ.

The former presentation syntactically prevents us from writing formulas such as µx.x⊥. Note that
exponentials and non-monotonic definitions combine to yield inconsistency: for example, the formula
µx.x⊥ does not lead to an inconsistency, whereas µx.?x⊥ does. However, in MALL, it is easy to check
that the positivity condition and self-duality of variables are equivalent notions.

By an easy induction of the structure of formulas, we have that for all formulas ϕ, ϕ⊥⊥ = ϕ. Write
ϕ[ψ/x] to denote the substitution of every occurrence of x inϕ byψ. We have (ϕ[ψ/x])

⊥
= ϕ⊥[ψ⊥/x].

Example 4.1.1. Let ψ = νx.x⊗ (aOa⊥). Then,

ψ⊥ = µx.(x⊗ (aOa⊥))
⊥

= µx.x⊥O(aOa⊥)
⊥

= µx.xO(a⊥ ⊗ a⊥⊥)

= µx.xO(a⊥ ⊗ a)

In order to work with fixed points logics, it is often necessary to generalise the notion of a subfor-
mula. In the following, we will introduce Fischer-Ladner subformulas and discuss their properties.
Note that these results are logic-independent and hold for other fixed point logics such as the modal
µ-calculus.

Definition 4.1.4. Let→FL be the binary relation between µMALL formulas given by the follow-
ing:

• for all µMALL formulas ϕ0, ϕ1, ϕ0�ϕ1 →FL ϕi where i ∈ {0, 1} and� ∈ {O,⊗,⊕,N}, and

• for all µMALL formulas ϕ, ηx.ϕ→FL ϕ[ηx.ϕ/x] for η ∈ {µ, ν}.

Let→∗FL be the reflexive and transitive closure of→FL. The Fischer-Ladner closure of a formula
ϕ, denoted FL(ϕ), is defined as the set {ψ | ϕ →∗FL ψ}. The FL-graph of a formula ϕ, denoted
G(ϕ), is the directed graph (FL(ϕ),→FL).

It may not be immediately clear that the Fischer-Ladner closure is always finite since one cannot
argue that the membership of one formula in this set only entails the membership of strictly smaller
formulas, as it can be done for the usual notion of subformulas. We first give an example of a formula
ψ that has a finite Fischer-Ladner closure and invite the reader to observe that its FL-graph is, in fact,
a regular tree rooted at ψ.

Example 4.1.2. The FL-graph of the formula ψ of Example 4.1.1:

G(ψ) = νx.x⊗ (aOa⊥)

ψ ⊗ (aOa⊥) aOa⊥

a a⊥

Lemma 4.1.1. Let ϕ,ϕ1, and ϕ2 be arbitrary formulas. We have the following.

1. FL(ϕ1 � ϕ2) = {ϕ1 � ϕ2} ∪ FL(ϕ1) ∪ FL(ϕ2) for� ∈ {O,⊗,⊕,N}.

2. FL(ϕ1[ϕ2/x]) = {ψ[ϕ2/x] | ψ ∈ FL(ϕ1)} ∪ FL(ϕ2) where x ∈ fv(ϕ1).

3. FL(ηx.ϕ) = {ηx.ϕ} ∪ {ψ[ηx.ϕ/x] | ψ ∈ FL(ϕ)} for η ∈ {µ, ν}.
1Not to be confused with positive formulas in the context of focussing.



Chapter 4 53

Proof. Item (1) is immediate from the definition.

For item (2), we first observe that FL(ϕ1[ϕ2/x]) ⊆ {ψ[ϕ2/x] | ψ ∈ FL(ϕ1)} ∪ FL(ϕ2) can be
proved by showing that the RHS has the required closure properties. In the other direction, we divide
the proposition into two smaller claims: Equations (4.1) and (4.2).

FL(ϕ1[ϕ2/x]) ⊇ {ψ[ϕ2/x] | ψ ∈ FL(ϕ1)}. (4.1)

FL(ϕ1[ϕ2/x]) ⊇ FL(ϕ2). (4.2)

To prove Equation (4.1), suppose we have ϕ1 = ψ0 →FL ψ1 →FL . . . →FL ψn = ψ. We will
induct on n. The base case is n = 0. So, ψ = ϕ1. Since ϕ1[ϕ2/x] ∈ FL(ϕ1[ϕ2/x]) we are done.
The induction case is n > 0. Consider ψn−1. Note that it cannot be an atom or a variable since
there exists ψn such that ψn−1 →FL ψn. Suppose ψn−1 = ξ1 � ξ2 where � ∈ {O,⊗,⊕,N}. By
the induction hypothesis, ξ1 � ξ2[ϕ2/x] ∈ FL(ϕ1[ϕ2/x]) which implies ξ1[ϕ2/x]FL(ϕ1[ϕ2/x]) and
ξ2[ϕ2/x]FL(ϕ1[ϕ2/x]). Since ψn−1 →FL ψn, either ξ1[ϕ2/x] = ψn or ξ2[ϕ2/x] = ψn. Hence done.
Now suppose ψn−1 = ηy.ξ for η ∈ {µ, ν}. Then, by hypothesis, ηy.ξ[ϕ2/x] ∈ FL(ϕ1[ϕ2/x]) which
implies ξ[ϕ2/x, ξ/y] ∈ FL(ϕ1[ϕ2/x]). Since ψn−1 →FL ψn, ξ[ϕ2/x, ξ/y] = ψn and hence we are
done.

To prove Equation (4.2), we will induct on the depth of x in T(ϕ1). Suppose we have that x =
ψ0 4 ψ1 4 . . . ψn = ϕ1. The base case is n = 0. So, ϕ1 = x (since x ∈ fv(ϕ1), it cannot be an
atom or a different variable). Therefore, this case is trivial. The induction case is n > 0. Note that
x ∈ fv(ψi) for all i. Consider ψn−1. By the induction hypothesis, FL(ϕ2) ⊆ FL(ψn−1[ϕ2]). Note that
ψn−1 4 ϕ1 implies that ϕ1 →FL ψn−1. One can easily show that FL(ψn−1[ϕ2]) ⊆ FL(ϕ1[ϕ2]). Hence
done.

For item (3), we have two cases, either x ∈ fv(ϕ) or not. In the first case, we have:

FL(ηx.ϕ) = {ηx.ϕ} ∪ FL(ϕ[ηx.ϕ]) [By definition]

= {ηx.ϕ} ∪ {ψ[ηx.ϕ/x] | ψ ∈ FL(ϕ)} ∪ FL(ηx.ϕ) [By item (2)]

Therefore, we have FL(ηx.ϕ) ⊇ {ηx.ϕ} ∪ {ψ[ηx.ϕ/x] | ψ ∈ FL(ϕ)}. The opposite direction is
trivial. In the case x 6∈ fv(ϕ), we have x 6∈ fv(ψ) for all ψ ∈ FL(ϕ) and hence {ψ[ηx.ϕ/x] | ψ ∈
FL(ϕ)} = FL(ϕ). Hence, we are done.

Theorem 4.1.1. For any formula ϕ, FL(ϕ) is a finite set.

Proof. By induction on ϕ. The base case is when ϕ ∈ A ∪ V or ϕ is a unit. Then FL(ϕ) = {ϕ} and
we are done. For the induction case, we have two subcases.

Case 1. ϕ = ϕ1 � ϕ2 for� ∈ {O,⊗,⊕,N}.

By Lemma 4.1.1, FL(ϕ) = {ϕ}∪FL(ϕ1)∪FL(ϕ2). Since FL(ϕ1) and FL(ϕ2) are finite by induction
hypothesis, we are done.

Case 2. ϕ = ηx.ϕ′ for η ∈ {µ, ν}.

By Lemma 4.1.1, FL(ϕ) = {ϕ} ∪ {ψ[ϕ/x] | ψ ∈ FL(ϕ′)}. Since FL(ϕ′) is finite by induction
hypothesis, we are done.

Definition 4.1.5. A syntax tree of a formulaϕ, denoted T(ϕ) is the (possibly infinite) unfolding
tree of its Fischer-Ladner graph G(ϕ).

Recall that the syntax tree T(ϕ) of an LL formula ϕ induces a prefix closed language, Lϕ ⊂
{l, r, i}∗ such that there is a natural bijection between Lϕ and the branches of the tree. In the case
of µMALL, the syntax tree T(ϕ) could potentially be infinite, hence the induced language can also
contain infinite words i.e. Lϕ ⊂ {l, r, i}∞.
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4.2 Explicit vs. implicit induction
The Noetherian induction principle can be informally stated as follows. A proof of the statement that a
certain property holds for an element of a wellfounded poset (E ,≤) can use the fact that it also holds for
any smaller element. The wellfoundedness property of ≤ guarantees the soundness of the proof. The
proof methods (as formal proofs, the computational content of the proofs) could, however, be different.
One can roughly classify induction-based proof methods as: (i) explicit induction, which covers the
traditional schemata-based methods, and (ii) implicit induction, based on reductive procedures.

In proof theory, we, therefore, have a choice on how to model induction. On one hand, one can
have wellfounded proofs with inference rules that express a general explicit induction scheme. On the
other hand, one can have non-wellfounded proofs with inference rules that decompose the goal into
subgoals. This alternative has deep historic roots in the form of different methods of circular reasoning
like infinite descent. In this section, we will introduce the wellfounded sequent calculus µMALLind for
µMALL which models explicit (co)induction and the circular and non-wellfounded calculi, µMALL�

and µMALL∞ respectively, which model implicit (co)induction.

Consider the following rules:

ϕ[ψ/x] ` ψ
(µl)

µx.ϕ ` ψ ;

Γ ` ϕ[µx.ϕ/x],∆
(µr)

Γ ` µx.ϕ,∆

Construing the logical entailment as the underlying partial order, we get that ϕ(ψ) ≤ ψ =⇒
µϕ ≤ ψ and Γ ≤ ϕ(µϕ) =⇒ Γ ≤ µϕ. The first implication conveys the fact that µϕ is smaller than
any pre-fixed point of ϕ. Plugging Γ = ϕ(µϕ) in the second implication, we have that ϕ(µϕ) ≤ µϕ.
Therefore µϕ is a pre-fixed point of ϕ. Combining these two, we have µϕ is indeed the least fixed point
of ϕ.

The first implication is referred to as the Park induction rule and is an instance of the Noetherian
induction principle. The second implication is called the unfolding rule. Dually we have the follow-
ing rules for the greatest fixed point viz. the folding rule and the Park coinduction rule. Again
construing logical entailment as the underlying partial order, we have νϕ as the greatest fixed point of
ϕ.

Γ, ϕ[νx.ϕ/x] ` ∆
(νl)

Γ, νx.ϕ ` ∆ ;

ψ ` ϕ[ψ/x]
(νr)

ψ ` νx.ϕ

Finally, we can take one-sided versions of the four rules and get

` Γ, ϕ[µx.ϕ/x]
(µ)

` Γ, µx.ϕ ;

` ψ⊥, ϕ[ψ/x]
(ν)

` ψ⊥, νx.ϕ

However, cuts are not admissible in this system. In particular, the sequent ` 0,0, νx.x cannot be
derived in a cut-free proof. It is easily verified by noting that no instance of an inference rule can have
the conclusion ` 0,0, νx.x. However, there indeed exists a proof using a cut.

(id)
` 0,>

(id)
` 0,>

(⊗)
` 0,0,>⊗>

(id)
` 0,>

(id)
` 0,>

(⊗)
` 0,0,>⊗>

(O)
` 0O0,>⊗>

(ν)
0O0, νx.x

(cut)
` 0,0, νx.x

This issue is often resolved by replacing Park’s rule for ν presented above by the following two
premisses rule.

` Γ, ψ ` ψ⊥, ϕ[ψ/x]
(ν)

` Γ, νx.ϕ

Note that Park’s rule for ν is a special case of this rule:

(id)
` ψ⊥, ψ ` ψ⊥, ϕ[ψ/x]

(ν)
` ψ⊥, νx.ϕ
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One can argue that since the Os are invertible rules, one can have the following without having to
allow for arbitrary invariants.

` Γ, ϕ

⊗
i∈[n]

ψn
⊥

 /x


(ν)

` Γ, νx.ϕ

where Γ = ψ1, . . . , ψn and if Γ = ∅ choose 1 as the invariant (by invertibility of the (⊥) rule, one
can assume Γ = ⊥). Note that although this rule and previous one are equivalent up to provability,
the proof of equivalence goes through a cut. Therefore, the inadmissibility of cuts in a system with
the previous rule does not automatically imply the inadmissibility of cuts in a system with the above
rule. Unfortunately, this new system also does not admit cuts as exemplified by the following proof of
` b, νx.aOx which the readers can verify has no cut-free proof (a, b are arbitrary atoms here).

(>)
` b,>

(>)
` 0, a,>

(O)
` 0, aO>

(ν)
` 0, νx.aOx

(cut)
` b, νx.aOx

Note that, essentially, we had to change the invariant with help of a cut.

Definition 4.2.1. The system µMALLind is generated from the inference rules of MALL given in
Figure 3.1 and the following rules for the fixed points.

` Γ, ϕ(µx.ϕ/x)
(µ)

` Γ, µx.ϕ ;

` Γ, ψ ` ψ⊥, ϕ[ψ/x]
(ν)

` Γ, νx.ϕ

Example 4.2.1. Consider ψ from Example 4.1.1. We have the following proof of the sequent
` ψ.

(1)
` 1

(1)
` 1

(id)
` a, a⊥

(O)
` aOa⊥

(⊗)
` 1⊗ (aOa⊥)

(⊥)
` ⊥,1⊗ (aOa⊥)

(ν)
` ψ

The choice of a ψ in the (ν) rule is akin to choosing the correct induction hypothesis. However,
this rule does not preserve subformulas. In fact, one can also think of choosing ψ as choosing a cut
formula. Therefore, analyticity does not guarantee the subformula property in µMALLind . Moreover,
this still poses a major automation challenge.

An alternative is to consider systems with implicit (co)induction. In such systems, the fixed point
rules are fold and unfold.

Γ, ϕ[µx.ϕ/x] ` ∆
(µl)

Γ, µx.ϕ ` ∆ ;

Γ ` ϕ[µx.ϕ/x],∆
(µr)

Γ ` µx.ϕ,∆
Γ, ϕ[νx.ϕ/x] ` ∆

(νl)
Γ, νx.ϕ ` ∆ ;

Γ ` ϕ[νx.ϕ/x],∆
(νr)

Γ ` νx.ϕ,∆

As before, construing logical entailment as the underlying partial order, we have that ϕ(µϕ) ≤
∆ =⇒ µϕ ≤ ∆ and Γ ≤ ϕ(µϕ) =⇒ Γ ≤ µϕ. Plugging ∆ = Γ = ϕ(µϕ), we have that µϕ is a
pre-fixed point and a post-fixed point. Therefore, µϕ is indeed a fixed-point (but not necessarily the
least).

Observe that the rules of µ and ν are identical. Therefore, one can do the same argument for the ν
rules and conclude that it is also a fixed point. So, one cannot differentiate between µϕ and νϕ. This
is problematic logically since both µx.x and νx.x are not provable using these rules but semantically
and from a Curry-Howard perspective, it makes sense for the latter to be provable. Regardless, this is
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a useful logic in our investigation, and we call the system µMALL∗. Note that µMALL∗ is equivalent
to the logic with a unique self-dual fixed point operator with the above rules.

In order to make a distinction between µ and ν, the first step is to move to non-wellfounded proofs.
We will now describe the one-sided non-wellfounded and circular systems of µMALL.

Definition 4.2.2. A pre-proof of µMALL∞ is a possibly infinite tree generated from the infer-
ence rules of MALL (see Figure 3.1) and the one-sided version of the above rules viz.

` Γ, ϕ[µx.ϕ/x]
(µ)

` Γ, µx.ϕ ;

` Γ, ϕ[νx.ϕ/x]
(ν)

` Γ, νx.ϕ

One of the key caveats of non-wellfounded proof theory is that, unconstrained, they admit incon-
sistencies: it is possible to derive any sequent:

...

` µx.x
(µ)

` µx.x

...

` Γ, νx.x
(ν)

` Γ, νx.x
(cut)

` Γ

For this reason, we impose a global criterion on pre-proofs. This criterion also helps us establish
the necessitous distinction between µ and ν.

Definition 4.2.3. Given a pre-proof π, for all inference rules r occurring in π, we define the im-
mediate ancestor relation IA(r) on formulas of r by: (ϕ,ψ) ∈ IA(r) if either one of the following
holds

• ϕ is principal and ψ is auxiliary; or,

• ϕ is a side formula in the conclusion and ψ is a corresponding side formula in a premisse;
or,

• r is structural and ϕ is a formula in the conclusion and ψ is a corresponding formula in a
premisse.

For the ease of the reader, we explicitly exhibit the IA(•) for the inference rules of µMALL∞ which
have non-empty premisses.

` Γ1
, ϕ ` Γ2

, ϕ⊥

(cut)
` Γ1

, Γ2

` Γ, ϕ1
, ϕ2 (O)

` Γ, ϕ1 Oϕ2

` Γ1
, ϕ1

` Γ2
, ϕ2

(⊗)
` Γ1

, Γ2
, ϕ1 ⊗ϕ2

` Γ, ϕi (⊕i)` Γ, ϕ1 ⊕ϕ2

` Γ, ϕ1
` Γ, ϕ2 (N)

` Γ, ϕ1 Nϕ2

` Γ ⊥
` Γ,⊥

` Γ, ϕ[µx. ϕ/x]
(µ)

` Γ, µx. ϕ

` Γ, ϕ[νx. ϕ/x]
(ν)

` Γ, νx. ϕ

Definition 4.2.4. Let β = (Γi)i<ω be an infinite branch of a µMALL∞ pre-proof π and let ri be the
rule with conclusion Γi. A thread of β is given by k ∈ N and a sequence of formulas {ϕi}k≤i<ω
such that, for k < i < ω, we have (ϕi, ϕi+1) ∈ IA(ri). The thread is said to be stationary if it is
not infinitely often principal i.e. there exists k′ > k such that for all i ≥ k′, ϕi = ϕk′ and ϕi is
not principal.

Proposition 4.2.1. Let τ be a thread. The set of formulas occurring infinitely often in τ , denoted
Inf(τ), is non-empty and admits a minimum with respect to the4 (subformula) ordering.

Proof. Let τ = {ϕi}k≤i<ω. By definition of immediate ancestors, ϕi+1 ∈ FL(ϕi) for all k ≤ i < ω.
Therefore, ϕi ∈ FL(ϕk) for all k ≤ i < ω. By Theorem 4.1.1, FL(ϕk) is finite. Therefore, Inf(τ) is
non-empty. We will now show that it admits a minimum with respect to the4 ordering.

Suppose τ is stationary i.e. there exists k′ > k such that for all i ≥ k′, ϕi = ϕk′ ; therefore,
Inf(τ) = {ϕk′} and we are done.

Suppose τ is not stationary. Then, {ϕi}k≤i<ω traces an infinite path in the unfolding of G(ϕk).
Therefore, Inf(τ) is isomorphic to a strongly connected subgraph S of G(ϕk). Observe that among the
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nodes of S, there is a unique node n which is nearest to the root ϕk. If it were the case that there were
two nodes equidistant to the root then there would be a third node, nearer to the root contradicting
the minimality of the distance between n and ϕk. The formula corresponding to the node n is the
minimum with respect to the4 ordering.

Corollary 4.2.0.1. Let τ be a non-stationary thread. Then, the minimum formula in Inf(τ) is a
fixed point formula.

The result is subtle. The set of recurring formulas has a minimum in the 4 ordering, but it is not
totally ordered. Consider the following proof of the formula ϕ = νx.(x⊕ a)⊗ (x⊕ b).

`ϕ
(⊕1)

` ϕ⊕ a
` ϕ

(⊕1)
` ϕ⊕ b

(⊗)
` (ϕ⊕ a)⊗ (ϕ⊕ b)

(ν)
`ϕ

Each branch of this proof has exactly one thread. The set of formulas occurring infinitely often
along a thread in any branch that is not ultimately left-leaning or right-leaning is {ϕ, (ϕ⊕ a)⊗ (ϕ⊕
b), ϕ ⊕ a, ϕ ⊕ b}. This set has minimum viz. ϕ but it is not totally ordered. In particular, ϕ ⊕ a and
ϕ⊕ b are incomparable.

Let π be a µMALL∞ pre-proof. A branch that has at least one thread which is not ultimately
stationary is called a real branch. If a branch is not real, it is called a virtual branch.

Definition 4.2.5. A thread τ is progressing if it is not stationary and the outermost connective
of the smallest formula occurring infinitely often in τ is ν.

Definition 4.2.6. A µMALL∞ pre-proof is called a proof if every infinite branch has a progress-
ing thread.

Example 4.2.2. Coming back to our inconsistent example, note that while the right infinite
branch has a progressing thread along νx.x (indicated red), the left branch has no progressing
thread, so the pre-proof is not a proof.

...
(µ)

µx.x
(µ)

µx.x

...
(ν)

νx.x,Γ
(ν)

νx.x,Γ
(cut)

Γ

Now consider the formulaψ in Example 4.1.1. The readers are encouraged to convince them-
selves that the following is a proof of the sequent ` ψ.

` ψ

(id)
` a, a⊥

(O)
` aOa⊥

(⊗)
` ψ ⊗ (aOa⊥)

(ν)
`ψ

Definition 4.2.7. A µMALL∞ pre-proof is said to be circular (a.k.a. regular) if it has finitely
many distinct sub-trees. The class of circular proofs is denoted by µMALL�.

Theorem 4.2.1. Given a regular pre-proof π, checking whether it is a proof is decidable. More-
over, the problem is PSPACE-complete.

We end this section by making a few passing observations that reinforce the robustness of the
systems introduced.

Canonicity of fixed-point operators. An intrinsic property of logical operators is their canonicity
(or lack thereof) i.e. if one adds duplicates of the same type to the language and copy-cat inference
rules, then the duplicates are equivalent to their corresponding originals. An interesting question
about a logic, and more precisely about its connectives, is whether a connective is equivalent to all
of its duplicates. For example, MALL connectives are canonical whereas atoms and exponentials are
non-canonical. It turns out that fixed point operators are also canonical.
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Canonicity of the progress condition. The progress condition is conjectured to be maximal for
cut-free proofs in the following sense: the set of valid cut-free proofs is the largest set of consistent
cut-free pre-proofs.

Progress condition vs. parity condition. Moreover, the progress condition is very natural. Let
c : Fτ → N where Fτ is the set of formulas occurring in a thread τ such that c(ϕ) ≤ c(ψ) iff ϕ 4 ψ and
ν-formulas are assigned even numbers. Then the progress condition is exactly the parity condition of
combinatorial games. In fact, this connection is exploited to prove the decidability of the progress con-
dition for regular pre-proofs (cf. Theorem 4.2.1) by reduction to the universality of non-deterministic
parity ω-word automata.
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4.3 Expressiveness
In this subsection, we will explore the relative provabilities of the proof systems that we have intro-
duced. In order to do so, we will first prove, one important property of these logics, viz. functoriality.

Definition 4.3.1. A logic is said to have the functoriality property if the following rule is deriv-
able where ϕ is a formula such that x ∈ fv(ϕ).

` ψ⊥, ψ′
(func)

` ϕ⊥[ψ⊥/x], ϕ[ψ′/x]

Proposition 4.3.1. µMALLind , µMALL�, and µMALL∞ have the functoriality property.

Proof. We will prove by induction on the maximum depth of x in ϕ. Therefore the base case is ϕ = x
(it cannot be an atom or another variable distinct from x since x ∈ fv(ϕ)). In this case func is a trivial
rule with identical premisse and conclusion. There are several subcases for the induction step. The
subcases for the multiplicative additive connectives follow from Proposition 3.4.1. We will exhibit the
subcases when the outermost operator of ϕ is a fixed point.

Suppose ϕ = νy.ξ. We assume that x 6= y and so {x, y} ⊆ fv(ξ). We will first exhibit for
µMALLind . Let ρ = ϕ⊥[ψ⊥/x].

(id)
` ρ, ρ⊥

IH

5
` ξ⊥[ψ⊥/x, ρ/y], ξ[ψ′/x, ρ⊥/y]

(µ)
` ρ, ξ[ψ′/x, ρ⊥/y]

(ν)
` ρ, νy.ξ[ψ′/x]

Note that although the sizes of the formulas blows up, the maximum depth of x strictly decreases
from ρ to ξ⊥[ψ⊥/x, ρ/y]. Therefore, induction hypothesis can be applied. The case when ϕ = µy.ξ
follows exactly similarly. We will now exhibit for µMALL∞ and µMALL� (since the proof is finite, they
can be tackled at one go). Let ρ′ = ϕ[ψ′/x].

IH

5
` ξ⊥[ψ⊥/x, ρ/y], ξ[ψ′/x, ρ′/y]

(µ)
` ρ, ξ[ψ′/x, ρ′/y]

(ν)
` ρ, ρ′

There are several ways to understand the functoriality property. Firstly, note that the proof indi-
cates that it is a generalisation of the axiom expansion. Indeed the proof of Proposition 4.3.1 appeals
to the axiom expansion of MALL and the case for the fixed points simplifies two fixed point formulas
that are (almost) the duals of each other.

Consider the two-sided version of the rule:

ψ ` ψ′
(func)

ϕ[ψ/x] ` ϕ[ψ′/x]

Construing logical entailment as a morphism we have thatϕ respects the morphismψ → ψ′ which
is the defining feature of a functor. Operationally, this corresponds to the map operator in functional
programming. Imagine ψ is the type of integers and ψ′ is the type of booleans and the proof of ψ ` ψ′
corresponds to the parity function. Now suppose ϕ is the polymorphic type of lists i.e. ϕ[ψ] is type
of integer lists and ϕ[ψ′] is the type of boolean lists. Then, functoriality is an operator that takes the
parity function and a list of integers and returns a list of booleans which is the result of applying the
parity function to each element of the list.

Finally, functoriality can also be seen as a deep inference property. In deep inference, not only can
one apply inference rules to the outermost connectives but also to ‘deeper’ connectives. Functoriality
somehow provides a similar power: one can bypass the connectives of ϕ and apply the inference rules
on ψ or ψ′ without losing provability.
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4.3.1 Relative expressiveness of the di�erent systems
In the following, we construe proof systems as a set of provable sequents. In this sense, if S and T are
two proof systems of the same logical language, then S ⊆ T means that if a sequent is provable in S
then it is also provable in T .

We first note that µMALL� ⊆ µMALL∞ since a circular proof can be simply unfolded into a non-
wellfounded proof.

Open Question

(Regularisation) Is µMALL∞ ⊆ µMALL�?

Cuts play a crucial role in regularisation. Although cuts are admissible in µMALL∞, regularity is
not preserved by cut elimination (more details in Section 4.5). Therefore in the case of circular proofs,
the calculus without cuts is strictly weaker than the calculus with cuts. In fact, we can show that the
cut-free µMALL∞ and the cut-free µMALL� are not equiprovable since ϕ = νx.xOx has a cut-free
µMALL∞ proof but no corresponding cut-free µMALL� proof.

····
` ϕ,ϕ, ϕ

(O)
` ϕOϕ,ϕ

(ν)
` ϕ,ϕ

(O)
` ϕOϕ

(ν)
` ϕ

However, there is indeed a regular proof with cuts of the aforementioned theorem.

`ϕ, µx.x
`νx.x, ϕ

(ν)
`νx.x, ϕ

(cut)
` ϕ,ϕ, µx.x

(O)
` ϕOϕ, µx.x

(ν)
`ϕ, µx.x

`νx.x
(ν)

`νx.x
(cut)

` ϕ

Therefore, the non-trivial question of regularisation is: Is µMALL∞ ⊆ µMALL� (possibly with cuts)?
Our next observation is that µMALLind ⊆ µMALL�. It is enough to show that the Park coinduction
rule can be simulated using circular proofs.

` Γ, ψ

` ψ⊥, ϕ[ψ/x]

`ψ⊥, νx.ϕ
(func)

` ϕ⊥[ψ⊥/x], ϕ[νx.ϕ/x]
(ν)

` ϕ⊥[ψ⊥/x], νx.ϕ
(cut)

`ψ⊥, νx.ϕ
(cut)

` Γ, νx.ϕ

Open Question

(Brotherston-Simpson conjecture) Is µMALL� ⊆ µMALLind ?

Note that the unfolding rule for ν can be derived using the Park coinduction rule as follows.

` Γ, ϕ[νx.ϕ/x]

` ϕ⊥[µx.ϕ⊥/x], ϕ[νx.ϕ/x]
(µ)

` µx.ϕ⊥, ϕ[νx.ϕ/x]
(func)

` ϕ⊥[µx.ϕ⊥/x], ϕ[ϕ[νx.ϕ/x]/x]
(ν)

` Γ, νx.ϕ
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This cannot be directly used to finitise regular proofs since a naive transformation will not guaran-
tee the wellfoundedness of the translation. However, this indeed shows that µMALL∗ ⊆ µMALLind .
Since νx.x is not provable in µMALL∗, the inclusion is strict. To summarise, we have the following.

µMALL∗ ( µMALLind ⊆ µMALL� ⊆ µMALL∞

4.3.2 Expressiveness in terms of other logics
Fixed points can be encoded in second-order linear logic (LL2) vis-à-vis the following translation
[•] : µMALL→ LL2.

[ϕ] = ϕ [ϕ ∈ A ∪ V ∪ {⊥,1,0,>}]
[ϕ� ψ] = [ϕ]� [ψ] [� ∈ {O,⊗,⊕,N}]
[µx.ϕ] = ∀ψ.?([ϕ](ψ⊥)⊗ ψ)Oψ⊥

[νx.ϕ] = ∃ψ.!(ψ⊥O[ϕ](ψ))⊗ ψ

Lemma 4.3.1. Let ϕ be a µMALL formula. If ϕ is provable in µMALLind then [ϕ] is provable in
LL2.

Lemma 4.3.2. Let ϕ be a LL formula such that ϕ = [ψ] for some µMALL formula ψ. If ϕ is
provable in LL2 then ψ is provable in µMALLind .

From Lemma 4.3.1 and Lemma 4.3.2, we get the following.

Theorem 4.3.1. µMALLind provability can be encoded in LL2.

Therefore, fixed points in a sense are special cases of second-order quantification. Note that we
crucially needed exponentials in order to simulate them. But in the propositional fragment, one can
simulate the exponentials using fixed points.

Definition 4.3.2. The translation [•] : LL → µMALL is defined as follows (we reuse the same
notation from LL2 encoding).

[ϕ] = ϕ [ϕ ∈ A ∪ V ∪ {⊥,1,0,>}]
[ϕ� ψ] = [ϕ]� [ψ] [� ∈ {O,⊗,⊕,N}]

[?ϕ] = µx.⊥⊕ [ϕ]⊕ (xOx)

[!ϕ] = νx.1N[ϕ]N(x⊗ x)

Lemma 4.3.3. Let ϕ be a LL formula. If ϕ is provable in LL then [ϕ] is provable in µMALLind .

Open Question

Let ϕ be a µMALL formula such that ϕ = [ψ] for some LL formula ψ. If ϕ is provable in
µMALLind then is ψ provable in LL?

Therefore, in terms of expressiveness, µMALLind lies between LL and LL2.

4.3.3 Expressiveness in terms of computational content
µMALL is expressive enough to encode several (co)inductive data-types like lists and streams. In
particular, natural numbers can be expressed. Recall that in MALL one can already define the type
Bool := 1⊕ 1 as follows:

true :=

(1)
` 1

(⊕1)
` Bool false :=

(1)
` 1

(⊕2)
` Bool
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We now define the type N := µx.1⊕ x. The set of natural numbers is defined by the isomorphism
n 7→ πn where πn is defined inductively as follows.

π0 :=

(1)
` 1

(⊕1)
` 1⊕ N

(µ)
` N πn :=

πn−15̀
N

(⊕2)
` 1⊗ N

(µ)
` N

Notably one can encode the set of primitive recursive functions over natural numbers inµMALLind .
In order to maintain a natural distinction between input and output, we switch to the two-sided sys-
tem for the rest of this subsection. For example, the successor function will be encoded as a proof of
the sequent N ` N:

succ :=

(id)
N ` N

⊕
N ` 1⊕ N

µ
N ` N

We will first show that natural numbers can be contracted. Since there is only one formula in the
context which works as the invariant, we use the one sequent (µ`) rule.

dup :=

π05̀
N

π05̀
N

(⊗r)` N⊗ N
(1`)

1 ` N⊗ N
(⊕1

`)1⊕ (N⊗ N) ` N⊗ N

succ

5
N ` N

succ

5
N ` N

(⊗r)N,N ` N⊗ N
(⊗`)N⊗ N ` N⊗ N
(µ`)N ` N⊗ N

In the case of circular proofs, the invariant N ⊗ N which occurs naturally in the µMALLind proof
has to be reinstalled using a cut.

π05̀
N

π05̀
N

(⊗r)` N⊗ N
(1`)

1 ` N⊗ N
N ` N⊗ N

succ

5
N ` N

succ

5
N ` N

(⊗r)N,N ` N⊗ N
(⊗`)N⊗ N ` N⊗ N
(cut)

N ` N⊗ N
(⊕`)

1⊕ N ` N⊗ N
(µ`)N ` N⊗ N

Encoding projection and composition is relatively straightforward. We will show that one can
encode primitive recursion over natural numbers. Let h : Nk+1 → N, f : Nk → N, and g : Nk+2 → N
such that

h(0, x) = f(x)

h(y + 1, x) = g(y, h(y, x), x)

Let πf and πg be the proofs corresponding to f and g respectively. Let ψ = (Nk ( N)⊗ N be the
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induction invariant.

π

5
ψ,Nk ` N

πf5
Nk ` N

((r)
` Nk ( N

π05̀
N

(⊗`)` ψ
(1`)

1 ` ψ

πg5
Nk ( N,N,Nk ` N

((r)
Nk ( N,N ` Nk ( N

succ

5
N ` N

(⊗r)
Nk ( N,N,N ` ψ

(⊗`)
Nk ( N,N⊗ N ` ψ

dup

5
N ` N⊗ N

(cut)
Nk ( N,N ` ψ

(⊗`)
ψ ` ψ

(⊕`)
1⊕ ψ ` ψ

(µ`)
N,Nk ` N

where,

π =

(id)
Nk ` Nk

(id)
N ` N

((`)
Nk ( N,Nk ` N

(1`)
Nk ( N,1,Nk ` N

(id)
1 ` 1

(id)
1 ` 1

(⊕`)
1⊕ 1 ` 1

(µ`)
Nk ( N,N,Nk ` N

(⊗`)
ψ,Nk ` N

Again, using circular proofs the encoding is much more straightforward. We have

πf5
Nk ` N

(1`)
1,Nk ` N

N,Nk ` N

πg5
N,Nk,N ` N

(cut)
N,N,Nk,Nk ` N

(⊗`)2

N⊗ N,Nk ⊗ Nk ` N

dup

5
N ` N⊗ N

(cut)
N,Nk ⊗ Nk ` N

dupk

5
Nk ` Nk ⊗ Nk

(cut)
N,Nk ` N

⊕`
1⊕ N,Nk ` N

(µ`)
N,Nk ` N

We note that polymorphic lists and streams are of type µx.⊥⊕ (A⊗ x) and νx.A⊗ x respectively,
where the elements of are of type A. Note that non-wellfounded proofs are more expressive than
circular proofs in this regard. For example, the stream 1 :: 2 :: 3 :: . . . given by the following
µMALL∞ proof cannot be represented by a cut-free circular proof.

π15̀
N

π25̀
N

····
` StreamN

(⊗)
` N⊗ StreamN

(ν)
` StreamN

(⊗)
` N⊗ StreamN

(ν)
` StreamN

In fact, using cut-free circular proofs one can only represents streams that are ultimately periodic.
Finally, we claim that the minimisation operator µ can be encoded using circular proofs in such a way
that it sheds light on the computational aspect of the progress condition.

Let f : Nk+1 → N. Define µf : Nk → N as µf (x) = n if there exists n such that f(i, x) > 0 for all
0 ≤ i ≤ n− 1 and f(n, x) = 0. This is a partial function since for any x, n is not guaranteed to exist.
Minimisation can be encoded using circular proofs such that the progress condition corresponds to
the totality of the function encoded. The encoding itself is beyond the scope of this thesis.
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4.4 Focussing
The focussing result of MALL can be extended to proof systems of µMALL. The first step is to classify
the fixed point operators as positive and negative. Since the dual of a positive formula is a negative
formula (and vice versa) there are basically two choices, either µ is positive and ν is negative, or, µ is
negative and ν is positive.

At this point, we observe that for µMALLind the µ rule is invertible whereas the ν rule is not
in general. If one chooses a clever hypothesis (for example, the unfolding always works) then it is
reversible.

` Γ, µx.ϕ

(id)
` ϕ⊥[νx.ϕ⊥/x], ϕ[µx.ϕ/x]

(ν)
` νx.ϕ⊥, ϕ[µx.ϕ/x]

(cut)
` Γ, ϕ[µx.ϕ/x]

By conventional reasoning, this goes on to indicate that µ is negative and ν is positive. However,
consider the sequent ` > ⊗ 1, µx.x. The focussing discipline forces one to apply the µ rule and as a
result, one is perpetually stuck in a loop. Note that, by classifying µ as negative, one still conserves
the property that provability is invariant under the application of negative rules. However, there is no
clear syntactic rationale to declare µ to be positive (and dually ν to be negative).

There is a denotational intuition for the polarity of fixed points. In denotational interpretations of
polarised linear logic, positive formulas are interpreted as an object of the Eilenberg-Moore category
of the !-comonad of any categorical model of LL. On the other hand, it is natural to interpret νx.ϕ as a
final coalgebra. Therefore, νx.ϕ must be negative and by duality µx.ϕ is positive. It should be further
noted that obtaining the polarity of fixed point formulas from their LL2 encoding is erroneous since the
encoding does not preserve computational content.

At this juncture, we mention that the focussing property for MALL can be refined. We can, in fact,
prove that π is a proof of Γ then either π is a focussed proof or one can permute inference rules of π
to get a focussed proof. As an aside, this shows that focussing does not constrain the computational
meaning of proofs. Back to permutations, this is a more robust characterisation of polarity: negative
rules can be permuted with any other rule and positive rules can only be permuted with other positive
rules. With this in mind, consider the following proof.

`µx.x, νx.x
(µ)

` µx.x, νx.x
(ν)

`µx.x, νx.x

Note that if we permute down infinitely many µ rules, we have a pre-proof that is not a proof
whereas if we permute down infinitely many ν rules, we indeed have a proof.

Theorem 4.4.1 (Focussing Theorem). µMALLind , µMALL�, and µMALL∞ have the focussing
property i.e. ` Γ has a proof iff ` Γ has a focussed proof.
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4.5 Cut-elimination

4.5.1 Cut-elimination of µMALLind

We first note that in Lemma 4.3.2, if the LL2 proof is cut-free then so is the µMALLind proof. There-
fore one has the cut-admissibility of µMALLind for free. Suppose we are given a µMALLind proof of a
sequent ` Γ possibly with cuts. By Lemma 4.3.1, there is a LL2 proof of ` [Γ]. By the cut-elimination
result of LL2, there is a cut-free proof of ` [Γ]. By Lemma 4.3.2, there is a cut-free proof of ` Γ. How-
ever, this uses the cut-elimination result of LL2 as a black box and the use of the encoding prevents
one from refining the cut-admissibility into a cut-elimination theorem.

It is indeed possible to get a properly constructive cut-elimination result by considering the fol-
lowing reduction rule along with the key cases of cut-elimination in MALL.

π15
` Γ, ϕ[µx.ϕ]

(µ)
` Γ, µx.ϕ

π25
` ∆, ψ

π35
` ψ⊥, ϕ⊥[ψ]

(ν)
` ∆, νx.ϕ⊥

(cut)
` Γ,∆

→µMALLind

π15
` Γ, ϕ[µx.ϕ]

π25
` ∆, ψ

π35
` ψ⊥, ϕ⊥[ψ]

(id)
` ψ⊥, ψ

π35
` ψ⊥, ϕ⊥[ψ]

(ν)
` ψ⊥, νx.ϕ⊥

(func)
` ϕ[ψ⊥], ϕ⊥[νx.ϕ⊥]

(cut)
` ψ⊥, ϕ⊥[νx.ϕ⊥]

(cut)
` ∆, ϕ⊥[νx.ϕ⊥]

(cut)
` Γ,∆

Obviously one also needs to add appropriate commutation rules with fixed-point formulas to com-
mutation rules of cut-elimination in MALL. We do not explicitly write them here.

Theorem 4.5.1. Let π be a µMALLind proof. Then there exists π′ such that π →∗
µMALLind π′ and

π′ is cut-free.

4.5.2 Cut-elimination of µMALL∞

In finitary proof theory, a successful cut-elimination procedure guarantees that any proof can be re-
duced to a cut-free proof after a finite number of steps. Via the Curry-Howard correspondence, if
reduced properly, this implies the termination of the program that the proof corresponds to. In the
non-wellfounded setting, what we need to establish is not the termination of the cut-elimination pro-
cedure, but rather its productivity i.e. every finite prefix of the result can be computed in a finite
number of steps. In particular, consider the following function f : N → StreamN that takes a natural
number n and produces the stream n :: n+ 1 :: n+ 2 :: . . . .

f :=

dup

5
N ` N⊗ N

succ

5
N ` N N ` StreamN

(⊗r)N,N ` N⊗ StreamN
(νr)N,N ` StreamN

(⊗`)N⊗ N ` StreamN
(cut)

N ` StreamN

A successful cut-elimination procedure guarantees that for all k, one can inspect n :: n + 1 ::
n+ 2 :: · · · :: n+ k in a finite time. Note that this also shows that circular proofs are not closed under
cut-elimination. Therefore, we will only consider µMALL∞.
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(id)
` νx.xαi, µy.yβi

(ν)
` νx.x, µy.y

(ν)
` νx.x, µy.y

(µ)
` νx.x, µy.y ` νy.y

(cut)
` νx.x

(a) Cut-elimination is not productive

(id)
` νx.x, µx.x

(µ)
` νx.x, µy.y

(ν)
` νx.x, µy.y

(ν)
` νx.x, µy.y ` νy.y

(cut)
` νx.x

(b) Cut-elimination is productive

Figure 4.1: A discrepancy due to non-canonicity of sequent proofs

In finitary proof theory, cut elimination may proceed by reducing topmost cuts but there is no
such thing, in general, as a topmost cut in non-wellfounded proof theory. Instead one relies on the
reduction of bottom-most cuts using a generalized cut-rule, the multicut rule. A multicut is a rule
with arbitrary number of premisses where pairs of premisses constitute a cut rule. One can visualise
this as the flatting of a tree of cuts. The following is an instance of a multicut rule. The blue lines
indicate two cuts that have been flattened.

` Γ, ϕ ` ϕ⊥, ψ ` ψ⊥,∆
(mcut)

` Γ,∆

A µMALL∞ proof (possibly with cuts) can be transformed into a µMALL∞m proof by first assigning
explicit addresses to formulas, then permuting cuts so that they are consecutive, and then applying
the following rule called merge in a bottom-up manner such that there is at most one mcut rule on
every branch.

C
` ∆, F ` Γ, F⊥

(cut)
` ∆,Γ

(cut)
` Σ

→merge
C ` ∆, F ` Γ, F⊥

(mcut)
` Σ

We do not mention other multicut reduction rules since that is not the focus of this thesis. We
denote them by→r where r is the label indicating the type of the reduction and the pair of cut occur-
rences (again, working with occurrences is crucial here) it is acting on. Let→ be the union of all such
→r.

There is a final piece to the puzzle. In order to obtain productivity of the cut-elimination proce-
dure, one needs to restrict the set of reduction sequences and start from pre-proofs that satisfy the
progress condition. A priori, productivity only guarantees that we obtain a pre-proof at the limit of
the cut-elimination procedure. One also needs to ensure that the limit is indeed a proof typically while
considering (the productivity of) higher-order functions, where the result of a cut-elimination may
itself be used as a function.

Definition 4.5.1. Let (πi → πi+1)i<ω be a multicut reduction sequence. The sequence is said to
be fair if for all i ∈ ω such that πi →r π

′ there is some j ∈ ω such that j ≥ i and πj →r πj+1.

Theorem 4.5.2. Let (πi → πi+1)i<ω be a fair reduction sequence such that π0 is a proof. Then
there exists a cut-free proof π ∈ µMALL∞ such that limn→∞ d(π, πn) = 0.

The proof of Theorem 4.5.2 is especially intricate. There are two things to be shown: (i) fair
multicut reductions are strongly convergent (ii) the limit is progressing. To obtain both of these, it
is crucial that π0 satisfies the progress condition. Both are proofs by contradiction. For (i), assuming
that there exists an infinite fair sequence of multicut commutation steps, one can derive the proof
of the empty sequent in a suitably defined proof-system S. For (ii), assuming that the limit is not
progressing, one gets a proof of a sequent with a list of 0s in the aforementioned proof system S. In
both cases, the contradiction is dependent on the soundness of S which is established by a semantic
argument.

Before concluding, we mention that there have been some very recent advances in generalising
Theorem 4.5.2. First, note that although the progress condition is crucial for proving Theorem 4.5.2
but it is not necessary for the productivity of cut-elimination. For example, the pre-proof in Fig-
ure 4.1b although not progressing can be productively reduced. One can generalise the progress
condition to the so-called bouncing-thread progress condition in order to capture some (but not
all) such proofs.
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Theorem 4.5.3. Let (πi → πi+1)i<ω be a fair reduction sequence such that π0 is a pre-proof sat-
isfying the bouncing-thread progress condition. Then there exists a cut-free proof π ∈ µMALL∞

such that limn→∞ d(π, πn) = 0.

The bouncing-thread progress condition, however, is not robust under the permutation of infer-
ence rules. For example, the pre-proof in Figure 4.1a does not satisfy the bouncing thread progress
condition although it is permutatively equivalent to the one in Figure 4.1b.

Notes
Fischer-Ladner closure was first introduced in the context of propositional dynamic logic [FL79].
Early approaches [Gir92] to adding fixed points to linear logic considered a sort of a Y -combinator
that could not discriminate between a least and greatest fixed point.

µMALLind with first order predicates and equality was first introduced by Baelde and Miller [BM07,
Bae08]. Baelde established its focussing property, expressivity, and cut-elimination (initially an indi-
rect proof via LL2 and then a direct proof [Bae12] using candidates of reducibility). Subsequently,
ludics [BDS15] and coherence space semantics [EJ21], on the semantic side, and deep inference
systems [CG14], on the syntactic side, have been studied for µMALLind . On a related note, game
semantics [Cla09a, Cla09b, Cla10] has been studied for a wellfounded calculus of µLJ.

Santocanale [San02] introduced a circular proof system for the additive fragment of µMALL and
showed a correspondence to simple computations on (co)inductive data. Along with Fortier [FS13,
For14], he subsequently established cut-elimination for that fragment. Non-wellfounded and circular
proof systems for µMALL were introduced in [BDS16] which studied µMALL∞ focussing and cut-
elimination, the latter being especially challenging since the combinatorial and topological techniques
of [FS13] do not scale to the multiplicatives. Bouncing threads were introduced in [BDKS22].

The decidability of the progress condition of µMALL� was shown in [Dou17] and the hardness
result was proved in [NST19]. For an abstract categorical treatment of the progress condition in
circular proofs, see [Weh21].

On the Curry-Howard side, a corollary of the result in [KPP21] is that µMALL� is at least as
expressive as Gödel’s System T and [DP22, CP22] explores fragments of µMALL� and µMALL∞ as
session-typed processes.

Finally, we remark that non-wellfounded proof theory is not a peculiarity of fixed point logics or of
logics that express some form of inductive reasoning. A notable example is a provability logic called
Gödel-Löb logic [Sha14].
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Chapter 5

Phase semantics of µMALL systems
This part, consisting of Chapter 5 and Chapter 6, is dedicated to studying the provability of the differ-
ent proof systems of µMALL introduced in Chapter 4. In Chapter 5, we will explore the truth semantics
and in Chapter 6, we will explore the complexity of the decision problem “Given Γ, is Γ provable?” for
the various systems. The results in this part indicate both familiar similarities and striking differences
between µMALL and fixed-point logics in other settings.

In this chapter, we dedicate ourselves to the phase semantics of µMALL. In Section 5.1 we devise
sound and complete phase semantics for µMALLind . As usual, this gives us a (non-effective) cut-
admissibility by a technique due to [Oka96, Oka99]. Therefore this serves as an alternate proof of
µMALLind cut-admissibility. In Section 5.2, we introduce a family of wellfounded infinitely branching
calculi for µMALL that enjoy very natural phase semantics. This serves as a bridge towards exploring
the phase semantics of the circular and non-wellfounded calculi which we discuss in Section 5.4.

5.1 µMALLind phase semantics
We start by recalling Theorem 4.3.1 i.e. one can faithfully encode µMALLind in LL2. Therefore, one
can use LL2 phase semantics [Oka96, Oka99] to define the phase semantics of µMALLind . We will
briefly discuss the phase semantics of LL2 now.

Fix a phase spaceM = (M, 1,⊥⊥). We denote the set of facts by XM. We enrich the phase model
by a particular subset of XM which we will denote by D such that the interpretation of LL2 formulas
are elements of D. We will now set up the definitions required to specify D.

Definition 5.1.1. For any set of factsD ⊆ XM, the set of contexts CD is given by the following
grammar

f, g ::= [ ] | X ∈ D | f � g

where � ∈ {⊗,O,N,⊕}. Substitution of contexts is defined as expected: for any X ∈ D,
f [X] ∈ D is f where every occurrence of [ ] has been replaced by X.

Definition 5.1.2. D ⊆ XM is said to be LL2-closed if

• {⊥⊥,⊥⊥ ⊥,M,M⊥} ⊆ D;

• D is closed under the operations (•)⊥,⊗,O,N, and⊕; and

• for all f ∈ CD,
⋂
X∈D f [X] ∈ D and

(⋃
X∈D f [X] ∈ D

)⊥⊥
.

The phase model of LL2 is a 3-tuple (M,D, V ) whereM is a phase space,D is an LL2-closed set
of facts, and V is a D-valuation i.e. a map of the form V : A ∪ V → D. Given a D-valuation V ,
define the enrichment V [x 7→ X] of V as follows:

V [x 7→ X](y) :=

{
V (y) if x 6= y;

X otherwise.

Note that V [x1 7→ X1] . . . [xn 7→ Xn] = V [xπ(1) 7→ Xπ(1)] . . . [xπ(n) 7→ Xπ(n)] for any per-
mutation π of [n]. Therefore the sequence of enrichments can be treated as a set. We write it as
V [x1 7→ X1, . . . , xn 7→ Xn].

70
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The interpretation is now easy to define. The interpretation of MALL operators and units are stan-
dard. Quantifier formulas are interpreted as follows.

J∃2x.ϕ(x)KV :=

( ⋃
X∈D

JϕKV [x 7→ X]

)⊥⊥
J∀2x.ϕ(x)KV :=

⋂
X∈D

JϕKV [x 7→ X]

Note that the closure properties of D ensure that the codomain of the interpretation is D.

Theorem 5.1.1. Let ϕ be an LL2 formula. Then, ϕ is provable iff for all phase models (M,⊥⊥
,D, V ), we have 1 ∈ JϕKV where 1 is the unit of the monoid.

Letϕ be aµMALL formula. Then, by Theorem 4.3.1 and Theorem 5.1.1,ϕ is provable inµMALLind ⇐⇒
[ϕ] is provable in LL2 ⇐⇒ 1 ∈ J[ϕ]K. Therefore, J[•]K is a sound and complete interpretation for
µMALLind .

5.1.1 Direct interpretation of µMALL formulas
The above trick is barely insightful since it relies on the phase semantics of LL2 as a black box. In
this section, we essentially peek into this black box and develop a direct interpretation of µMALL with
minimal requirements. We begin by observing that the set of all facts of a phase space induces a
complete lattice.

LetM = (M, 1,⊥⊥) be a phase space and XM be the set of all facts.

Proposition 5.1.1. XM is closed under arbitrary N and⊕ operations.

Proof. Let {Xi}i∈I be a set of facts. Let U =
⊕

i∈I{Xi}. Then

U⊥ =

(⋃
i∈I

Xi

)⊥⊥⊥

=

(⋃
i∈I

Xi

)⊥
[By Proposition 3.3.1.5]

Therefore, U⊥⊥ = U . So, U is a fact. Let V =
⋂
i∈I Xi. Then,

V =
⋂
i∈I

X⊥⊥i [Xis are facts]

=

(⋃
i∈I

X⊥i

)⊥
[By Proposition 3.3.1.6]

Therefore, V is a fact (since it is of the form Y ⊥ for some Y ).

Therefore, all subsets ofXM have both a supremum and an infimum inXM. We have the following.

Corollary 5.1.1.1. (XM,⊆,⊕,N,∅⊥⊥,M) is a complete lattice.

Therefore, by Tarski’s theorem (Theorem 2.0.2), any monotonic function ξ : XM → XM has a
fixed point. Furthermore, the least fixed point µξ (respectively, the greatest fixed point νξ by duality)
is given by

µξ =
⋂

X∈XM

{X | ξ(X) ⊆ X} ; νξ =

( ⋃
X∈XM

{X | X ⊆ ξ(X)}

)⊥⊥
.

In order to extend the phase semantics of MALL to µMALLind we extend valuations to variables i.e.
for any valuation V , dom(V ) = A ∪ V (as we already did for LL2) and define JF KV by induction on F
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with the usual interpretation of atoms, units, and multiplicative-additive connectives and as follows
for fixed points formulas:

JxKV = V (x) x ∈ V

Jµx.ϕKV =
⋂

X∈XM

{
X | JϕKV [x7→X] ⊆ X

}

Jνx.ϕKV =

( ⋃
X∈XM

{
X | X ⊆ JϕKV [x7→X]

})⊥⊥

This interpretation is sound but the completeness is not clear. Indeed, not all facts necessarily
have a pre-image, therefore JF KV [x 7→X] does not exactly correspond to syntactic substitution and the
syntactic model is not a phase model. We need to allow strict subsets of X for building fixed points.
As above in the case of LL2, one cannot consider any subset of X for this purpose and we shall require
that they satisfy some closure properties. We essentially restrict the codomain of J•KV to subspaces
of XM closed under µMALL operations using the same technique as LL2.

Recall CD is the set of contexts. For f ∈ CD, define µf =
⋂
X∈D{X | f(X) ⊆ X} and νf =(⋃

X∈D{X | X ⊆ f(X)}
)⊥⊥

.

Definition 5.1.3. D ⊆ XM is said to be µ-closed if

• {⊥⊥,⊥⊥ ⊥,M,M⊥} ⊆ D;

• D is closed under the operations (•)⊥,⊗,O,N, and⊕; and

• for all f ∈ CD, µf ∈ D and νf ∈ D.

A phase space M equipped with a µ-closed set of facts D is called a µ-phase space. A µ-
phase space along with aD-valuation is called a µ-phase model. The µ-phase semantics J•K is a
function that takes a µMALL pre-formula ϕ and returns a fact in D. Note that Jµx.ϕKV and Jνx.ϕKV
are defined as before exceptX ranges overD. A priori, the semantics of pre-formula is only an element
of XM. The closure properties of D ensure JF KV ∈ D for every formula F and D-valuation V .

Proposition 5.1.2. For all µMALL pre-formulas ϕ, all phase models (M,D, V ), JϕKV ∈ D.

Proof. By simple induction on preformulas. The base case holds since the codomain of V is D and
Definition 5.1.3 ensures that the interpretations of the units are in D. The induction case has two
subcases.

• Suppose ϕ = ψ � ψ′ for some MALL operator �. By induction hypothesis JψKV and Jψ′KV are
in D and by the closure properties of D, JψKV � Jψ′KV ∈ D.

• Suppose ϕ = µx.ψ. Note that JϕKV = µf where f = JψKV [x 7→[]]. By induction hypothesis
JψKV [x7→[]] is an element of CD. Therefore, by the closure property of D, µf ∈ D.

We will prove the monotonicity of µMALL operations. For that, we need to prove a basic property
of facts.

Proposition 5.1.3. If S, T, U, V are subsets of M such that S ⊆ T and U ⊆ V then SU ⊆ TV .

Proof. Suppose x = su ∈ SU such that s ∈ S and u ∈ U . Then, s ∈ T and u ∈ V . Hence
x = st ∈ TV .

Lemma 5.1.1 (Monotonicity). Let F be a µMALL pre-formula with at most one free variable x.
If X ⊆ Y then JϕKV [x 7→X] ⊆ JϕKV [x7→Y ].

Proof. By induction on ϕ. The base case is when ϕ is an atom, a variable, or a unit which are trivial.

• Suppose ϕ = p ∈ A ∪ {⊥,1,0,>}. Then, JϕKV [x 7→X] = JϕKV [x 7→Y ] = V (p).

• Suppose ϕ = y ∈ V . There are two cases. If y 6= x, then JϕKV [x 7→X] = JϕKV [x 7→Y ] = V (y).
Otherwise, we have JϕKV [x 7→X] = X ⊆ Y = JϕKV [x 7→Y ].
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There are several subcases for the induction case.

• Suppose ϕ = ψ ⊗ ψ′.

JψKV [x 7→X] ⊆ JψKV [x7→Y ]; Jψ′KV [x7→X] ⊆ Jψ′KV [x 7→Y ] [By IH]

⇒ JψKV [x7→X]Jψ′KV [x7→X] ⊆ JψKV [x7→Y ]Jψ′KV [x 7→Y ] [By Proposition 5.1.3]

⇒ (JψKV [x 7→X]Jψ′KV [x 7→X])
⊥⊥
⊆ (JψKV [x 7→Y ]Jψ′KV [x 7→Y ])

⊥⊥
[By Proposition 3.3.1]

⇒ JϕKV [x 7→X] ⊆ JϕKV [x 7→Y ]

• Suppose ϕ = ψOψ′.

JψKV [x 7→X] ⊆ JψKV [x 7→Y ]; Jψ′KV [x 7→X] ⊆ Jψ′KV [x 7→Y ] [By IH]

⇒ (JψKV [x7→Y ])
⊥
⊆ (JψKV [x7→X])

⊥
; (Jψ′KV [x 7→Y ])

⊥
⊆ (Jψ′KV [x 7→X])

⊥
[By Proposition 3.3.1]

⇒ (JψKV [x7→Y ])
⊥

(Jψ′KV [x 7→Y ])
⊥
⊆ (JψKV [x 7→X])

⊥
(Jψ′KV [x 7→X])

⊥
[By Proposition 5.1.3]

⇒
(

(JψKV [x7→X])
⊥

(Jψ′KV [x 7→X])
⊥)⊥

⊆
(

(JψKV [x 7→Y ])
⊥

(Jψ′KV [x 7→Y ])
⊥)⊥

[By Proposition 3.3.1]

⇒ JϕKV [x7→X] ⊆ JϕKV [x 7→Y ]

• Suppose ϕ = ψNψ′.

JψKV [x 7→X] ⊆ JψKV [x 7→Y ]; Jψ′KV [x 7→X] ⊆ Jψ′KV [x 7→Y ] [By IH]

⇒ JψKV [x 7→X] ∩ Jψ′KV [x 7→X] ⊆ JψKV [x7→Y ] ∩ Jψ′KV [x 7→Y ]

⇒ JϕKV [x 7→X] ⊆ JϕKV [x 7→Y ]

• Suppose ϕ = ψ ⊕ ψ′.

JψKV [x 7→X] ⊆ JψKV [x 7→Y ]; Jψ′KV [x 7→X] ⊆ Jψ′KV [x7→Y ] [By IH]

⇒ JψKV [x7→X] ∪ Jψ′KV [x 7→X] ⊆ JψKV [x 7→Y ] ∪ Jψ′KV [x 7→Y ]

⇒ (JψKV [x 7→X] ∪ Jψ′KV [x 7→X])
⊥⊥
⊆ (JψKV [x7→Y ] ∪ Jψ′KV [x 7→Y ])

⊥⊥
[By Proposition 3.3.1]

⇒ JϕKV [x 7→X] ⊆ JϕKV [x 7→Y ]

• Suppose ϕ = µy.ψ. Observe that y 6= x since we assumed that x is not a bound vari-
able in ϕ. Now by hypothesis, for any fact Z, JψKV [x7→X,y 7→Z] ⊆ JψKV [x 7→Y,y 7→Z]. There-
fore for every Z such that JψKV [x7→Y,y 7→Z] ⊆ Z we have JψKV [x 7→X,y 7→Z] ⊆ Z. Therefore,
{Z | JψKV [x7→Y,y 7→Z] ⊆ Z} ⊆ {Z | JψKV [x 7→X,y 7→Z] ⊆ Z}. Hence,

⋂
JψKV [x 7→X,y 7→Z]⊆Z{Z} ⊆⋂

JψKV [x 7→Y,y 7→Z]⊆Z{Z}. We conclude JϕKV [x 7→X] ⊆ JϕKV [x 7→Y ].

• Suppose F = νy.ψ. As before we comment that y 6= x and therefore by hypothesis, for any fact
Z, JψKV [x 7→X,y 7→Z] ⊆ JψKV [x 7→Y,y 7→Z]. Therefore for every Z such that Z ⊆ JψKV [x7→X,y 7→Z] we
haveZ ⊆ JψKV [x 7→X,y 7→Z]. Therefore, {Z | Z ⊆ JψKV [x 7→X,y 7→Z]} ⊆ {Z | Z ⊆ JψKV [x 7→Y,y 7→Z]}.
Hence,

⋃
Z⊆JψKV [x7→X,y 7→Z]{Z} ⊆

⋃
Z⊆JψKV [x 7→Y,y 7→Z]{Z}. Applying Proposition 3.3.1 twice, we

conclude JϕKV [x 7→X] ⊆ JϕKV [x 7→Y ].

An application of monotonicity is showing that the interpretation of the fixed point operators are
indeed fixed points in the mathematical sense.

Proposition 5.1.4. Let D be µ-closed and f ∈ FD. Then µf and νf are the least and greatest
fixed point of f in D.
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Proof. We show it for µf . First of all, {X | f(X) ⊆ X} is non-empty sinceM⊥ ∈ D (also by Propo-
sition 5.1.1). First, we show that it is indeed a fixed point. Observe that µf ⊆ X for anyX ∈ D which
is a pre-fixed point of f . By Lemma 5.1.1, we apply f on both sides. So f(µf ) ⊆ f(X) for all X ∈ D
satisfying f(X) ⊆ X and therefore f(µf ) ⊆ ∩X∈D{X | f(X) ⊆ X} = µf . So µf is a prefixed point.

But then, since µf ∈ D, and thanks to the closure properties of D, so is f(µf ). By monotonicity
of f , one gets that f(f(µf )) ⊆ f(µf ), ensuring that f(µf ) is a prefixed point of f . But µf is the least
prefixed point; so, we conclude that µf ⊆ f(µf ). Therefore, µf = f(µf ). Finally, recall µf ⊆ X for
any pre-fixed point X in D, so it is the least fixed point in D.

Note that Proposition 5.1.4 cannot be proved directly by Theorem 2.0.2 sinceD is not necessarily
a complete lattice. Moreover, it does not also imply that D is a complete lattice by the converse of
Theorem 2.0.2 since we show that it has fixed points of a particular kind of monotonic function, not
any arbitrary monotonic function.
Given a valuation V , define

V ⊥(p) =

{
V (p) if p ∈ A;

V (p)
⊥ if p ∈ V.

Note that we have V ⊥⊥ = V and V [x 7→ X]
⊥

= V ⊥[x 7→ X⊥].

Lemma 5.1.2 (Duality preservation). Let ϕ be a µMALL preformula. Then, Jϕ⊥KV
⊥

= (JϕKV )⊥.

Proof. By induction on ϕ. The base case is when ϕ is an atom, a variable or a unit.

• Suppose ϕ = a ∈ A. Then, Jϕ⊥KV
⊥

= V ⊥(a⊥) = V (a⊥) = V (a)
⊥

= (JϕKV )⊥.

• Suppose ϕ = x ∈ V . Then, Jϕ⊥KV
⊥

= V ⊥(a⊥) = V ⊥(x) = V (x)
⊥

= (JϕKV )⊥.

• The case for the units is easy.

There are several subcases for the induction case.

• Suppose ϕ = ψ ⊗ ψ′.

J(ψ ⊗ ψ′)⊥KV
⊥

= Jψ⊥Oψ′⊥KV
⊥

= ((Jψ⊥KV
⊥

)
⊥

(Jψ′⊥KV
⊥

)
⊥

)
⊥

= (Jψ⊥⊥KV Jψ′⊥⊥KV )
⊥

[By IH]

= (JψKV Jψ′KV )
⊥

= (JψKV Jψ′KV )
⊥⊥⊥

[By Proposition 3.3.1]

= (J(ψ ⊗ ψ′)KV )⊥

Negating both sides we have, (J(ψ ⊗ ψ′)⊥KV
⊥

)
⊥

= (J(ψ ⊗ ψ′)KV )
⊥⊥

. Hence, (Jψ⊥Oψ′⊥KV
⊥

)
⊥

=

J(ψ⊥Oψ′⊥)
⊥

KV . This takes care of the case when the outermost connective of ϕ is a O.

• Suppose F = ψ′ ⊕ ψ′.

J(ψ′ ⊕ ψ′)⊥KV
⊥

= Jψ⊥Nψ′⊥KV
⊥

= Jψ⊥KV
⊥
∩ Jψ′⊥KV

⊥

= (JψKV )
⊥ ∩ (Jψ′KV )

⊥
[By IH]

= (JψKV ∪ Jψ′KV )
⊥

= (JψKV ∪ Jψ′KV )
⊥⊥⊥

[By Proposition 3.3.1]

= (Jψ ⊕ ψ′KV )
⊥

As in the previous case, negating both sides, we derive the case when the outermost connective
of ϕ is a N.
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• Suppose ϕ = µx.ψ.

J(µx.ψ)
⊥KV

⊥
= Jνx.ψ⊥KV

⊥

=

( ⋃
X∈D

{
X | X ⊆ Jψ⊥KV

⊥[x 7→X]
})⊥⊥

=

( ⋃
X∈D

{
X | X ⊆ Jψ⊥K(V [x 7→X⊥])

⊥})⊥⊥

=

( ⋃
X∈D

{
X | X ⊆ (JψKV [x 7→X⊥])

⊥
})⊥⊥

[By IH]

=

( ⋂
X∈D

{
X⊥ | X ⊆ (JψKV [x 7→X⊥])

⊥
})⊥

[By Proposition 3.3.1]

=

( ⋂
X∈D

{
X⊥ | JψKV [x 7→X⊥] ⊆ X⊥

})⊥
[By Proposition 3.3.1]

=

( ⋂
X∈D

{
X | JψKV [x 7→X] ⊆ X

})⊥
[Closure property of D]

= (Jµx.ψKV )
⊥

As in the previous case, negating both sides, we derive the case when the outermost operator of
ϕ is a ν.

5.1.2 Soundness and completeness
In this subsection, we will prove that with regards to µMALLind , the interpretation of µMALL given
above is sound and complete.

Soundness for wellfounded systems is easy to prove since one can rely on induction on wellfounded
trees. The interesting cases are when the inference rule applied on the root sequent is a fixed point
rule.

Lemma 5.1.3 (Soundness for µMALLind ). If ` Γ then for all µ-phase models (M,D, V ), 1 ∈
JΓKV .

Proof. Fix an arbitrary µ-phase model (M,D, V ). Given a proof π of ` Γ we will induct on π. The
case when the last rule is a MALL connective follows from the proof of Theorem 3.3.1. In this proof,
we only detail the fixed point cases.

Suppose it is a µ rule. We have that Γ = Γ′, µx.ϕ.

` Γ′, ϕ[µx.ϕ/x]
(µ)

` Γ′, µx.ϕ

Assume that we have proved Jϕ[µx.ϕ/x]KV ⊆ Jµx.ϕKV . We have the following:

(
Jµx.ϕKV

)⊥ ⊆ (Jϕ[µx.ϕ/x]KV
)⊥

[Proposition 3.3.1.3]

⇒
(
JΓ′KV

)⊥
.
(
Jµx.ϕKV

)⊥ ⊆ (JΓ′KV )⊥.(Jϕ[µx.ϕ/x]KV
)⊥

⇒
(
JΓ′KV

⊥
.Jϕ[µx.ϕ/x]KV

⊥)⊥ ⊆ (JΓ′KV ⊥.Jµx.ϕKV
⊥)⊥

[Proposition 3.3.1.3]

⇔ JΓ′Oϕ[µx.ϕ/x]KV ⊆ JΓ′Oµx.ϕKV

⇒ 1 ∈ JΓ′Oµx.ϕKV [IH]
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Therefore, it suffices to prove Jϕ[µx.ϕ/x]KV ⊆ Jµx.ϕKV . Observe that Jϕ[µx.ϕ/x]KV = JϕKV [x 7→Jµx.ϕKV ].
LetX ∈ D such that JϕKV [x 7→X] ⊆ X (we thus have Jµx.ϕK ⊆ X). We need to show that JϕKV [x 7→Jµx.ϕKV ] ⊆
X . It suffices to show that JϕKV [x 7→Jµx.ϕKV ] ⊆ JϕKV [x 7→X] which is true by Lemma 5.1.1.

Now suppose the last rule is a ν rule i.e. Γ = Γ′, νx.ϕ.

` Γ′, ψ ` ψ⊥, ϕ[ψ/x]
(ν)

` Γ′, νx.ϕ

We need to show that 1 ∈ JΓ′Oνx.ϕKV which by Proposition 3.3.2 is equivalent to showing
JΓ′KV ⊥ ⊆ Jνx.ϕKV . By hypothesis, we have that 1 ∈ JΓ′OψKV which is similarly equivalent to
JΓ′KV ⊥ ⊆ JψKV . Therefore it suffices to show that JψKV ⊆ Jνx.ϕKV . Wlog assume that ψ is a closed
formula. We have the following:

1 ∈ Jψ⊥Oϕ[ψ/x]KV [IH]

⇔
(
Jψ⊥KV

)⊥ ⊆ Jϕ[ψ/x]KV [Proposition 3.3.2]

⇔ JψKV ⊆ Jϕ[ψ/x]KV [Lemma 5.1.2]

⇔ JψKV ⊆ JϕKV [x 7→JψKV ]

⇒ JψKV ⊆ Jνx.ϕKV

Completeness for fixed point logics is generally quite difficult since analyticity does not guaran-
tee a subformula property. One is faced with a similar cul de sac in proving the cut-elimination of
µMALLind since it is not straightforward to define the notion of the complexity of the cut formula
which reduces with each step of cut-elimination. This problem is solved in [Bae12] by invoking a
technique similar to the Tait-Girard reducibility candidates (originally formulated to establish certain
properties of various typed lambda calculi [Tai75, Gir71]). It is not surprising that in order to prove
completeness one needs to invoke reducibility candidates since the completeness result will give cut
admissibility as a corollary.

Recall that Pr(ϕ) is the set of all sequents Γ such that ` Γ, ϕ is cut-free provable.

Definition 5.1.4. Let (M, V ) be the syntactic model. Given a µMALL formulaϕ, the reducibility
candidates of ϕ, denoted 〈ϕ〉, are given by

{X ∈ XM | ϕ⊥ ∈ X ⊆ Pr(ϕ)}.

Proposition 5.1.5. X ∈ 〈ϕ〉 ⇐⇒ X⊥ ∈ 〈ϕ⊥〉

Proof. Let X ∈ 〈ϕ〉. Then {ϕ⊥} ⊆ X =⇒ X⊥ ⊆ {ϕ⊥}⊥ = Pr(ϕ⊥). Also, X ⊆ Pr(ϕ) =⇒
Pr(ϕ)

⊥
= Pr(Pr(ϕ)) ⊆ X . But ϕ ∈ Pr(Pr(ϕ)). Hence done.

We are now ready to define the µ-syntactic model.

Definition 5.1.5. The µ-syntactic model, denoted (µMALL•,∅, ·,⊥⊥, V ), is defined as:

• (µMALL•,∅, ·) is the free commutative monoid generated by all formulas.

• ⊥⊥= Pr(⊥).

• V (p) = Pr(p) for all p ∈ A ∪ V .

• D =
⋃
ϕ∈Form〈ϕ〉 where Form is the set of all µMALL formulas.

Observe that⊥⊥= Pr(⊥) ∈ D and thatD indeed contains⊥⊥⊥, µMALL• and µMALL•
⊥. It is not a

priori obvious that the µ-syntactical model is indeed a µ-phase model. The following two lemmas not
only help to establish that sanity check but do much more: they also prove completeness.

Let ϕ be a preformula with m free variables x = (x1, . . . , xm). Let ψ = (ψ1, . . . , ψm) be an
m-tuple of formulas and let X = (X1 . . . Xm) be an m-tuple of facts such that Xi ∈ 〈ψi〉.

Lemma 5.1.4 (Adequation Lemma for µMALLind ). JϕKV [x 7→X] ⊆ Pr(ϕ[ψ/x]).

Proof. By induction on ϕ. The proof is similar to the proof of Lemma 3.3.1 except for the following
fixed point cases.
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Case 1. Suppose ϕ = µy.ϕ′. Let ξ = µy.ϕ′[ψ/x]. In the proof of Lemma 5.1.3, we showed that
for any formula ϕ0, Pr(ϕ0[µx.ϕ0/x]) ⊆ Pr(µx.ϕ0). Therefore, Pr(ϕ′[ψ/x, ξ/y]) ⊆ Pr(ξ). Let Y ∗ =

Jϕ′KV [x 7→X,y 7→Pr(ξ)]. By induction hypothesis and the fact that Pr(ϕ0) ∈ 〈ϕ0〉 for all formulas ϕ0, we
have the following.

Y ∗ ⊆ Pr(ϕ′[ψ/x, ξ/y]) (5.1)

Therefore, it is enough to show that Jµy.ϕ′KV [x 7→X] ⊆ Y ∗. Take Γ ∈ Jµy.ϕ′KV [x 7→X]. For any fact
Y ∈ D, to show Γ ∈ Y it is enough to show Jϕ′KV [x 7→X,y 7→Y ] ⊆ Y . Therefore we need to check that
Jϕ′KV [x 7→X,y 7→Y ∗] ⊆ Y ∗ = Jϕ′KV [x 7→X,y 7→Pr(ξ)]. This follows by Lemma 5.1.1 from Equation (5.1).

Case 2. Supposeϕ = νy.ϕ′. For any fact Y , defineZY = Jϕ′KV [x7→X,y 7→Y ]. Let Γ ∈
⋃
{Y ∈ D | Y ⊆ ZY }.

Therefore, there exists, Y ∗ ∈ D such that Γ ∈ Y ∗ ⊆ ZY ∗ . Since Y ∗ ∈ D, Y ∗ ∈ 〈ξ〉 for some formula
ξ. By induction hypothesis, Jϕ′KV [x 7→X,y 7→Y ∗] ⊆ Pr(ϕ′[ψ/x, ξ/y]).

We will now show that Pr(ϕ′[ψ/x, ξ/y]) ⊆ Pr(ϕ[ψ/x]). Let ∆ ∈ Pr(ϕ′[ψ/x, ξ/y]). If we show
that ξ⊥ ∈ Pr(ϕ′[ψ/x, ξ/y]), we have the following.

` ∆, ϕ′[ψ/x, ξ/y]

` ξ⊥, ϕ′[ψ/x, ξ/y]
(func)

` (ϕ′[ψ/x, ξ/y])
⊥
, ϕ′[ψ/x, ϕ′[ψ/x, ξ/y]/y]

(ν)
` ∆, νx.ϕ′[ψ/x]

In order to show ξ⊥ ∈ Pr(ϕ′[ψ/x, ξ/y]), we use the induction hypothesis to reduce the problem to
showing ξ⊥ ∈ Jϕ′KV [x 7→X,y 7→Y ∗] which is true since Y ∗ ∈ 〈ξ〉. Therefore we have,

Γ ∈ Pr(νy.ϕ′[ψ/x])

⇒
⋃
{Y ∈ D | Y ⊆ ZY } ⊆ Pr(νy.ϕ′[ψ/x])

⇒
(⋃
{Y ∈ D | Y ⊆ ZY }

)⊥⊥
⊆ Pr(νy.ϕ′[ψ/x])

This concludes our proof.

Lemma 5.1.5. ϕ⊥(G/x) ∈ JϕKV [x 7→X].

Proof. Observe that Lemma 5.1.4 and Proposition 5.1.5 imply Jϕ⊥KV [x 7→X⊥] ⊆ Pr(ϕ⊥(G⊥/x)).
Therefore, {ϕ⊥(G⊥/x)}Jϕ⊥KV [x 7→X⊥] ⊆ {ϕ⊥(G⊥/x)}.Pr(ϕ⊥(G⊥/x)) ⊆ Pr(⊥) =⊥⊥. By Propo-

sition 3.3.1.1, ϕ⊥(G⊥/x) ⊆
(
Jϕ⊥KV [x 7→X⊥]

)⊥
which is JϕKV [x 7→X] by Lemma 5.1.2.

Observe that by Lemma 5.1.4 and Lemma 5.1.5 we have JϕKV [x 7→X] ∈ 〈ϕ(G/x)〉. This ensures
that D is µ-closed. Consequently, (µMALL•,∅, ·,⊥⊥, V ) is a µ-phase space model.

Theorem 5.1.2 (Cut-free completeness for µMALLind ). If for any µ-phase model (M,D, V ), 1 ∈
JΓKV then `cf Γ.

Corollary 5.1.2.1. µMALLind admits cuts.

Note that this is an alternate proof of Theorem 4.5.1. To exhibit the power of the phase semantics,
we prove Lemma 4.3.3 (which shows that exponentials can be encoded with fixed points) semantically.

Proposition 5.1.6. Let (M,⊥⊥, V ) be a phase model. Extend it to an LL phase modelM = (M,⊥⊥
, V, J) and a µ-phase modelM′ = (M,⊥⊥, V,D) such that J ∈ D. Then, for any LL formula ϕ,
JϕKV ⊆ J[ϕ]KV .

Proof. First note that since J ∈ D, JϕKV ∈ D for LL formula ϕ. Now we will show our result. We will
induct on ϕ. The base cases and the cases where ϕ = ψ � ψ′ are trivial. Suppose ϕ =!ψ. It suffices
to show

I ∩ JψKV
⊥⊥ ⊆

⋃{
X ∈ D | X ⊆ J1N(x⊗ x)N[ψ]KV [x7→X]

}
.

Now J1N(x ⊗ x)N[ψ]KV [x 7→X] = ⊥⊥ ∩ (XX)
⊥⊥ ∩ J[ψ]KV . Therefore, we need to show that P⊥⊥ ⊆

⊥⊥ ∩ (PP )
⊥⊥ ∩ J[ψ]KV where P = I ∩ JψKV . Let p ∈ P . Since p ∈ J , {p}⊥ ⊆ {pp}⊥. Hence

P⊥⊥(PP )
⊥⊥. Now, we are done by hypothesis. By duality this also covers the case ϕ =?ψ. Hence

done.
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By completeness of the phase semantics of LL and µMALLind , we have Lemma 4.3.3.

5.1.3 Closure ordinals
Closure ordinals are a standard measure of the complexity of any (class of) monotone functions. The
closure ordinal of a fixed point formula is essentially the closure ordinal of the corresponding monotone
function in the truth semantics. In [DG02], the closure ordinal is construed as a function of the size
of the finite model. The study of closure ordinals of modal logic formulas is a young and exciting
area of research [Cza10, AL13, GS17]. It departs from the previous notion of closure ordinals in its
model-independence. In this case, closure ordinal really serves as a measure of the complexity of a
formula.

Definition 5.1.6. Let ϕ be a preformula such that x ∈ fv(ϕ). Fix a µ-phase modelM. We define
the closure ordinal of ϕ with respect to x and the µ-phase modelM, denoted OM(ϕ), as the
closure ordinal of λX.JϕKV [x 7→X]. The closure ordinal of ϕwith respect to x (across all models)
is defined asO(ϕ) := supM{OM(ϕ)}. Finally, ϕ is said to be constructive ifO(ϕ) ≤ ω.

Spelt out more explicitly, define Θϕ
α for all ordinals α as follows.

Θϕ
0 = ∅⊥⊥

Θϕ
α+1 = JϕKV [x 7→Θϕα]

Θϕ
α =

(⋃
Θϕ
β

)⊥⊥
if α is a limit ordinal.

Then, the closure ordinal of ϕ with respect to x is the smallest ordinal such that Θϕ
α = Θϕ

α+1. Fol-
lowing the proof of Theorem 2.0.4, we can show that for any pre-formula ϕ, the sequence {Θϕ

α}α∈Ord

is ultimately stationary. Consequently, for all µ-phase models M,OM(ϕ) exists and Jµx.ϕK = Θϕ
OM(ϕ).

Example 5.1.1. Observe that

ΘaNx
1 = JaNxKV [x 7→ΘaNx

0 ]

= V (a) ∩ΘaNx
0

= V (a) ∩ JaNxKV [x 7→ΘaNx
0 ]

= V (a) ∩ (V (a) ∩∅⊥⊥)

= ∅⊥⊥

= ΘaNx
0

Therefore,O(aNx) = 0.

In the tradition of µ-calculus, the name ‘constructive’ is used loosely, motivated by the observation
that if O(ϕ) is a finite ordinal (i.e. strictly below ω) for any pre-formula ϕ, then µx.ϕ is provably
equivalent to ϕO(ϕ)(0). Therefore, the class of µMALL formulas with closure ordinal strictly less
than ω can be embedded in MALL and enjoys several good properties like finite model property and
decidability. Observe that if the interpretation of a formula in any µ-phase model is Scott-continuous,
then one can show that it is constructive by mimicking the proof of Theorem 2.0.3. The converse does
not hold in general. In the following section, we consider a proof system of µMALL where fixed points
are approximated by their αth approximation for some ordinal α.
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5.2 A semantics inspired system: µαMALL+

In this section, we devise an infinite family of wellfounded but infinitely branching calculi inspired by
the phase semantics devised in the previous section.

Let ϕ be a preformula with x ∈ fv(ϕ). Then it is reasonable to consider Jµx.ϕK = Θϕ
O(ϕ). But,

computing closure ordinals is difficult. Instead, what we can assert is that for some fixed α and for all
ϕ, Jµx.ϕK = Θϕ

α. What we are essentially doing is approximating fixed points. If α < O(ϕ) then we
are underapproximating otherwise it is exactly the fixed point. What is the syntactic counterpart to
this? Explicit approximants of fixed points in the language of the logic.

5.2.1 Setting up µαMALL

Definition 5.2.1. Given an ordinal α ∈ Ord, the set of the µαMALL formulas is given by the
following grammar.

ϕ,ψ := a | a⊥ | x | ϕ⊗ ψ | ϕOψ | ϕNψ | ϕ⊕ ψ | µβx.ψ | νβx.ψ | µx.ψ | νx.ψ
where a ∈ A, x ∈ V , and β < α. As usualA ∩ V = ∅.

As sets of formulas, we have that µMALL ⊂ µ0MALL ⊂ µ1MALL ⊂ · · · and we denote the supre-
mum of this infinite ascending chain as µ≈MALL. Now we devise a family of calculi {µαMALL+}α∈Ord

such that µαMALL+ is the calculus corresponding to µαMALL and the fixed point rule in µαMALL is

` µαx.ϕ
(µ)

` µx.ϕ ;

` ναx.ϕ
(ν)

` νx.ϕ

We still need to specify the inference rules for the fixed point approximants. We essentially reverse-
engineer from the intuition that Jµβx.ϕK = Θϕ

β . Therefore, we have,

` Γ,0
(µ0)

` Γ, µ0x.ϕ ;

` Γ, ϕ[µβx.ϕ/x]
(µβ+1)

` Γ, µβ+1x.ϕ

Note that when β is a limit ordinal, Θϕ
β is an infinitary supremum in the space of facts. Syntacti-

cally, this is analogous to an infinitary⊕. In the following β ≤ α is a limit ordinal and β′ < β.

` Γ, µβ
′
x.ϕ

(µβ
′

β )
` Γ, µβx.ϕ

Therefore, this is an infinite collection of inference rules. Dually, for the greatest fixed point ap-
proximants,

` Γ,>
(ν0)

` Γ, ν0x.ϕ ;

` Γ, ϕ[νβx.ϕ/x]
(νβ+1)

` Γ, νβ+1x.ϕ ;

{` Γ, νβ
′
x.ϕ}β′<β

(νβ)
` Γ, νβx.ϕ

Note that the wellfoundedness of ordinals ensures that µαMALL+ is wellfounded for every α.
However, for all α ≥ ω, they are infinitely branching. Such infinitary systems (called Tait-style sys-
tems) where proof trees are wellfounded with possible infinite branching are well-studied in various
areas of logic viz. arithmetic [Car37, Min78] and fixed point logics [Koz88, JKS08].

Example 5.2.1. Let ψ = (µx.a⊥Ox)
⊥O(a⊥

pO0) and ϕ = a ⊗ a ⊗ y for some p ∈ ω and Γ =
µx.a⊥Ox, a⊗ (νy.ϕ). We will show that ` Γ, ψ⊥ is provable in µωMALL+.

(id)
` a⊥, a

` µpx.a⊥Ox, (a⊥
p
O0)

⊥

{` νny.ϕ, µ2nx.a⊥Ox}n∈ω
(µ, µ2n

ω )
{` νny.ϕ, µx.a⊥Ox}n∈ω

(ν, νω)
` νy.ϕ, µx.a⊥Ox

(⊗)
` µpx.a⊥Ox, νy.ϕ, ψ⊥

(⊗)
` a⊥, µpx.a⊥Ox, a⊗ (νy.ϕ), ψ⊥

(O)
` a⊥O(µpx.a⊥Ox), a⊗ (νy.ϕ), ψ⊥

(µp+1)
` µp+1x.a⊥Ox, a⊗ (νy.ϕ), ψ⊥

(µ, µp+1
ω )

` Γ, ψ⊥
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It is easy to show that for all p, n ∈ ω, ` µpx.a⊥Ox, (a⊥pO0)
⊥

and ` νny.ϕ, µ2nx.a⊥Ox
are provable by induction on p and n respectively. We will show this for the first sequent. The
second one is very similar. The base case is p = 0 in which case a⊥

pO0 is simply 0. Therefore,
we have to prove the sequent ` µ0x.a⊥Ox,> which is provable by a (>) rule. For the induction
case assume p = q + 1 and we have the following.

(id)
` a, a⊥ ` µqx.a⊥Ox, (a⊥

q
O0
⊥

)
(⊗)

` a⊥, µqx.a⊥Ox, (a⊥
q+1

O0)
⊥

(O)

` a⊥O(µqx.a⊥Ox), (a⊥
q+1

O0)
⊥

(µq+1)

µq+1x.a⊥Ox, (a⊥
q+1

O0)
⊥

5.2.2 The rank of a formula
It is quite tricky to define a proper notion of the complexity of a fixed point formula in such settings.
Closely based on [JKS08], our notion of the rank of a µαMALL formula is a finite sequence of ordinals.

First we will set up some notation. If α1, . . . , αn are ordinals, we write 〈α1, . . . , αn〉 for the se-
quence σ whose length |σ| is n and whose ith component σi is the ordinal αi. Let <lex be the strict
lexicographical ordering of finite sequences of ordinals and ≤lex its reflexive closure. Note that <lex
is a well-ordering on any set of sequences of bounded lengths but not a well-ordering in general. In
particular, 〈1〉, 〈0, 1〉, 〈0, 0, 1〉, . . . is an infinite descending chain in <lex. Given two finite sequences
of ordinals σ, τ , we define the component-wise ordering E as σ, τ iff |σ| ≤ |τ | and (σ)i ≤ (τ)i for all
1 ≤ i ≤ |σ|. Clearly, the relation E is transitive. We denote the standard concatenation of sequences
by ∗. Finally, we define a component-wise maximum operation t by setting: (i) σt 〈〉 := 〈〉 tσ := 〈〉;
(ii) if σ = 〈b1, . . . , bm〉 and τ = 〈b′1, . . . , b′n〉, then

σ t τ =

{
〈max(b1, b

′
1), . . . ,max(bm, b

′
m), b′m+1, . . . , b

′
n〉 if m ≤ n;

〈max(b1, b
′
1), . . . ,max(bn, b

′
n), bn+1, . . . , bm〉 otherwise.

Proposition 5.2.1. For all sequences σ, σ1, and σ2, the following holds.

(σ ∗ σ1) t (σ ∗ σ2) = σ ∗ (σ1 t σ2)

Proof. Let σ = 〈a1, . . . , an〉. Then,

(σ ∗ σ1) t (σ ∗ σ2) = 〈max(a1, a1), . . . ,max(an, an)〉 ∗ (σ1 t σ2)

= 〈a1, . . . , an〉 ∗ (σ1 t σ2)

= σ ∗ (σ1 t σ2)

Now we are ready to define the rank of a µαMALL formula. The rank of every µαMALL formula
will be a finite sequence of ordinals less than or equal to α+ 1.

Definition 5.2.2. The rank of a µαMALL formula ϕ, denoted rk(ϕ), is defined by induction on ϕ
as follows:

• if ϕ is an atom, a variable, or a unit, then rk(ϕ) = 〈0〉;

• if ϕ = ψ � ψ′, then rk(ϕ) = (rk(ψ) t rk(ψ′)) ∗ 〈0〉;

• if ϕ = ηβx.ψ, then rk(ϕ) = rk(ψ) ∗ 〈β〉;

• if ϕ = ηx.ψ, then rk(ϕ) = rk(ψ) ∗ 〈α+ 1〉.

where� ∈ {O,⊗,⊕,N} and η ∈ {µ, ν}.

Remark 5.2.1. For all formulas ϕ, |rk(ϕ)| is the length of the longest path from the root to a
leaf in the syntax tree of ϕ.
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Example 5.2.2. Let ψ = (νx.a⊥ ⊗ x)O(apO0) be a µωMALL formula.

rk(H) = rk(νx.a⊥ ⊗ x) t rk(apO0) ∗ 〈0〉

=

(rk(a⊥ ⊗ x) ∗ 〈ω〉
)
t 〈

p+1︷ ︸︸ ︷
0, . . . , 0〉

 ∗ 〈0〉
=

〈0, 0, ω〉 t 〈 p+1︷ ︸︸ ︷
0, . . . , 0〉

 ∗ 〈0〉
= 〈0, 0, ω,

max(1,p−1)︷ ︸︸ ︷
0, . . . , 0 〉

Lemma 5.2.1. Let ϕ be a µαMALL preformula such that x ∈ fv(ϕ). Let ξ be a preformula such
that rk(ϕ) E rk(ξ). Then, there exists a finite (possibly empty) sequence of ordinals σ such that
rk(ϕ[ξ/x]) = rk(ξ) ∗ σ.

Proof. We induct on |rk(ϕ)|. The base case is when |rk(ϕ)| = 1. Since x ∈ fv(ϕ), ϕ cannot be an
atom or a unit. Therefore, ϕ = x. Plugging σ = 〈 〉, we are done. The induction case has several
subcases.

• Suppose ϕ = ψ � ψ′ where � ∈ {⊗,O,N,⊕}. We have two cases. Either x ∈ fv(ψ) ∩ fv(ψ′)
or x is free in only one of them. Note that rk(ψ), rk(ψ′) E rk(ϕ). Therefore if x is free in them,
the induction hypothesis can be fired. In the first case, we have rk(ψ[ξ/x]) = rk(ξ) ∗ σ1 and
rk(ψ′[ξ/x]) = rk(ξ) ∗ σ2. Therefore,

rk(ϕ[ξ/x]) = rk(ψ[ξ/x]� rk(ψ′[ξ/x]))

= (rk(ψ[ξ/x]) t rk(ψ′[ξ/x])) ∗ 〈0〉
= ((rk(ξ) ∗ σ1) t (rk(ξ) ∗ σ2)) ∗ 〈0〉 [By Proposition 5.2.1]

= rk(ξ) ∗ (σ1 t σ2) ∗ 〈0〉

Therefore by plugging σ = (σ1 t σ2) ∗ 〈0〉, we are done. In the other case, wlog assume
x 6∈ fv(ψ′). Therefore, we have ψ′[ξ/x] = ψ′. Firing the induction hypothesis for ψ, we have
rk(ψ[ξ/x]) = rk(ξ) ∗ σ1 as before. Therefore,

rk(ϕ[ξ/x]) = rk(ψ[ξ/x]� rk(ψ′[ξ/x]))

= (rk(ψ[ξ/x]) t rk(ψ′)) ∗ 〈0〉
= ((rk(ξ) ∗ σ1) t rk(ψ′)) ∗ 〈0〉
= rk(ξ) ∗ σ1 ∗ 〈0〉 [Since rk(ψ′) E rk(ξ)]

Therefore by plugging σ = σ1 ∗ 〈0〉, we are done.

• Supposeϕ = ηβy.ψ where η ∈ {µ, ν}, β < α, and y 6= x. Clearly, x ∈ fv(ψ) and rk(ψ) E rk(ϕ).
Therefore, by hypothesis, rk(ψ[ξ/x]) = rk(ξ) ∗ σ′.

rk(ϕ[ξ/x]) = rk(ηβy.ψ[ξ/x])

= rk(ψ[ξ/x]) ∗ 〈β〉
= (rk(ξ) ∗ σ′ ∗ 〈β〉

By plugging σ = σ′ ∗ 〈β〉, we are done. The case when ϕ = ηy.ψ goes exactly similarly.

Theorem 5.2.1. The following hold for any µαMALL formulas ϕ:

1. rk(ϕ) <lex rk(ϕ� ψ) and rk(ψ) <lex rk(ϕ� ψ);

2. rk(0) <lex rk(µ0x.ϕ), rk(>) <lex rk(ν0x.ϕ);
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3. rk(ϕ[ηβx.ϕ/x]) <lex rk(ηβ+1x.ϕ) for all β < α;

4. rk(ηβ
′
x.ϕ) <lex rk(ηβx.ϕ) for all β′ < β ≤ α;

5. rk(ηαx.ϕ) <lex rk(ηx.ϕ).

Proof. The first, second, fourth, and fifth assertions are immediate from Definition 5.2.2. For the third
one, we have two cases.

Case 1: x 6∈ fv(ϕ). In this case, ϕ[ηβx.ϕ/x] = ϕ. Then the result follows by definition of rank.

Case 2: x ∈ fv(ϕ). By definition, rk(ϕ) E rk(ηβx.ϕ). By Lemma 5.2.1, rk(ϕ[ηβx.ϕ/x]) = rk(ηβx.ϕ)∗
σ = rk(ϕ) ∗ 〈β〉 ∗ σ for some σ. But rk(ηβ+1x.ϕ) = rk(ϕ) ∗ 〈β + 1〉. Hence we are done.

Definition 5.2.3. The strong closure SC(ϕ) of a µαMALL formula ϕ is the least set such that:

• ϕ ∈ SC(ϕ);

• ψ � ψ′ ∈ SC(ϕ) =⇒ {ψ,ψ′} ⊂ SC(ϕ) where� ∈ {O,⊗,⊕,N};

• µ0x.ψ ∈ SC(ϕ) =⇒ 0 ∈ SC(ϕ);

• ν0x.ψ ∈ SC(ϕ) =⇒ > ∈ SC(ϕ);

• ηn+1x.ψ ∈ SC(ϕ) =⇒ ψ(ηnx.ψ/x) ∈ SC(ϕ) for all n ∈ ω and η ∈ {µ, ν};

• ηx.ψ ∈ SC(ϕ) =⇒ ηβx.ψ ∈ SC(ϕ) for all β ≤ α and η ∈ {µ, ν}.

Define ϕ− to be image of ϕ under the forgetful functor that erases the explicit approximations
occurring in ϕ. For example, (a⊗ µ6x.νy.x⊕ y)− = a⊗ µx.νy.x⊕ y.

Theorem 5.2.2. For any formula ϕ, the set {rk(ψ) | ψ ∈ SC(ϕ)} is a well-order with respect to
the <lex ordering.

Proof. By contradiction. Note that |rk(ψ)| = |rk(ψ−)|. Furthermore, if ψ ∈ SC(ϕ) then ψ− ∈ FL(ϕ).
But FL(ϕ) is a finite set, therefore the set {|rk(ψ)| | ψ ∈ SC(ϕ)} is finite.

Assume there exists {σi}i∈I an infinite descending chain in {rk(ψ) | ψ ∈ SC(ϕ)}. By the Infinite
Ramsey Theorem, there is an infinite subsequence {σi}i∈ω such that for all j, ij ∈ I and for all j, j′,
|σij | = |σij′ | = n. Then, there exist k ≤ n and N ∈ N such that {(σij )k}j>N is a descending chain.
This contradicts the wellfoundedness of natural numbers.

We conclude this subsection by exhibiting the use of ranks. Namely, we prove the functoriality
property in µαMALL+.

Theorem 5.2.3. The following rule is derivable in µαMALL+ when x ∈ fv(ϕ).

` ψ⊥, ψ′
(func)

` ϕ⊥[ψ⊥/x], ϕ[ψ′/x]

Proof. We will induct on the rank of ϕ (this is wellfounded by Theorem 5.2.2). The base case is
ϕ = x. In this case func is a trivial rule with identical premisse and conclusion. There are several
subcases for the induction step. The subcases for the multiplicative additive connectives follow from
Proposition 3.4.1. We will exhibit the subcase when the outermost operator of ϕ is a fixed point.
Suppose ϕ = µβy.ξ. Clearly x 6= y. There are two cases.

Case 1: β is successor ordinal i.e. β = γ + 1. We have

IH

5
` ξ⊥[ψ⊥/x, νγy.ξ⊥/y], ξ[ψ′/x, µγy.ξ⊥/y]

(µγ+1)
` ξ[ψ⊥/x, νγy.ξ⊥/y], µγ+1y.ξ[ψ′/x]

(νγ+1)
` νγ+1y.ξ⊥[ψ⊥/x], µγ+1y.ξ[ψ′/x]

The induction hypothesis can be applied since we are ensured the rank decreases using Theo-
rem 5.2.1.2.
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Case 2: β is a limit ordinal. We have

IH

5
{` νβ

′
y.ξ⊥[ψ⊥/x], νβ

′
y.ξ⊥[ψ′/x]}β′<β

(µβ
′

β )
{` νβ

′
y.ξ⊥[ψ⊥/x], µβy.ξ[ψ′/x]}β′<β

(νβ)
` νγy.ξ⊥[ψ⊥/x], µβy.ξ[ψ′/x]

The case when ϕ = νβy.ξ is symmetric and the case when ϕ = ηx.ξ is trivial for η = {µ, ν}. This
concludes the proof.

5.2.3 Soundness and completeness of µαMALL+

The phase semantics for µαMALL+ is much simpler to define. Like MALL the semantics can be
defined given a phase space and a valuation (without the extra structure over the set of facts and
extension of valuations to variables as in µMALLind ).

We recall that given a phase spaceM, its set of facts is denoted by XM. Fix a valuation V : A →
XM. The interpretation of µαMALL+ is an extension of the interpretation of MALL. Hence we only
need to specify the interpretation of the fixed point operators.

Jµ0x.ϕKV = ∅⊥⊥

Jν0x.ϕKV = >⊥⊥

Jηβ+1x.ϕKV = Jϕ[ηβx.ϕ/x]KV [η ∈ {µ, ν}]

Jµβx.ϕKV =

 ⋃
β′<β

Jµβ
′
x.ϕKV

⊥⊥ [β is a limit ordinal.]

Jνβx.ϕKV =

 ⋂
β′<β

Jµβ
′
x.ϕKV

 [β is a limit ordinal.]

Jηx.ϕKV = Jηαx.ϕKV [η ∈ {µ, ν}]

We will now prove the soundness and completeness of this interpretation. Soundness is obtained
by a straightforward induction on the structure of the proof. Completeness depends on the wellfound-
ness of rank.

Theorem 5.2.4 (Soundness for µαMALL+). If ` Γ then for all phase models (M, V ), 1 ∈ JΓKV .

Proof. Let π be a proof of ` Γ as usual in LL. We will induct on the structure of π. The base case
(when the proof is just an application of the (id), (1), or (>) rule) is easily taken care of. For the
induction case, consider the rule applied at the root of π. If it is a MALL operator, then the proof
follows exactly like that of Theorem 3.3.1. Therefore, we describe only fixed point cases.

• Suppose Γ = Γ′, ϕ such that ϕ is principal, and either ϕ = ηx.ψ or ϕ = η0x.ψ or ϕ = ηβ+1x.ψ
for η = {µ, ν}. Then, the premisse is of the form ` Γ′, ϕ′ where JϕKV = Jϕ′KV . By hypothesis,
1 ∈ JΓ′, ϕ′K which implies 1 ∈ JΓ′, ϕK.

• Suppose Γ = Γ′, µλx.ϕ such that µλx.ϕ is principal, and λ is a limit ordinal. Suppose the
rule applied is (µβλ) for some β < λ. Then the premisse is ` Γ′, µβx.ϕ and by hypothesis,

1 ∈ JΓ′, µβx.ϕK. By Proposition 3.3.2, this is equivalent to (JΓKV )
⊥ ⊆ Jµβx.ϕKV . Now,

Jµβx.ϕKV ⊆
⋃
β′<λJµ

β′x.ϕKV . Taking double negations on both sides by Proposition 3.3.1.3,

we have, (JΓKV )
⊥ ⊆ Jµλx.ϕKV . By Proposition 3.3.2, we are done.

• Suppose Γ = Γ′, νλx.ϕ such that νλx.ϕ is principal, and λ is a limit ordinal. For all premisses
` Γ′, νβx.ϕ apply hypothesis to get 1 ∈ JΓ′, νβx.ϕK. By Proposition 3.3.2, this is equivalent to
(JΓKV )

⊥ ⊆ Jνβx.ϕKV . Therefore, (JΓKV )
⊥ ⊆ Jνλx.ϕKV . By Proposition 3.3.2, we are done.
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Lemma 5.2.2 (Adequation Lemma for µαMALL+). For all formulas ϕ, JϕKV ⊆ Pr(ϕ).

Proof. By induction on rk(ϕ). The base case is when ϕ is an atom or a unit in which case by definition
JϕKV = Pr(ϕ). There are several subcases for the induction case. For the MALL, one can reuse the
proof of Lemma 3.3.1. The only thing that one needs to observe is that the measure of the complexity
of a formula has changed but thanks to Theorem 5.2.1 we are safe. In this proof, we only tackle the
fixed point cases.

• It is trivial for formulas of the form η0x.ψ where η ∈ {µ, ν}.

• If ϕ = ηβ+1x.ψ, then

JϕKV = Jψ[ηβx.ψ/x]KV

⊆ Pr(ψ[ηβx.ψ/x]) [IH since rk(ψ[ηβx.ψ/x]) <lex rk(ϕ) by Theorem 5.2.1]

⊆ Pr(ϕ)

• If ϕ = µβx.ψ such that β is a limit ordinal, then

JϕKV =

 ⋃
β′<β

Jµβ
′
x.ϕKV

⊥⊥

⊆

 ⋃
β′<β

Pr(ψ[ηβ
′
x.ψ/x])

⊥⊥ [IH since rk(ψ[ηβ
′
x.ψ/x]) <lex rk(ϕ) by Theorem 5.2.1]

Now, Pr(ψ[ηβ
′
x.ψ/x]) ⊆ Pr(ϕ) for all β′ < β. Therefore,

⋃
β′<β Pr(ψ[ηβ

′
x.ψ/x]) ⊆ Pr(ϕ). By

applying Proposition 3.3.1, we have
(⋃

β′<β Pr(ψ[ηβx.ψ/x])
)⊥⊥

⊆ Pr(ϕ).

• The case when ϕ = νβx.ψ and β is a limit ordinal goes similarly as above. The case when
ϕ = ηx.ψ is trivial where η ∈ {µ, ν}.

This concludes the proof.

As usual we get the completeness from the adequation lemma exactly in the same way as Theo-
rem 3.3.3.

Theorem 5.2.5 (Completeness for µαMALL+). If for any phase model (M, V ), 1 ∈ JΓKV then ` Γ.

Theorem 5.2.5 gives cut admissibility for free as usual in phase semantics [Oka96, Oka99].

Corollary 5.2.5.1. For all α, µαMALL+ admits cuts.

However, note that Corollary 5.2.5.1 does not shed any light on the cut-elimination procedure. In
particular, it is not discernible whether the cut-elimination equivalence equates all proofs of a partic-
ular sequent. One can consider more constructive cut-elimination with explicit reduction sequences.
The new reduction rules are quite straightforward (β being a limit ordinal in the latter):

πβ5
` Γ, ϕ[µβx.ϕ/x]

(µβ+1)
` Γ, µβ+1x.ϕ

π′β5
` ∆, ϕ⊥[νβx.ϕ⊥/x]

(νβ+1)
` ∆, νβ+1x.ϕ⊥

(cut)
` Γ,∆ −→

πβ5
` Γ, ϕ[µβx.ϕ/x]

π′β5
` ∆, ϕ⊥[νβx.ϕ⊥/x]

(cut)
` Γ,∆

πγ5
` Γ, µγx.ϕ

(µγβ)
` Γ, µβx.ϕ

π′γ5{
` ∆, νγx.ϕ⊥

}
γ<β

(νβ)
` ∆, νβx.ϕ⊥

(cut)
` Γ,∆ −→

πγ5
` Γ, µγx.ϕ

π′γ5
` ∆, νγx.ϕ⊥

(cut)
` Γ,∆
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However, standard cut-elimination techniques for finitary proof theory (say, for example, notions of
cut rank based on the depth of the topmost cut) do not work for Tait-like systems since there could be
infinitely many cuts in a proof each at a height higher than the next. The reduction sequences shall be
potentially infinite and fair reduction sequences shall ensure wellfoundedness of the limit (analogous
to ensuring productivity in non-wellfounded settings).

There are however well-known techniques to get cut admissibility in Tait-like systems, the first
being due to Schütte [Sch68] where proofs are assigned a cut rank. One shows that if there is a proof
π of a sequent ` Γ with cut-rank rk(π) > 0 then there is a proof π′ of ` Γ such that rk(π′) = 0
(possibly incurring a blowup in the size of the proof). Cut-admissibility has been proved previously
for Tait-style systems of fixed point logics in [Pal07, BS12] using this technique. Semantic proofs of
cut-admissibility have been explored in various logics [Sch60, Mae91, Avi01] but to our knowledge,
this is the first semantic proof of cut-admissibility in a Tait-style system.
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5.3 Properties of µωMALL+

We will now explore the provability of µαMALL+ with special attention to µωMALL+. Note that for
any α, β such that α ≤ β, we have that Jµαx.ϕK ⊆ Jµβx.ϕK and Jνβx.ϕK ⊆ Jναx.ϕK. This intuition
can be exploited to prove that if α 6= β, then µαMALL+ 6= µβMALL as sets of theorems. Wlog,
assume α < β. Then, ` µx.a⊥Ox, νβy.a ⊗ y is provable in µβMALL+ but not in α. Similarly,
` µαx.a⊥Ox, νy.a ⊗ y is provable in µαMALL+ but not in µβMALL+. The proofs in both situations
are trivial. But how does one prove that a sequent is not provable?

There are a few techniques in the bag of tricks of linear logic. Firstly, one can use semantics means
to show that there is a phase model where the interpretation of the sequent does not contain the unit
of the monoid. This is difficult in our situation since we have the formulas µx.a⊥Ox and µαx.a⊥Ox
in the sequents. Not only are we not able to compute their closure ordinal, we are also unable to find a
phase model where the fixed point iteration sequence does not collapse at 0. It is not possible to work
with such trivialising examples.

However, all is not lost as the phase semantics does provide cut admissibility. Armed with Corol-
lary 5.2.5.1, one can provide a more syntactic proof-search argument. These techniques will be used
several times in the next chapter but we will already get a flavour here. We begin by showing that the
(µα) is invertible if α is a successor ordinal.

Proposition 5.3.1. Let β + 1 ≤ α. If ` Γ, µβ+1x.ϕ is provable in µαMALL+ then so is `
Γ, ϕ[µβx.ϕ/x].

Proof. Let π be a proof of ` Γ, µβ+1x.ϕ. We have the following.

π

5
` Γ, µβ+1x.ϕ

(id)
` νβx.ϕ⊥, µβx.ϕ

(func)
` ϕ⊥[νβx.ϕ⊥/x], ϕ[µβx.ϕ/x]

(νγ+1)
` νβ+1x.ϕ⊥, ϕ[µβx.ϕ/x]

(cut)
` Γ, ϕ[µβx.ϕ/x]

Lemma 5.3.1. Suppose α < β. Then,

1. ` µx.a⊥Ox, νβy.a⊗ y is not provable in µαMALL+.

2. ` µαx.a⊥Ox, νy.a⊗ y is not provable in µβMALL+.

Proof. We will only prove (1). (2) follows very similarly. Let (α, β) be the smallest pair of ordinals (in
lexicographic ordering) such thatα < β and ` µx.a⊥Ox, νβy.a⊗y is provable in µαMALL+. Observe
that there is no proof where only subformulas of µx.a⊥Ox is active. Therefore, the (νβ) rule is applied
at some point. Since, (O) is invertible, wlog, one can assume that the conclusion of the (νβ) rule is
of the form ` a⊥n, µα′x.a⊥Ox, νβy.a ⊗ y for some α′ < α. If β is a limit ordinal, then consider any
premisse ` ∆ where ∆ = a⊥

n
, µα

′
x.a⊥Ox, νβ

′
y.a ⊗ y and β′ < α. By Proposition 5.3.1, if ∆ is

provable, so is µα
′+nx.a⊥Ox, νβ

′
a⊗ y. Since (α′ + n, β′) <lex (α, β), we have a contradiction!

Consequently we have the following theorem.

Theorem 5.3.1. For any two distinct α, β ∈ Ord, µαMALL+ and µβMALL+ are orthogonal sys-
tems i.e. as sets of theorems neither µαMALL+ ⊆ µβMALL+ nor µαMALL+ ⊇ µβMALL+.

For the rest of this section, let Γ = µx.a⊥Ox, a⊗(νy.a⊗a⊗y) and ψ = (µx.a⊥Ox)
⊥O(a⊥

pO0).

Lemma 5.3.2. ` Γ is not provable in µωMALL+.

Proof. Suppose there is a proof. By Corollary 5.2.5.1, we can assume that this proof is cut-free.
Therefore, the only possibilities for the first rule are (⊗) or (µ) followed by one of {(µnω)}n∈ω. If it is
the former, then the left premisse has to contain µx.a⊥Ox since ` a cannot be proved. Consequently,
the right premisse is ` νy.ϕ. If it were provable, so would be ` νnx.ϕ for all n ∈ ω. It is easy to
observe that ` νny.ϕ is not provable for all n > 0.

Now suppose the first rule is (µ) followed by (µnω) for some n ∈ ω. Since the (O) rule and,
by Proposition 5.3.1, the (µn) rule is invertible for all n ∈ ω, it suffices to show that ` (a⊥)n, a⊗ νy.ϕ
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is not provable. The only possible rule here is the (⊗). The only splitting of the context which renders

the left premisse provable is one where the right premisse is `

n−1︷ ︸︸ ︷
a⊥, . . . , a⊥, νy.ϕ. The only possible

rule that can be applied here is the (νω) rule. Consider any premisse other than the
⌊
n−1

2

⌋
th premisse.

Since the number of a and a⊥ are different in it, it is not provable by Example 3.3.2.

By Example 4.2.1` Γ is provable inµMALLind and by Lemma 5.3.2, it is not provable inµωMALL+.
Consequently, we have the following.

Theorem 5.3.2. µωMALL+ does not prove the same theorems as µMALLind .

The opposite direction i.e. the (non)existence of a sequent that is provable in µωMALL+ but is not
provable in µMALLind is more difficult to establish. In fact, the Park’s coinduction can be simulated in
the (νω) rule.

{` Γ, νnx.ϕ}n∈ω
(νω)

` Γ, νωx.ϕ
(ν)

` Γ, νx.ϕ ;

` Γ, ψ

` ψ⊥, ϕ[ψ/x] ` ϕ⊥[ψ⊥/x], νnx.ϕ
(cut)

` ψ⊥, νnx.ϕ
(cut)

` Γ, νnx.ϕ

Now we will show that ` ϕ⊥[ψ⊥/x], νnx.ϕ is provable by induction on n. The base case is trivial.
Applying (ν0), we get a premisse with> and hence done. Otherwise,

` ϕ⊥, ϕ[ψ/x]

IH

5
` ϕ⊥[ψ⊥/x], νn−1x.ϕ

(cut)
` ψ⊥, νn−1x.ϕ

(func)
` ϕ⊥[ψ⊥/x], ϕ[νn−1x.ϕ/x]

(νn)
` ϕ⊥[ψ⊥/x], νnx.ϕ

Furthermore, observe that ` Γ is provable in µω+1MALL+. We conjecture the following.

Open Question

If a sequent ` ∆ is provable in µMALLind , then there exists α such that ` ∆ is provable in
µαMALL+. In other words, µMALLind ⊆ µ≈MALL+.

In fact, Theorem 5.3.2 is revealing. It shows that formulas of the form µx.ϕ(x)Oψ(x) cannot
contract at will in µωMALL. The number of times they can contracted (say, n) is determined the
moment the (µnω) rule is fired. This is reminiscent of the multiplexing rule of light linear logics [Gir98,
Asp98, AR02, Laf04]. Recall that exponentials are encoded by fixed point formulas as follows.

[?ϕ] = µx.⊥⊕ [ϕ]⊕ (xOx) ; [!ϕ] = νx.1N[ϕ]N(x⊗ x)

Now the usual rules for exponentials consist of dereliction, contraction, weakening, and promo-
tion. However, it has been observed that, one can replace them with the following set of rules without
losing provability.

` Γ, ϕ

`?Γ, !ϕ
(sp)

` Γ `
n︷ ︸︸ ︷

ϕ, . . . , ϕ

Γ `?ϕ
(mpx)

` Γ, ??ϕ

` Γ, ?ϕ
(dig)

These are called functorial promotion, multiplexing, and digging. Without the digging rule,
these are called soft exponentials and the corresponding logic is called soft linear logic (SLL)
[Laf04]. It is straightforward to see that the soft promotion and multiplexing rule can be encoded in
µωMALL+.

Open Question

Digging with respect to the µMALL encoding of exponentials is not admissible in µωMALL+.
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Soft linear logic is one of the several light linear logics that have been designed with implicit com-
plexity motivations. The phase semantics of SLL was described in [DM04]. Following [Laf97], they
further showed that SLL does not have finite model property [DM04]. If we could show that µωMALL+

faithfully encodes soft linear logic, then µωMALL+ would inherit SLL’s lack of finite model property.
However, as with the encoding of LL in µMALLind , it is difficult to show that the encoding of SLL in
µωMALL+ is faithful. However, as it turns out, it is quite simple to give a direct proof exploiting the
above (non)provability results.

Theorem 5.3.3. µωMALL+ does not have finite model property.

Proof. The proof goes by contradiction. A finite phase model (M, V ) has finitely many facts. There-
fore, by the Pigeonhole Principle, there exists p, q such that p < q and JapO0KV = JaqO0KV . There-
fore, Jµx.aOxKV = JapO0KV . Consequently, 1 ∈ JψKV where ψ = (µx.aOx)

⊥O(apO0). By The-
orem 5.2.5, ` ψ is provable in µMALL+

ω . In Example 5.2.1, we show that ` Γ, ψ⊥ is provable in
µωMALL+. By an application of the cut-rule, we have ` Γ is provable in µωMALL+. This is a contra-
diction by Lemma 5.3.2.

Note that for all n ∈ ω, µnMALL+ can be embedded in MALL and enjoys several good properties
like finite model property and decidability. Therefore, Theorem 5.3.3 shows theω is the smallest ordinal
for which µαMALL+ is a non-trivial system.
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5.4 Towards phase semantics of non-wellfounded systems
Observe that since µMALLind ⊆ µMALL� ⊆ µMALL∞, µ-phase models are complete for µMALL�

andµMALL∞. However, we will see in the next chapter that they prove different set of theorems; hence
their interpretations are not sound. Soundness proof in non-wellfounded systems usually goes by
contradiction: one assumes that there is a non-wellfounded proof of a sequent Γ but its interpretation
is not sound (in our case that would amount to asserting 1 6∈ JΓK). From this one extracts a chain
which either contradicts the progress condition of π or some wellfoundedness condition in the model.
Neither of these are clear from a phase semantics interpretation.

The first idea is to rehash the constructive soundness proof of [DP17] in our setting. Since the
progress condition in the presence of unbounded interleaving of fixed points is quite complicated, the
adaptation is not straightforward.

We consider a strictly larger system µ≈MALL∞. The language is µ≈MALL. We have the usual
(µ) (respectively, (ν)) unfolding rules for formulas of the form µx.ϕ (respectively, νx.ϕ). For fixed
point approximants we have the rules as in Section 5.2. This system is non-wellfounded and infinitely
branching. Note that µMALL∞ is a subset of µ≈MALL∞ as sets of theorems.

Lemma 5.4.1. If ` ∆, νx.ϕ is provable in µ≈MALL∞, then ` ∆, ναx.ϕ is also provable in
µ≈MALL∞ for any α ∈ Ord.

TO prove this the idea is to consider an infinitary η-expansion of the proof of ` ∆, νx.ϕ and then
construct the proof of ` ∆, ναx.ϕ by transfinite induction on α.

The idea is to infer the soundness of µMALL∞ from the soundness of µ≈MALL∞. Note that we
define the interpretation of µx.ϕ (respectively, of νx.ϕ) as the least (respectively, greatest) fixed point
of JϕK. Now we lift the notion of ranks to µ≈MALL by defining rk(ηx.ϕ) = rk(ϕ) ∗ 〈?〉 where α < ?
for all α ∈ Ord. Furthermore, one can define the rank of a sequent as the multiset of the rank of the
formulas in the sequent.

Proof idea for soundness of µMALL∞. Let π be a µ≈MALL∞ proof and let us proceed by induction
on the rank of the conclusion sequent Γ. For every infinite branch β of π, let νx.ϕ be the minimal
formula that occurs infinitely often. Consider the rule which introduces νx.ϕ for the first time; their
conclusions form a bar B through the infinite tree of π. The prefix closure of B must be finite by the
progress condition and thus, if each of the sequents of B is valid then so is the conclusion of π by the
soundness of well-founded µ≈MALL∞ derivations. The soundness of wellfounded µ≈MALL∞ proofs
can be obtained by combining results from Section 5.1 and Section 5.2. Now consider a subproof π′

that derives a sequent in B. This sequent must have the form ` ∆, νx.ϕ where νx.ϕ is principal for
the concluding (ν)-rule of π′. Along any branch rank of sequent decreases, so rk(∆, νx.ϕ) ≤ rk(Γ).
Now, by Lemma 5.4.1, π′ can be transformed into a proof π′′ of ∆, ναx.ϕwhereα is the closure ordinal
of ϕ. Now rk(∆, ναx.ϕ) < rk(∆, νx.ϕ) ≤ rk(Γ). By the induction hypothesis, 1 ∈ J∆, ναx.ϕK. But
J∆, ναx.ϕK = J∆, νx.ϕK since α is the closure ordinal of ϕ. Hence done.

We note that we can define phase semantics of any fragment of µMALL� which can be fini-
tised [Dou17, NST18] i.e. any fragment for which the Brotherston-Simpson conjecture holds. In
that case, one can have the same interpretation for the wellfounded system and the circular system.
Since we can handle the semantics of wellfounded systems more easily, a conjecture stems from the
aforementioned proof idea (which essentially reduces the soundness of a non-wellfounded proof to
soundness of a wellfounded proof):

Open Question

There exists a wellfounded infinitely branching system provably equivalent to µMALL∞.
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Complexity of µMALL systems
In this chapter, we explore the decision problems about the various systems of µMALL viz. the prob-
lem of deciding if a given formula (equivalently, a sequent) is provable. We reduce various the reach-
ability problem in various counter machines to these questions. Consequently, we can compute the
precise complexity of these questions. The results are technically interesting from a proof-theoretic
point of view since they involve non-trivial applications of focussing. They also have deep implications
viz. they can separate systems as sets of theorems.

In Section 6.1, we introduce the relevant counter machines and explore their connections with
linear logic. In Section 6.2, we show that µMALL∗ is undecidable (consequently, so is µMALLind and
µMALL∞) and that the provability problem of N-free fragment of µMALL∗ is equivalent to the prov-
ability problem of MELL. In Section 6.3, we obtain lower bounds on µMALL∞ provability which
ultimately helps us show that µMALLind proves a strictly larger set of theorems than µMALL�. We
show this and constructivise the argument in Section 6.4.

6.1 Counter machines and linear logic

6.1.1 Petri nets
Petri nets [Pet62] are a model of concurrency. We will explain the basic components of Petri nets
and their behaviour by means of an example (Figure 6.1). Consider the graph in Figure 6.1a. There
are two types of nodes: places and transitions. Places are usually depicted by circles (cf. the
nodes labelled P1, P2, P3) and transitions by rectangles (cf. the nodes labelled T1, T2). A Petri net
is given by a bipartite graph (P, T,E,Min) where P is the set of places, T is the set of transitions,
and E ⊆ (P × T ) ∪ (T × P ) is the set of edges between P and T . Furthermore, each place can
hold zero or more tokens. A marking M ∈ N|P | denotes the number of tokens in each place at
a certain time. Min is the initial marking. In Figure 6.1a, M = (0, 1, 0) is the marking. Firing
of a transition constitutes consuming the tokens from its incoming places and producing them in
its outgoing places. As different transitions are fired, we obtain different configurations i.e. different
markings. A transition is fireable if every place that points to it has at least one token. In Figure 6.1a,
T2 is fireable while T1 is not. If we fire a transition t, then one token disappears from every place that
points to t and one token is added to every place that emanates from t. On firing T2, the token from
P2 disappears and P1 and P3 get one token each. Consequently, we have the marking (1, 0, 1) which
corresponds to Figure 6.1b. Now T1 is fireable and if it is fired we obtain (0, 1, 2) which corresponds
to Figure 6.1b.

Since its inception, linear logic was advertised as the logic for concurrency [Gir87b] and its re-
lation with Petri nets has been explored from both provability and denotational points of view. On
the provability side, [Asp87, Bro89, GG89] have independently observed that places are like formulas
in linear logic and transitions like proofs. In Figure 6.1, we model the transition T1 as the formula
P1
⊥ ⊗ (P2OP3). The sequent ` P1, P3 denotes the marking in Figure 6.1b. We have the following:

` P⊥1 , P1

` P2, P3, P3
(O)

` P3, P2OP3
(⊗)

` P1, P3, P1
⊥ ⊗ (P2OP3)

90
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P1 P2 P3

T1

T2

(a)

P1 P2 P3

T1

T2

(b)

P1 P2 P3

T1

T2

(c)

Figure 6.1: The behaviour of a Petri net

We obtain the marking in Figure 6.1c. Using this observation, one can devise provability se-
mantics of linear logic by establishing a formula ϕ is provable iff a certain marking is reachable in a
Petri Net Nϕ. However, one can make this more fine-grained: by letting Petri nets freely generate a
linear category, one can interpret linear logic in that setting. This generates a triangular correspon-
dence [BG90, BG95]:

Formulas Objects

P laces

Proofs Morphisms

Transitions

However, turns out, the connections between Petri nets and linear logic are not as deep as it was
once suspected. Linear logic is still a logic for concurrency but in a very different way than Girard
envisioned (as types of π-calculus). One of the biggest successes of this line of research has been
obtaining the complexity of various fragments of linear logic. We explore these results in the following
subsection. Nevertheless, the intuitions from this subsection will be helpful in understanding some
constructions in forthcoming sections.

6.1.2 Counter machines
There are several Turing equivalent models of computation studied in theoretical computer science to
model computation. While a Turing machine is an abstraction of running a sequential algorithm, a
counter machine is an abstraction of running a parallel algorithm. A counter machine comprises
a finite set of one or more registers, each of which can hold a single non-negative integer, and a list
of arithmetic and control instructions for the machine to follow. A mutual exclusion principle avoids
interlocking i.e. the simultaneous writing operation by two (or more) threads to the same register. A
Minsky machine is one of the most well-known counter machines.

Definition 6.1.1. A Minsky machineM is a tuple (Q, r1, r2, I) where Q is a finite set of states,
r1, r2 are two registers, and I is a set of instructions of the form INC(•, •, •) and JZDEC(•, •, •, •)
that manipulate the current state and the contents of the registers. The operational seman-
tics ofM is given by its configuration graph, the vertices of which are configurations of form
〈q, a, b〉 ∈ Q× N× N and edges are one of the following forms:

〈p, a, b〉 INC(p,r1,q)−−−−−−−→ 〈q, a+ 1, b〉 〈p, a, b〉 INC(p,r2,q)−−−−−−−→ 〈q, a, b+ 1〉

〈p, 0, b〉 JZDEC(p,r1,q0,q1)−−−−−−−−−−−→ 〈q0, 0, b〉 〈p, a, 0〉 JZDEC(p,r2,q0,q1)−−−−−−−−−−−→ 〈q0, a, 0〉

〈p, a+ 1, b〉 JZDEC(p,r1,q0,q1)−−−−−−−−−−−→ 〈q1, a, b〉 〈p, a, b+ 1〉 JZDEC(p,r2,q0,q1)−−−−−−−−−−−→ 〈q1, a, b〉

Given a state qs, a run ofM is a sequence of configurations {si}i∈o (o ∈ ω + 1) such that
s0 = 〈qs, 0, 0〉 and for all i ∈ o with i+ 1 ∈ o, (si, si+1) is an edge in the configuration graph.

Theorem 6.1.1 ([Min67]). Given a Minsky machineM and an initial state qs, checking that it
has an infinite run from qs is Π0

1-hard.
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Our next example is of vector addition systems. As presented the registers are not explicit. How-
ever, it is not difficult to unearth the k registers in the following definition.

Definition 6.1.2. A vector addition system V is a 3-tuple (k,A, Tu) such that k ∈ N, and A ∈ Nk
and Tu ⊂ Zk are finite sets. The operational semantics of V is given by its configuration graph
(Nk, ETu) such that (~v,~v′) ∈ ETu if ~v − ~v′ ∈ Tu. A configuration ~v is said to be reachable if there
is a path in the configuration graph starting from ~v and ending in some ~v′ ∈ A.

Let us come back to Petri nets. Given a Petri net N = (P, T,E,Min), define the marking
graph as (N|P |, ET ) such thatM,M′ ∈ Nk are construed as markings and (M,M′) ∈ ET if there
exists t ∈ T such that M t−→ M′. A marking M is said to be reachable if there is a path in the
marking graph ofN , starting fromMin and ending atM. It is easy to note that a Petri netN induces
a vector addition system VN such that the marking graph of N and the configuration graph of VN are
isomorphic. The vector addition system corresponding to our running example is (3, (0, 1, 0), {~t1, ~t2})
where t1 = (1,−1,−1) and (1,−1, 1).

Theorem 6.1.2 ([CO21, Ler21]). Reachability in vector addition systems is Ackermann-complete.

There are several ways of extending the expressiveness of Petri nets or vector addition systems.
For example, one can add weights to edges in order to indicate how many tokens are consumed or
produced; one can have coloured tokens to distinguish between them; and so on. The extension
which is interesting to our discussion is branching behaviour. A firing sequence is analogous to a run
of a deterministic or non-deterministic automaton. Now, the run of an alternating automaton is a tree
(instead of a list). The question, therefore, arises: is there a meaningful counterpart in the world of
Petri nets?

Definition 6.1.3. A branching vector addition system with states or ABVASS is a tuple B =
(Q,Q`, k,A, Tu, Ts, Tf ) such that:

• Q is a finite set of states with Q` ⊆ Q;

• k ∈ N is called the dimension;

• A is a finite subset of Nk called the set of axioms;

• Tu ⊂ Q × Zk × Q, Ts ⊂ Q3 Tf ⊂ Q3 are finite and called the unary, split, and fork rules
respectively.

If Ts = ∅ and Tf = ∅, then it is called a VASS. If Ts = ∅ then it is called an AVASS, and if
Tf = ∅ then it is called a BVASS.

Definition 6.1.4. Given an ABVASSB = (Q,Q`, k,A, Tu, Ts, Tf ), a configuration is a pair (q,~v) ∈
Q × Nk where Q is the set of states of B and k is its dimension. (q,~v) ∈ Q × Nk is said to be
reachable if there is a binary tree labelled by configurations such that:

• The root node is labelled by (q,~v).

• If a node (q,~v) has a unique child (q′, ~v′) then (q,~v − ~v′, q′) ∈ Tu.

• If a node (q,~v) has children (q′, ~v′) and (q′′, ~v′′) then:

– either, ~v′ + ~v′′ = ~v and (q, q′, q′′) ∈ Ts, or,

– ~v = ~v′ = ~v′′ and (q, q′, q′′) ∈ Tf .

• The leaves are labelled by elements of Q` × A.

Such a binary tree is called a run tree of the configuration.

Example 6.1.1. Let B = ({q0, q1, q2}, {q1, q2}, 1, {0}, {(q1, 3, q2), (q2, 3, q1)},∅, {(q0, q1, q2)}). B is
an AVASS since there are no fork rules. We claim that (q0, 5) is reachable. The split rule takes
(q0, 5) to (q1, 5) and (q2, 5). From (q1, 5), one can trigger two unary rules to reach (q2, 2) and
then (q1, 0). Similarly, from (q2, 5), one can trigger two unary rules to reach (q1, 3) and then
(q2, 0). Since, (q2, 0), (q1, 0) ∈ {q1, q2}×{0}, we are done1. On the other hand, observe that (q, 3)
and (q2) are not reachable.

1It is easy to generalise this to see that a configuration of the form (q, 5k) is reachable for all k ∈ N.
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Now consider B′ = ({q0, q1, q2}, {q1, q2}, 1, {0}, {(q1, 3, q2), (q2, 3, q1)}, {(q0, q1, q2)},∅). B is
a BVASS since there are no split rules. We claim that (q0, 5) is reachable. The fork rule can be
triggered to reach (q1, 3) and (q2, 2) from (q0, 5). Since these two configurations are reachable,
we are done. However, note that in contrast to B, (q0, 3) is reachable by forking it to (q1, 3) and
(q2, 0). Similarly, (q0, 2) is also reachable by forking it to (q1, 0) and (q2, 2).

Theorem 6.1.3 ([HP79]). An n-dimension VASS can be simulated in a n+ 3 dimension VAS.

Similarly, one can simulate the branching behaviour without the use of states by having an oper-
ational semantics of the form: if a node ~v has children ~v′ and ~v′′, then ~v − ~v′ − ~v′′ ∈ Ts. On the other
hand, without states, it is impossible to mimic the alternating behaviour.

Theorem 6.1.4 ([dGGS04]). Reachability in BVASSes is equivalent to provability in MELL.

Naturally, the decidability of the reachability problem in BVASSes is an open question (since the
decidability of MELL provability is open). However, it inherits the Ackermann-hardness of VASSes
since every BVASS is also a VASS i.e. we have the following corollary to Theorem 6.1.2.

Corollary 6.1.4.1. Reachability in BVASSes is Ackermann-hard.

Propositional linear logic was shown to be undecidable [Lin92, LMAS92] by a reduction from the
reachability problem in an and-branching two counter machine without zero-test. Such machines
are essentially equivalent to AVASSes [Kop01, LS14, LS15] (in particular, the fork rule is exactly the
same).

Theorem 6.1.5 ([LMAS92]). The AVASS reachability problem is Σ0
1-complete.

In the following sections, we reduce reachability in AVASSes to the provability of µMALL∗, reduce
reachability in BVASSes to the provability of N-free µMALL∗, and reduce the non-halting of Minsky
machines to the provability of µMALL∞.
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6.2 The complexity of µMALL∗

6.2.1 Σ0
1-completeness via full LL

Recall the encoding of the exponential modalities by fixed point formulas from Definition 4.3.2. Lemma 4.3.3
shows that if ϕ is provable in LL then [ϕ] is provable in µMALLind . The converse is not known to be
true. However, we prove the converse in a restricted setting which immediately gives us the complex-
ity of µMALL∗.

Theorem 6.2.1. Let ϕ be a !-free LL formula. Then, ` ϕ is provable in LL iff ` [ϕ] is provable in
µMALL∗.

Proof. The only if part follows from Lemma 4.3.3. For the if part, we generalise the statement from a
formula ϕ to a sequent Γ = ϕ1, . . . , ϕn. Define [Γ] as expected as [ϕ1], . . . , [ϕn]. Suppose there is a
proof π0 of ` [Γ]. Then, by Theorem 4.4.1 and Theorem 4.5.1, there exists a cut-free focussed proof π
of ` [Γ]. We will induct on π.

The base case is simple. If [Γ] = [ϕ], [ϕ⊥] then Γ = ϕ,ϕ⊥ therefore if one can apply (id) rule
in π, one can do the same for Γ in LL. Similarly, for units >,1. Now suppose the last rule of π is a
multiplicative additive rule (�) with principal formula [ϕ�ψ] and auxiliary formula(s) one (or both) of
[ϕ] and [ψ]. Noting the definition of the [•], we see that one can apply the (�) on ϕ� ψ and auxiliary
formula(s) one (or both) of ϕ and ψ such that the premisse(s) are equal up to [•] to the corresponding
premisses in π. Conclude by applying the induction hypothesis to these premisse(s).

The only remaining case is when the last rule of π is (µ) and the principal formula is [?ϕ]. (Note
that since Γ is !-free, [Γ] is ν-free.) Recall that π is a focussed proof. Therefore, (i) [Γ] is a positive
sequent, and moreover (ii) [?ϕ] is the focus. Therefore, the next rule is the ternary (⊕) rule with
principal formula⊥⊕ ([?ϕ]O[?ϕ])⊕ [ϕ]. We will now subject the reader to the obvious case analysis.

Case 1. The next rule (⊕1). Then, the premisse is a negative sequent with the only negative formula
⊥. Therefore the next rule is necessarily (⊥). In LL, we apply ?w on ϕ and conclude by induction
hypothesis.

Case 2. The next rule (⊕2). Again, we end up in a negative sequent with the only negative for-
mula [?ϕ]O[?ϕ]. Therefore the next rule is necessarily (O). In LL, we apply ?c on ϕ and conclude by
induction hypothesis.

Case 3. The next rule (⊕3). The premisse is a sequent of the form [Γ′] and therefore immediately
apply the induction hypothesis.

Corollary 6.2.1.1. µMALL∗ is Σ0
1-complete.

Proof. This follows from Theorem 6.2.1 and the fact that the reduction in Theorem 3.2.1 only uses
!-free formulas.

Corollary 6.2.1.2. µMALLind and µMALL� are Σ0
1-complete.

Proof. Σ0
1-membership for µMALLind since wellfounded proof are finitely presentable and hence re-

cursively checkable. µMALL� pre-proofs are also finitely presentable and since given a circular pre-
proof, checking the progress condition is decidable, we have Σ0

1-membership. For hardness, note that
via Corollary 6.2.1.1 the reduction only uses ν-free formulas and hence the result follows since all
systems i.e. µMALL�, µMALLind , and µMALL∗ coincide on ν-free formulas.

It is folklore that if ϕ is an LK pre-formula with a free variable x then ϕ and ϕ[ϕ[ϕ/x]/x] are
equivalent. This immediately gives us a conservative embedding of µLK (note that this is different from
µ-calculus since there are no modalities) in LK with a polynomial blowup. In the same vein, [GGS16,
GGS19] shows that there is a conservative embedding ofµLJ in LJwith an exponential blowup. MALL
is known to be PSPACE-complete [LMAS92]. Therefore we have the following corollary.

Corollary 6.2.1.3. There is no effectively computable reduction from µMALL∗ (or µMALLind ,
µMALL�) to MALL.
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6.2.2 A potentially decidable fragment
In Section 6.1, we discussed that the provability of MELL is equivalent to the reachability problem in
BVASSs, which are important open questions in the respective communities. In the spirit of this line
of research, we show that provability of the N-free fragment of µMALL∗ is equivalent to reachability
in BVASSs. We denote the N-free fragment of µMALL∗ by µMLL∗⊕.

We fix k+ 1 propositional variables, a1, . . . , ak, z, and define below an encoding of integer vectors
of dimension up to k (the unique vector of dimension 0 is written ε). For the purpose of the encoding
vectors will be read from left to right i.e. a vector ~v of dimension l + 1 will be of the form (n, ~u) for

an integer n and a vector ~u of dimension l. For typographic ease, we use an to denote
n times︷ ︸︸ ︷
a, . . . , a in a

sequent.

Definition 6.2.1. The encoding of an integer vector ~v of dimension d, relative to propositional
variables bi, . . . , bd+i−1, z, written [~v]bi,...,bd+i−1,z, is defined inductively as follows:

[~v]bi,...,bd+i−1
,


z if ~v = ε;

biO[~v′]bi,...,bd+i−1,z if ~v = (n, ~u), n ≥ 1, and ~v′ = (n− 1, ~u);

b⊥i ⊗ [~v′]bi,...,bd+i−1,z if ~v = (n, ~u), n ≤ −1, and ~v′ = (n+ 1, ~u);

[~u]bi+1,...,bd+i−1,z if ~v = (0, ~u).

We will simply write [~v] for the encoding of a vector of dimension k relative to a1, . . . , ak, z.
(We also use this lighter notation for vectors of lower dimension when the dimension and the
{ai, . . . , ak, z} to be used are clear from the context.)

Example 6.2.1. Consider the encoding of (−1, 0, 1) relative to b1, b2, b3, z.

[(−1, 0, 1)]b1,b2,b3 = b1
⊥ ⊗ [(0, 0, 1)]b1,b2,b3

= b1
⊥ ⊗ [(1)]b3 = b1

⊥ ⊗ (b3O[(0)]b3)

= b1
⊥ ⊗ (b3O[ε]b3) = b1

⊥ ⊗ (b3Oz)

Observe that the ith coordinate is represented by the propositional variable bi. The following
lemma shows that the encoding is meaningful with respect to vector equality.

Lemma 6.2.1. Let ~u and ~v be two vectors. Then ` [~u]⊥, [~v] is provable iff ~u = ~v.

Proof. The if direction is a trivial induction on the dimension. For the only if direction, first note that
for any vector ~u, [~u] is a purely MLL formula. Therefore, by Example 3.3.2, for all i, the number of
times ai occurs in [~v] is equal to the number of times a⊥i occurs in [~u⊥]. This is enough to ensure that
~u = ~v.

The following technical lemma will allow us to reason by induction on the dimension via the en-
coding at the provability level, which is crucial to prove our forthcoming theorem.

Lemma 6.2.2. Let 1 ≤ i ≤ k, m ≥ 0 and let s be an integer such that m ≥ s. Let ~q be an
integer vector of dimension k − i. If ` [~q]

⊥
,Γ, ami , a

mi+1

i+1 , . . . , amkk , z is provable, then so is

` [~r]
⊥
,Γ, am+s

i , a
mi+1

i+1 , . . . , amkk , z where ~r = (s, ~q) and ~v = (m,~u).

Proof. We will induct on |s|. The base case is s = 0. Then, [~r] = [~q] hence this case is trivial. For the
induction case, we have two subcases.

Case 1: If s is positive.

(id)
` ai⊥, ai

IH

5
` [(s+ 1, ~q)]⊥,Γ, a

m+(s−1)
i , a

mi+1

i+1 , . . . , amkk , z
(⊗)

` ai⊥ ⊗ [(s+ 1, ~q)]⊥,Γ, am+s
i , a

mi+1

i+1 , . . . , amkk , z
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Case 2: If s is negative.

IH

5
` [(s− 1, ~q)]⊥,Γ, am+s+1

i , a
mi+1

i+1 , . . . , amkk , z
(O)

` aiO[(s− 1, ~q)]⊥,Γ, am+s
i , a

mi+1

i+1 , . . . , amkk , z

In the following, let S be a finite set and [•] : S → µMALL. Define CHS to be the formula that
offers a choice of picking the dual of one of the (encoding of) elements of S.

CHS ,
⊕
s∈S

[s]⊥

When S is a set of instructions we rely on the above encoding, when S is a set of states, we use the
identity encoding benefiting from the fact that states are indeed propositional variables. The reader
might be surprised by our use of the logical duality here: it is simply because we are working in the
one-sided calculus. Furthermore, note that the formula is well-defined only when we have fixed an
order on the elements of S; however, the choice of an order is irrelevant from the provability point of
view.

We can now define the encoding of a BVASSB = (Q,Q`, k,A, Tu, Ts) with |Q`×A| = α, |Tu| = β,
and |Ts| = γ.

• For a unary rule t ∈ Tu of the form (p, ~r, q) we have [t] , pO(q⊥ ⊗ [~r]).

• For a split rule t ∈ Ts of the form (p, q1, q2) we have that [t] , pO(q1
⊥ ⊗ q2

⊥).

• For a final configuration (q,~v) ∈ Q` × A, we have that [(q,~v)] , qO[~v].

• Finally, B is encoded as follows.

B , µx.CHQ`×A ⊕ (CHTuO(z ⊗ x)⊕ (CHTbO((zOx)⊗ x)).

Lemma 6.2.3. If the configuration (q,~v) is reachable in B then ` B, q, av11 , . . . , a
vk
k , z is provable

in µMLL∗⊕ where ~v = (v1, . . . , vk).

Proof. Since (q,~v) is reachable, there exists a run tree. We will mimic the run tree to produce a proof
tree. The proof goes by induction on the run tree. The base case is that of a one node run tree where
the node is labelled by (p,~v) ∈ Q` × A. We have,

(id)
` p⊥, p

[Lemma 6.2.1]

5
` [~v]

⊥
, av11 , . . . , a

vk
k , z (⊗)

` p⊥ ⊗ [~v]⊥, p, av11 , . . . , a
vk
k , z (⊕)

` CHQ`×A, p, a
v1
1 , . . . , a

vk
k , z (µ), (⊕1)

` B, p, av11 , . . . , a
vk
k , z

where the α-ary⊕ on CHQ`×A chooses the configuration (p,~v). There are two cases for the inductive
step depending on whether a unary or split rule is applied at the root node.
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Case 1. Suppose the unary rule (p, ~r, q) is applied to the node labelled (p,~v+~r) where~r = (r1, . . . , rk).
We have the following. The β-ary⊕ chooses the (encoding of) rule (p, ~r, q) ∈ Tu.

(id)
` p⊥, p

(id)
` z⊥, z

IH

5
` q,B, av11 , . . . , a

vk
k , z (⊗)

` q, z⊥, z ⊗B, av11 , . . . , a
vk
k , z

(Lemma 6.2.2, k times)
` q, [~r]⊥, z ⊗B, av1+r1

1 , . . . , avk+rk
k , z

(O)
` qO[~r]

⊥
, z ⊗B, av1+r1

1 , . . . , avk+rk
k , z

(⊗)
` p⊥ ⊗ (qO[~r]

⊥
), z ⊗B, p, av1+r1

1 , . . . , avkk , z (⊕)
` CHTu , z ⊗B, p, a

v1+r1
1 , . . . , avk+rk

k , z
(O)

` CHTuO(z ⊗B), p, av1+r1
1 , . . . , avk+rk

k , z
(µ)

` B, p, av1+r1
1 , . . . , avk+rk

k , z

Case 2. Suppose the split rule (p, q1, q2) is applied to the node labelled (p, ~u+ ~v) to produce (q1, ~u)
and (q2, ~v). The γ-ary⊕ chooses the (encoding of) rule (p, q1, q2) ∈ Tu.

(id)
` p⊥, p

IH

5
` q1, z, B, a

u1
1 , . . . , aukk (O)

` q1, zOB, au1
1 , . . . , aukk

IH

5
` q2, B, a

v1
1 , . . . , a

vk
k , z (⊗)

` q1, q2, (zOB)⊗B, au1+v1
1 , . . . , auk+vk

k , z
(O)

` q1Oq2, (zOB)⊗B, au1+v1
1 , . . . , auk+vk

k , z
(⊗)

` p⊥ ⊗ (q1Oq2), (zOB)⊗B, p, au1+v1
1 , . . . , auk+vk

k , z
(⊕)

` CHTs , (zOB)⊗B, p, au1+v1
1 , . . . , auk+vk

k , z
(O)

` CHTsO((zOB)⊗B), p, au1+v1
1 , . . . , auk+vk

k , z
(µ)

` B, p, av11 , . . . , a
vk
k , z

Before proving the opposite direction, we will prove a technical lemma.

Lemma 6.2.4. For all v1, v2, . . . , vn, the sequent ` B, q, av11 , . . . , a
vk
k is not provable.

Proof. We shall reason by contradiction. Assume that there are some v1, . . . , vk ∈ N such that
` B, q, av11 , . . . , a

vk
k is derivable. Wlog, let us assume that v1, . . . vk are chosen such that the sequent

can be proved with a cut-free, focussed and minimal proof π i.e. no subproof of π is rooted at a sequent
of the form ` B, q, av

′
1

1 , . . . , a
v′k
k . Note that the first two conditions can be assumed by Theorem 4.4.1

and Theorem 4.5.1 respectively; then it is possible to assert the third condition since µMALL∗ is well-
founded.

Note that the sequent is positive and B is the only formula on which any rule can be applied.
Therefore, it is the focus. After the application of the µ rule (which is the only rule that can be applied
at the root of the proof) there are three possibilities,⊕1,⊕2 or⊕3 resulting in either one of the following
sequents:

1. ` CHQ`×A, q, a
v1
1 , . . . , a

vk
k , or,

2. ` CHTuO(z ⊗B), q, av11 , . . . , a
vk
k , or,

3. ` CHTsO((zOB)⊗B), q, av11 , . . . , a
vk
k .

Case 1. Assuming that one applies⊕1, we are still in the positive phase and in a purelyMLL sequent.
Using Example 3.3.2 with respect to z, we have that this is not provable.
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Case 2. Assuming that one applies ⊕2, we end up in a negative sequent. After the mandatory
(O) rule, we have a sequent of the form ` CHTu , z ⊗ B, q, av11 , . . . , a

vk
k . This proof shall contain a

(⊗) rule of principal formula z ⊗ B of conclusion. The left premisse must contain either CHTu or a
subformula of CHTu of the form [~r]⊥ (since CHTu that contains z⊥ as subformula and otherwise we
have a contradiction by Example 3.3.2). By a similar argument, we ensure that there exists q′ ∈ Q in
the right premisse. Therefore, the right premisse is of the form ` B, q′, av

′
1

1 , . . . , a
v′k
k . This contradicts

the minimality of the proof.

Case 3. Assuming that one applies ⊕3, we end up in a negative sequent. After the mandatory (O)
rule, we have a sequent of the form ` CHTu , (zOB) ⊗ B, q, av11 , . . . , a

vk
k . If (zOB) ⊗ B is the focus,

then the right premisse is of the form ` CHTs , B, q, a
v′1
1 , . . . , a

v′k
k . If q is not present, then no axiom,

unary or split rule would be applicable at any point, so the proof would be a non-wellfounded unfolding
of B. If CHTs is not present then we would contradict the minimality of the proof. Therefore, the left
premisse is of the form ` zOB, av11 , . . . , a

vk
k . Since q is not present, then no axiom, unary or split rule

would be applicable at any point, so the proof would be a non-wellfounded unfolding of B. Hence we
have exhausted all three possible cases and can therefore deduce the expected contradiction.

Lemma 6.2.5. If ` B, q, av11 , . . . , a
vk
k , z is provable in µMLL∗⊕ then the configuration (q,~v) is

reachable in B where ~v = (v1, . . . , vk).

Proof. Assume that q ∈ Q and {a1, . . . , ak} are negative atoms and z is a positive atom. By Theo-
rem 4.4.1 and Theorem 4.5.1, there exists a cut-free focussed proof of ` B, q, av11 , . . . , a

vk
k , z. We will

induct on the height of the proof. B is the only formula on which any rule can be applied. Therefore, it
is the focus. The proof starts off as follows.

` CHQ`×A ⊕ (CHTuO(z ⊗B))⊕ (CHTsO(zOBOB)), q, av11 , . . . , a
vk
k , z (µ)

` B, q, av11 , . . . , a
vk
k , z

Case 1. The next rule is (⊕1). The auxiliary formula is positive. Therefore, the next rule is the α-ary

(⊕) that chooses q′⊥ ⊗ [~v′]
⊥

for some (q′, ~v′) ∈ Q` × A. This is also a positive formula; hence the
next rule is (⊗) and its left premisse is of the form ` q′⊥,Γ. Since q′ is a negative atom, this is still in
the positive phase. Therefore, it must be the conclusion of an (id) rule. Therefore, q′ = q, Γ = {q},
and the right premisse of the tensor rule is of the form ` [~v′]

⊥
, av11 , . . . , a

vk
k , z. By Lemma 6.2.1,

~v′ = (v1, . . . , vk). Hence (q,~v) ∈ Q` × A and the run tree is a single node labelled by (q,~v).

Case 2. The next rule is (⊕2). The following rule is necessarily (O). Now there are two possibilities,
either CHTu is the focus or z ⊗ B is the focus. Suppose the latter happens. Then, the left premisse
of the tensor rule with principal formula z ⊗ B is of the form ` z,Γ. Observe that this is a positive
sequent and it must be the conclusion of an (id) rule. This is not possible. Therefore CHTu is the
focus. The next rule is thus a β-ary ⊕ and a unary rule of the form q′

⊥ ⊗ (q′′O[~r]
⊥

) is chosen. The
next rule is thus a tensor. Since the left premisse (say, ` q′⊥,Γ) is positive, the only possibility is that
Γ = {q} and q′ = q. The right premisse is negative and after an application of (O) we have a sequent
of the form ` [~r]

⊥
, z ⊗B, q′′, av1 , . . . , avk , z.

Observe that if the first coordinate of ~r is negative then the outermost connective of [~r]⊥ is nega-
tive. Suppose the first ` coordinates of ~r are negative, then the subsequent inference rules necessarily
are several O rules until we reach the sequent ` [~q]⊥, z⊗B, av1+r1

1 , . . . , av`+r`` , a
v`+1

`+1 , . . . , a
vk
k , z where

~q = (0, . . . , 0, r`+1, . . . , rk) and r`+1 > 0. This is a positive sequent. There are again two possibilities
for the foci: [~q]⊥ or z ⊗B. In the latter case, we will argue as before.

Thus [~q]⊥ is the focus. Observe that the left premisse of the tensor has to be ` a⊥`+1,Γ. We
assumed that ai is a negative atom for all i. Therefore, this has to be the conclusion of an axiom
and hence Γ = {a`}. Continuing like this we reach ` z⊥, z ⊗ B, q′′, av1+r1

1 , . . . , avk+rk
k , z. The

only possible focus is now z ⊗ B and by a similar argument as the above instances the left premisse
is necessarily of the form ` z⊥, z and the conclusion of an axiom. The right premisse of the form
` B, q′′, av1+r1

1 , . . . , avk+rk
k , z and we can apply induction hypothesis on this subproof of lower height.
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Case 3. The next rule is (⊕3). We have a negative sequent and the following rules is necessarily a
(O)s. Now there are two possibilities, either CHTs is the focus or (zOB)⊗B is the focus.

Suppose (zOB) ⊗ B is the focus. We will consider two subcases. Assume that CHTs goes
to the left premisse. Now, q must be on the right premisse, otherwise on the right premisse, no
axiom, unary or binary rule can ever be applied and it will be a nonwellfounded unfolding of B.
Finally, by Lemma 6.2.4, z also goes to the right. Therefore, the left premisse is of the form `
zOB, av

′
1 , . . . , av

′
k ,CHTs . Again, observe that due to the absence of an atom p ∈ Q, no axiom, unary

or binary rule can ever be applied and it will be a nonwellfounded unfolding of B. The second subcase
when CHTs goes to the right premisse is symmetric.

If CHTs is the focus, then a |γ|-ary (⊕)-rule chooses the encoding of a split rule t of the form
(p′, q1, q2). Since [t]

⊥ is a positive formula whence the next rule is (⊗) with principal formula [t]
⊥.

Arguing as we have done in several instances, the left premisse is necessarily of the form ` p′
⊥
, p

and p = p′. The right premisse is a negative sequent. After an application of the (O) rule, we have a
sequent of the form ` q1, q2, (zOB) ⊗ B, av1 , . . . , avkk , z. The focus is (zOB) ⊗ B. If q1 and q2, then
there is a premisse with no atom from Q, and thus no axiom, unary or split rule can ever be applied
on that subproof. If the contexts split in such a way that B occurs in only one of the premisses then
consider the premisse where it does not occur. Note that it is a purely MLL sequent and applying Ex-
ample 3.3.2 with respect to z, we have a contradiction. Finally, by Lemma 6.2.4, the only possible
splitting of the context has exactly one z and one B on either side, allowing us to fire the induction
hypothesis on each premisse.

From Lemma 6.2.3 and Lemma 6.2.5, we conclude that:

Theorem 6.2.2. BVASS reachability reduces to µMLL∗⊕ provability.

We will now show that µMLL∗⊕ provability reduces to BVASS reachability. It is equivalent to prove
a sequent and a formula. Fix a formula ϕ and order FL(ϕ) lexicographically as {ϕ1, . . . , ϕk}. Let Seq
be the set of multiset with the ϕis as elements. Let [•] : Seq → Nk be an injective function such that
the ith coordinate of [Γ] is the multiplicity of ϕi in Γ. Let eψ = (v1, . . . , vk) be the vector such that

vi =

{
0 if ϕi 6= ψ;

1 otherwise.

We will now define the BVASS that will determine the provability of ϕ. Consider the following
BVASS Bϕ = (Q,Q`, k,A, Tu, Ts) such that:

• Q = FL(ϕ) ∪ {?,∅};

• Q` = {?};

• A = {[ψ,ψ⊥] | {ψ,ψ⊥} ⊆ FL(F )} ∪ {[>], [1]};

• The unary rules are given in the following way as (we present them as transitions over configu-
rations):

1. (ψ ⊕ ψ′, [Γ])
~0−→ (ψ, [Γ])

2. (ψ ⊕ ψ′, [Γ])
~0−→ (ψ′, [Γ])

3. (ψOψ′, [Γ])
eψ+eψ′−−−−−→ (∅, [Γ, ψ, ψ′])

4. (µX.ψ, [Γ])
~0−→ (ψ[µX.ψ], [Γ])

5. (⊥, [Γ])
~0−→ (∅, [Γ])

6. (>, [Γ])
−eψ−−−→ (>, [Γ \ {ψ}])

7. (>, [∅])
e>−−→ (?, [>])

8. (1, [∅])
e1−→ (?, [1])

9. (S, [Γ])
eS−eψ′−−−−−→ (ψ′, [Γ \ {ψ′}, S]) where S ∈ {∅, {ψ}} and e∅ = ~0

10. (∅, [Γ])
~0−→ (?, [Γ])
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• There is exactly one split rule (as before we present it as a transition over configurations):

(ψ ⊗ ψ′, [Γ,∆])

(ψ, [Γ]) (ψ′, [∆])

Lemma 6.2.6. If ϕ is provable in µMLL∗⊕ then (∅, [ϕ]) is reachable in Bϕ.

Proof. By Theorem 4.5.1, we can assume that we have a cut-free proof. We will induct on the height
of the proof. We will choose a stronger hypothesis viz. for any sequent Γ made of formulas from FL(ϕ),
if Γ is provable in µMLL∗⊕ then (∅, [Γ]) is reachable in B.

For the the base case there are three subcases:

• The proof of the form
(id)

` ψ,ψ⊥

In B, (∅, [ψ,ψ⊥]) is indeed reachable via a unary rule to (?, [ψ,ψ⊥]) ∈ Q` × A.

• The proof is of the form
(>)

` Γ′,>

We have (∅, [Γ,>])
−e>−−−→ (>, [Γ]). A (finite) series of unary rules leads us to (>, [∅]) from

where we can reach (?, [>]).

• The case for the (1) rule is trivial.

For the induction case, we have several subcases:

• Suppose Γ = Γ′, ψ ⊕ ψ′ and the proof is of the form:

` Γ′, ψ
(⊕1)

` Γ′, ψ ⊕ ψ′

We have (∅, [Γ′, ψ⊕ψ′])
−eψ⊕ψ′−−−−−→ (ψ⊕ψ′, [Γ′])

~0−→ (ψ, [Γ′])
eψ−→ (∅, [Γ′, ψ]). We can now apply

the induction hypothesis. This goes exactly similarly for the rules (⊕2) and (µ).

• Suppose Γ = Γ′, ψOψ′ and the proof is of the form:

` Γ′, ψ, ψ′
(O)

` Γ′, ψOψ′

We have (∅, [Γ′, ψOψ′])
−eψOψ′−−−−−→ (ψOψ′, [Γ′])

eψ+eψ′−−−−−→ (∅, [Γ, ψ, ψ′]). We can now apply the
induction hypothesis. This idea works for the (⊥) rule as well.

• Suppose Γ = Γ′, ψ ⊗ ψ′ and the proof is of the form:

` ∆, ψ ` ∆′, ψ′
(⊗)

` Γ′, ψ ⊗ ψ′

We have,

(∅, [Γ′, ψ ⊗ ψ′])

(ψ ⊗ ψ′, [Γ′])

(ψ, [∆])

(∅, [∆, ψ])

eψ

(ψ′, [∆′])

(∅, [∆′, ψ′])

eψ′
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We can now apply the induction hypothesis.

Lemma 6.2.7. Let ψ,ψ be formulas such that ψ 6= >. Let S ∈ {∅, {ψ}} and S′ ∈ {∅, {ψ′}}. If in
a run of Bϕ, there is a path from (S, [Γ]) to (S′, [Γ′]) then the following is derivable in µMLL∗⊕.

` S′,Γ′

` S,Γ

Proof. We will prove by induction on the length of the path from (S, [Γ]) to (S′, [Γ′]). The base case
is trivial as Γ′ = Γ and S = S′. For the induction case, there are two subcases.

• If S = ψ � ψ′, S = µx.ψ, S = ⊥ then we apply the corresponding rule and then the induction
hypothesis.

• Since we assume that S′ 6= ?, therefore S cannot be 1. If S = ∅, we cannot have (∅, [Γ]) →
(?, [Γ]) for the same reason. Now the only rule left to examine is (ψ, [Γ]) → (ψ′, [Γ \ {ψ′}, ψ]).
Note that as sequents these are identical, hence we are done.

Lemma 6.2.8. If (∅, [ϕ]) is reachable in B then ϕ is provable in µMLL∗⊕.

Proof. There is a run in normal form starting from (∅, [ϕ]). We use Lemma 6.2.7, to obtain a max-
imal derivation of ϕ. The process ends at a configuration of the form (>, [Γ]), (1, [∅]), or (∅, [Γ]).
Consequently, the leaves of the derivation are of the form ` >,Γ, ` 1, or [Γ]. In the first and second
case, conclude by applying the (>) and (1) rule respectively. In the final case, note that if the next
configuration in the run-tree (ψ′, [Γ \ {ψ′}, ψ]) then the derivation is not maximal. Thus the next
rule is (?, [Γ]). Since this is a leaf of the run-tree, it is necessarily a final configuration of the form
(?, [ψ,ψ⊥]). We conclude by applying an (id) rule.

From Lemma 6.2.6 and Lemma 6.2.8, we conclude:

Theorem 6.2.3. µMLL∗⊕ provability reduces to BVASS reachability.

Finally, from Theorem 6.2.2 and Theorem 6.2.3, we have:

Theorem 6.2.4. µMLL∗⊕ provability is equivalent to BVASS reachability.

Corollary 6.2.4.1. µMLL∗⊕ provability is equivalent to MELL provability. Furthermore, µMLL∗⊕
is at least Ackermann-hard.
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6.3 The complexity of µMALL∞

In this section, we will show that µMALL∞ provability reduces from the non-halting of Minsky ma-
chines. Our reduction is inspired by the one in [Kuz20] for infinitary commutative action logic.

Action logic is the equational theory of non-commutative intuitionistic logic with a unary operator
∗ called the Kleene star. Action logic without left and right linear implication (called residuals in
the community of algebraic logic) is called the Kleene algebra. An action lattice A is said to be ∗-

continuous, if for any a ∈ A, we have a∗ = sup{an | n ∈ ω} where a0 = 1 and an =

n times︷ ︸︸ ︷
a⊗ . . .⊗ a for

n > 0. Consequently, we have the following rules for the Kleene star.

Γ,1 ` ψ Γ, ϕ ` ψ Γ, ϕ⊗ ϕ ` ψ . . .
(∗`)

Γ, ϕ∗ ` ψ ;

Γ1 ` ϕ . . . Γn ` ϕ
(∗nr )

Γ1, . . . ,Γn ` ϕ∗

Kuznetsov [Kuz20] reduces to the non-halting of Minsky machines to provability in infinitary
commutative action logic. Note that, we can encode of the Kleene star as ϕ∗ = µx.(1⊕ (ϕ⊗ x)) and
then these rules exactly correspond the fixed point rules on this formula in the µωMALL+. However,
there are a couple of issues with directly importing Kuznetsov’s result even for µωMALL+. Action
logic is intuitionistic, requiring an extension of the conservativity of linear logic over intuitionistic lin-
ear logic [Sch91] to µωMALL. Strictly speaking, this is not possible since 0 is itself encodable as a
fixed point viz. µx.x, and it is not obvious what language such a conservativity result might hold over.

An extra issue in the case of µMALL∞ is the inference rule for the Kleene star is ω-branching.
Therefore, one would also need to establish translations from the omega-branching µMALL (say,
µωMALL for example) to µMALL∞ (and vice versa) which seem to be quite non-trivial and require yet
further intermediary systems. Therefore, we provide a direct reduction.

6.3.1 The hardness result
Fix a Minsky machine M = (Q, r1, r2, I). We construe {a, b, za, zb} ∪ Q as a set of propositional
variables (assuming {a, b, za, zb} ∩Q = ∅). We use a and za (respectively b and zb) to represent the
contents of the register r1 (respectively r2). We encode instructions (with any extra 0-ary instruction
zero-check) as follows:

[INC(p, r1, q)] , pO(q⊥ ⊗ a⊥)

[JZDEC(p, r1, q0, q1)] , (pO(q⊥0 ⊕ z⊥a ))N((pOa)Oq⊥1 )

[zero-check] , (za ⊗ z⊥a )⊕ (zb ⊗ z⊥b )

For any formula ϕ, define ϕ∗ = µx.(1 ⊕ (ϕ ⊗ x)) and ϕω = νx.(⊥N(FOx)). Observe that
(ϕ∗)⊥ = (ϕ⊥)ω.

Proposition 6.3.1. For any formula ϕ and any n ∈ N, ` ϕn, (ϕ⊥)∗ is provable in µMALL∞.

Proof. We proceed by induction on n. We call πnϕ the proof of ` ϕn, (ϕ⊥)∗.

Base Case. n = 0. We have
(1)

` 1
(⊕1)

` 1⊕ (ϕ⊥ ⊗ (ϕ⊥)∗)
(µ)

` (ϕ⊥)∗

Induction Case. n = m+ 1. We have

(id)
` ϕ,ϕ⊥

IH = πmϕ5
` ϕm, (ϕ⊥)∗

(⊗)
` ϕm+1, ϕ⊥ ⊗ (ϕ⊥)∗

(µ), (⊕2)
` ϕm+1, (ϕ⊥)∗
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Finally, we encode the invariant to be maintained by

Inv , ((a⊥)∗ ⊗ (b⊥)∗ ⊗ CHQ)⊕ ((b⊥)∗ ⊗ za)⊕ ((a⊥)∗ ⊗ zb).

It checks one of the three following conditions: (i) the control is at a valid configuration (ii) r1 is
zero (iii) r2 is zero. Note that [q] = q where the left-hand side is the state q and the right-hand side is
the propositional variable q.

Lemma 6.3.1. For allm,n ∈ N, ` za,CHmI , bn, Inv and` zb,CHmI , an, Inv are provable inµMALL∞.

Proof. We will show that ` za,CHmI , bn, Inv is provable for anym,n by induction onm. A symmetric
proof will work for ` zb,CHmI , an, Inv.

Base Case. m = 0. We have

πnb5
` bn, (b⊥)∗

(id)
` za, z⊥a (⊗)

` za, bn, (b⊥)∗ ⊗ z⊥a (⊕2)
` za, bn, Inv

Induction Case. m = k + 1. We have

(id)
` za, z⊥a

IH

5
` za,CHkI , bn, Inv (⊗)

` za, za ⊗ z⊥a ,CH
k
I , b

n, Inv
(⊕1)

` za,CHk+1
I , bn, Inv

Lemma 6.3.2. If M performs k steps from 〈p,m, n〉, then ` CHkI , p, a
m, bn, Inv is derivable in

µMALL∞.

Proof. We will proceed by induction on k. The base case is k = 0 i.e.M is at 〈p,m, n〉. We have that

πma5
` am, (a⊥)∗

πnb5
` bn, (b⊥)∗

(id)
` p, p⊥

(⊕)
` p,CHQ

(⊗)
` p, am, bn, (a⊥)∗ ⊗ (b⊥)∗ ⊗ CHQ

(⊕1)
` p, am, bn, Inv

For the induction case, assume k = ` + 1. We will examine the first step of the execution. We
have three sub-cases: incrementation, decrementation of a non-zero register, and decrementation of
a zero-valued register.

Case 1. The first step is INC(p, r1, q) (INC(p, r1, q) is similar). We have

(id)
` p⊥, p

IH

5
` CH`I , q, a

m+1, bn, Inv
(O)

` qOa,CH`I , am, bn, Inv (⊗)
` [INC(p, r1, q)]

⊥,CH`I , p, a
m, bn, Inv

(⊕)
` CH`+1

I , p, am, bn, Inv

where the |I|-ary⊕ chooses the instruction INC(p, r1, q).
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Case 2. The first step is JZDEC(p, r1, q0, q1) andm = 0 (a first step JZDEC(p, r2, q0, q1) with n = 0
is similar). We have:

(id)
` p⊥, p

IH

5
` q0,CH

`
I , b

n, Inv

` za, zero-check,CH`−1
I , bn, Inv

(⊕)
` za,CH`I , bn, Inv (N)

` (q0Nza),CH`I , b
n, Inv

(⊗)
` p⊥ ⊗ (q0Nza),CH`I , p, b

n, Inv
(⊕1)

` [JZDEC(p, r1, q0, q1)]⊥,CH`I , p, b
n, Inv

(⊕)
` CH`+1

I , p, bn, Inv

where we select the appropriate instruction by applying the corresponding ⊕ inference, as in Case 1

and where the
... part repeats the pattern decreasing the number of CHI formulas in the sequent.

Case 3. The first step is JZDEC(p, r1, q0, q1) andm 6= 0 (a first step JZDEC(p, r2, q0, q1) with n 6= 0
is similar). We have:

(id)
` p⊥, p

(id)
` a⊥, a

(⊗)
` p⊥ ⊗ a⊥, p, a

IH

5
` q1,CH

`
I , a

m−1, bn, Inv
(⊗)

` (p⊥ ⊗ a⊥)⊗ q1,CH
`
I , p, a

m, bn, Inv
(⊕2)

` [JZDEC(p, r1, q0, q1)]⊥,CH`I , p, a
m, bn, Inv

(⊕)
` CH`+1

I , p, am, bn, Inv

where we select the appropriate instruction by applying the corresponding⊕ inference.

We appeal to the focussing property of µMALL∞ to prove the opposite direction. Therefore, for
the rest of this subsection we assign atomic polarities as follows: a, b and q are negative for any state
q ∈ Q, za, zb are positive.

Lemma 6.3.3. In any focused proof of ` CHkI , p, a
m, bn, Inv where k 6= 0, the positive formula Inv

is not the focus.

Proof. Suppose Inv is the focus, aiming at a contradiction. We have three cases depending on the
rule applied on Inv.

Case 1. The first rule is (⊕1) with principal formula Inv. Then, the auxilliary formula is (a⊥)∗ ⊗
(b⊥)∗ ⊗ CHQ. Since the outermost connective is positive, we must immediately apply the ternary
tensor rule which has three premisses of the form (i) ` Γ, (a⊥)∗, (ii) ` ∆, (b⊥)∗, and (iii) ` Ξ,CHQ
with foci (a⊥)∗, (b⊥)∗ and CHQ respectively. Consider the first premisse. We are still in the positive
phase with (a⊥)∗ as focus. The next rules are (µ) and (⊕) rule respectively. If Γ is non-empty one
cannot choose 1 hence the next rule is a⊗. Therefore we again have premisses of the form` Γ′, a⊥ and
` Γ′′, (a⊥)∗ where Γ = Γ′,Γ′′. Observe that we can repeat our argument on the second premisse since
(a⊥)∗ is still under focus but we cannot continue like that ad infinitum since that would be an infinite
branch without any progressing threads. Hence, at some point 1 is chosen. Therefore we conclude
Γ = {am′} where m′ ≤ m. Similarly, ∆ = {bn′} where n′ ≤ n. Therefore Ξ = CHkI , p, a

m−m′ , bn−n
′
.

Now consider the last premisse ` Ξ,CHQ (with focus CHQ). We are forced to choose q⊥ for some
q ∈ Q, which shall be conclusion of an (id) rule and Ξ must be {q}. This is only possible if p is chosen,
m = m′, n = n′ and k = 0. But we assumed k 6= 0. Contradiction!

Case 2. The first rule is (⊕2) with principal formula Inv. Then, the auxilliary formula is (b⊥)∗ ⊗ za.
Since the outermost connective is positive, we must immediately apply the tensor rule. One of the
premisses is of the form ` ∆, za with za as focus and we cannot apply any inference rule. This is
because ∆ cannot be z⊥a so the identity rule is ruled out and za is a positive atom. The reasoning is
symmetric if the first rule is (⊕3).

Lemma 6.3.4. If ` CHkI , p, a
m, bn, Inv is derivable in µMALL∞, thenM performs k steps starting

from 〈p,m, n〉.
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Proof. By Theorem 4.4.1 and Theorem 4.5.2 there is a cut-free and focussed proof of` CHkI , p, a
m, bn, Inv.

We will induct on the height of this proof. The base case is vacuous. For the induction case, from
Lemma 6.3.3, we get that CHI is the focus. Recall that CHI is a n-ary ⊕ for some n that ”chooses”
the encoding of an instruction and zero-check. Suppose zero-check is chosen. Since it is a pos-
itive formula, it will be the principal formula again. Wlog assume za ⊗ za⊥ is chosen, which being
a positive formula will be the focus. The tensor rule has a premisse of the form ` ∆, za and za being
positive, the only applicable rule is (id). This is impossible. So zero-check cannot be chosen and
some other instruction is chosen. Observe that if it is an incrementation, a focussed proof will follow
exactly like the proof fragment exhibited while proving Lemma 6.3.2. If a decrementation is chosen,
we need to make sure that the control goes to the appropriate state depending on whether the register
in question is zero or not. Observe that an erroneous choice is doomed to fail. We have two cases:

Case 1. Suppose we have ` (p⊥ ⊗ a⊥) ⊗ q,CH`I , bn, Inv. Here (p⊥ ⊗ a⊥) ⊗ q is the focus since in
the earlier step [JZDEC(p, r1, q0, q1)]⊥ was necessarily the focus for some state q0. Therefore we have
sequent of the form ` ∆, a⊥ where a⊥ is the focus and ∆ cannot be {a}.

Case 2. Suppose we have ` p⊥ ⊗ (q0Nza),CH`I , p, a
m, bn, Inv. As before p⊥ ⊗ (q0Nza) is the focus

and we have the sequent CH`I , za, a
m, bn, Inv. Using the exact same argument as in Lemma 6.3.3,

we have that Inv cannot be the focus. If an instruction (other than zero-check) is chosen which has
the state t as the current state then a focused proof leads us to a sequent of the form ∆, t⊥ with t
as focus and ∆ 6= {t⊥}. Therefore only zero-check can be chosen and we end up in the sequent
` za, am, bn, Inv. It is clear that this does not have a proof.

Therefore after choosing a decrementation one cannot be led astray into the wrong state. Hence
the proof follow exactly as in Lemma 6.3.2 and we will end up in a subproof of the shape` CHk−1

I , q, am
′
, bn

′
, Inv

for some state q and some natural numberm′, n′. We can then apply the induction hypothesis and get
the desired result.

From Lemma 6.3.2 and Lemma 6.3.4, we have the following.

Theorem 6.3.1. M performs n steps starting from 〈qs, 0, 0〉 iff ` CHnI , qs, Inv is derivable in
µMALL∞.

Theorem 6.3.2. A Minsky machine M has an infinite run from the state qs iff CHωI , qs, Inv is
derivable in µMALL∞.

Proof. For the only if part we assume thatM loops. So,M runs for n steps for all n ∈ N. Therefore,
by Theorem 6.3.1, we have that Γn = CHnI , qs, Inv is derivable for all n ∈ N. Let us call πn a proof of
Γn, for n ∈ N. We have

π05
` qs, Inv

(⊥)
` ⊥, qs, Inv

π15
` CHI , qs, Inv

(⊥)
` CHI ,⊥, qs, Inv

...

5
` CHI ,CH

ω
I , qs, Inv (O), (ν), (N)

` CHIOCHωI , qs, Inv (ν), (N)
` CHωI , qs, Inv

Observe that this pre-proof is indeed a proof as the right-most non-wellfounded branch is val-
idated by a thread on CHωI . For the if direction assume that we have a proof π of ` CHωI , qs, Inv.
Observe that for all n ∈ N we have a proof of CHnI , qs, Inv:

πnCHI5
` CHnI , (CH

⊥
I )∗

π

5
` CHωI , qs, Inv (cut)

` CHnI , qs, Inv

By Theorem 6.3.1,M runs at least n steps for all n ∈ N. We collect all these runs and get a finitely
branching infinite tree rooted at 〈qs, 0, 0〉. König’s lemma ensures that there is an infinite run ofM
from qs.

As a direct consequence of Theorem 6.3.2 and Theorem 6.1.1 we have the following:
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Corollary 6.3.2.1. µMALL∞ provability is Π0
1-hard.

Corollary 6.3.2.2. µMALL∞ provability is (Σ0
1 ∪Π0

1)-hard.

Proof. Since µMALL∗ ⊆ µMALL∞, the Σ0
1-hardness of Corollary 6.2.1.1 is inherited. From Corol-

lary 6.3.2.1, µMALL∞ is Π0
1-hard. Therefore, it is (Σ0

1 ∪Π0
1)-hard.

6.3.2 Towards a tight upper bound
There is a trivial upper bound for µMALL∞ in the analytical hierarchy. Provability can be trivially
encoded as

∃ pre-proof π.∀ branches β ∈ π.∃ thread t ∈ β. t is progressing

Checking the progress condition is arithmetical. Therefore µMALL∞ provability is in Σ1
3. This

leaves a chasm between the (Σ0
1 ∪Π0

1) lower bound and the Σ1
3 upper bound. We conjecture that both

of these can be improved.

Open Question

µMALL∞ provability is Π1
1-complete.

We will sketch a few ideas in both directions. For the lower bound, we note that it is not surprising
that Σ0

1 and Π0
1 bounds are not tight. The reduction for the Σ0

1 bound uses only ν-free formulas while
the Σ0

1 uses alternation-free formulas. The full expressiveness of µMALL∞ is possibly captured only
with formulas with alternations of fixed point operators. On a related note, the universal Horn theory
of ∗-continuous Kleene algebras is Π1

1-complete [Koz02].

Theorem 6.3.3 ([AH89]). Given a Minsky machineM and an initial state qs, checking whether
there exists an infinite run from qs such that qs occurs infinitely often is Σ1

1-complete.

Consequently, checking whether there does not exist an infinite run satisfying such a Büchi con-
dition is Π1

1-complete. We envision a formula of the form µx.νy.f(x, y) such that:

• The µ unfolding corresponds to the fact qs is visited.

• One ν unfolding corresponds to one step in the configuration graph.

• A finite proof would correspond to a finite run ofM.

• The only infinite progressing derivations would unfold µ finitely many times, thereby ensuring
that all infinite runs ofM visit qs at most finitely many times.

For the upper bound, similar to ideas in Section 5.4, we conjecture that there is some wellfounded
infinitely branching system provably equivalent to µMALL∞. Such systems are in Π1

1. We end this
section by showing the following.

Theorem 6.3.4. The set of µωMALL+ provable sentences are in Π1
1.

Proof. Consider a function f : µωMALL → µωMALL that takes a µωMALL formula and replaces
every occurrence of ν by νn for some n. Now quantifying over f is morally a quantification over a
function from N to N (courtesy some Gödel encoding of µωMALL formulas). Now, a µωMALL formula
ϕ is provable iff for all f , f(ϕ) is provable. Any proof of f(ϕ) is finitely branching and wellfounded;
hence proof-search is arithmetical. Therefore µωMALL proof-search is in Π1

1.
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6.4 The regularisation problem

6.4.1 Regularisation in other logics
We will start with a brief discussion on regularisation in the modal µ-calculus. The non-wellfounded
calculus (with the unfolding rules for the fixed points) admits cuts whence the induced (cut-free)
calculus enjoys the subformula property (with respect to Fischer-Ladner subformulas) meaning that
only finitely many distinct sequents may occur in a proof.2 As a result, once a particular sequent to
be proved is fixed, the progress condition becomes an ω-regular property on infinite branches. This
allows us to reduce regular completeness of the system to non-wellfounded completeness of the
system, thanks to Rabin’s basis theorem [Rab72]. This idea is implicit in Niwinski and Walukiewicz’s
seminal work [NW96].

They introduced a notion of validity game for the µ-calculus, whose Opponent strategies may
be identified with countermodels, and whose Prover strategies may be identified with certain ‘non-
wellfounded’ derivations in a simple cut-free sequent calculus. The determinacy of these games im-
mediately yields completeness of the induced class of non-wellfounded derivations. Furthermore,
upon careful inspection of the winning condition, one can deduce that these games are determined
by strategies of uniformly bounded finite memory, which in turn yields regular completeness of µ-
calculus.

This reduction is, a priori, non-constructive: it asserts the existence of a regular proof but does
not tell us how to construct one from a given non-wellfounded one. However, it is possible to define a
constructive procedure that ‘cuts’ branches of an infinite proof tree to transform it into a regular one,
using automata-theoretic techniques. In this subsection, we will sketch this idea.

Let Seq be the set of µ-calculus sequents (construed as sets of formulas). The correctness con-
dition can be construed as an infinite word language Θ ⊆ Seqω. Furthermore, we define a graph
P = (Seq, E) such that (Γ,Γ′) if there is an instance of a µ-calculus inference rule with ` Γ as
conclusion and ` Γ′ one of the premisses.

Theorem 6.4.1. Given a non-wellfounded proof π, there is a regular proof πreg of the same
conclusion obtained by only cutting branches of π and adding back edges to descendants i.e.
every infinite branch of πreg has the form xyω, where x and xy are finite prefixes of some infinite
branch of π.

Proof. We write Σ for the set of sequents occurring in π. We note that Σ is finite and that ΘΣ :=
Θ∩Σω is ω-regular. We also fix a deterministic parity automaton TΣ that recognises ΘΣ. Let us write
P × TΣ for the annotation of P by states of TΣ obtained from running TΣ through the branches of P .

Let B = (si, qi)i be an infinite branch of P × TΣ; since (si)i is accepted by TΣ, there must be
some even colour c that is the least among the infinitely occurring colours of (qi)i. By the pigeon-
hole principle, B must have a prefix xy where y : (s, q) →+ (s, q) such that the least colour in y is
even (and ≥ c). We define πreg by cutting each such infinite branch B at xy and placing a back-edge
between the latter and former occurrences of (s, q) in y. (More formally, the least such cuttings will
form a bar through P × TΣ that can be recursively obtained by blind search from the root). Note that
the only simple loops of πreg are the y’s obtained from such cuttings.

For the correctness of πreg, note that any infinite branch must visit some simple loops infinitely
often. By construction, the least colour occurring infinitely often will be the least of the even colours
associated to such simple loops, and so must be even.

6.4.2 Regularisation in µMALL

It is worth pointing out that the argument we mentioned for regularisation in the µ-calculus in Sec-
tion 6.4.1 can in fact be adapted to certain fragments of µMALL, in particular the additive fragment.
Writing µALL∞ and µALL� for the restriction of µMALL∞ and µMALL�, respectively, to only additive
connectives, we have:

Theorem 6.4.2. If ` Γ is provable in µALL∞, then it is also (cut-free) provable in µALL�.
2More precisely, the number of formulas in FL(Γ) is linear in the size of Γ and subsequently there are at most 2O(|Γ|) such

sequents.
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Proof. By Theorem 4.5.2, we may assume that ` Γ has a cut-free µALL∞ proof π. Note that each
(non-cut) rule of µALL preserves, bottom-up, the number of formulas in a sequent. Since there are
only finitely many formulas that can occur, π contains at most finitely many distinct sequents. The
rest of the proof follows exactly as the proof of Theorem 6.4.1.

Note that this also implies the decidability of µALL∞ since, after guessing a (exponential-size)
pre-proof of Γ, checking that it is a proof is decidable (in space polynomial in the size of the proof).

Corollary 6.4.2.1. µALL∞ (equivalently µALL�) is decidable in EXSPACE.

We stop short of attempting to optimise this result since, in particular, it seems sensitive to the
precise presentation of µALL. Often (µ)ALL is presented with exactly two formulas in a sequent,
e.g. [San02, FS13], and this invariant is maintained by the rules of (µ)ALL. In such a presentation,
there are only quadratically many distinct sequents in a µALL∞ proof.

However, the regular and non-wellfounded calculi of µMALL are different, in general. This follows
immediately from the complexity results obtained in the previous sections.

Theorem 6.4.3. There are theorems of µMALL∞ that are not provable in µMALL�.

Proof. By Corollary 6.2.1.2, µMALL� is Σ0
1-complete and by Corollary 6.3.2.2, µMALL∞ is (Σ0

1 ∪
Π0

1)-hard. Since Σ0
1 ( Π0

1 and µMALL� ⊆ µMALL∞, we conclude that actually µMALL� (
µMALL∞.

Observe that this proof is apparently non-constructive in the sense that we do not explicitly exhibit
a sequent in µMALL∞\µMALL�. Furthermore, note that we could have made our conclusion already
from the Π0

1-hardness of µMALL∞ (not requiring the (Σ0
1 ∪ Π0

1)-hardness). While it is clear that not
all sequents of the form ` CHωI , qs, Inv from Section 6.3 can be derivable in µMALL�, it is not clear
which particular Minsky machineM to choose to witness this underivability. In fact, the argument
can indeed be constructivised using established recursion-theoretic techniques, namely the notion of
productive function [Soa14].

Definition 6.4.1. Let p•q be the the Gödel encoding of recursively enumerable sets. Let Wx

be the set S such that pSq = x. A set P is called productive if there exists an effectively
computable partial function f such that if Wx ⊂ P , then f(x) is defined and is an element of
P \Wx. The function f is called a productive function.

Proposition 6.4.1. The setK = {x | x 6∈Wx} is productive with respect to the trivial productive
function id(x) = x.

Proof. Suppose Wx ⊂ K. Then, we need to show that x ∈ K \Wx. Suppose x ∈ Wx then x 6∈ K.
But since Wx ⊆ K, x ∈ K. So, x 6∈Wx. Then, x ∈ K by definition. Therefore, x ∈ K \Wx.

Theorem 6.4.4. IfP is productive and it is many-one reducible toP ′, thenP ′ is also productive.

Proposition 6.4.2. K is a Π0
1-complete set.

Proof. Note that K = {x | x ∈ Wx} = {x | TMx halts on x} is the complement of K. Membership
in K is in Σ0

1 since Wx is a recursively enumerable set for all x. We will show that K is not recursive.
Define

f(x) =

{
TMx(x) + 1 if x ∈ K;

0 otherwise.

Note that if K is recursive then f is recursive. Suppose f = TMy for some y and f is recursive. If
y 6∈ K then by definition of K, TMy does not halt on y. Then f cannot be recursive. If y ∈ K, then
f(y) = TMy(y) + 1. Then, f 6= TMy. Therefore, f is not recursive.

Therefore, K is Σ0
1-complete and consequently, K is Π0

1-complete.

Let P be the set of theorems of µMALL∞. By Corollary 6.3.2.1,K ism-reducible to P . Therefore,
P is a productive set with some computable productive functions f . Since µMALL� is Σ0

1-complete,
the set of theorems of µMALL� is aWy for some y; Wy ⊂ P by Theorem 6.4.3. Thus, f(y) ∈ P \Wx;
via inverses of encodings it is a sequent provable in µMALL∞ but not in µMALL�. Theoretically,
this example can be explicitly extracted from the reasoning presented above. In order to do so, one
needs to track the m-reduction of K to P (via the reduction of Theorem 6.1.1). This yields a concrete
algorithm for f , which can then be applied to y.
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In this chapter, we showed that µMALL∗ is Σ0
1-complete which straightforwardly implied that so

are µMALLind and µMALL�. On the other hand, we showed that µMALL∞ is (Σ0
1 ∪ Π0

1)-hard and
consequently proves strictly more theorems than µMALL�. As we conclude this part, we note that the
study of µMALL systems is an interesting and complicated topic that can benefit techniques from au-
tomata theory related topics such as Petri nets and action lattices. Interestingly, wellfounded infinitely
branching systems have appeared quite naturally in both chapters and seem to be a handle on grasp-
ing the non-wellfounded calculus. In the next part, we will move to a more intentional understanding
of µMALL: the provability would not matter as much as the proofs themselves.



Part II

Infinets: the parallel syntax
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Chapter 7

Proof-nets for systems of µMLL

(A new hope)

The goal of this part is to develop a proof-net formalism (i.e. a parallel syntax) for the non-wellfounded
calculus of µMALL. Since proof-nets for additives and units are cumbersome, we will concentrate on
the multiplicative fragment without units. We incrementally develop the theory of non-wellfounded
proofs (a.k.a. infinets). In this first chapter, we first recall MLL proof-nets via an algebraic presen-
tation due to Curien [Cur05], in Section 7.1. In non-wellfounded proof-nets, one needs to connect
nodes by infinitely long paths. To formalise such concepts in infinitary graph theory, heavy topolog-
ical machinery is necessary. We sacrifice the visual clarity of graphs to consider non-wellfounded
proof-nets (or infinets) in the algebraic presentation. The development of infinets will be as follows.

MLL proof-nets (Section 3.5)

MLL proof-nets (Section 7.1)

µMLLind proof-nets (Section 7.3) µMLL� proof-nets (Section 7.3)

µMLL∗ proof-nets (Section 7.2)

simple infinets (Section 8.2)

regular simple infinets (Section 8.5)

infinets (Section 8.6)

In Section 7.2, we straightforwardly enhance this presentation to develop proof-nets for the fini-
tary fragment of µMLL∞ (viz. µMLL∗). We briefly revert back to the graphical presentation of proof-
nets in Section 7.3 to discuss proof-nets for µMLLind and µMLL�. In Section 7.4, we semi-formally
discuss the several pitfalls of adapting proof-nets to the non-wellfounded setting and the various con-
structs appearing forthcoming chapter.
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F

U

U

LF

(a) A schematic partial syntax tree

axiom links

partial

syntax

tree

cut links

(b) A schematic proof-net

Figure 7.1: Illustration of partial syntax trees and proof-nets

7.1 MLL proof-nets: a closer look
In this section, we will discuss an alternate algebraic presentation of proof-nets due to Curien [Cur06].
In the context of MLL, it is a trivial reformulation of usual the graphical presentation.

Firstly, we will need to use the presentation of linear logic sequents as sets of formula occurrences.
We begin by recalling that the syntax tree of an occurrence F induces a prefix closed language, LF ⊂
{l, r}∗ such that there is a natural bijection between the words in L and the set of all simple paths
starting from the root of the syntax tree.

We remind the readers that for a regular language L, L denotes its prefix-closure (cf. Chapter 2)
and that negation is an involution over addresses such that l⊥ = r, r⊥ = l and i⊥ = i (cf. Sec-
tion 3.1).

Definition 7.1.1. A partial syntax tree, FU , is a subtree of the syntax tree of the formula oc-
currence, F , such that U ⊆ LF and U represents a bar of the syntax tree of F i.e. any u, u′ ∈ U
are pairwise disjoint1 and for each uav ∈ U , there is a v′ such that ua⊥v′ ∈ U . For u ∈ U , we
denote by (F, u) the unique suboccurrence of F with the address addr(F ).u.

Example 7.1.1. LetF = (aOa)O(a⊥⊗a⊥)α be a formula occurrence. ThenLF = α.{ε, l, r, ll, lr, rl, rr}.
The language U = α.{lr, rl, rr} is not a partial syntax tree but U = α.{l, rl, rr} is.

We illustrate a schematic partial syntax tree in Figure 7.1a. MLL proof-nets without cuts can be
seen as a forest of partial syntax trees of the occurrences in the conclusion sequent and axiom links
between their leaves (cf. Figure 7.1b). To incorporate cuts we need to add the partial syntax tree of
the cut occurrences (along with the axioms links involving their leaves) and links between dual cut
occurrences.

Definition 7.1.2. An MLL proof-structure is a 3-tuple ({FUii }i∈λ,K,Θ) where:

• λ ∈ ω.

• for all i ∈ λ, FUii is a partial syntax tree; {Fi}i∈λ is called the set of doors.

• K is the set of cuts i.e. a (possibly empty) set of disjoint subsets of {Fi}i∈λ of the form
{C,C⊥}; and,

• Θ is the set of axiom links i.e. a partition of the set of leaves, L =
⋃
i∈λ{αiui | addr(Fi) =

αi, ui ∈ Ui} such that each cell is pair of dual addresses i.e. of the form {αiui, αjuj} such
that d(Fi, ui)e = d(Fj , uj)e⊥.

Each cell of Θ represents an axiom, each element of K represents a cut, and {Fi}i∈λ \
⋃
θ∈K θ are

the conclusions of the proof-structure. Observe that this presentation is more logic independent since
we do not explicitly mention the operators involved in the logic. We will see this logic independence
come in handy more clearly in the next chapter when we define µMLL∞ proof-nets.

1Defined in Chapter 2.
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7.2 µMLL∗ proof-nets
As a stepping stone to formulating proof-nets corresponding to µMLL∞, we first consider proof-
nets in µMLL∗ which is the proof system with the same inference rules as µMLL∞ but with finite
proofs. Recall that this logic is strictly weaker than µMLL∞ (in particular ` νx.x cannot be proved
and the fixed points are interchangeable). We present them in the alternate syntax introduced in the
previous section which is ultimately useful to lift µMLL∗ proof-nets to µMLL∞. Consequently, µMLL∗

proof-nets are a straightforward extension of MLL proof-nets discussed in the previous section (cf.
Section 7.1).

Recall for µMALL, the syntax tree of a formula occurrence F is the (possibly infinite) unfolding
tree of the Fischer-Ladner graph of F and a prefix closed language, LF ⊂ {l, r, i}∞ such that there
is a natural bijection between the finite (respectively, infinite) words in LF and the finite (respectively,
infinite) paths from the root in the syntax tree of F .

Example 7.2.1. Let F = µx.xO(a⊥ ⊗ a)α. The syntax tree of F is the unfolding of G(F ) and
induces the language α(i(li)∗r(l + r) + (il)ω). Furthermore, F {ili,irl,irr} is a partial syntax tree
whereas F {ilil,irl,irr} is not. If u = ililir then (F, u) = aOa⊥αu.

Definition 7.2.1. A µMLL∗ proof-structure, denoted R,S, . . . , is a 3-tuple ({FUii }i∈λ,K,Θ)
where:

• λ ∈ ω;

• for all i ∈ λ, FUii is a partial syntax tree with Ui ⊂ {l, r, i}∗; {Fi}i∈λ is called the set of
doors.

• K is the set of cuts i.e. a (possibly empty) set of disjoint subsets of {Fi}i∈λ of the form
{C,C⊥}; and,

• Θ is the set of axiom links i.e. a partition of the set of leaves, L =
⋃
i∈λ{αiui | addr(Fi) =

αi, ui ∈ Ui} such that each cell is pair of dual addresses i.e. of the form {αiui, αjuj} such
that d(Fi, ui)e = d(Fj , uj)e⊥.

An occurrence G is said to occur in a proof structureR = ({FUii }i∈λ,K,Θ) if there exists u ∈ Ui
for some i ∈ λ such that G = (Fi, u).

Indeed, the only difference from Definition 7.1.2 is the shape of the partial syntax trees which are
now allowed unary branching. This is the reason why we claimed that this presentation is more logic
independent. Note that graphically this is basically adding more sorts of nodes to Definition 3.5.1 viz.
nodes of the form:

ϕ[µx.ϕ/x] ϕ[νx.ϕ/x]

µx.ϕ

µ

νx.ϕ

ν

We will now define desequentialisation, the translation of sequent proofs into proof-structures.
Before that we need to extend the notion of address to proofs. The ultimate goal is to define infinet,
hence we define the address of a µMLL∞ pre-proof.

Definition 7.2.2. Given a pre-proof, π, addr(π) ⊆ {l, r, i}∞ is largest set of addresses such that
if a finite address α ∈ addr(π) then for some ϕ, ϕα either occurs in an axiom or occurs infinitely
often in an infinite branch in π with addr(F ) = α; and if an infinite address α ∈ addr(π) then
there is an infinite branch β of π such that every finite prefix of α is an address of an occurrence
appearing in β.

Definition 7.2.3. Let π be an MLL proof of the sequent ` Γ. The desequentialisation of π,
denoted dsq(π), is given by ({FUii }i∈λ,K,Θ) such that the following holds.

• K is smallest set such that for any cut in π that introduces two occurrences, C andC⊥, we
have that {C,C⊥} ∈ K;

• {Fi}i∈λ = Γ ∪
⋃
κ∈K κ where λ = |Γ|+ |K|;
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• for every i ∈ λ, Ui = addr(Fi)
−1addr(π); and,

• for every axiom in π of the form
(id)

ϕα, ϕ
⊥β , we have that {α, β} ∈ Θ.

Example 7.2.2. Consider the following proof π of the sequent ` F where F = νx.xOµx.xα (i.e.
the same F from Example 7.2.1).

(id)
` νx.xαl, µy.yβi

(µ)
` νx.xαl, µy.yβ

(id)
` νy.yβ⊥i, µx.xαr

(ν)
` νy.yβ⊥ , µx.xαr

(cut)
` νx.xαl, µx.xαr

(O)
` F

We choose β such that α and β are disjoint. We have that dsq(π) = (Γ,K,Θ) such that

K =
{
{µy.yβ , νy.yβ⊥}

}
Θ =

{
{αl, βi}, {αr, β⊥i}

}
Γ =

{
F {l,r}, µy.y

{i}
β , νy.y

{i}
β⊥

}
In the rest of section we rehash standard results of multiplicative proof-nets (some mentioned

in Section 3.5) for µMLL∗.

7.2.1 Correctness criterion
We will lift the DR-correctness criterion toµMLL∗ proof-nets. Fix a proof-structureR = ({FUii }i∈λ,K,Θ)
for the next set of definitions. Define

P := {(Fi, u) | ∃i ∈ λ.∃u ∈ Ui and (Fi, u) = AOB}

Essentially, P is the set of O-occurrences. A switching, sw, of R is a total function of the form
sw : P→ {l, r}. Fix a switching, sw, ofR.

Definition 7.2.4. Let u = u1 . . . un be a substring of a wordw inUi (uis being letters). Then, u is
said to be unbroken if for all j ∈ {1, . . . , n−1}, either (Fi, vu1 . . . uj) ∈ P or sw((Fi, vu1 . . . uj)) 6=
uj+1 where vu is a prefix of w for some word v.

Definition 7.2.5. Define the switching relation SW ⊆ L2 such that (x, y) ∈ SW iff either x = y
or one of the following holds:

• w 6= ε and u and v are unbroken where w = x ∩ y, wu = x, and wv = y; or,

• there exists {C,C⊥} ∈ K and u, v ∈ {l, r, i}∗ such that addr(C) = α, addr(C⊥) = α′,
x = αu, y = α′v and and u, v are unbroken.

Proposition 7.2.1. The switching relation SW is an equivalence relation.

Proof. By inspection of the definition, SW is reflexive and symmetric. Suppose (x, y) ∈ SW and
(y, z) ∈ SW. Assume that x, y, and z are distinct. Let w = x ∩ y and w′ = y ∩ z. There are three
cases:

Case 1. w 6= ε and w′ 6= ε:
Let x = wu, y = wv = w′v′ and z = w′t with u, v, v′, and t unbroken. Assume |w| ≤ |w′|.

Then, by Levi’s Lemma, there exists p such that wp = w′ and v = pv′. Therefore, z = wpt. So, we
have x ∩ z = w. Note that pt is unbroken since v and t are unbroken. Therefore, (x, z) ∈ SW. Now
assume |w′| ≥ |w|. Then by Levi’s Lemma, there exists p such that w = w′p and pv = v′. Therefore,
x = w′pu. So, we have x ∩ z = w′. Note that pu is unbroken since v′ and u are unbroken. Therefore,
(x, z) ∈ SW.

Case 2. w 6= ε and w′ = ε:
Recall that addr(C)∩addr(C⊥) = ε. Let x = wu, y = wv, and {C,C⊥} ∈ K such that addr(C) =

α, addr(C⊥) = α′, y = αv′, z = α′t and u, v, v′, and t are unbroken. Since α is the address of a door,
|α| ≤ |w|. By Levi’s Lemma, there exists p such that w = αp and pv = v′. Therefore, x = αpu. Note
that pu is unbroken since v′ and u are unbroken. Therefore, (x, z) ∈ SW.

Note that the case when w = ε and w′ 6= ε is symmetric to the previous case.
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vε

θε θ′ε

θ θ′

v0

θ0 θ′0

v1

θ1 θ′1

Figure 7.2: A tree with nodes ni labelled (vi, θi, θ
′
i) where vi ∈ [SW], θi, θ′i ∈ Θ, and i ∈ {0, 1}∗.

Naturally, ni can have children ni0 and ni1. The child ni0 witnesses a disconnection of θi with some
node while ni1 witnesses a disconnection of θ′i with some node. The dashed lines represent potential
connections.

Case 3. w = ε and w′ = ε:
Let {C,C⊥}, {D,D⊥} ∈ K such that addr(C) = α, addr(C⊥) = α′, addr(D) = β, addr(D⊥) =

β′, x = αu, y = α′v = βv′, z = β′t, and u, v, v′ and t are unbroken. However, by construction
α′ ∩ β = ε (since doors have disjoint addresses). Therefore, this case is not possible. Hence, SW is
transitive.

If we see the elements of L as the collection of leaves of the partial syntax trees of a proof net, cells
of SW are the connected components of that proof net under the switching sw and without axiom
links.

Definition 7.2.6. Given a switching sw ofR, the orthogonal graph ofR is defined as the undi-
rected bipartite (multi)graph, (Θ, [SW], E), where Θ is the set of axioms ofR, [SW] is the set of
equivalence classes of SW and (x, y) ∈ E iff x ∩ y 6= ∅.

Let (Θ, [SW], E) be an orthogonal graph. Let v ∈ Θ. Define:

Reach0(v) := {v′ | (v, v′) ∈ E ∩Θ× [SW]};
Reach2n+1(v) := Reach2n(v) ∪ {u | ∃v′ ∈ Reach2n(v); (v′, u) ∈ E ∩ [SW]×Θ}
Reach2n+2(v) := Reach2n+1(v) ∪ {u | ∃v′ ∈ Reach2n+1(v); (u, v′) ∈ E ∩Θ× [SW]}

Reach+(v) :=
⋃
n∈ω

Reachn(v);

Similarly, one can define Reach+(v) for v ∈ [SW].

Definition 7.2.7. A proof-structure is said to be DR-correct if for every switching, for all ver-
tices v of the orthogonal graph (Θ, [SW], E), Reach+(v) = (Θ ∪ [SW]) \ {v}.

Lemma 7.2.1 (Soundness of correctness criterion). Let π be a µMLL∗ proof. Then, dsq(π) is DR-
correct.
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Proof. Let π be a µMLL∗ proof. LetG = (Θ, [SW], E) be the orthogonal graph of dsq(π) with respect
to an arbitrary switching sw. We need to show that for all vertices v ∈ G Reach+(v) = (Θ ∪ [SW]) \
{v}. In other words, we need to show:

(Acyclicity of G) for all v ∈ G, v 6∈ Reach+(v);

(Connectedness of G) for all v, v′ ∈ G such that v 6= v′, v′ ∈ Reach+(v).

Proof of acyclicity. Note that a bipartite graph does not have an odd cycle. Therefore, if v ∈
Reach+(v) then the smallest n such that v ∈ Reachn(v) is odd. Suppose there exists such an n.
Observe that n 6= 0 since if v ∈ Θ then Reach0(v) ⊆ [SW] (and vice versa). Therefore there exists
v0, v1, . . . , vn+1 such that v = v0 = vn+1 and for all i ∈ [n], E(vi, vi+1). We further assume that it is
a simple cycle i.e. v0, v1, . . . , vn. This is enough since if there is a cycle, then there is a simple cycle.

Assume v2k ∈ Θ for k ∈
{

0, . . . , n+1
2

}
. The other case will be similar. Let ui ∈ vi ∩ vi+1 (it exists

by construction). When i is even, either of the following is true:

1. ui∩ui+1 = ε and there are partial syntax trees FU , F ′U
′

inR such that ui ∈ U , ui+1 ∈ U ′, and
{F, F ′} ∈ K. By definition of desequentialisation, this corresponds to a cut inference in π.

2. ui∩ui+1 6= ε and there is a partial syntax treeFU inR such that ui, ui+1 ∈ U , and (F, ui∩ui+1)
is a tensor formula. By definition of desequentialisation, this corresponds to a tensor rule in π.

We collect the set of bn2 c such tensor or cut rules of π. Let r be the bottom-most rule. Note that this
may not be unique. We take r to be any one of the minimal ones and let vi be corresponding vertex in
the orthogonal graph. Assume it is of the following form:

π05̀
Γ′

π15̀
∆′

(r)
` Γ,∆

Wlog, assume vi−1 and vi+1 corresponds to an axiom in π0 and π1 respectively. Now, ui+1 ∩ ui+2

corresponds to a forking rule (i.e. tensor or cut). This rule has to occur above or at the same height as
r. If it is strictly above then it is in π1; and, the only way it can be at the same height as r is when it is
r, which is ruled out since we assume that the cycle is simple. This leads to contradiction as this traps
the axioms and forking rules corresponding to vi+1, vi+2, . . . in π1 but we know that at some point it
needs to come back to π0 since the axiom corresponding to vi−1 is in π0.

Proof of connectedness. Let v, v′ ∈ G. Assume that θ′ ∈ Reach+(θ) for all distinct θ, θ′ ∈ Θ.
We will show that v′ ∈ Reach+(v). If v, v′ ∈ Θ we are done by assumption. If v ∈ [SW] then
there exists θ ∈ Θ such that E(v, θ). If v′ ∈ Θ, then either v′ = θ (in which case v′ ∈ Reach0(v))
or v′ ∈ Reach+(θ) (in which case v′ ∈ Reachn(θ) and v′ ∈ Reachn+1(v) for some n). Therefore,
wlog, we can assume that we are given two distinct disconnected vertices θ, θ′ ∈ Θ i.e. θ 6= θ′. We
will prove by contradiction and assume θ′ 6∈ Reach+(θ). From the definition of desequentialisation,
θ, θ′ corresponds to two maximal branches of π. Let M be the greatest common prefix of these two
branches. It must be a tensor rule (applied on the formula say Fε) or a cut rule (introducing say Fε
and Fε⊥).

Assume that M is a tensor rule. There exists vε ∈ [SW] in the switching partition ofG and w,w′ ∈
vε such that addr(Fε)l is a prefix ofw and addr(Fε)r is a prefix ofw′. By construction of the orthogonal
graph we have that there exist θε, θ′ε ∈ Θ such that w ∈ θε and w′ ∈ θ′ε. Clearly E(vε, θε) and
E(vε, θ

′
ε). If M is a cut rule (on Fε and Fε⊥) then Fε, Fε⊥ are the doors of dsq(π). There exist w,w′ in

the partial syntax trees of Fε, Fε⊥ respectively, such that w,w′ ∈ vε for some vε ∈ [SW]. We choose
θε, θ

′
ε ∈ Θ such that w ∈ θε and w′ ∈ θ′ε.

Now since there is a one-one correspondence between the maximal branches of π and Θ, θ, θ′, θε
and θ′ε can be arranged in the lexicographical ordering of the branches of the derivation tree. Assume
wlog, θ <lex θ′. Then by construction θ <lex θε <lex θε <lex θ′. Since we assume that θ, θ′ are
disconnected either θε 6∈ Reach+(θ) or θ′ε 6∈ Reach+(θ′). Note that it could also be the case that
θε = θ or θ′ε = θ′ but both cannot hold. Assume θε 6∈ Reach+(θ) which are not connected. We can
repeat the same argument to get v0 ∈ [SW] and θ0, θ

′
0 ∈ Θ such that E(v0, θ0), E(v0, θ

′
0), θ0 <lex θ

′
0,

and either θ0 6∈ Reach+(θ) or θ′0 6∈ Reach+(θε).



118 Linear logic with fixed points

Since we assume that θ, θ′ are disconnected, one essentially repeat this process ad infinitum.
Therefore we have an infinite binary tree T (cf. Figure 7.2) labelled by the vσ ∈ [SW]. This is a
contradiction since there cannot be infinitely many different occurrences in a proof.

7.2.2 Empires and Kingdoms
It is useful to study subgraphs of proof-nets which are proof-nets themselves. This leads one to the
study of subnets, in particular, the largest and smallest subnets which contain a formula occurrence F
as one of their doors called the empire and kingdom of F respectively. Girard’s original proof [Gir87a]
of sequentialisation goes through empires and we will recast that argument in the following subsec-
tion but obviously in the setting of µMLL∗. Our proofs and constructions on subnets are inspired
by [BvdW95].

Definition 7.2.8. Let R = ({FUii }i∈λ,K,Θ) and R′ = ({F ′U
′
i

i }i∈λ′ ,K′,Θ′) be proof-structures.
R′ is a substructure ofR if there exists an injective map,

m : {F ′i | i ∈ λ′} → {(Fi, u) | u ∈ Ui, i ∈ λ}

such that the following hold:

• for all i ∈ λ′, dF ′i e = dm(F ′i )e;

• for all i ∈ λ′, m(F ′i ) = (Fj , u) =⇒ U ′i = u−1Uj ;

• for all {C,C⊥} ∈ K, if C = m(D) then C⊥ = m(D⊥) and {D,D⊥} ∈ K′;

• for all θ ∈ Θ, if addr(m(F ′))uu′ ∈ θ where m(F ′) = (Fi, u) and uu′ ∈ Ui then every w ∈ θ
is of the form addr(m(G′))vv′ where m(G′) = (Fj , v) and v′ ∈ Uj and θ′ ∈ Θ′ where

θ′ = {addr(F ′)u′ | addr(m(F ′))uu′ ∈ θ}.

Furthermore, if the substructureR′ is DR-correct, it is called a subnet.

Wlog, one can assume that m is the identity map. This amounts to simply changing the address
of the doors of R′. In particular, assign the new address of F ′i to be addr(m(F ′i )). From now on, we
will assume that m is an identity for any substructure or subnet unless otherwise mentioned. For the
rest of this subsection fix a proof-netR = ({FUii }i∈λ,K,Θ).

Definition 7.2.9. LetR′ = (Γ′,K′,Θ′) andR′′ = (Γ′′,K′′,Θ′′) be two substructures ofR. The join
ofR′ andR′′, denotedR′∪R′′, is defined as the substructure (Γ′∪Γ′′,K′∪K′′,Θ′∪Θ′′). Dually,
the meet ofR′ andR′′, denotedR′∩R′′, is defined as the substructure (Γ′∩Γ′′,K′∩K′′,Θ′∩Θ′′).
The meet is said to be non-empty if Γ′ ∩ Γ′′ 6= ∅.

Definition 7.2.10. LetR′ andR′′ be two substructures ofR. We say thatR′ is included inR′′,
denotedR′ ⊆ R′′, if G occurs inR′ implies G occurs inR′′.

Note that⊆ is a partial order on the set of all substructures of a proof-netR. Note that for any two
substructuresR′,R′′ ofR, we have the following:

1. R′ ∩R′′ ⊆ R′ andR′ ∩R′′ ⊆ R′′;

2. R′ ⊆ R′ ∪R′′ andR′′ ⊆ R′ ∪R′′.

Lemma 7.2.2. Let R′ and R′′ be two subnets of R such that their meet is non-empty. Then,
both their join and meet are subnets.

Proof. Fix a switching swj and swm ofR′ ∪ R′′ andR′ ∩ R′′ respectively. Wlog, assume that swm
is the restriction of swj to the par occurrences of R′ ∩ R′′. Extend swj to a switching sw of R;
moreover, let sw′ and sw′′ be the restrictions of swj to the par occurrences ofR′ andR′′, respectively.
Let GR

′∪R′′
swj , GR

′∩R′′
swm , GRsw, GR

′

sw′ , and GR
′′

sw′′ be the respective orthogonal graphs.

We first observe that GR
′∪R′′

swj and GR
′∩R′′

swm are subgraphs of GRsw which is acylic since R is a

proof-net. Therefore, GR
′∪R′′

swj and GR
′∩R′′

swm are acyclic.
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Now we will prove that GR
′∩R′′

swm is connected. Let v, v′ be two of its vertices. Since GR
′∩R′′

swm is a
subgraph of GR

′

sw′ and GR
′′

sw′′ , and R′,R′′ are proof-nets there are paths ρ′, ρ′′ between v, v′ in GR
′

sw′

and GR
′′

sw′′ respectively. But ρ′, ρ′′ are paths in GRsw which is acyclic. Therefore, ρ′ = ρ′′; and hence, a
path in GR

′∩R′′
swm as well which concludes our proof.

Now we will prove that GR
′∪R′′

swj is connected. Let v, v′ be two of its vertices. If v, v′ both occur

in GR
′

sw′ , then we are done by the connectedness of GR
′

sw′ . Similarly, if both occur in GR
′′

sw′′ , then we
are done by the connectedness of GR

′′

sw′′ . The only case that we are left with is when v occurs only in
GR

′

sw′ and v′ occurs only in GR
′′

sw′′ . Since R′ ∩ R′′ is non-empty, GR
′

sw′ and GR
′′

sw′′ share at least one
vertex, say s. By the connectedness of GR

′

sw′ , v is connected to s, and by the connectedness of GR
′′

sw′′ ,
s is connected to v′. Hence v, v′ are connected.

Definition 7.2.11. Let G be a formula occurrence occurring in R. The empire of G, denoted
Q(G), is the largest subnet (in the ⊆ ordering) of R with G as a door. The dual notion of
empire is that of a kingdom, denoted K(G), the smallest subnet ofR with G as a door.

Proposition 7.2.2. For all G occurring inR, Q(G) and K(G) exist.

Proof. Define

S = {S | S is a subnet ofR and has G as a door}.

The crux of this proof is showing that S is non-empty. Assuming S 6= ∅, rest of the proof is
straightforward: for any S,S ′ ∈ S, S ∩ S ′ is non-empty since they share a door. Using Lemma 7.2.2,
(S,⊆,∪,∩) is a lattice. So,

Q(G) =
⋃
S∈S
S and K(G) =

⋂
S∈S
S

Now we will show that S is non-empty. IfG is a door ofR, thenR ∈ S and we are done. Otherwise,
let G = (Fi, va) where a ∈ {l, r, i}. Define the proof-structure

R′ := ({FUjj }j∈λ\{i} ∪ {F
U ′i
i , (Fi, ua)U

′
},K,Θ)

where U ′i = Ui \ v−1Ui and U ′ = u−1.Ui. This is not necessarily a subnet of R. We will extract
a subnet from the orthogonal graph of R′. Let sw′ be a switching of R′. This can be extended to
sw, a switching of R. We denote the corresponding orthogonal graphs of R′ and R by GR

′

sw′ =
([Θ], [SW′], E′) and GRsw respectively. Let G be the subgraph induced by the set of v ∈ [Θ] ∪ [SW′]
such that v ∩ U ′ 6= ∅. We observe that since GRsw is connected and acyclic, then G is also connected
and acylic. We take this connected component ofGR

′

sw′ and this induces substructureR′sw′ . We repeat
this process for all possible switchings of R′. Let the set of all switchings of R′ be denoted by s. We
claim thatR′′ =

⋂
sw′∈sR′sw′ is a subnet ofR with G as door.

This is relatively easy to see. Since everyR′sw′ hasG as a door,R′′ hasG as one of its doors. Now,
suppose for some switching sw, GR

′′

sw is not connected. Then, sw can be extended to a switching
sw′ and sw′′ of R′ and R respectively. Then, the DR-correctness of R induces a connected acyclic
subgraph in the orthogonal graph of R′ as before. This contradicts GR

′′

sw is disconnected. Arguing
exactly similarly for acyclicity, we are done.

We define a relation� on the occurrences inR by F � G iff K(F ) ⊆ K(G). Let FR be the set of
all occurrences inR that do not occur in axiom i.e. the set of all (Fi, u) such that u 6∈ U \ U .

Proposition 7.2.3. �R is a partial order on F.

Proof. We exhibit the three properties required to be a partial order.

Reflexivity By definition, X occurs in K(X).
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Anti-symmetry Suppose X,Y ∈ F are distinct occurrences such that X �R Y (i.e. X occurs in
K(Y )) and Y �R X (i.e. Y occurs in K(X)). Using reflexivity,X,Y occur in both K(X) and K(Y ).
Therefore, K(X) ∩K(Y ) exists and is a subnet by Lemma 7.2.2. Note that X and Y are, in fact, the
doors of K(X)∩K(Y ). But K(X) is supposed to be the smallest subnet withX as a door. Therefore,
K(X) = K(X) ∩ K(Y ). By a similar argument, K(X) ∩ K(Y ) = K(Y ). So, K(X) = K(Y ).
Suppose X 6= Y . We will show that this induces a contradiction. Note that X is a door of K(Y ). Let
UX be its corresponding partial syntax tree in K(Y ). There are three cases based on the outermost
connective of X .

Case 1: X = AOB. Replacing XUX by {Al−1UX , Br
−1UX} in K(Y ) gives us a subnet smaller than

K(Y ) that contains Y as a door. Contradiction!

Case 2: X = µx.F . Replacing XUX by {F [µx.F/x]i
−1UX} in K(Y ) gives us a subnet smaller than

K(Y ) that contains Y as a door. Contradiction! Similarly for X = νx.F .

Case 3: X = A⊗B. Y occurs in either Q(A) or Q(B). Wlog, assume it is Q(A). Consider K(Y )∩
Q(A). It is a subnet by Lemma 7.2.2. It contains Y as a door and it is strictly smaller than K(A)
since it does not contain X . Contradiction!

Transitivity Suppose X,Y, Z ∈ F are distinct occurrences such that X �R Y (i.e. X occurs
in K(Y )) and Y �R Z (i.e. Y occurs in K(Z)). By reflexivity, Y occurs in K(Y ). Therefore,
K(Y )∩K(Z) exists and is a subnet by Lemma 7.2.2. Note that Y is, in fact, a door of K(Y )∩K(Z).
But K(Y ) is supposed to be the smallest subnet with Y as a door. Therefore, K(Y ) = K(Y )∩K(Z).
Therefore X occurs K(Y ) ∩K(Z). Hence infer that X occurs in K(Z).

7.2.3 Sequentialisation
The process of translating a proof-net into a proof is called sequentialisation. In this subsection we
will show that the correctness criterion is indeed sufficient to ensure sequentialisation. Wlog, we can
assume that we have cut-free proof-nets due to the following standard trick. So, in this subsection,
we will write nets without their second component (which is always an empty set) i.e. write (Γ,Θ) as a
shorthand for (Γ,∅,Θ). We present the non-deterministic algorithm SEQUENTIALISE that produces
a proof given a proof-net in Figure 7.3.

A A⊥ −→ A A⊥

cut

A⊗A⊥
⊗

Lemma 7.2.3 (Correctness of sequentialisation algorithm). If G ⊗ H is a door of a proof-net R
such that it is maximal in the�R ordering then Q(G) and Q(H) do not interleave.

Proof. Suppose Q(G) ∩ Q(H) 6= ∅. Then, there exists C,D such that C occurs in R, D is the
immediate suboccurrence ofC,D occurs in Q(G), andC does not occur in Q(G). (This is symmetric
and one can also choose C,D such that C occurs in R, D is the immediate suboccurrence of C, D
occurs in Q(H), and C does not occur in Q(H).)

We now claim that G ⊗ H occurs in K(C). Clearly, D occurs in Q(G) ∩ K(C). Hence, by
Lemma 7.2.2, Q(G) ∩K(C) and Q(G) ∪K(C) are subnets ofR. Suppose G⊗H does not occur in
K(C). Then, Q(G) ∪K(C) is a subnet of R with G as door. But we assumed C does not occur in
Q(G) whereas it occurs in Q(G) ∪K(C). So, Q(G) ∪K(C) is a strictly larger subnet than Q(G)
that contains G as door. This contradicts the definition of Q(G).

There are two cases now. Either C is a door ofR in which case we haveG⊗H �R C. Otherwise
C is a suboccurrence of a door Y of R. Clearly, K(C) ⊂ K(Y ). Therefore, we have G ⊗ H �R Y .
This contradicts the fact that G⊗H is the maximal door in the�R ordering.

Note that SEQUENTIALISE is a non-deterministic procedure. So can we say that sequentialisa-
tion and desequentialisation are inverses as functions? More concretely, is there a way to sequentialise
dsq(π) so as to get exactly π? Conversely, given a proof-net R, is dsq(π) = R where π is some se-
quentialisation ofR?
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function SEQUENTIALISE((Γ,Θ))

if Γ = {ϕ{ε}α , ϕ⊥β
{ε}} and Θ = {α, β} then

return
(id)

` ϕ,ϕ⊥
else

Choose FUii ∈ Γ such that Ui 6= {ε}.
if Fi = GOH then

return

SEQUENTIALISE(Q(G))
(O)

` d∆e, dGOHe
else if Fi = G⊗H and 6 ∃j 6= i.Fi � Fj then

return

SEQUENTIALISE(Q(G)) SEQUENTIALISE(Q(H))
(⊗)

` d∆e, dG⊗He
else if Fi = ηx.G then . η ∈ {µ, ν}

return

SEQUENTIALISE(Q(G[ηx.G/x]))
(η)

` dΓe, dηx.Ge
end if

end if
end function

Figure 7.3: The function SEQUENTIALISE

From Lemma 7.2.3, we have that

(ΓG \ {G}) ∪ (Γ \ {H}) ∪ {G⊗H} = Γ

where ΓG,ΓH , and Γ are the set of doors of Q(G), Q(H) and R. Similarly for other connec-
tives. Therefore, the sequentialisation procedure traverses through every node of every partial syntax.
Therefore, if there is a proof π such that SEQUENTIALISE(R) = π then dsq(π) = R. Therefore, we
have the following.

Theorem 7.2.1. A µMLL∗ proof-structure is DR-correct iff it is a µMLL∗ proof-net.

The question now is if dsq(π) = dsq(π′) or equivalently, if there exists a proof-net R such that
SEQUENTIALISE(R) = π and SEQUENTIALISE(R) = π′, can we say anything more about these
proofs? Are these proofs computationally equivalent? We answer these questions in the next subsec-
tion.

7.2.4 Canonicity
Let ∼ be a relation over all µMLL∗ proofs that equates proofs with one permutation (Figure 7.4 and
Figure 7.5). Let ∼∗ be the reflexive transitive closure of ∼. Let ≡PN be the equivalence relation over
µMLL∗ proofs defined as π ≡PN π

′ if dsq(π) = dsq(π′).

Theorem 7.2.2. For all µMLL∗ proofs π, π′, π ∼∗ π′ iff π ≡PN π
′.

Proof sketch. Let π and π′ be two µMLL∗ proofs such that π ∼∗ π′. Clearly, nothing can be permu-
tated below the root sequent. Therefore, dsq(π) and dsq(π′) have the same set of doors. By inspecting
each condition of∼, one can infer that no inference rule (on a particular occurrence) is deleted. More-
over, it is also not duplicated2. Therefore the partial syntax trees of dsq(π) and dsq(π′) are also the
same. For the same reason, the set of cuts of dsq(π) and dsq(π′) are also the same. Imagine there is
an axiom {A,B} in π′ that does not occur in π. Now, since same set of partial syntax trees appears
on dsq(π) and dsq(π′), A and B occur in some other axioms. Therefore, there is some tensor rule that
took A and B to different subtrees. But this tensor cannot occur in π. But we proved that π and π′

have the same set of inference rules. Contradiction! Therefore, dsq(π) and dsq(π′) have the same set
of axioms. Therefore, dsq(π) = dsq(π′).

Let π and π′ be two distinct sequentialisation of a proof-net R. Let π, π′ differ at the inference
rule r i.e. either the inference `A...`B (r) occurs at that position for π but not for π′, or, r is a tensor
rule on some A ⊗ B that occurs at that position for both π and π′ but with different splittings of the

2This is not true in MALL which goes on to indicate why devising MALL proof-nets is a cumbersome business.
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` A,C,Γ ` D,∆
(⊗)

` A,C ⊗D,Γ,∆ ` B,Σ
(⊗)

` A⊗B,C ⊗D,Γ,∆,Σ
∼

` A,C,Γ ` B,Σ
(⊗)

` A⊗B,C,Γ,Σ ` D,∆
(⊗)

` A⊗B,C ⊗D,Γ,∆,Σ

` C,Σ
` A,Γ ` B,D,∆

(⊗)
` A⊗B,D,Γ,∆

(⊗)
` A⊗B,C ⊗D,Γ,∆,Σ

∼ ` A,Γ
` C,Σ ` B,D,∆

(⊗)
` B,C ⊗D,Γ,Σ

(⊗)
` A⊗B,C ⊗D,Γ,∆,Σ

` C,Σ
` A,D,Γ ` B,∆

(⊗)
` A⊗B,D,Γ,∆

(⊗)
` A⊗B,C ⊗D,Γ,∆,Σ

∼ ` B,∆
` C,Σ ` A,D,Γ

(⊗)
` A,C ⊗D,Γ,Σ

(⊗)
` A⊗B,C ⊗D,Γ,∆,Σ

` A,B,C,D,Γ
(O)

` AOB,C,D,Γ
(O)

` AOB,COD,Γ

∼
` A,B,C,D,Γ

(O)
` A,B,COD,Γ

(O)
` AOB,COD,Γ

` A,Γ
` B,C,D,∆

(O)
` B,COD,∆

(⊗)
` A⊗B,COD,Γ,∆

∼
` A,Γ ` B,C,D,∆

(⊗)
` A⊗B,C,D,Γ,∆

(O)
` A⊗B,COD,Γ,∆

` A,C,D,Γ
(O)

` A,COD,Γ ` B,∆
(⊗)

` A⊗B,COD,Γ,∆

∼
` A,C,D,Γ ` B,∆

(⊗)
` A⊗B,C,D,Γ,∆

(O)
` A⊗B,COD,Γ,∆

` A,C,Γ ` D,∆
(⊗)

` A,C ⊗D,Γ,∆ ` A⊥,Σ
(cut)

` C ⊗D,Γ,∆,Σ
∼

` A,C,Γ ` A⊥,Σ
(cut)

` C,Γ,Σ ` D,∆
(⊗)

` C ⊗D,Γ,∆,Σ

` C,Σ
` A,Γ ` A⊥, D,∆

(cut)
` D,Γ,∆

(⊗)
` C ⊗D,Γ,∆,Σ

∼ ` A,Γ

` C,Σ ` A⊥, D,∆
(⊗)

` A⊥, C ⊗D,Γ,Σ
(cut)

` C ⊗D,Γ,∆,Σ

` C,Σ
` A,D,Γ ` A⊥,∆

(cut)
` D,Γ,∆

(⊗)
` C ⊗D,Γ,∆,Σ

∼
` C,Σ ` A,D,Γ

(⊗)
` A,C ⊗D,Γ,Σ ` A⊥,∆

(cut)
` C ⊗D,Γ,∆,Σ

` A,Γ
` A⊥, C,D,∆

(O)
` B,COD,∆

(cut)
` COD,Γ,∆

∼
` A,Γ ` A⊥, C,D,∆

(cut)
` C,D,Γ,∆

(O)
` COD,Γ,∆

` A,C,D,Γ
(O)

` A,COD,Γ ` A⊥,∆
(cut)

` COD,Γ,∆

∼
` A,C,D,Γ ` A⊥,∆

(cut)
` C,D,Γ,∆

(O)
` COD,Γ,∆

` A,D,Γ ` D⊥,∆
(cut)

` A,Γ,∆ ` A⊥,Σ
(cut)

` Γ,∆,Σ

∼
` A,D,Γ ` A⊥,Σ

(cut)
` D,Γ,Σ ` D⊥,∆

(cut)
` Γ,∆,Σ

Figure 7.4: Equivalence under permutation of inference rules in MLL

premisses. By Lemma 7.2.3, the latter cannot happen since the premisses are exactly the doors of
Q(A) and Q(B). For the former, permute r down in π′ (it is possible to do so by Lemma 7.2.3) and
then we have two strict subproofs π0 and π′0 of π and π′ respectively which are also sequentialisations
of the subnet Q(A). Therefore, if we induct on the depth of the point of first difference, we are done.

Therefore, proof-nets are indeed the canonical proof objects that quotient proofs under the com-
mutation of inference rules.

7.2.5 Cut-Elimination
Since we work with explicit occurrences, the cut/id key-case of cut-elimination is slightly compli-

cated. In particular, the proof π cannot simply be reduced to
π0

` F,Γ as the occurrences do not match

(in fact, the addresses of F and G are disjoint).

π =
(id)

` F,G⊥
π0

` G,Γ
(cut)

` F,Γ
(dF e = dGe)
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` A,Γ

` B,C[ηx.C/x],∆
(η)

` B,C[ηx.C/x],∆
(⊗)

` A⊗B, ηx.C,Γ,∆

∼
` A,Γ ` B,C[ηx.C/x],∆

(⊗)
` A⊗B,C[ηx.C/x],Γ,∆

(η)
` A⊗B, ηx.C,Γ,∆

` A,C[ηx.C/x],Γ
(η)

` A, ηx.C,Γ ` B,∆
(⊗)

` A⊗B, ηx.C,Γ,∆
∼

` A,C[ηx.C/x],Γ ` B,∆
(⊗)

` A⊗B,C[ηx.C/x],Γ,∆
(η)

` A⊗B, ηx.C,Γ,∆

` A,Γ

` A⊥, C[ηx.C/x],∆
(η)

` A⊥, ηx.C,∆
(cut)

` ηx.C,Γ,∆

∼
` A,Γ ` A⊥, C[ηx.C/x],∆

(cut)
` C[ηx.C/x],Γ,∆

(η)
` ηx.C,Γ,∆

` A,C[ηx.C/x],Γ
(η)

` A, ηx.C,Γ ` A⊥,∆
(cut)

` ηx.C,Γ,∆
∼

` A,C[ηx.C/x],Γ ` A⊥,∆
(cut)

` C[ηx.C/x],Γ,∆
(η)

` ηx.C,Γ,∆
` A[ηx.A], B[η′x.B],Γ

(η)
` ηx.A,B[η′x.B],Γ

(η′)
` ηx.A, η′x.B,Γ

∼

` A[ηx.A], B[η′x.B],Γ
(η′)

` A[ηx.A], η′x.B,Γ
(η)

` ηx.A, η′x.B,Γ

Figure 7.5: Permutation of fixed point rules in µMLL∗. Here η, η′ ∈ {µ, ν}

The obvious thing to do here is to rename every suboccurrence of G in π with the corresponding
suboccurrence of F . However, this is a non-local move that does not sit well with proof-nets and the
complications exacerbate in the non-wellfounded setting. Instead, we treat this substitution lazily.
In sequent calculus, this amounts to introducing a new relocation cell with one premise and one
conclusion, changing the address(es). In the following, ι is a one-to-one map from Γ to ∆ such that
for all F ∈ Γ, dF e = dι(F )e.

` Γ
loc(ι)

` ∆

Let µMLL∗loc denote µMLL∗ extended with loc rules. In proof-nets, this amounts to introducing a new
relocation node with one premise and one conclusion, changing the address. In the following, loc
changes the address of ϕ from β to α.

ϕα

ϕβ
loc

The geometry of proof-nets is relatively unaffected by the presence of loc nodes. Therefore cor-
rectness and other properties can be straightforwardly lifted to nets with loc nodes.

Indeed, this is not treated even for the MLL case in [Cur06] and cut-elimination has not been
established before in the algebraic presentation of proof-nets. Formally in the algebraic presentation,
adding relocation nodes means that proof-nets have one more component, a bijective map loc : L →
R where L,R are set of occurrences such that dF e = dloc(F )e. Define the extension map loc[ϕα 7→
ϕβ ] : L ∪ {ϕα} → R ∪ {ϕβ} as follows:

loc[ϕα 7→ ϕβ ](ϕα′) =

{
loc(ϕα′) if α′ 6= α;

β if α′ = α.

Assume ϕα 6∈ L to avoid over defining. Further, if ϕβ 6∈ R, then loc[ϕα 7→ ϕβ ] is also bijec-
tive. Also note that loc[ϕα 7→ ϕβ ] is also the identity map up to address erasure. We discuss the
DR-correctness for proof-structures with locs in the algebraic presentation after introducing the cut-
reduction rules.

Because of the loc component and since our aim is to keep the cut-elimination procedure local,
the reduction rules are of two types: key-cases which are like the usual cut reduction rules in the case
of proof-nets and loc commutation cases.

Definition 7.2.12. The cut elimination relation→µMLL∗ is the binary relation over proof struc-
tures generated by the key rules and loc commutation rules given in Figure 7.6 and Figure 7.7
respectively. We denote the reflexive transitive closure of→µMLL∗ by→∗µMLL∗ .
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(Γ ∪ {ψUα , ϕU
′

β , ϕ
⊥
β⊥
{ε}},K ∪ {{ϕβ , ϕ⊥β⊥}},Θ ∪ {{αu, β

⊥}}, loc)→µMLL∗

(Γ ∪ {ψ(U\u(u−1U))∪U ′
α },K,Θ, loc[ϕαu 7→ ϕβ ])

(Γ,K,Θ ∪ {{α, β}}, loc[ϕα′ 7→ ϕβ ])→µMLL∗ (Γ,K,Θ ∪ {{α, α′}}, loc)

(Γ ∪ {ϕOψUα , ψ
⊥ ⊗ ϕ⊥α⊥

U ′},K ∪ {{ϕOψα, ψ⊥ ⊗ ϕ⊥α⊥}},Θ, loc)→µMLL∗

(Γ ∪ {ϕl
−1U
αl , ψr

−1U
αr , ϕ⊥α⊥r

r−1U ′

, ψ⊥α⊥l
l−1U ′},K ∪ {{ϕαl, ϕ⊥α⊥r}, {ψαr, ψ

⊥
α⊥l}},Θ, loc)

(Γ ∪ {µx.ϕUα , νx.ϕ⊥α⊥
U ′},K ∪ {{µx.ϕα, νx.ϕ⊥α⊥}},Θ, loc)→µMLL∗

(Γ ∪ {ϕ[µx.ϕ/x]i
−1U
αi , ϕ⊥[νx.ϕ⊥/x]i

−1U ′

α⊥i },K ∪ {{ϕ[µx.ϕ/x]αi, ϕ
⊥[νx.ϕ⊥/x]α⊥i}},Θ, loc)

Figure 7.6: Key cases of cut-elimination for µMLL∗ proof-nets

(Γ,K,Θ, loc[ϕα 7→ ϕβ , ϕβ 7→ ϕγ ])→µMLL∗ (Γ,K,Θ, loc[ϕα 7→ ϕγ ])

(Γ,K,Θ, loc[ϕ⊗ ψα 7→ ϕ⊗ ψβ ])→µMLL∗ (Γ,K,Θ, loc[ϕαl 7→ ϕβl, ψαr 7→ ψβr]) [∀θ ∈ Θ.β 6∈ θ]
(Γ,K,Θ, loc[ϕOψα 7→ ϕOψβ ])→µMLL∗ (Γ,K,Θ, loc[ϕαl 7→ ϕβl, ψαr 7→ ψβr]) [∀θ ∈ Θ.β 6∈ θ]
(Γ,K,Θ, loc[µx.ϕα 7→ µx.ϕβ ])→µMLL∗ (Γ,K,Θ, loc[ϕ[µx.ϕ/x]αi 7→ ϕ[µx.ϕ/x]βi]) [∀θ ∈ Θ.β 6∈ θ]
(Γ,K,Θ, loc[µx.ϕα 7→ νx.ϕβ ])→µMLL∗ (Γ,K,Θ, loc[ϕ[νx.ϕ/x]αi 7→ ϕ[νx.ϕ/x]βi]) [∀θ ∈ Θ.β 6∈ θ]

Figure 7.7: Loc commutation cases of cut-elimination for µMLL∗ proof-nets

Example 7.2.3. Consider the proof-net in example 7.2.2. We have,

({νx.xOµx.x{l,r}α , µy.y
{i}
β , νy.y

{i}
β⊥
}, {{µy.yβ , νy.yβ⊥}}, {{αl, βi}, {αr, β⊥i}})→µMLL∗

({νx.xOµx.x{l,r}α , µy.y
{ε}
βi , νy.y

{ε}
β⊥i
}, {{µy.yβi, νy.yβ⊥i}}, {{αl, βi}, {αr, β⊥i}})→µMLL∗

({νx.xOµx.x{l,r}α },∅, {{αl, αr}})

Remark 7.2.1. The key rule involving locs graphically it looks as follows.

ϕβ ϕ⊥α⊥ ϕα →µMLL∗

ϕαax

cut ϕβ
loc

The other key rule which is new is obviously the one involving the fixed point operators. Graph-
ically it looks like:

F [µx.F/x] F⊥[νx.F⊥/x]

F [µx.F/x] F⊥[νx.F⊥/x]µx.F

µ

νx.F⊥ →µMLL∗

ν

cut cut

Definition 7.2.13. LetR beµMLL∗ proof-net (possibly with locs). Let [R] = {R′ | ∀R′′.R′′ 6−→id/cut

π′ −→∗id/cut R}. R is said to be DR-correct if everyR′ ∈ [R] is DR-correct.

Lemma 7.2.4. Let R →µMLL∗ R′ such that R is a µMLL∗loc proof-net. Then, R′ is a µMLL∗loc
proof-net.

Proof sketch. We do a case analysis on the rule applied. If it is a key rule involving locs and a loc
commutation rules, then [R] = [R′] and we are done. Otherwise, suppose it is a key-rule involving
a tensor and par, then note that the loc components of R and R′ are the same. Since cut-reduction
preserves DR-correctness in MLL proof-nets, we are done. Finally, the case when it is a key-rule
involving a µ and ν is trivial, since the geometry of nets and the loc-components are unchanged by
the reduction. Hence we are done.
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Note that normal forms of µMLL∗loc proof-nets under the →µMLL∗ reduction are exactly cut-free
µMLL∗ proof-nets with an empty loc component.

Theorem 7.2.3. →µMLL∗ is confluent and terminating.

Proof. We define a termination measure. Let K be the set of cuts for some netR. Define

rk(K) =

{
0 if K = ∅;

1
maxθ∈K{addr(C)|C∈θ} otherwise.

Then, d(R) = (|K|, rk(K)) induces a lexicographic order on proof-nets. Also note, it strictly de-
creases for every key step of→µMLL∗ reduction. Similarly, the size of the addresses of relocated for-
mulas increases with every loc commutation rule. But they cannot increase indefinitely since they are
bounded by the size of the corresponding addresses of axioms. So, there cannot be infinitely many
consecutive loc commutation rules in a reduction sequence. Therefore,→µMLL∗ terminates.

The only critical pairs are when there is an axiom {w,w′} such that there exists two cuts {C,C⊥}
and {D,D⊥} such that dCe = dDe, addr(C) = w, and addr(D⊥) = w′. In these cases the reducts
are isomorphic up to address renaming. Therefore,→µMLL∗ is confluent.

Remark 7.2.2. In our proof of confluence above, there is a certain notion of equality of proof-

nets that is implicit. We say that two proof-nets ({FUii }i∈λ,K,Θ}) and ({GU
′
i

i }i∈λ,K′,Θ′}) are
equal if they are equal up to address renaming. For example, for all i ∈ λ, dFie = dGie and
Ui = U ′i , {Fi, Fj} ∈ K iff {Gi, Gj} ∈ K′, and so on. However, we obtain confluence up to the
usual equality of proof-nets when we reach the normal form.
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7.3 µMLLind and µMLL� proof-nets

In this section, we will discuss the parallel syntax of µMLLind and µMLL�. As sequential proofs
both wellfounded and circular derivations are finitely representable; consequently, their corresponding
proof-nets are also finite objects. This section is independent of the developments of infinets, which
are non-wellfounded objects that will be introduced in the next chapter. The algebraic presentation is
helpful in the infinitary setting but since the development in this section is orthogonal to the proof-nets
introduced in the next chapter on non-wellfounded proof-nets, we will use the graphical presentation
of proof-nets in this section.

7.3.1 The statics of µMLLind nets
The µ nodes are as before in Section 7.2. We need to devise the shape of the ν nodes. Recall the (ν)
rule in µMALLind sequent calculus:

` Γ, S ` S⊥, F [S/x]
(ν)

` Γ, µx.F

As a start we provide the following definition of a ν node: ifR is a µMLLind proof-net then so is the
following.

R

Γ S S⊥ F [S/x]

νx.F

ν

There are a few issues with this formulation. Namely,

• The three outgoing edges are treated equivalently. However, what we have is rather (S ⊗
(S⊥OF [S/x])). There is an easy fix. One refines the DR-correctness condition to account
for the switching of S⊥OF [S/x].

• It is important that the tensor in (S ⊗ (S⊥OF [S/x])) is splitting and split into two nets with
Γ, S and S⊥, F [S/x] as doors respectively. We hardcode this information in the definition. This
corresponds to a case considered in [Gir99, Cur06], that of extremal proof-structures, where ⊗
nodes have exactly two splittings: everything either distributes to the left or to right.

We define ν nodes as follows: ifR1,R2 are µMLLind proof-nets then so is the following.

R1 R2

Γ S S⊥ F [S/x]

νx.F

ν

We justify our choice further using the second-order encoding of µMLLind. Recall that νx.F is
encoded as ∃S.S⊗!(S⊥O[F ][S/x]) where [F ] is the inductive encoding of µMLLind formulas. The
corresponding LL2 proof-net is as follows.
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R1 R2

Γ S S⊥ F [S/x] ?∆

O

!! ?

?∆

?

⊗

[νx.F ]
∃

Note that after three steps of sequentialisation we remove the box and after a fourth step we have
exactly the same net as above up to the ν node (and ?∆ doors). In fact, the ?∆ are natural and occur
in ν rules for µLLind:

` Γ, S ` S⊥, F [S/x], ?∆
(ν)

` Γ, νx.F, ?∆

To sum up, µMLLind proof-nets are MLL with µ and ν as described above. DR-correctness is the
same with one caveat that not only all O nodes are switched but also every second (or third) premisse
of a ν node is switched. By correctness, the tensor hidden in the ν node is always splitting, so one can
sequentialise any bottommost µ or ν node. This also corresponds to the fact that in µMALLind proofs
both µ and ν rules can be permuted down. Consequently, µMLLind nets are canonical i.e. they exactly
characterise the equivalence up to permutation of inference rules.

We will briefly discuss the dynamics of µMALLind nets without delving into much detail. The
reduction rule for the fixed point case is basically the desequentialisation of the corresponding key
case in the sequent calculus. One can again justify this rule from the point of view of LL2 proof-nets.
In order to prove the cut-elimination, one needs to devise a measure on the set of µMLLind proof-nets.
A straightforward adaptation of the measure defined in the proof of Theorem 7.2.3 works.

7.3.2 µMLL� nets
The question of when are two proofs the same goes beyond the permutation of inference rules in the
case of circular proofs. A non-wellfounded proof with finitely many subproofs admits several circular
representations (cf. Figure 7.8). From an algorithmic perspective, there is a motivation to obtain the
minimal representation of proof object. For instance, a regular tree can be seen as a deterministic au-
tomaton and one might choose the minimal deterministic automaton as its representation). However,
such representations obfuscate proof-theoretic information.

In the following, we assume that two circular proofs that have the same unfoldings can be different.
µMLL� proofs are finite objects. In fact, they are wellfounded trees with some extra information.
We start off by treating backedges as generalised axioms. Consider the proof in Figure 7.8b and its
desequentialisation Figure 7.9a. Note that to recover the backedges in the sequentialisation, one
needs to ensure that in any sequentialisation there is a sequent of the form ` FOF,G that can be the
target of the backedge originating from the source i.e. the generalised axiom ` FOF,G. This is not
necessarily true. The net can be sequentialised as follows:

5
` F,G⊗G

(ν)
` F,G

In this case, we never get the sequent ` FOF,G. The standard technique to restrict the paral-
lelism of proof-nets is the introduction of boxes. Consider the proof-net in the Figure 7.9b. The box
ensures that the µ node is sequentialised before the ν node.
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`F,G ` F,G
(⊗)

` F, F,G⊗G
(O)

` FOF,G⊗G
(ν)

` FOF,G
(µ)

`F,G

(a)

`F,G
` FOF,G

O
` F,G

(⊗)
` F, F,G⊗G

(O)
` FOF,G⊗G

(ν)
` FOF,G

(µ)
`F,G

(b)

`F,G

`F,G ` F,G
(⊗)

` F, F,G⊗G
(O)

` FOF,G⊗G
(ν)

` FOF,G
(µ)

`F,G
(⊗)

` F, F,G⊗G
(O)

` FOF,G⊗G
(ν)

` FOF,G
(µ)

`F,G

(c)

Figure 7.8: Different representations of the same circular proof of ` F,G where dF e = dG⊥e =
µx.xOxα.

F FOF

G G

z

F

µ

z

FOF
O

F

µ

G⊗G
⊗

G

ν

c
c

(a)

B

F FOF

G G

B′

B

F

µ

B′

FOF
O

F

µ

G⊗G
⊗

G

ν

c
c

(b)

Figure 7.9: Naive and faithful desequentialisations of the proof in Figure 7.8b.

Desequentialisation is a two-step process. Suppose we are given a µMLL� proof π. Construing
sources of backedges as generalised axioms, π is a µMLL∗ proof possibly with generalised axioms.
We desequentialise it as in Definition 7.2.3 and call the derived netR. Let S be the set of all sequents
in π that are the target of a backedge in π. We will have a box BΓ for each Γ ∈ S. Note that Γ cor-
responds to the set of wires in R. These are exactly the incoming wires of BΓ. The box is smallest
substructure that contains everyz node that is the source of a backedge that targets Γ. We now label
these generalised axioms by the BΓ. Having as many boxes as target of backedges is enough sequen-
tialisation information to ensure the faithfulness of backedges and labelling helps remove ambiguity
during reconstructing backedges. Correctness therefore ensures if there are enough boxes along with
DR-correctness.

Note that our use of boxes is similar to the ones in proof-nets with cycles considered in [Mon03].
In that work, a general fixed-point Y -combinator is added to polarised linear logic. In the sequent
calculus, the combinator has the following rule that essentially types Y as (P → P )→ P where P is
a positive formula and→ is classical implication.

` Γ, P⊥, P
(Y )

` Γ, P

The corresponding node in proof-nets introduces a so-called Y -box:
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R

Γ P P⊥

Y

P

Y

We end this section by discussing two issues of the µMLL� proof-nets that we introduced. Firstly,
what we achieve is not entirely canonical. Not all circular proofs that are equivalent up to permuta-
tions of inference rules can be equated by a single proof-net. For example, the following proof-net
has exactly two sequentialisations viz. one where every odd-numbered rule is a µ and every even-
numbered rule is a ν; another where every odd numbered rule is a ν and every even numbered rule is a
µ.

B µx.x νx.x

B

µx.x

µ

νx.x

ν

c c

Clearly, there are several other permutations that are regular (and the set of permutations which
is regular is strictly smaller than the set of all permutations since for example, the proof where every
prime step is a µ and every composite step is a ν is non-regular).

The second issue is that circular proofs are not closed under cut-elimination. So, one cannot
explore the dynamics of µMLL� proof-nets. The solution to both these problems lies in devising
more general structures viz. proof-nets for non-wellfounded proofs. We shall explore this in the next
chapter.
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(ax)
` F , F⊥

?

` F , νx.x
(ν)

` F , νx.x
(cut)

? ` F , νx.x

(a)

...

F F⊥ F F⊥ · · ·
ax ax

ax∞inf

cut cut

νx.x

ν

νx.x

ν

c
c

(b)

?

` a,H
(ax)

` a⊥, a
⊗

` H, a⊗ a⊥, a
(O)

HO(a⊗ a⊥), a
(ν)

? ` H, a

(c)

... a⊥

...

a a⊥

a a⊥

a

ax

ax

ax

ax∞inf
⊗

O

ν ⊗

O

ν

⊗

O

H

ν

c c

(d)

Figure 7.10: Naive desequentialisations of some µMLL∞ proofs. Back-edges are depicted using
pointers (?). Red and blue curves indicate trips.

7.4 Towards infinets
In this section, we discuss the potential pitfalls of extending the notion of proof-nets to the non-
wellfounded setting. Let π∆ be a proof of ` ∆, F where F = νx.x⊗ (aOa⊥)α for an arbitrary address
α.

`∆, ψαil

(id)
` aαirl, a⊥αirr (O)
` aOa⊥αir (⊗)

` ∆, ψ ⊗ (aOa⊥)αi
(ν)

`∆, ψα

We first consider π∅. Now, if we naively translate it into a proof structure using the same recipe
as Definition 7.2.3, we have dsq(π∅) = (Γ,∅,Θ) where

Γ =
{
ψ{i(li)

∗r(l+r)+(il)ω}
α

}
; Θ = {αi(li)nrl, i(li)nrr}n≥0.

Observe that (il)ω is not in any partition. In fact, it represents a thread in an infinite branch and must
be accounted for. Hence the partition should be equipped to account for the threads invariant by an
infinite branch in a proof (in particular, in the example above there should be a singleton partition
{(il)ω}). This is also the reason we will not use the graphical presentation for non-wellfounded proof-
nets since we would potentially need to join two infinite paths by a node of which we are not aware
of any rigorous graph-theoretic treatment. However, we will sometimes draw the “graph” of non-
wellfounded proof-nets for ease of presentation by using ellipsis points to brush the technical difficulty
under the carpet.
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In Section 7.1, we formulated a proof-net as a set of formula occurrences, together with an or-
der (the subformula ordering, representing which formula was deduced from which other formulas)
and distinguished sets of formulas, representing the conclusions, axioms, and cuts. In particular, an
axiom is just a set of two dual formulas. As discussed above, this set of data is not sufficient for de-
sequentialising non-wellfounded proofs and as such, we need to introduce infinite axioms. Infinite
axioms can be thought of as additional limit points at infinity to which the rays converge. We denote
such infinite axioms by ax∞r in our graphical presentation.

Now consider ∆ = {bβ}where b is an atom and β is an address disjoint with α. The infinite branch
of π∆ has bβ occurring infinitely often. This information is germane to its desequentialisation i.e. a
faithful translation of π∆ would therefore look something like:

a a⊥

...

a a⊥

b a a⊥

ax

ax

ax

ax∞inf
aOa⊥

O

F ⊗ (aOa⊥)
⊗

F

ν O

F ⊗ (aOa⊥)
⊗

F

ν
aOa⊥

O

F ⊗ (aOa⊥)
⊗

F

ν

c

c

This can be justified in two ways. Firstly, without bβ being connected to the infinite axiom, the
net could not be DR-correct. Secondly, without the information that bβ remains in the infinite branch
forever, one can spuriously sequentialise to proofs where bβ goes to the right premisse of one of the
tensor rules. Such proofs will not be permutatively equivalent with π∆ and therefore, such a notion of
proof-nets would quotient more than the commutation of inference rules.

7.4.1 The di�erent types of infinite axioms
Therefore, at least as a first approximation, infinite axioms are the invariant of the infinite branches
of pre-proofs, which we can picture graphically as a cell “above” a ray in a non-wellfounded proof-
structure. This would correspond to a thread in the corresponding non-wellfounded proof.

Consider the proof π′ of ` F, νx.xα in Figure 7.10a where F is an arbitrary formula and α is an
arbitrary address. Note that we do not explicitly mention the addresses in the proof (but they can
be easily reconstructed by the reader). Imagine one desequentialised as usual and also takes into
account the thread τ = {νx.xαin}∞n=0. Then, we have the proof structure in Figure 7.10b. It has two
connected components, one with an infinite axiom “above” the ray of ν nodes (corresponding to τ )
and second, an undirected ray, say ρ, of alternating axioms and cuts. This breaks DR-correctness.

Observe that every F introduced by a cut resides with τ in the infinite branch of π′. This informa-
tion is lost in translation. Since we envisage infinite axioms as capturing the invariant of an infinite
branch, ρ should be included in the infinite axiom in a correct desequentialisation. Paths like ρ alter-
nating through axioms and cuts are called visitable paths. The dyadic notion in proofs corresponding
to visitable paths are trips which we indicate by the blue curve in Figure 7.10a.

Cuts and tensors are geometrically quite similar; so, it is not very surprising that visitable paths
can be formed using tensor nodes as well. In particular, a similar situation as above can be reproduced
using tensors unfolded by some fixed point formula. Consider the proof π′′ of ` H, aβ in Figure 7.10c
where H = νx.xO(a⊗ a⊥)α, and α, β are arbitrary disjoint addresses. As before, we do not explicitly
indicate the addresses of every suboccurrence occurring in the proof. Consider the proof structure
in Figure 7.10d, the naive desequentialisation of π′′. The failure of DR-correctness is less obvious in
this instance. Consider the switching where every O switches to the left (i.e. the right outgoing edge
of every par is severed). Therefore, here as well, the visitable path of alternating axioms and tensors
should be ported into the infinite axiom above the ray of alternating ν nodes and O nodes.
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(id)
` A, A⊥

(id)
` A, A⊥

?

` A, A⊥
(cut)

` A, A⊥
(cut)

? ` A, A⊥

(a)

A A⊥ A A⊥
...

A⊥ A A⊥ A
...

ax ax

cut cut
ax ax

cut cut

c

c

(b)

A A⊥ A A⊥
...

A⊥ A A⊥ A
...

ax ax ax∞v

cut cut
ax ax

cut cut

c

c

(c)

Figure 7.11: Why do we need virtual axioms?

It is not clear apriori that visitable paths are invariants of infinite branches which are supported by
a thread. Consider the pre-proof π in Figure 7.11a. It proves a sequent ` A,A⊥ by never operating
on these formulas but delaying infinitely this treatment using cuts. From this perspective, it could be
desequentialised naively as in Figure 7.11b. The pre-proof has two trips (following each formula as
they are cut and introduced by axioms), just as the proof-structure has two visitable paths.

Nonetheless, we can argue as before that an infinite axiom should be atop the two visitable paths,
representing that the two formulas A and A⊥ are infinitely pushed away together: viewed in this way,
the pre-proof π represents an infinitely cut-expanded axiom.

However, we have no infinite branch in the proof-structure of Figure 7.11b to support an infinite
axiom. We need to introduce a new kind of infinite axiom as in Figure 7.11c which is not “above”
an infinite ray — we call it a virtual axiom. We will thus distinguish between infinite axioms that
are supported by a straight thread (which we will call real axioms) and infinite axioms supported by
visitable paths (virtual axioms). Just as real infinite axioms, virtual axioms can also contain formula
occurrences with finite addresses (indeed, consider π with an arbitrary formula added in the conclusion
sequent and pushed through all the cuts). In both cases, an infinite axiom is the invariant (under
permutation of inference rules) of an infinite branch (of a pre-proof).

7.4.2 Higher-order trips
A final difficulty arises in the process of inventing infinitary proof structures. Consider the pre-proof
in Figure 7.12a: it consists of an infinite sequence of the unfolding of a fixpoint such that, between
two unfoldings, a cut introduces the infinite pre-proof π of conclusion ` A,A⊥ studied in the last
paragraph: as said there, it can be interpreted as an infinitely expanded axiom.

Let us imagine what the procedure to desequentialise the pre-proof in Figure 7.12a would look like,
in particular, to compute the visitable paths and the infinite axioms. Typically one can imagine starting
by tracing the sequents in such a way that they mimic the dynamics of a trip thereby recognising the
infinitely many visitable paths from the infinitely many trips (each occurrence of π generating two
maximal trips). The proof-net, at this point, is disconnected. In particular, the real axiom with the
ν-thread is disconnected from all the cut occurrences, a geometry similar to the net in Figure 7.10b.

Recall π is akin to an axiom expansion, hence one can imagine bouncing on it going up via A
and down via A⊥ as if it were a generalised axiom. Therefore, a second parse through the proof
in Figure 7.12a reveals a higher-order trip (indicated in blue) which bounces through each copy
of π by going up the blue trip and down the red trip of Figure 7.11a, and keeps going up. This
trip corresponds to a higher-order visitable path. This path is grafted with the real axiom above
the infinite ν-ray. We distinguish this trip/visitable path from the ones discussed above by using a
stratification. Every trip/visitable path of a particular level `, where ` ∈ Ord.

We bookend this discussion by summarizing the terms introduced: they go by dyadic pairs, one in
a pre-proof, and its corresponding notion in non-wellfounded proof-structures.
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π

` A, A⊥

?

` A, νx.x
(ν)

` A, νx.x
(cut)

? ` A, νx.x

(a)

...

A A⊥ A A⊥ · · ·
dsq(π) dsq(π)

ax∞inf

cut cut

νx.x

ν

νx.x

ν

c
c

(b)

Figure 7.12: Exhibiting higher-order trips and visitable paths. Here π is the pre-proof in Figure 7.11a

Pre-proofs Non-wellfounded Proof-structures
Axioms Finite axiom links

Branches supported by threads Real axioms
Branches not supported by threads Virtual axioms

Trips Visitable paths
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The genesis of infinets
(The kingdom strikes back)

In this chapter, we describe the first truly infinite class of µMLL proof-nets. We consider a fragment
of µMLL∞ viz. one which does not have trips. In Section 8.1, we formalise this fragment of µMLL∞.
In Section 8.2, we define the appropriate notion of proof-nets for this fragment generalising the proof-
nets in the previous chapter. The non-wellfoundedness provides several challenges, one of which is a
more involved correctness condition. This correctness condition is introduced and shown to be com-
plete with respect to sequentialisation in Section 8.3. In Section 8.4, we show that the objects we
define are indeed canonical. Finally, in Section 8.5 and Section 8.6, we restrict and generalise this
class of non-wellfounded proof-nets respectively. Section 8.5 considers a finitely presented fragment
and proves some decidability results and connections with circular proofs. In Section 8.6, we intro-
duce general non-wellfounded proof-nets that potentially contain objects corresponding to trips.

8.1 Trips and simple proofs
Girard’s original correctness criterion for proof-nets was the long-trip criterion [Gir87a]. He envi-
sioned each link of a proof-net as a router, having as ports the formulae that are premisses or con-
clusions of the link. Each link is associated with a set of routing rules that tell us from which port we
come out when we enter from a given port. Axiom and cut have a fixed behaviour, while tensor and
par have two possible behaviours, determined by a local switch. Starting from any node one travels
along a path that visits a formula at-most once in each direction. These paths are called trips.

Trips can in fact be seen as some kind of operator acting on the proof. We define similar paths on
proofs. Suspecting a connection with Girard’s trips, we pre-emptively call our paths trips as well.

Definition 8.1.1. Given a pre-proof π, a pre-trip starting fromF is a sequence τ = {(si, Fi, di)}i∈λ,
λ ∈ ω + 1, where si is a sequent in π, Fi ∈ si and di ∈ {↑, ↓} such that F0 = F , d0 = ↑ and for
every i ∈ λ exactly one of the following holds:

• di = di+1 = ↑, si+1 is a premise of si and Fi+1 v Fi.

• di = di+1 = ↓, si is a premise of si+1 and Fi v Fi+1.

• di = ↑, di+1 = ↓, and si = si+1

• di = ↓, di+1 = ↑, si and si+1 are the premises of a (cut) rule on Fi and Fi+1.

• di = ↓, di+1 = ↑, si and si+1 are the premises of a ⊗ rule with auxilliary occurrrences Fi
and Fi+1.

Furthermore τ satisfies that for every i, j ∈ λ, there does not exist a sequent, s, in π such that
FiOFj ∈ s.

Definition 8.1.2. Let τ be an infinite pre-trip of a pre-proof π. Let γ be an infinite branch of π. τ
is said to be associated with γ if there exists an infinite subsequence {(si, Fi, di)}i∈ω of τ such
that {si}i∈ω is a subsequence of γ.

134
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Proposition 8.1.1. Let τ be an infinite pre-trip of a pre-proof π and γ1, γ2 be two infinite branches
of π such that τ is associated with both of them. Then γ1 and γ2 coincide on infinitely many
sequents. In other words, τ is associated with a unique branch modulo some finite prefix.

Proof. Suppose not. Then it contains infinitely many sequents from two diverging infinite branches,
γ1 and γ2, of π. Let γ be the finite common prefix of γ1 and γ2. By construction, there is a tensor or a
cut rule in γ such that it has premises sl and sr respectively and it introduces Fl and Fr respectively
such that sl and sr occur infinitely often in the pre-trip. By construction, during a downward travel
via sl (respectively sr), in order to change directions, the trip must be through Fl (respectively Fr)
rather than any other occurrence of sl (respectively sr). Similarly, during the immediately succeeding
upward travel, the trip must be through (sr, Fr, ↑). So, there is a finite pre-trip starting from (sr, Fr, ↑)
and (sr, Fr, ↓). Schematically this finite trip looks like the following where snl = sr and Fnl = Fr.

(s1,G1,↑) (s1,G
′
1,↓)

(sr,Fr,↑) (s1l ,F
1
l ,↓)

(s2,G2,↑) (s2,G
′
2,↓)

(s1r,F
1
r ,↑) (s2l ,F

2
l ,↓) (s2r,F

2
r ,↑)

(sn,Gn,↑)

(sn−1,F
n−1
r ,↑)...

(sn,G
′
n,↓)

(snl ,F
n
l ,↓)

We will show by induction on n that such a finite pre-trip cannot exist.

Base case. We have F 1
l = Fr. Then, G1 and G′1 are suboccurrences of Fr. Let G be the suboc-

currence which is the greatest common prefix of G1 and G′1 in the FL-graph of Fr. The outermost
operator of G must be either a par or a tensor. In case it is a par, the finite pre-trip goes through two
premises of G which is not allowed. If it is a tensor, then G1 and G′1 go to different sequents which is
not possible.

Induction case. Then, G1 and G′n are suboccurrences of Fr. Let G be the suboccurrence which is
the greatest common prefix of G1 and G′n in the FL-graph of Fr. The outermost operator of G′ must
be a tensor (parr is ruled out in the same way as in the base case). Let G = H ⊗H ′. Since the finite
pre-trip goes throughG, {H,H ′} = {Fml , Fmr } for somem < n. But then we can follow Fmr down to
Fr (sinceG is a suboccurrence of Fr). Hence we must have a shorter finite pre-trip of the above form.
By induction hypothesis that does not exist.

Hence an pre-trip can be associated with at most one infinite branch. Further observe by the
above argument every sequent is repeated at most finitely often in a pre-trip, so a trip visits higher and
higher (or deeper depending on one’s perspective) sequents. Hence there is exactly one infinite branch
associated with every pre-trip.

Definition 8.1.3. Let τ = {(si, Fi, di)}i∈λ, λ ∈ ω + 1 be a pre-trip and ζ be some ordinal. A trip
is a pre-trip τ such that for some ordinal ζ, τ is a trip of level ζ. A trip of level ζ is defined by
transfinite induction on ζ as follows.

• ζ = 0 and for all i ∈ λ such that di = ↑ and di+1 = ↓, si = si+1 = {Fi, Fi+1} is the
conclusion of an (id) rule.

• ζ 6= 0 and for all i ∈ λ such that di = ↑ and di+1 = ↓, there exists trips τ ′ = {(s′i, F ′i , d′i)}i∈λ′ , τ ′′ =
{(s′′i , F ′′i , d′′i )}i∈λ′′ of level ζ ′ such that ζ ′ < ζ, (si, Fi) = (s′0, F

′
0), (si+1, Fi+1) = (s′′0 , F

′′
0 ),

and τ ′ and τ ′′ are associated with the same infinite branch of π.

Definition 8.1.4. A trip with infinitely many terms of the form (s, F, ↓) for some s and F is said
to be an s-trip. A simple µMALL∞ pre-proof is a pre-proof that does not contain any s-trips.

Remark 8.1.1. Bouncing threads in [BDKS22] are special types of s-trips of level 0.

Example 8.1.1. Consider the proof π in Figure 7.10c. Let ϕ = νx.xO(a ⊗ a⊥). Formally, the
unique maximal s-trip in π is the following sequence.
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({ϕα, aβ}, aβ , ↑)
({ϕO(a⊗ a⊥)αi, aβ}, aβ , ↑)
({ϕαil, (a⊗ a⊥)αir, aβ}, aβ , ↑)
({a⊥αirr, aβ}, aβ , ↑)
({a⊥αirr, aβ}, a⊥αirr, ↓)
({ϕαirl, aαirl}, aαirl, ↑)
...

Example 8.1.2. Define π1 to be the pre-proof in Figure 7.11. We inductively define πn as follows:

πn−15
` A,A⊥

πn−15
` A,A⊥ ` A,A⊥

(cut)
` A,A⊥

(cut)
` A,A⊥

Now define πω as follows. Let dCie = dAe for all i ∈ N.

π15
` A,C1

⊥

π25
` C1, C2

⊥

π35
` C2, C3

⊥

····
` C3

(cut)
` C2

(cut)
` C1

(cut)
` A

We note that πω has the following s-trip of level ω.

({C1}, C1, ↑)
({C1, C

⊥
2 }, C1, ↑)

({C1, C
⊥
2 }, C⊥2 , ↓)

({C2}, C2, ↑)
({C2, C

⊥
3 }, C2, ↑)

({C2, C3
⊥}, C3

⊥, ↓)
({C3}, C3, ↑)
...

The bulk of the theory that will be developed in this chapter and the subsequent one is for simple
proofs. Note that on the one hand, Girard invented Geometry of Interaction, an operational seman-
tics, by encoding the process of cut elimination at the level of trips [Gir89]. On the other hand, trips
have been used to yield the coherent interpretation of a proof-net, without transiting through sequen-
tialisation [Gir87a]. Thus, the exclusion of trips in our work possibly signifies the exclusion of some
significant computational and denotational content.
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8.2 Simple non-wellfounded proof structures
In this subsection, we define the geometric counterpart to simple proofs viz. simple proof-structures.
The definitions have been designed in such a way that they look like an extension of the nets de-
fined in Section 7.2. To our knowledge, these are the first non-wellfounded proof-nets in the litera-
ture. Notwithstanding, we note that our notion of infinite axioms is similar to the notion of coaxioms
in [ADZ17a, ADZ17b] and that of limit sequents in [HK22].

Definition 8.2.1. A simple µMLL∞ proof-structure is a 4-tuple ({FUii }i∈λ,K,Θf ,Θinf ) where:

• λ ∈ ω + 1;

• for all i ∈ λ, FUii is a partial syntax tree with Ui ⊂ {l, r, i}∞; {Fi}i∈λ is called the set of
doors.

• K is the set of cuts i.e. a (possibly empty) set of disjoint subsets of {Fi}i∈λ of the form
{C,C⊥};

• {Fi}i∈λ \
⋃
θ∈K θ is a finite set.

• Θf is the set of axiom links i.e. each element of Θf is pair of dual addresses;

• each element of Θinf are sets of words containing at least one infinite word (from {l, r, i}ω);
and

• Θf ∪Θinf is a partition of the set of leaves, L =
⋃
i∈I{αiui | addr(Fi) = αi, ui ∈ Ui}

Definition 8.2.2. Let π be a simple µMLL∞ pre-proof of the sequent ` Γ. The desequentialisa-
tion of π, denoted dsq(π), is given by ({FUii }i∈λ,K,Θf ,Θinf ) such that:

• for any cut in π that introduces two occurrences, C and C⊥, we have that {C,C⊥} ∈ K;

• {Fi}i∈λ = Γ ∪
⋃
κ∈K κ where λ = |Γ ∪ K|;

• for every i ∈ λ, Ui = addr(Fi)
−1addr(π);

• for every axiom in π of the form
(id)

` (Fi, ui), (Fj , uj) , we have that {addr(Fi).ui, addr(Fj).uj} ∈
Θf

• for every infinite branch γ in π, there is some θ ∈ Θinf that is the largest subset of L such
that for every addr(F ).u ∈ θ:

– either u = u1u2 . . . is an infinite word and {(F, u1 . . . ui)}i∈ω is a thread of γ; or,

– u is a finite word and (F, u) occurs in infinitely many sequents along γ.

Note that simple proof-structures are not defined coinductively; therefore, desequentialisation
cannot be defined as a coinductive process. In contrast, wellfounded proofs are inductive objects
and desequentialisation of a wellfounded proof is a recursive process. In fact, as a dual of this, we
will see that sequentialisation of a simple proof-structure into a non-wellfounded pre-proof (which
are coinductive objects) is a corecursive process.

Proposition 8.2.1. Let π be a µMLL∞ pre-proof with no virtual branches. Then, dsq(π) is a
simple µMLL∞ proof-structure.

Proof. Since π has no virtual branches, every infinite branch is supported by a thread. Thus, by
construction, for any θ ∈ Θinf (if non-empty at all), θ satisfies the condition that it contains at least
one infinite word.

We will now show that Θf ∪Θinf is a partition of L. Note that L = addr(π). Every finite word in
addr(π) is either an address of an occurrence in an axiom or an address of an occurrence that remains
in an infinite branch forever. In both cases, it is in some θ ∈ Θf ∪Θinf . Letw ∈ addr(π) be an infinite
word. Then, all the strict prefixes of w are addresses of occurrences appearing in π. It is easy to see
that these occurrences form a thread. Then, by construction, there is some θ ∈ Θinf such that w ∈ θ.
Now we show that for any θ, θ′ ∈ Θf ∪Θinf , θ ∩ θ′ = ∅. Suppose not. Let w ∈ θ ∩ θ′. If w is a finite
word, this means the occurrence corresponding to w occurs two different branches of π which are
not prefixes of each other. This is not possible in the multiplicative fragment. Then, w is infinite. By
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construction, θ, θ′ correspond to two branches β, β′ in π. Let the sequent Γ be the greatest common
prefix of β and β′. There is an occurrence ϕw′ ∈ Γ such that w′ is a prefix of w. Furthermore, since
w ∈ θ andw ∈ θ′, there are two premisses immediately above Γ both containing the same occurrence.
Contradiction!

Definition 8.2.3. A simple infinet is a simple µMLL∞ proof-structure that is the desequential-
isation of some simple proof.

We retain the progress condition from the sequent calculus and lift Definition 4.2.6 to simple
µMLL∞ proof-structures. Fix a simple µMLL∞ proof-structureR = ({Fi}i∈λ,K,Θf ,Θinf ).

Definition 8.2.4. Let θ ∈ Θinf be an infinite axiom of R and let w = αu1u2 . . . be an infinite
word in θ such that addr(F ) = α for some door F of R. Let σ = {d(F, u1u2 . . . ui)e}i∈ω. We say
that w is progressing if the outermost connective of the smallest formula occurring infinitely
often in σ is ν.

Definition 8.2.5. R is said to be progressing if for all θ ∈ Θinf , there exists w ∈ θ such that w
is progressing.
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8.3 Correctness criterion
A correctness criterion characterises the class of proof-nets within the class proof-structures. In par-
ticular, it is a sufficient condition for sequentialisation. What does it mean to be a necessary condition
for sequentialisation? It means whatever algorithm one chooses to sequentialise, this is the bare min-
imum set of conditions required.

Since µMLL∗ sits inside µMLL∞ as sets of proofs, the correctness condition of µMLL∗ proof struc-
tures is a necessary condition for sequentialising µMLL∞ proof structures. We lift DR-correctness
straightforwardly. In other words, Definitions 7.2.4, 7.2.6 and 7.2.7 are the same as in µMLL. Indeed,
the larger class of µMLL∞ infinets satisfies the acyclicity part of DR-correctness. The proof technique
is exactly the same as the proof of Lemma 7.2.1. However, connectedness does not hold anymore for
the whole class of µMLL∞ proof-structures.

The problem is that, unconstrained, the class of pre-proofs is difficult to manage. Consider the
following pre-proof.

`µx.x, νx.x ` µx.x, νx.x
(cut)

` µx.x, νx.x
(µ)

` µx.x, νx.x
(ν)

`µx.x, νx.x

The translation is critically disconnected:

...
...

...
...

... . . .
...

ax∞inf ax∞inf ax∞inf ax∞inf ax∞inf ax∞inf

νx.x

ν

νx.x

ν

νx.x

ν

µx.x

µ

µx.x

µ

µx.x

µ

νx.x

ν

νx.x

ν

νx.x

ν

µx.x

µ

µx.x

µ

µx.x

µ

cut cutc c

One can wonder if this strange phenomenon is due to the fact that this pre-proof is non-progessing
or due to infinitely many cuts. To nip that suspicion in its bud, we encode the infinitely many cuts using
a greatest fixed point formula ϕ = νy.(yOνx.x)⊗ (yOµx.x) as follows.

π =

`µx.x, ϕ, νx.x
(O)

` µx.x, ϕOνx.x
` νx.x, ϕ, µx.x

(O)
` νx.x, ϕOµx.x

(⊗)
` µx.x, (ϕOνx.x)⊗ (ϕOµx.x), νx.x

(ν)
` µx.x, ϕ, νx.x

(µ), (ν)
`µx.x, ϕ, νx.x

The reader can convince themselves that (i) π satisfies the progress condition and (ii) for any switch-
ing sw, the orthogonal GswR is not connected where R = dsq(π). Geometrically, this pre-proof is
essentially encoding a sort of infinitary mix rule:

`µx.x
(mix0)

`
(mix2)

` µx.x
(µ)

`µx.x

(mix0)
` ` νx.x

(mix2)
` νx.x

(ν)
` νx.x

(mix2)
` µx.x, νx.x

(µ), (ν)
` µx.x, νx.x

However, we do have some understanding of desequentialisation of arbitrary simple pre-proofs.

Lemma 8.3.1. Let π be a simple µMLL∞ proof and let R = dsq(π). For all switchings sw, the
orthogonal graph GswR is acyclic.

We omit the proof as it is proved exactly the same way as Lemma 7.2.1. In terms of connectedness,
this is as far as we can go.

This is an issue, since in order to define correctness one needs to make sure that the disconnect-
edness is indeed due to the encoding of an infinitary mix rule. Suppose a proof-structure has the
following component:
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...
...

ax∞inf ax∞inf

O

c

With the absence of an explicit mix, it is not clear how to sequentialise this. In fact, it depends on the
other components of the proof-structure if it is sequentialisable at all. The theory of proof-nets with
mix is well developed [FR94, Bel97] but they do not scale to our situation. Consequently, we restrict
our study to DR-correct µMLL∞ proof-structures. Finally, we conjecture the following.

Open Question

Let π be a simple µMLL∞ proof and let R = dsq(π). For all switchings sw, the orthogonal
graph GswR is either connected or has infinitely connected components.

For the rest of this thesis, we assume that we are working with DR-correctµMLL∞ proof-structures.
However, in this infinitary setting, DR-correctness is not sufficient to ensure sequentialisation. Let
F = νx.xOxα and G = a ⊗ bβ . Consider the µMLL∞ proof-structure, R = ({FU , G{l,r}},∅,Θ)
where,

U = (i(l + r))ω;

Θ = {{α(il)ω, βl}, α(U \ (il)ω) ∪ {βr}} .

Note that for any switching sw ofR, [SW] = {{αu} | u ∈ U} ∪ {βl, βr}. It is easy to check now
thatR is DR-correct. ButR does not have a faithful sequentialisation i.e. for all proofs π thatR can
be sequentialised into, we have that dsq(π) 6= R. This is because any faithful sequentialisation must
have a ⊗ rule where G is the principal occurrence at some point. Now let us examine the left sequent
of this rule. Either there are one (or more) suboccurence(s) of F in the context of a in which case these
suboccurrence(s) will produce infinitely many threads and {α(il)ω, βl} cannot be an axiom; or, there
are no suboccurences of F in the context of a in which case, it is not a provable sequent.

Definition 8.3.1. Let R = (Γ,K,Θf ,Θinf ) be a DR-correct µMLL∞ proof-structure and FR be
the set of occurrences ofR such that their addresses do not occur in Θf ∪Θinf . R is said to be
lock-free1 if for all occurrences F ∈ FR, {F � G | G ∈ FR} is finite.

The reader is encouraged to convince themself that the notions of subnets, empires, and kingdoms
lift straightforwardly from Chapter 7 to DR-correctµMLL∞ proof-structures. We check if theµMLL∞

proof-structure described above is lock-free. Note that for all formulas F ′ ∈ FL(F )∩FR, we have that
G� F ′. There are infinitely many such F ′ (one for each word of (i(l+r))∗) hence the proof-structure
is not lock-free.

Theorem 8.3.1. Let π be a simple µMLL∞ proof and letR = dsq(π). Then,R is lock-free.

Proof. Let F be an occurrence in π such that neither F occurs in an axiom in π nor is it ultimately
inactive in an infinite branch of π. Consequently, F ∈ FR. Let G be an occurrence such that F � G.
In other words, F ∈ K(G). Let ∆ be the sequent in π (possibly the conclusion of π) where G is
introduced. Let π′ be the subproof rooted at Γ. Then, dsq(π′) is a subnet of R. Furthermore, it
contains G as a door; so, K(G) ⊆ dsq(π′). Therefore, F ∈ dsq(π′). Consequently, F occurs in π′. If
there are infinitely many suchG, then they are introduced higher and higher in π. Therefore, F occurs
in higher and higher subproofs of π. This contradicts the fact that F is not ultimately inactive in an
infinite branch of π.

There is an alternate characterisation of lock-freeness for nets. Fix a DR-correct µMLL∞ proof-
structureR = ({FUii }i∈λ,K,Θf ,Θinf ) and let F be the set of its occurrences.

Definition 8.3.2. For any ui ∈ Ui, uj ∈ Uj , we say that (ui, uj) is a coherent pair if there exists
θ ∈ Θf ∪Θinf such that {αiui, αjuj} ⊆ θ where addr(Fi) = αi and addr(Fj) = αj .

1We borrow the terminology from concurrent programs.
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Definition 8.3.3. A switching path is an undirected path in a partial syntax tree such that
it does not go consecutively through the two premises of a O formula occurrence. Switching
paths that do not go consecutively through the two premises of a ⊗ formula occurrence are
called straight switching paths. Two straight switching paths ρ and ρ′ are said to be coherent
if there exists u, u′ θ ∈ Θf ∪Θinf such that {uρ, u′ρ′} ⊆ θ.

Definition 8.3.4. A switching sequence is a finite sequence σ = {(γi, δi)}i∈[n] of pairs of switch-
ing paths such that:

• for all i ∈ [n], γi and δi are coherent, and

• for all i ∈ [n− 1], there exists a switching path ρ connecting δi and γi+1.

Two occurrences, F = (Fi, u) and G = (Fj , u
′), are said to be connected by the switching

sequence, σ, if src(γ1) = u and tgt(γn) = u′.

For ease of presentation, we restrict ourselves to the case when K is finite. Define

T = {F ∈ FR | F = G⊗H}
P = {F ∈ FR | F = GOH}

Definition 8.3.5. Let AOB ∈ P and C ⊗ D ∈ T. AOB is said to be t-connected to C if there
exists switching sequences σ, σ′ such that they do not go through AOB and either one of the
following holds:

• A is connected to C by σ and B is connected to D by σ′; or,

• A is connected to D by σ and B is connected to C by σ′.

If we wanted to incorporate cuts, we would need to update T as {F ∈ FR | F = G⊗H} ∪ K and
modify the definition of t-connectedness accordingly.

Definition 8.3.6. The dependency graph of R, denoted DepGrph(R), is the directed graph
(V,E) such that:

• V = T ∪ P;

• for every F,G ∈ V , E(F,G) if F ∈ T, G ∈ P, and G is t-connected to F ; and,

• for every F,G ∈ V , E(F,G) if F is a suboccurrence of G.

Theorem 8.3.2. R is lock-free iff DepGrph(R) has a finite degree and does not contain a ray.

Proof. Let E(F,G) in DepGrph(R). We claim that F ∈ K(G). If F is a suboccurrence of G then we
are done since kingdoms are upward closed. Otherwise, let F = A ⊗ B ∈ T and G = COD ∈ P
such that G is t-connected to F . Wlog, assume A and C are connected and B and D are connected.
So, C ∈ Q(A) (and D ∈ Q(B)). Therefore, C ∈ Q(A) ∩K(G). By Lemma 7.2.2, Q(A) ∪K(G)
is a subnet of R. Suppose F 6∈ K(G) and G ∈ Q(A). Then Q(A) ∪ K(G) is a subnet with door
A, which is larger than Q(A), since it contains G, contradicting the definition of empires. Therefore,
either F ∈ K(G) or G ∈ Q(A). Reasoning similarly as above using the fact D ∈ Q(B), we have
G ∈ Q(B). So, GQ(A) ∩Q(B) which implies D ∈ Q(A) and C ∈ Q(B). Then, C ∈ Q(A) and
D ∈Q(B); noting, F 6∈Q(A), this contradicts the DR-correctness of Q(A) (and similarly also that
of Q(D)). Therefore, F ∈ K(G).

Finally, the fact that � is a partial order gives us that DepGrph(R) is a directed acylic graph.
Conclude by Konig’s lemma that lock-freeness is equivalent to DepGrph(R) having a finite degree
and no rays.

Definition 8.3.7. A µMLL∞ proof-structure is said to be an infinet if it is DR-correct and lock-
free.

We will now show that this notion of correctness is sufficient to ensure sequentialisation. We
first note that the standard technique of treating cuts as tensors can now potentially lead to sequents
with infinitely many occurrences (due to infinitely many cuts). We generalise our setting to “quasi”
proof-structures with potentially infinitely many conclusions.

Note that in this infinitary setting, we need to strengthen the sequentialisation algorithm in Fig-
ure 7.3 by adding a notion of fairness since we may never explore one thread by forever prioritising the
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function FAIRSEQUENTIALISE((Γ,Θ), τ )

if Γ = {ϕ{ε}α , ϕ⊥β
{ε}} and Θ = {α, β} then

return
(id)

` ϕ,ϕ⊥
else

Choose FUii ∈ Γ such that Ui 6= {ε} and τ(Fi) = min(τ).
if Fi = GOH then

return

FAIRSEQUENTIALISE(Q(G), τG)
(O)

` d∆e, dGOHe
else if Fi = G⊗H and 6 ∃j 6= i.Fi � Fj then

return

FAIRSEQUENTIALISE(Q(G), τG) FAIRSEQUENTIALISE(Q(H), τH)
(⊗)

` d∆e, dG⊗He
else if Fi = ηx.G then . η ∈ {µ, ν}

return

FAIRSEQUENTIALISE(Q(G[ηx.G/x]), τG[ηx.G/x])
(η)

` dΓe, dηx.Ge
end if

end if
end function

Figure 8.1: The function FAIRSEQUENTIALISE

sequentialisation of another thread. For example, consider the proof-structure ({µx.xiωα , νx.xi
ω

β }, {αiω, βiω}).
At each step of sequentialisation, suboccurrences of both µx.xα and νx.xβ can be chosen to be se-
quentialised. If one does not choose suboccurrences of νx.xβ after some finite number of steps, we will
miss a thread in the resulting pre-proof (and in this the only progressing thread). Fairness is ensured
by timestamping the occurrences of the infinet with elements of N ∪ {∞}, which dictates that at any
particular step the occurrences with the least timestamp is to be sequentialised.

Given a proof-structure R, we define a timestamping function as any function of the form
τ : FR → N ∪ {∞}. We extend the natural number ordering by asserting that for all n ∈ N, n < ∞.
We define the minimal finite image of τ , denoted min(τ), as the minimum of Im(τ). For any
occurrence F in R we define the non-deterministic function τF as follows such that t is an arbitrary
natural number greater than τ(F ′) where F is the immediate suboccurrence of F ′ inR.

τF (G) =

{
t if G is maximal in the� ordering in Q(F );

τ(G) otherwise.

We describe the fair sequentialisation algorithm in Figure 8.1. It describes a corecursive func-
tion FAIRSEQUENTIALISE that takes as input a µMLL∞ proof-structure (Γ,Θ) and a timestamping
function τ . We initialise τ by assigning arbitrary natural numbers to doors that are maximal in �
ordering or not tensor formula occurrences and∞ to the other occurrences in FR.

Remark 8.3.1. There is a catch here. The above initial condition is enough is justify fairness
when there are only finitely many cuts. However, in the presence of infinitely many cuts, it
is possible that infinitely many of them are maximal in the� ordering after translation into
tensors. We have to carefully initialise the timestamping function such that infinitely many
natural numbers are free to be used as timestamps at later stages of the sequentialisation.
For example, one can consider τ which injectively timestamps every maximal door in the �
ordering and every non-tensor door by powers of two and every other occurrence by∞. Note
that any cofinite sequence in place of powers of two would also work.

Lemma 8.3.2. The timestamping assigns a finite natural number to every occurrence of the
infinet that one starts with after some finite iterations of the sequentialisation process.

Proof. We will prove by contradiction. Suppose there are occurrences which are never assigned a fi-
nite natural number by the time stamping algorithm. LetF0 = (Fi, u) be the minimal such occurrence
i.e. for all such other occurrences (Fj , u

′), we have |u| ≤ |u′|.
Then, by construction, after finite iterations of the sequentialisation process, it becomes a door

(otherwise we would have found a node with even a lesser distance). Since it is not assigned a finite
number, it is a tensor occurrence that is not maximal in the kingdom ordering. Consider S = {F |
F � F0}. Since t is not maximal S is non-empty. By lock-freeness S is finite.
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If everyF ∈ S can be assigned a finite natural number after finitely many steps of sequentialisation,
then F0 can be assigned a finite natural number after finitely many steps of sequentialisation, and we
have a contradiction. Therefore there exists F1 ∈ S such that it is never assigned a finite natural
number. We repeat the same argument for F1 as we did for F0. By continuing like this ad infinitum,
we obtain an infinite sequence F0, F1, F2, . . . ; but observe that for all i ≥ 0, Fi � Fi+1. Recall that
� is transitive. Therefore, S is infinite contradicting the lock-freeness ofR.

Theorem 8.3.3. FAIRSEQUENTIALISE is productive and correct.

Proof. The productivity of FAIRSEQUENTIALISE follows from the fact by lock-freeness, one can al-
ways find a door which is maximal in the kingdom ordering. The correctness follows from Lemma 8.3.2
and the straightforward extension of Lemma 7.2.3.

Corollary 8.3.3.1. π is a proof iff dsq(π) is progressing.
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8.4 Canonicity
Recall the ∼ relation over proofs from Section 7.2.4 that quotients proofs up to finite permutation of
inference rules. We did not explicitly mention the finiteness for µMLL∗ proof-nets since the objects
themselves were finite. However, in simple infinets, it is indeed possible to permute a rule infinitely up.
Consider the following two proofs, π and π′, of ` µx.x, νx.x.

`µx.x, νx.x
(µ)

` µx.x, νx.x
(ν)

`µx.x, νx.x

`µx.x, νx.x
(ν)

` µx.x, νx.x
(µ)

`µx.x, νx.x

Note that they have the same infinite
(
{µx.x{i

ω}
α , νx.x

{iω}
β },∅, {{αiω, βiω}}

)
but π 6∼∗ π′. We

need to consider a larger equivalence class. Suppose we allow infinite permutations.

Let π ∼ω π′ if there exists a infinite sequence of proofs {πi}∞i=0 such that π0 = π, πi ∼ πi+1, and
limi→∞ d(πi, π

′) = 0. There are two issues here. ∼ω is not transitive (so not an equivalence) and
potentially quotients more than proof-net equality.

Consider the proofs π above. One can permute down the second (ν), third (ν), and so on. In other
words, we have the sequence {πi}∞i=0 such that π0 = π and

πi =

π

5
` µx.x, νx.x

(νi)
` µx.x, νx.x

Therefore, π ∼ω π′′ where π′′ is:

`µx.x, νx.x
(ν)

`µx.x, νx.x
Similarly we get that π ∼ω π′′′ where π′′ is:

`µx.x, νx.x
(µ)

`µx.x, νx.x
Now observe that π′′′ is not progressing, the desequentialisations of π′′ and π′′′ are different, and
indeed one cannot obtain π′′′ from π′′ by infinitary permutations (or vice versa). Consequently, ∼ω is
too large.

As a first step in restricting ∼ω, we annotate ∼ with a formula occurrence. In particular, we write
π ∼F π′ if F is the active formula of the inference rule r that has been permuted up (i.e. the height of
r in π′ is greater than its height in π′).

Definition 8.4.1. Given two pre-proofs π an π′, we define π ∼ωf π′ if there exists a infinite se-
quence of proofs {πi}∞i=0 such that the following holds.

• π0 = π,

• πi ∼Fi πi+1 for some Fi,

• limi→∞ d(πi, π
′) = 0, and

• Inf({Fi}∞i=0) = ∅.

Finally, define∼∞ as∼∗ ∪ ∼ωf
The last condition essentially means that infinite permutations are allowed only if every occurrence

is permuted upwards at most finitely many times.

Theorem 8.4.1. For all simple µMLL∞ proofs π, π′, π ∼∞ π′ iff π ≡PN π
′.

Proof sketch. The proof is similar to that of Theorem 7.2.2. There are some minor observations to
be made regarding infinite steps of permutation. Firstly, since the infinite sequence of permutations is
fair i.e. every instance of a rule is permuted only finitely many steps, we have that if π ∼∞ π′ then the
same set of instances of inference rules occurs in both π and π′. The fairness of the sequentialisation
preserves this property.
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8.5 Regular infinets
In non-wellfounded sequent calculi, one obtains the finitely presentable by considering a fragment
of pre-proofs that only have only have finitely many distinct pre-proofs i.e. regular pre-proofs. This
notion, however, is crucially related to the sequent presentation and a necessary condition is that the
non-wellfounded proof must have finitely many distinct sequents occurring in it. There is no proper
proof-net counterpart to this. Moreover, regularity is not preserved under the permutation equivalence
defined in the previous section. For example, in the following, inferences can permuted in a circular
proof π0 to obtain a non-wellfounded proof π1 such that π0 ∼ωf π1.

π0 =

`µx.x, νx.x
(µ)

` µx.x, νx.x
(ν)

`µx.x, νx.x πi =

πi+15
` νx.x, µx.x

(µi)
` νx.x, µx.x

(ν)
` νx.x, µx.x

Consequently, we will define a fragment ofµMLL∞ proof-structures, called regularµMLL∞ proof-
structure, such that the desequentialisation of µMLL� proofs are regular µMLL∞ proof-structures
but they do not necessarily sequentialise to circular proofs. These objects are more robust than
µMALL� proof-nets designed in Section 7.3 since two different presentations of the same regular
proofs desequentialise to the same regular µMLL∞ proof-structure.

Definition 8.5.1. A regular µMLL∞ proof-structure is a 3-tuple ({FUii }i∈λ,K,Θ) where:

• λ ∈ ω,

• for all i ∈ λ, FUii is a partial syntax tree and Ui is a regular language;

• K is a finite (possibly empty) set of disjoint subsets of {Fi}i∈λ of the form {C,C⊥}; and,

• Θ ⊂ ({l, r, i}∞)2 is a regular language such that it is an equivalence over {l, r, i}∞ and
the set of equivalence classes is a partition of L =

⋃
i∈I{αiui | addr(Fi) = αi, ui ∈ Ui}

such that for all w ∈ L the following hold.

– Either the equivalence class containingw is of the form {αiu, αju′} such that d(Fi, u)e =

d(Fj , u′)e⊥ where addr(Fi) = αi, u ∈ Ui, addr(Fj) = αj , and u′ ∈ Uj .
– Or, the equivalence class containing w contains at least one infinite word.

Definition 8.5.2. LetR = ({FUii }i∈λ,K,Θ) be a regular µMLL∞ proof-structure. The unfolding
ofR is defined as the µMLL∞ proof-structure U(R) = ({FUii }i∈λ,K,Θf ,Θinf ) where Θf ∪Θinf

is the partition induced by Θ such that if an equivlance class θ contains an infinite word then
θ ∈ Θinf ; otherwise, θ ∈ Θf .

Theorem 8.5.1. Let π be a simple µMLL� pre-proof such that there are no cycles containing a
cut. Then, dsq(π) = U(R) for some regular µMLL∞ proof-structureR.

Proof. Since there are no cycles containing a cut, the unfolding of π has finitely many cuts. Therefore
there are finitely many doors (say, n) of dsq(π) = ({FUii }i∈[n],K,Θf ,Θinf ).

Now, we claim that for each FU in dsq(π), U is a regular language. We will provide a finite state
automata AF and a Büchi automata BF such that L(AF ) ∪ L(BF ) = U . Note that there are only
finitely formula occurrences in π. So, for each door F , there is a bar B of U such that every address
on BF corresponds to either an axiom or the source of a backedge in π. Let UF be the finite prefix of
U such that the leaves of UF are exactly B. Define the following.

• Q =
⋃
F∈Γ UF

• Σ = {l, r, i}

• ∆ =
⋃
F∈Γ{(w, a,wa) | w ∈ UF , wa ∈WF , a ∈ Σ} ∪∆ε where

∆ε =
⋃

F,G∈Γ

{(w, ε, w′) | w ∈ UF , w′ ∈ UG, rename(αw) = α′w′, addr(F ) = α, addr(G) = α′}
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• QF = Root of UF

• F =
⋃
F∈ΓBF

DefineAF = (Q,Σ,∆, QF ,F) construed as a finite state automaton and BF = (Q,Σ,∆, QF ,F)
construed as a Büchi automaton. It is easy to check that L(AF ) ∪ L(BF ) = U . We will now show
that Θ = {(w,w′) | {w,w′} ⊆ Θf ∪ Θinf} is a regular language. Let S be the set of all sequents
occurring in π. Define the following.

• Q = S ×
⋃
F∈Γ UF × S ×

⋃
F∈Γ UF restricted to all (s, α, s′, α′) such that there exists F,G

such that F ∈ s, G ∈ s′, addr(F ) = α, and addr(G) = α′.

• Σ = {l, r, i}

• ((s, α, s′, α′), (a, b), (t, β, t′, β′)) ∈ ∆ if the following holds:

– either α′ = αa or there is a back-edge in π from s to t such that ϕα is renamed ϕα′ for
some formula ϕ.

– either β′ = βb or there is a back-edge in π from s′ to t′ such that ϕβ is renamed ϕβ′ for
some formula ϕ.

• Qi = {(s0, α, s0, β) | s0 is the conclusion of π}

• F = {(s, α, s, β) | s is the conclusion of an (id) rule}.

• Fω = {(s, α, s, β) | (s, α, s, β) ∈ Q}.

Let A = (Q,Σ,∆, Qi,F) be a finite state automaton and B = (Q,Σ,∆, Qi,Fω) be a Büchi
automaton. It is routine to check that L(A) ∪ L(B) = Θ. Therefore, R = ({FUii }i∈[n],K,Θ) is a
regular µMLL∞ proof-structure such that U(R) = dsq(π).

However, the sequentialisation of any regular infinet is not necessarily a regular derivation. Con-
sider the following regular infinet where ϕ = νx.xOx.

({ϕi(l+r)
ω

α },∅, α(i(l + r)ω)× α(i(l + r)ω))

Every sequentialisation of its unfolding is non-regular. For example, the following proof.

····
` ϕ,ϕ, ϕ

(O)
` ϕOϕ,ϕ

(ν)
` ϕ,ϕ

(O)
` ϕOϕ

(ν)
` ϕ

A regular µMLL∞ proof-structure R is DR-correct if U(R) is DR-correct. It is progressing if
U(R) is progressing.

Theorem 8.5.2. Checking the progress condition on regular µMLL∞ proof-structures is decid-
able.

Proof. Let R = (Γ,K,Θ) be a regular µMLL∞ proof-structure. Let FU ∈ Γ. Since U is regular
language, it can be construed as a regular tree. Therefore, we can assume that the automata A over
finite and infinite words (the accepting condition for finite words being that their runs end in the final
state and for infinite words being the Büchi condition) has a finite prefix of U as the set of states such
that it has transitions of the form wawa or wεw′ such that d(F,w)e = d(F,w′)e.

We will define a parity automata PF which is nothing butA with a parity accepting condition. We
assign colours to QF by the map χ : QF → N such that:

• If (F,w) is a µ-occurrence (respectively, ν-occurrence), then χ(w) is odd (respectively, even).

• If (F,w) ≤ (F,w′) then χ(w) ≤ χ(w′).

Let Lp =
⋃
FU∈Γ L(PF ). Then, R is progressing iff Θ ⊆ (Lp × L) ∪ (Lp × L). Since this is

decidable, we are done.
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Open Question

Checking DR-correctness of regular µMLL∞ proof-structures is decidable.
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8.6 Generalising to non-simple proofs
In the next series of definitions, we define general non-wellfounded proof-structures. We disassemble
some components of simple µMLL∞ proof-structures so that it is easier to talk about them. We
first define a chain of syntax trees which is essentially a simple µMLL∞ proof-structure without the
axiom components. Then we define pre-visitable paths which are the oject corresponding to pre-
trips in proof-structures. This allows us to define non-wellfounded proof-structures. Thereafter, we
define visitable paths to be pre-visitable paths which can be assigned a level consistently, just like
we define trips from pre-trips. Subsequently, we define a sanity check on proof-structures and their
desequentialisation. We conclude the section with some details on the correctness condition on these
structures.

Definition 8.6.1. A chain of syntax trees is a tuple of the form ({FUii }i∈λ,K) such that:

• λ ∈ ω + 1

• FUii is a partial syntax tree for every i ∈ λ.

• K contains sets of formulas of the form {Fi, Fj} such that Fi = Fj
⊥.

• {Fi}i∈λ \ ∪θ∈K{F | F ∈ θ} is finite.

Definition 8.6.2. Let R = ({FUii }i∈λ,K) be a chain of syntax trees. A pre-visitable path is a
sequence of triples of the form {(ti, gi, di)}i<ω such that for all i < ω, gi 6= di and exactly one
of the following holds:

• ti is a tensor formula occurrence (Fj , u) for some j ∈ λ such that u ∈ Uj , gi ∈ Uj and
di+1 ∈ Uj are incomparable, and u is their greatest common prefix.

• ti is an element {Fj , Fj′} of K such that gi ∈ Uj and di+1 ∈ Uj′ .

If ρ = (ti)i<ω and ρ = (t′i)i<ω are two pre-visitable paths such that there exists n such that for
all i < ω, ti = t′i+n, then we write ρ v ρ′. We denote by VR the set of maximal pre-visitable
paths ofR in thev ordering.

Definition 8.6.3. A µMLL∞ proof-structure is a 5-tuple ({FUii }i∈λ,K, V,Θf ,Θr,Θv) such that:

• ({FUii }i∈λ,K) is a chain of syntax trees;

• V ⊆ VR;

• each element of Θf is pair of dual addresses i.e. of the form {αiui, αjuj} such that
addr(Fi) = αi, addr(Fj) = αj , and d(Fi, ui)e = d(Fj , uj)e⊥;

• each element of Θr contains at least one infinite word;

• each element of Θv contains no infinite word and at least one element of V ;

• Θf ∪Θr ∪Θv is a partition of L ∪VR.

Definition 8.6.4. Given a µMLL∞ proof-structure, a visitable path of level ζ for some ordinal ζ
is a pre-visitable path ρ = {(ti, gi, di)}i<ω ∈ V such that:

• ζ = 0 and for all i < ω, {di, gi+1} ∈ Θf ∪Θr.

• ζ 6= 0 and for all i < ω, there are visitable paths ρ′ = {(t′i, g′i, d′i)}i<ω and ρ′′ = {(t′′i , g′′i , d′′i )}i<ω
of level ζ ′ and ζ ′′ respectively such that (ti, gi, di) = (t′0, g

′
0, d
′
0), (ti+1, gi+1, di+1) = (t′′0 , g

′′
0 , d
′′
0),

and ρ′, ρ′′ ∈ θ for some θ ∈ Θr ∪Θv and ζ ′, ζ ′′ < ζ.

A visitable path is a visitable path of level ζ for some ordinal ζ.

Definition 8.6.5. A µMLL∞ proof-structure is said to be well-formed if V is exactly the set of
maximal visitable paths.

Definition 8.6.6. Let π be a µMLL∞ pre-proof of the sequent ` Γ. The desequentialization of π,
denoted dsq(π), is given by ({FUii }i∈I ,K, V,Θf ,Θr,Θv) such that
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• for any cut in π that introduces two occurrences, C and C⊥, {C,C⊥} ∈ K.

• {Fi}i∈I = Γ ∪
⋃
κ∈K κ.

• for every i ∈ I, Ui = addr(Fi)
−1addr(π).

• for every axiom linking (Fi, ui) to (Fj , uj), {addr(Fi).ui, addr(Fj).uj} ∈ Θf .

• for every maximal s-trips in π, we collect the points of alternation of directions that gives
us a sequence of cuts or tensors and axioms. This gives us a set of maximal visitable
paths V .

• for every real infinite branch γ in π, θ ∈ Θr is the largest subset of L ∪ V such that:

– for every addr(F )u ∈ θ, either u = u1u2 . . . is an infinite word and {(F, u1 . . . ui)}i∈ω
is a straight thread of γ; or u is a finite word and (F, u) occurs in infinitely many
sequents along γ.

– for every v ∈ θ ∩ V there exists a trip ρ associated with γ such that v is obtained
from ρ.

• For every virtual infinite branch, γ, in π, θ ∈ Θv is the largest subset of L ∪ V such that:

– for every addr(F )u ∈ θ, u is a finite word and (F, u) occurs in infinitely many sequents
along γ.

– for every v ∈ θ ∩ V there exists a trip ρ associated with γ such that v is obtained
from ρ.

We will lift the notion of orthogonal graphs from Section 8.3 to our setting. The orthogonal graph
is bipartite graph (Θ, [SW], E) where Θ = Θf∪Θr∪Θv and [SW], E is defined as usual. Consequently,
Θ is a partition of L ∪ V whereas [SW] is a partition of L. We generalise the notion of a path in the
orthogonal graph as follows.

Definition 8.6.7. Let (Θ, [SW], E) be an orthogonal graph. A path is defined as a sequence
{ui}i∈λ (λ < ω + 1) such that for all i:

• if ui ∈ Θ and i+ 1 ≤ λ then ui+1 ∈ [SW];

• if ui ∈ [SW] and i+ 1 ≤ λ then ui+1 ∈ Θ; and,

• either one of the following holds:

– (ui, ui+1) ∈ E
– there exists ρ ∈ ui ∩ V such that there is (t, g, d) ∈ ρ with {vg, vd} ⊆ ui+1 for some v.

– there exists ρ ∈ ui+1 ∩ V such that there is (t, g, d) ∈ ρ with {g, d} ⊆ ui

Proposition 8.6.1. LetR = (Γ.K, V,Θf ,Θr,Θv) be well-formed µMLL∞ proof-structure. Then,
V = ∅ iff for all switchings sw, GswR does not contain an infinite path.

Proof. We will prove the contrapositive in both directions. Let ρ = {(ti, gi, di)}i<ω be a visitable
path. We will show that there exists a switching sw such that GswR contains an infinite path. Choose
a switching such that for all i, (gi, di) ∈ SW. Now, consider the path u0u1u2 . . . in GswR such that
for all i = 2k, {gk, dk} ⊆ ui and for all i = 2k + 1, either {dk, gk+1} ∈ ui or there exists visitable
paths ρ, ρ′ ∈ ui containing (tk, gk, dk) and (tk+1, gk+1, dk+1) respectively. It is routine to check that
u0u1 . . . is indeed a path in GswR .

For the opposite direction, suppose there is a switching sw such that GswR contains an infinite
path u0u1 . . . assuming wlog that u0 ∈ [SW]. One can now construct a pre-visitable path ρ =
{(tk, gk, dk)}k<ω. For all k > 0, let define (tk, gk, dk) as follows:

• if (u2k−1, u2k) ∈ E and (u2k, u2k+1) then t is a either a tensor of the form (F, u) where u =
u2k−1 ∩ u2k ∩ u2k+1 or t is a cut {C,C⊥} such that u2k−1 ∩ u2k ∈ U and u2k ∩ u2k+1 ∈ U ′ for

CU , C⊥
U ′ ∈ Γ.

• if u2k−1 or u2k+1 has visitable paths which have terms (t, g, d) such that {vg, vd} ⊆ u2k for
some v then (tk, gk, dk) = (t, g, d).
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It is routine to check that ρ is in fact a visitable path.

A⊥ A

A A⊥ A⊥ A

...
...

... A A⊥ A⊥ A

ax

ax ax

ax axp2

O

p1

O O⊗

⊗ ⊗⊗

t2

⊗
t1

⊗O

ν

O

ν

O

F

ν

c

Figure 8.2: A DR-correct µMLL∞ proof-structure with infinitely ascending chain of kingdoms.

Let ρ be a visitable path inR. Fix a switching sw. If there is a ray r in the orthogonal graph Gswρ
that corresponds to ρ, we denote this path by pthsw(ρ). By Proposition 8.6.1, we know that there is at
least one such switching. Furthermore, define pthsw(ρ) to be pthsw(ρ) construed as a set of vertices.
Let v ∈ Θ. Define:

PreReach0(v) := {v′ | (v, v′) ∈ E ∩Θ× [SW]};
PreReachλ.2+1(v) := PreReachλ.2(v) ∪ {u | ∃v′ ∈ PreReachλ.2(v); (v′, u) ∈ E ∩ [SW]×Θ}
PreReachλ.2+2(v) := PreReachλ.2+1(v) ∪ {u | ∃v′ ∈ PreReachλ.2+1(v); (u, v′) ∈ E ∩Θ× [SW]}

PreReachλ(v) :=
⋃
λ′<λ

PreReachλ
′
(v);

Similarly, one can PreReachλ(v) for v ∈ [SW]. Now, let λ + 1 be a successor ordinal. We will
define Reachλ+1(v) from PreReachλ+1(v). Let S = (PreReachλ+1(v) \ PreReachλ(v)) ∩ Θ. Noting
that the set of visitable paths ofR is denoted by V , we define Reachλ+1(v) as follows.

Reachλ+1(v) =

{
PreReachλ+1(v) if S = ∅;

PreReachλ+1(v) ∪
⋃
θ∈S{pthsw(ρ) | ρ ∈ θ ∩ V } otherwise.

Let λ be a limit ordinal. We will define Reachλ(v) from PreReachλ(v). Wlog, assume that v ∈ SW.
Let {vi}i∈ω such that v0 = v, for all i ∈ ω, vi ∈ PreReachλ(v), v0v1 · · · = pthsw(ρ) for some visitable
path ρ. Let θ ∈ Θ such that ρ ∈ θ, then θ ∈ Reachλ(v).

Clearly, Reach(•) is a monotonic operation over the set of vertices. Therefore, for all vertices v,
there exists an ordinal λ such that Reachλ(v) = Reachλ+1(v). Let λ0 be the smallest ordinal such
that for all v, Reachλ0+1(v) = Reachλ0(v).

Definition 8.6.8. A well-formed µMLL∞ proof-structure is said to be DR-correct if for any
switching sw, in the orthogonal graph Gsw the following holds:
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• ∀v, v′, v′ ∈ Reachλ0(v)

• ∀v, v 6∈ Reachλ0(v)

Note that productivity of the sequentialisation procedure is guaranteed if it is guaranteed that at
each step of the sequentialisation one either finds a O or a fixed point formula or a splitting ⊗. This is
ensured because by lock-freeness there can be no infinite ascending chain in�. Furthermore, if one
just wants to ensure productivity and not fairness of sequentialisation, lock-freeness can be relaxed
to the ascending chain condition. Interestingly, in this case, lock-freeness becomes moot for simple
proof-structures.

Proposition 8.6.2. A simple DR-correct proof-structure R = (Γ,K,Θf ,Θinf ) has no infinite
ascending chain in the� ordering.

Proof. Suppose there is an infinite ascending chain in the � ordering. Then, by Theorem 8.3.2,
DepGrph(R) = (V,E) has a ray β = v0v1v2 . . . ; furthermore, β has a infinite subword vi0vi1vi2 . . . for
some infinite index set {ij}j∈ω such that vij is tensor formula occurrence for all j ∈ ω. Fix a switching
sw and let GswR be the corresponding orthogonal graph. Let vi0 = (F, u) for some FU ∈ Γ and u ∈ U .
Then, u belongs to some v0 for v0 ∈ [SW]. Similarly, vi1 = (G, u′) and u ∈ v1 for v1 ∈ [SW].
By construction, v0 and v1 are distinct. Since R is DR-correct, GswR is connected. Therefore, v0 is
connected to v1 through at least one axiom θ0. Similarly, v1 is connected to v2 through at least one
axiom θ1. We have that θ0 6= θ1 because this contradicts the acyclity of GswR . Continuing like this, we
have a ray in GswR . By Proposition 8.6.1, we have thatR has a visitable path. Contradiction!

Finally, we give an example of a µMLL∞ proof-structure (cf. Figure 8.2) with visitable paths that
is DR-correct but has an infinite ascending chain in the� ordering. The kingdoms of the nodes p1

and t2, K(p1) and K(t2), are shaded in cyan and magenta areas respectively. Observe that t1 � p1 �
t2 � p2 � · · ·

In conclusion. In this chapter, we generalised the finite proof-nets of µMLL∗ to non-wellfounded
objects. The correctness condition of the finite situation does not necessarily hold any more for de-
sequentialisations of (pre-)proofs; on the other hand, we had the devise new conditions to guarantee
sequentialisation. We developed this theory for proofs with trips and then concluded with pointer to
generalisations to general proofs.
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The dynamics of infinets
(Revenge of the sequent)

In this chapter, we study the dynamics of infinets. We studied the dynamics of µMLL∗ proof-nets
in Section 7.2. Since inference rules are the same for µMLL∗ and µMLL∞, the reduction rules for
infinets are a superset of the reduction rules µMLL∗ proof-nets. Fortunately, we developed them in
the algebraic presentation, which will make it easier to lift them to the infinitary setting. We digress
to remind the reader that we also developed the dynamics of µMLLind proof-nets in Section 7.3.

Coming back to this chapter, in Section 9.1, we treat infinets as a metric rewriting system. We
first guess the normal form (big step) and then show that a infinite reduction sequence of small steps
is converges to the big-step in the limit. To guess the limit, one has to sacrifice some structure viz.
η-expand all axioms rendering the calculus without atoms. In Section 9.1, we treat simple infinets
in full generality. However, our proof is not completely independent of the sequent calculus. In fact,
to obtain limits of infinite reduction sequences, we go via a cut-elimination result in sequent calculus
that we prove in Section 9.2.

9.1 Cut-elimination in infinets without axioms
In this section, we provide a cut elimination result for simple infinets with no finite axioms and no
atoms. Note that this restriction is also crucially used to prove cut-elimination in [BDS16].

Definition 9.1.1. A simple µMLL∞ proof-structure R = (Γ,K,Θf ,Θinf ) is said to be axiom-
free if Θf = ∅ and for all θ ∈ Θinf , θ ⊂ {l, r, i}ω.

From here on, we will write axiom-free infinets with just three components (Γ,K,Θinf ), the set of
partial syntax trees, the set of cuts, and the set infinite axioms respectively.

Proposition 9.1.1. LetR = (Γ,K,Θinf ) be an axiom-free infinet. For all FU ∈ Γ, for all partial
syntax trees U ′ of F , we have that U ′ ⊆ U .

Proof. Let u ∈ U ′. Let u′ be the largest prefix of u such that u′ ∈ U . If u′ = u, then we are done.
Otherwise, u′ is a strict (and hence, finite) prefix of u. SinceR is axiom-free, U ⊆ {l, r, i}ω i.e. it does
not contain finite words. Therefore, there exists u′′ w u such that u′′ ∈ U . Since u′ is largest prefix
of u in U , we have that u′′ ∩ u = u′. Consequently u = u′av and u′′ = u′bv′ for distinct a, b ∈ {l, r}
and v, v′ ∈ {l, r, i}∞. But since U is a partial syntax tree, we have u′b ∈ U implies that u′a ∈ U . This
contradicts the maximality of u′.

As a consequence, for all {C,C⊥} ∈ K, we have that u ∈ U iff u⊥ ∈ U ′ where U,U ′ are the
partial syntax trees of C and C⊥ respectively. For two such pairs of orthogonal addresses (u, u⊥),
define their corresponding orthogonal axioms to be (θ, θ′) such that θ, θ′ ∈ Θinf , αu ∈ θ, and
α⊥u⊥ ∈ θ′ where α = addr(C).

Definition 9.1.2. Given an axiom-free infinetR the cut-connection graphGR is defined as the
undirected graph (Θ, E) where E is the set of all pairs of orthogonal axioms.

We will prove cut-elimination on axiom-free simple infinets. Imagine we are given a (possibly
infinite) cut-reduction sequence. Our game plan is as follows. We will guess the normal form and then
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show that the sequence converges to this normal form for some notion of convergence. Essentially,
we define a big-step semantics [Plo81, Kah87] and show that the small-step reduction converges to
the final result obtained from the big-step.

Definition 9.1.3. Let R = (Γ,K,Θinf ) be an axiom-free µMLL∞ proof-structure. The nor-
mal form of R, denoted LRM, is defined as the axiom-free µMLL∞ proof-structure (Γ′,∅,Θ′inf )
where,

• Γ′ = {FU ∈ Θ | {F, F⊥} 6∈ K}

• For each connected component C of the cut-connected graph GR, θC ∈ Θ′inf where θC is
defined as follows.

θC =

(⋃
θ∈C

θ

)
∩

( ⋃
FU∈Γ′

addr(F ).U

)

Readers familiar with game semantics will notice the similarities between our definition of the
normal form and the composition of strategies [AJ92]. The union over cut-connected axioms is the
parallel composition, the deletion of sub-occurrences of cut occurrences is the hiding. This is not
surprising as indeed cuts are computationally compositions; however, any deeper connections need
further investigation.

Example 9.1.1. Let F = νx.xα,G = (µx.x⊗νx.x)β , andH = µx.xγ . LetR = (Γ,K,Θ) such that

Γ = {F iω , G(l+r)iω , G⊥
(l+r)iω

, Hiω , H⊥
iω}, K = {{G,G⊥}, {H,H⊥}}, and Θ = {θ1, θ2, θ3, θ4}

where θ1 = {αiω, βliω}, θ2 = {βriω, γiω}, θ3 = {γ⊥iω}, and θ4 = {β⊥liω, β⊥riω}. We have GR
is as follows.

θ2 θ3θ1 θ4

Finally, LRM = {{F iω},∅, {{αiω}}}.

Lemma 9.1.1. LetR be a progressing axiom-free infinet. Then, LRM is also a progressing axiom-
free infinet.

Proof. We will first show that LRM is indeed a µMLL∞ proof-structure. Fix a connected component
C of GR. We need to show, θC ∈ Θ′inf is non-empty. Suppose not. Then, for all θ ∈ C, θ does not
contain any word from a non-cut partial syntax tree i.e. θ ∩ (

⋃
FU∈Γ′ addr(F ).U) = ∅. Now recall

thatR is progressing, therefore for all θ ∈ Θinf , there existsw ∈ θ such thatw is progressing. Choose
arbitrary θ0 ∈ C. Following the discussion above, we infer there exists a progressing w ∈ θ such that
w comes from a cut i.e. w = αu for some {ϕα, ϕ⊥α⊥} ∈ K. Subsequently, there exists θ1 ∈ C such
that w⊥ ∈ θ1. Now, since w is progressing, w⊥ is not. Therefore, there exists w′ = w⊥ ∈ θ1 that
is progressing. If we cannot continue like this ad infinitum then we have contradiction otherwise we
have a sequence of axioms θ0, θ1, . . . such that (θi, θi+1) is an edge in GR. Let (wi, wi

⊥) be the pair
of orthogonal words that witnesses the orthogonality of (θi, θi+1). Now, consider a switching sw such
that for all i, wi andwi⊥ are in the same vertex in the switching component. There are two cases now.

Case 1. Every θi is distinct. Then, GswR contains an infinite path θ0v0θ1v1θ2 . . . where vi is the vertex
in the switching component containing wi and wi+1. This contradicts the fact thatR is simple.

Case 2. There exists i < j such that θi = θj . Then, GswR contains a cycle θiviθi+1vi+1 . . . θj where
vk is the vertex in the switching component containingwk andwk+1 for k ∈ {i, i+1, . . . , j−1}. This
contradicts the correctness ofR.

Now, we will show that LRM is correct. Fix a switching sw of LRM. Note that sw can be extended to
a switching sw′ ofR such that they coincide on switching suboccurrences of non-cut doors. Let GswLRM

and Gsw′R be the corresponding orthogonal graphs. Let v1θC1v1θC1v3 . . . vn be a path in GswLRM such that
for all i ∈ [n− 1], Ci is a connected component ofGR. For all i ∈ [n], there exists θi, θ′i ∈ Ci such that
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vi ∩ θi = vi ∩ θCi and vi+1 ∩ θ′i = vi+1 ∩ θCi . Since Gsw′R is connected, there is a simple path between
θi, θ

′
i for all i ∈ [n − 1]. This induces a path between v and v in Gsw′R . One can extract a simple path

from there, which contradicts the acyclicity of Gsw′R .

Let v1θ1v2θ2 . . . vn be a path in Gsw′R . For all i ∈ [n − 1], θi ∈ Ci for some connected component
Ci of GR. Therefore, there is a path v1θC1v1θC1v3 . . . vn be a path in GswLRM. Similarly as above, one
can extract a simple path from there. Therefore, connectedness of GswLRM follows from connectedness of

Gsw′R .

Finally, we are left to show that LRM is lock-free. We will first show that DepGrph(LRM) = (V,E) is
a subgraph ofDepGrph(R) = (V ′, E′). Clearly, V ⊆ V ′ and ifE(F,G) such thatF is a suboccurrence
of G, then E′(F,G). Assume E(A⊗B,COD) such that COD is t-connected to A⊗B. We need to
show that E′(A⊗B,COD). Wlog, assume A is connected to C and B to D.

We will induct on the length of switching sequences. Suppose A is connected to C by (γ, δ), a
switching sequence of length 1. If the axiom connecting γ and δ is present in R, we are done. Oth-
erwise, it is an axiom of the form θC for some connected component of GR. There exists θ, θ′ in C
containing γ and δ respectively (technically, they contain words whose suffixes are γ and δ respec-
tively). Since θ and θ′ are connected in GR and since by Proposition 8.6.1 there cannot be an infinite
path θ in any orthogonal graph ofR, we infer that there is a switching sequence connecting γ and δ in
R (consequently connectingA andC). The reasoning forB andD is symmetric. Therefore,E′(F,G).

For the induction case, assume the length of the switching sequence is n+ 1. Then there exists a
formula C ′ such that A is connected to C ′ by a switching sequence of length n, and C ′ is connected
to C by a switching sequence of length 1. Arguing as before, C ′ is connected to C in R and by
hypothesis, A is connected to C ′ in R. Therefore, A is connected to C in R. Following a symmetric
argument for B and D, we have E′(F,G).

Now, by Theorem 8.3.2, if LRM is not lock-free, then DepGrph(LRM) either has a ray or a vertex
with infinite degree. Since DepGrph(LRM) is a subgraph of DepGrph(R), this means R is not lock-
free. Hence done.

Definition 9.1.4. The cut elimination relation→µMLL∞ is the binary relation over µMLL∞ proof
structures generated by the following rules.

• (Γ ∪ {ϕOψUα , ψ
⊥ ⊗ ϕ⊥α⊥

U ′},K ∪ {{ϕOψα, ψ⊥ ⊗ ϕ⊥α⊥}},Θinf )→{ϕOψα,ψ⊥⊗ϕ⊥
α⊥
}

(Γ ∪ {ϕl
−1U
αl , ψr

−1U
αr , ϕ⊥α⊥r

r−1U ′

, ψ⊥α⊥l
l−1U ′},K ∪ {{ϕαl, ϕ⊥α⊥r}, {ψαr, ψ

⊥
α⊥l}},Θinf )

• (Γ ∪ {µx.ϕUα , νx.ϕ⊥α⊥
U ′},K ∪ {{µx.ϕα, νx.ϕ⊥α⊥}},Θinf )→µMLL∞

(Γ ∪ {ϕ[µx.ϕ/x]i
−1U
αi , ϕ⊥[νx.ϕ⊥/x]i

−1U ′

α⊥i },K ∪ {{ϕ[µx.ϕ/x]αi, ϕ
⊥[νx.ϕ⊥/x]α⊥i}},Θinf )

By simple inspection of the rules, we have following proposition.

Proposition 9.1.2. Let R,R′ be µMLL∞ proof-structures such that R →µMLL∞ R′. If R is
axiom-free, then so isR′. Furthermore, ifR is correct, so isR′.

Note that the elimination relation defines a rewriting system on axiom-freeµMLL∞ proof-structures.
Cut reduction sequences in such infinitary settings could potentially be infinite.

Definition 9.1.5. A sequence of infinets, {Ri}i∈ω, is called a reduction sequence if for every
i ∈ ω, Ri →µMLL∞ Ri+1 by the cut reduction rules in definition 9.1.4. A reduction sequence is
said to be fair if for every i ∈ ω and {C,C⊥} such thatRi →{C,C⊥} R′, there is some j ≥ i, such
that {C,C⊥} cannot be reduced inRj , i.e. there is no infinetR′′ such thatRj →{C,C⊥} R′′.

If a transfinite cut reduction sequence is convergent then it is strongly convergent. By the com-
pression lemma, this implies that there is a cut reduction sequence bounded by ω that converges to
the same limit. Fairness is a sufficient condition for convergence within ω. Note that, if there are
finitely many cuts then fairness can be relaxed to the following condition known as weak fairness.

Definition 9.1.6. A reduction sequence {Ri}i∈ω, is said to be weakly fair if for every cut {C,C⊥}
inRi, there is a j > i such thatRj →{C′,C′⊥} Rj+1 for some suboccurrence C ′ of C.
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It is easy to see that fairness implies weak fairness. We will show that the cut elimination relation
defines a metric rewriting system and we will show that a fair cut reduction sequence from an infinet
R strongly converges to LRM. In order to do that we need to construct a metric on axiom-free infinets.

In order to define the distance function d between two infinets R = (Γ,K,Θinf ) and R′ =
(Γ′,K′,Θ′inf ), we individually define distance functions (denoted by d1, d2, and d3 respectively) on
each of its components. The product metric is defined as theL1 norm. To define the distance functions
d1, d2, and d3 we need to define the symmetric difference of two sets. The symmetric difference of
two sets A and B, denoted by A4B, is defined as A4B = (A \ B) ∪ (B \ A). We state a few basic
properties of symmetric difference.

• A4B = B4A

• A4B = ∅ iff A = B.

• A4∅ = A = ∅4A.

Finally, we are ready to define the distance between sets of partial syntax trees, cuts, and axioms
respectively.

d1(Γ,Γ′) =

{
0 if Γ = Γ′;(
min({|α| | ϕUα ∈ Γ4Γ′})

)−1
otherwise.

d2(K,K′) =

{
0 if K = K′;(
min({|α| | {ϕα, ϕ⊥α⊥} ∈ K4K′})

)−1
otherwise.

d3(Θinf ,Θ
′
inf ) =

0 if Θinf = Θ′inf ;(
min

({
|α| | αu ∈

(⋃
θ∈Θinf

θ
)
4
(⋃

θ′∈Θ′inf
θ′
)}))−1

otherwise.

Remark 9.1.1. There is a bit of hand-waving in the definition of d3. It has not been mentioned

how one is supposed to determine α from any word w in
(⋃

θ∈Θinf
θ
)
4
(⋃

θ′∈Θ′inf
θ′
)

. Techni-

cally, we extend the alphabet with the letter # and ensure that words in this set are of the form
α#u i.e. every (possibly infinite) word has exactly one finite prefix ending at #. Equality on
such words are defined as α#u = α′#u′ if αu = α′u′.

Lemma 9.1.2. The set of all sets of partial syntax trees (respectively, of cuts, and axioms)
equipped with d1 (respectively d2 and d3) is a metric space.

Proof. Fix arbitrary sets of partial syntax trees Γ, Γ′, and Γ′′. First note that d1(Γ,Γ′) ≥ 0. Symmetry
follows from the symmetry of4.

Identity of indiscernibles. By definition, d(Γ,Γ) = 0. Also note d1(Γ,Γ′) = 0 is only possible if
Γ = Γ′ (in all other case it is a real number in (0, 1]).

Triangle inequality. We will in fact, prove a stronger statement. We will show that d1 is an ul-
trametric i.e. max(d1(Γ,Γ′), d1(Γ′,Γ′′)) ≥ d1(Γ,Γ′′). If Γ = Γ′, then max(d(Γ,Γ′), d(Γ′,Γ′′)) =
d(Γ′,Γ′′) = d(Γ,Γ′′). Hence done. Similarly, if Γ′ = Γ′′. If Γ = Γ′′, then the inequality is trivially
true. Therefore, assume Γ, Γ′ and Γ′′ are distinct. So, we need to show that

max

(
1

f(Γ,Γ′)
,

1

f(Γ′,Γ′′)

)
≥ 1

f(Γ,Γ′′)

Wlog assume max
(

1
f(Γ,Γ′) ,

1
f(Γ′,Γ′′)

)
= 1

f(Γ,Γ′) = 1
|α| . Therefore,

f(Γ,Γ′) ≤ f(Γ′,Γ′′) (9.1)

From the definition of d, we have that |α| ≤ |β| for all ϕUβ ∈ Γ4Γ′. From Equation (9.1), |α| ≤ |β|
for all ϕUβ ∈ Γ4Γ′. Combining the two, we have |α| ≤ |β| for all ϕUβ ∈ (Γ ∪ Γ′ ∪ Γ′′) \ (Γ ∩ Γ′ ∩ Γ′′).
Therefore, |α| ≤ f(Γ,Γ′′). Hence 1

|α| ≥
1

f(Γ,Γ′′) . The proofs for d2 and d3 are similar.

Finally, define d(R,R′) = d(Γ,Γ′) + d(K,K′) + d(Θinf ,Θ
′
inf ).
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Theorem 9.1.1. The set of all axiom-free µMLL∞ proof-structures equipped with d is a metric
space.

Proof. Since Lp norm defines a product metric for any p, this follows immediately from Lemma 9.1.2.

Theorem 9.1.2. Let S = {Ri}i∈ω be a fair reduction sequence such that R0 is valid. Then, S
strongly converges to LR0M.

Proof. Weak fairness (which is implied by fairness) already ensures that cuts of larger and larger
addresses are reduced. This ensures that a weak converging sequence is indeed strongly converging.
In order to prove weak convergence, we will prove the following two claims:

1. d(Ri+1, LR0M) ≤ d(Ri, LR0M);

2. for all ε > 0, there exists N such that d(RN , LR0M) < ε.

Note that by Lemma 9.1.1, LR0M is indeed a valid axiom-free infinet. In particular, this ensures that
the distance function can be applied meaningfully above. Combining these two claims, we have that
for all ε > 0, there exists N such that for all i ≥ N , d(Ri, LR0M) < ε proving that S weakly converges
to LR0M. Let Ri = (Γi,Ki,Θi) and LR0M = (Γ,∅,Θ). Since no cuts are removed in finitely many
steps, for all i, Γi 6= Γ, Ki 6= ∅, and Θi 6= Θ. Moreover, the only difference betweenRi and LR0M is in
the cut occurrences, hence d1(Γi,Γ) = d2(Ki,∅) = d3(Θi,Θ).

Proof of claim 1. It suffices to show that d2(Ki+1,∅) ≤ d2(Ki,∅). In other words, we need to
show that min({|α| | {ϕα, ϕ⊥α⊥} ∈ Ki}) ≤ min({|α| | {ϕα, ϕ⊥α⊥} ∈ Ki+1}) since A4∅ = A. Noting
that the cut reduction rules in Definition 9.1.4 increases the size of the addresses of cut formulas, this
inequality holds.

Proof of claim 2. Let n =
⌊

1
ε

⌋
− min({|α| | {ϕα, ϕ⊥α⊥} ∈ K0}). If n is negative then choose

N = 0. Otherwise, we will compute N by induction on n. The base case is n = 0. Note that there
are only finitely many distinct addresses of length |α|, therefore there are finitely many cuts whose
addresses are of size |α|. Let N ∈ ω be the least index such that RN has no cuts of |α|. We have
d(RN , LR0M) < ε. By fairness, N exists. For the induction case assume n = m + 1. By a similar
reasoning as above, we have that there existsN such that

⌊
1
ε

⌋
−min({|α| | {ϕα, ϕ⊥α⊥} ∈ KN}) = m.

By IH, there exists, N ′ such that d(RN ′ , LR0M) < ε. Hence done.

Our reduction sequences are peculiar. We neither allow finite reduction sequences nor transfinite
ones. Therefore, in particular, standard notions of confluence cannot be imported. However, we note
that, even without the fairness condition, we can show that reduction sequences are convergent (one
needs to generalise the notion of norm in order to do this). Consequently, we have the following notion
of confluence.

Corollary 9.1.2.1. Let S and S ′ be two reduction sequences starting from a valid axiom-free
infinet R such that R and S ′ converges to R1 and R2 respectively. Then, all fair reduction
sequences starting fromR1 andR2 converge to LRM.

Infinitary η-expansion
The notion of axiom expansion in proofs can be lifted to proof-nets in MLL by way of the following
graph rewrite rules.

F ⊗G F⊥OG⊥
ax −→η

F F⊥

G G⊥

ax

ax

⊗ O

In the rest of this section, we will show that the η-expansion of MLL nets can be lifted to some
special types of infinets. This will serve two purposes: firstly, it will exhibit the utility of the metric
we define on infinets outside of the proof of Theorem 9.1.2, secondly, it will help us show that the
axiom-free restriction is not ad-hoc as it may appear.
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Definition 9.1.7. An infinet (Γ,K,Θf ,Θinf ) is said to be non-stationary if for all θ ∈ Θinf ,
θ ⊂ {l, r, i}ω. An infinet which is not non-stationary is called a halting infinet.

The reason behind the nomenclature is that in a non-stationary infinet, no occurrence is station-
ary in an infinite axiom. We will define infinitary η-expansion for non-stationary infinets. Since we
work with the algebraic presentation of proof-nets, we will first provide the η-expansion rules in this
presentation.

Definition 9.1.8. The axiom expansion relation −→η is a binary relation over infinets gener-
ated by the following rules.

1. (Γ ∪ {AU , BV },K,Θ ∪ {{αu, βv}}) −→η (Γ ∪ {AU ′ , BV ′K,Θ ∪ {{αul, βvr}, {αur, βvl}})
where u ∈ U , v ∈ V , (A, u) = F ⊗ G, (B, u′) = G⊥OH⊥, U ′ = (U \ {u}) ∪ {ul, ur} and
V ′ = (V \ {v}) ∪ {vl, vr}.

2. (Γ ∪ {AU , BV },K,Θ ∪ {{αu, βv}}) −→η (Γ ∪ {AU ′ , BV ′K,Θ ∪ {{αui, βvi}})
where u ∈ U , v ∈ V , (A, u) = µx.F , (B, u′) = νx.F⊥, U ′ = (U \ {u}) ∪ {ui} and V ′ =
(V \ {v}) ∪ {vi}.

If an infinet is halting, η-expansion can be crucially non-confluent. Consider an infinite axiom
which has two stationary formulas F ⊗ G and G⊥OH⊥. Then, there are several choices for the
next step of η-expansion. If we are not careful, we can break the DR-correctness (it is reasonable
to preserve correctness by η-expansion) as in Figures 9.1a and 9.1b. If we are more careful, we
do have infinets, but they are crucially different i.e. they cannot be confluent under η-expansion as
in Figures 9.1c and 9.1d.

An infinitary η-expansion sequence S = {Ri}i∈ω is a sequence of infinets such that for all
i ∈ ω, Ri −→η Ri+1. A fair η-expansion sequence is the one for every finite axiom, an η-
expansion rule is applied to it after a finite number of steps (analogously, in a fair cut reduction, for
every cut, a cut-reduction rule is applied on it after finite time). As before, we will guess the limit of an
infinitary η-expansion sequence.

Definition 9.1.9. Let R = (Γ,K,Θf ,Θinf ) be a non-stationary infinet. Let {αu, βu′} ∈ Θf

such that d(F, u)e = ϕ and d(G, u′)e = ϕ⊥ for some FU , GU
′ ∈ Γ. Let V, V ⊥ be the syntax

tree of ϕ and ϕ⊥ respectively. Let Θ{αu,βu′} = {{αuv, βu′v⊥} | v ∈ U}, U{αu,βu′} = αuV and
U ′{αu,βu′} = βu′V ⊥. Define η∞(R) as the infinet (Γ′,K,Θ′f ,Θ

′
inf ) where Γ′ = {F η∞(U) | FU ∈ Γ},

Θ′f ∪Θ′inf = Θinf ∪
⋃
θ∈Θf

Θθ, and η∞(U) = (U \ (
⋃
θ∈Θf

θ)) ∪
⋃
θ∈Θf

Uθ.

Lemma 9.1.3. For all infinetsR, η∞(R) is also an infinet.

Proof Sketch. For any FU , F η
∞(U) is indeed a partial syntax tree such that U ⊆ η∞(U). Note

that Θ′f ∪ Θ′inf is indeed a partition of the leaves of Γ. So basically we need to show that η∞(R) is
DR-correct and lock-free.

The basic idea is that every finite axiom θ in R has been replaced by a proof-structure (say, Rθ)
that has exactly two doors: the occurrences in θ. Moreover, Rθ is not arbitrary, it is maximal. Now
that we have shownRθ is an infinet for all θ, the result follows from the fact thatR is an infinet.

Now, we need to show fair η-expansion sequences starting from R strongly converge to η∞(R).
We will slightly modify the metric from before:

d′1(Γ,Γ′) =

0 if Γ = Γ′;(
min({|αu| | u ∈ U4U ′, ϕUα ∈ Γ, ϕ′

U ′

α ∈ Γ′})
)−1

otherwise.

d′3(Θinf ,Θ
′
inf ) =

0 if Θinf = Θ′inf ;(
min

({
|αu| | αu ∈

(⋃
θ∈Θinf

θ
)
4
(⋃

θ′∈Θ′inf
θ′
)}))−1

otherwise.

Note that these distances are well-defined if the underlying set of doors ofR andR′ are identical.
Verifying that they are indeed a metric is similar to the proof of Lemma 9.1.2 and we shall not recast it
here. By abuse of notation, the metric on infinets,R,R′ defined as d′1(Γ,Γ′) + d2(K,K′) + d′3(Θ,Θ′)
is still referred to as d(R,R′).
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F G G⊥ F⊥
...

ax∞inf

F ⊗G
⊗

F⊥OG⊥
O

νx.x

ν

νx.x

ν
c c

c

(a)

F

G G⊥
F⊥

...

ax

ax

ax∞inf

F ⊗G
⊗

F⊥OG⊥
O νx.x

ν

νx.x

ν
c c

c

(b)

F

G G⊥
F⊥

...

ax∞inf
ax

F ⊗G
⊗

F⊥OG⊥
O νx.x

ν

νx.x

ν
c c

c

(c)

F

G G⊥

F⊥

...

ax∞inf

ax

F ⊗G
⊗

F⊥OG⊥
O

νx.x

ν

νx.x

ν

c c c

(d)

Figure 9.1: Different choices for η-expanding an infinite axiom atop F ⊗G, G⊥ ⊗H⊥ and an infinite
thread of νx.x unfolding.

Theorem 9.1.3. Let S = {Ri}i∈ω be a fair η-expansion sequence. Then, S strongly converges
to Lη∞(R0)M.

Proof. As in Theorem 9.1.2, fairness ensures that finite axioms on larger and larger addresses are
reduced. This ensures that a weakly converging sequence is indeed strongly converging. In order to
prove weak convergence, we will prove the following two claims:

1. d(Ri+1, η
∞(R0)) ≤ d(Ri, η∞(R0));

2. for all ε > 0, there exists N such that d(RN , η∞(R0)) < ε.

By Lemma 9.1.3, η∞(R0) is an infinet which ensures that the distance function can be applied
meaningfully above. As in Theorem 9.1.2, combining these two claims, we have that S weakly con-
verges to η∞(R0). Let Ri = (Γi,Ki,Θi) and η∞(R0) = (Γ,∅,Θ). We observe that η-expansion
does not touch cuts, hence for all i, j, Ki = Kj = K. So, for all i, d2(Ki,K) = 0. Since, Ri and
η∞(R0) only differ in axioms, we have d′1(Γi,Γ) = d′3(Θi,Θ). Furthermore, since no axioms are fully
expanded in finitely many steps, Γi 6= Γ and Θi 6= Θ.

Proof of claim 1. This follows from noting the η-expansion rules increase the size of the finite words
in the partial syntax trees of the same occurrence.

Proof of claim 2. Let n =
⌊

1
ε

⌋
− min

({
|αu| | αu ∈

(⋃
θ∈Θinf

θ
)
4
(⋃

θ′∈Θ′inf
θ′
)})

. If n is

negative then choose N = 0. Otherwise, we will compute N by induction on n. The base case is
n = 0. Noting that there are only finitely many distinct addresses of length |αu|, therefore there are
finitely many finite axioms whose addresses are of size |αu|. Let N ∈ ω be the least index such that
RN has no finite axioms of |αu|. We have d(RN , η∞(R0)) < ε. By fairness, N exists. The induction
case goes similarly.

We have thus established a notion of infinitary η-expansion on non-stationary infinets. Infinitary
η-expansions have been studied in the context of Böhm trees [Nak75]. But how does this connect
to axiom-free infinets? Imagine in LK, we fix a particular valuation of atoms: every positive atom is
substituted by > and every negative atom is substituted by ⊥. Every proof of a formula is also a proof
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under the substitution map. One can carry forward this intuition to linear logic and µMALL∞. Now
recall from Chapter 5 that Jµx.xK = 0 and Jνx.xK = >. Therefore, if every positive atom is substituted
by νx.x and every negative atom is substituted by µx.x, then the geometry of the proofs (and the
proof-nets) does not change. Therefore, there is a trivial geometry-preserving map from infinets with
atoms to infinets without axioms. Finally, note that the infinitary η-expansion of atom-free infinets is
axiom-free.
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9.2 µMALL∞ cut-elimination revisited
While the multicut brings uniformity in the treatment of cut-elimination in sequent calculus, it is not
well-suited for our purpose of developing a canonical and parallel treatment of cuts in non-wellfounded
proof systems. It is indeed better suited to use the usual cut-rule to draw a comparison between cut-
reductions in sequent systems and in proof-nets, as we will do in the next section of this chapter. To
serve this purpose, we develop here an alternative approach to cut-elimination for non-wellfounded
proof which avoids the use of the multicut but relies on the standard cut instead and we will prove a
new cut-elimination result in this case. Note that our proof is not independent of Theorem 4.5.2.

In order to formally work with multicuts, we need to switch to occurrences from formulas. We
denote the non-wellfounded system with multicuts over occurrences by µMALL∞m . Formally the
multicut rule comes with a function ι which shows how the occurrences of the conclusion are dis-
tributed over the premises (modulo renaming), and a relation |= specifying which occurrences are
cut-connected. We recall the formal definition from [BDS16, Dou17, BDKS22].

Definition 9.2.1. Given sequents Γ,Γ1, . . . ,Γn where n > 0 and such that Γi,Γj are disjoint
for all i 6= j, a multicut of conclusion ` Γ and premisses (Γi)i∈[1;n] is given by an injection
ι : Γ 7→ ∪ni=1Γi and a binary relation |= ⊆ (∪ni=1Γi)

2 such that:

• For all F ∈ Γ, dι(F )e = dF e.

• For all F,G ∈ ∪ni=1Γi, F |= G implies dF e = dG⊥e.

• If F ∈ Γi and G ∈ Γj such that F |= G then i 6= j.

• dom( |= ) = (∪ni=1Γi) \ im(ι).

• Given two sequents Γi and Γj , we say that they are |= -connected on a pair of formula
occurrences (F,G) when F ∈ Γi and G ∈ Γj such that F |= G. We say that they are |= -
connected, and we write Γi |= Γj , when they are |= -connected on some (F,G). The relation

|= on sequents must satisfy two conditions:

– two sequents must be |= -connected on at most one pair of occurrences F,G;

– the graph of the relation |= must be connected and acyclic.

We write this multicut rule as:

` Γ1 . . . ` Γn
(mcut(ι, |= ))` Γ

If clear from the context, we omit to specify ι and |= in the rule name.

In the rest of this section, we will detail the cut-elimination procedure for µMALL∞ with the stan-
dard cut rule. In other words, we will avoid the use of the multicut rule. We shall simply retain however
a degenerate case of the multi-cut viz. the unary case, used to lazily perform the cut-axiom reduction
and relocate addresses. Indeed, as we work with explicit occurrences, the cut/id case is as follows:

(id)
` F,G⊥

π

` G,Γ
(cut)

` F,Γ

with dF e = dGe, which cannot simply be reduced to
π

` F,Γ as the occurrences do not match

(in fact, the addresses of F and G are disjoint). Instead of substituting occurrences in π (which is
a non-wellfounded object), we treat this substitution lazily, in the form of an explicit substitution

(cf. [ACCL91]) adding the following unary inference rule: ` Γ′
(Loc(ι))

` Γ
where ι is a one-to-one map

from Γ to Γ′ such that for all F ∈ Γ, dι(F )e = dF e. In the rest of this section, when writing µMALL∞,
we mean µMALL∞ extended with the Loc(ι) rule.

Definition 9.2.2. The cut elimination relation−→c is the binary relation over proofs generated
by extending the key rules of MALL (cf. Figure 3.2, with the exception of the cut-axiom rule)
with fixed point reductions and extending the commutation rules of MALL (cf. Figure 3.3) with
commutation rules for fixed points and Loc (cf. Figure 9.2) and the following cut-axiom rule:
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(id)
` A,B⊥

π

` B,Γ
(cut)

` A,Γ
→

π

` B,Γ
(Loc(ι))

` A,Γ

where ι(A) = B, ι(H) = H for H ∈ Γ.

We use the following notations:

• −→m for the multicut reduction rules of [BDS16];

• −→merge for the mcut merge reduction (defined in Section 4.5).

• −→comm for the cut commutation reduction.

Definition 9.2.3. Let π be a µMALL∞m proof. Define the intermediary translation of π, denoted
[π], as the proof where each unary mcut has been replaced by an appropriate Loc and each bi-
nary mcut has been replaced by a cut and (possibly) a Loc rule. Formally, in π every occurrence
of

• ` Γ′
(mcut(ι,∅))

` Γ
is replaced by ` Γ′

(Loc(ι))
` Γ

•
` Γ1 ` Γ2

(mcut(id, |= ))` Γ
is replaced by

` Γ1 ` Γ2
(cut)

` Γ

•
` Γ1 ` Γ2

(mcut(ι, |= ))` Γ
is replaced by

` Γ1 ` Γ2
(cut)

` Γ′
(Loc(ι))

` Γ

where Γ′ = ι(Γ)

Finally, define CSeq(π) = {[π′] | ∃π′.∀π′′.π′′ 6−→merge π
′ −→∗merge π}.

For the rest of this section, fix a µMALL∞m proof πm. In general, [πm] is a proof in the hybrid system
with both multicuts and Loc rules. However, elements of CSeq(πm) are all proofs in µMALL∞ (i.e.
without any multicuts).

Lemma 9.2.1. If π ∈ CSeq(πm), then π ∈ µMALL∞. Furthermore, every sequent in πm also
occurs in π.

Proof. By definition, π = [π′] such that for all proofs π′′ ∈ µMALL∞m , π′′ 6−→merge π
′ −→∗merge πm.

In other words, there does not exist any π′′ such that π′′ −→merge π
′. Therefore, π′ only has unary

or binary (mcut) inferences. Since [•] transforms unary or binary (mcut) inferences into (cut) and
(Loc) inferences, π ∈ µMALL∞. The subsequent claim is trivial. Note that for any two proofs π0, π1

such that π0 −→merge π1, then every sequent in π1 occurs in π0 (the conserve doesn’t necessarily
hold). Since [•] does not change sequents (rather it simply rearranges sequents with possibly different
inferences), we conclude.

Lemma 9.2.2. If πm contains an instance of the mcut rule with premisses ` Γ1 and ` Γ2 such
that Γ1 |= Γ2, then there exists some π ∈ CSeq(πm) containing an instance of the (cut) rule with
Γ1 and Γ2 as premisses.
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π

` Γ′, F ′[ηx.F ′/x]
(η)

` Γ′, ηx.F ′
(Loc(ι))

` Γ, ηx.F

−→
r

π

` Γ′, F ′[ηx.F ′/x]
(Loc(κ))

` Γ, F [ηx.F/x]
(η)

` Γ, ηx.F

with ι such that ι(ηx.F ) = ηx.F ′ and ι(Γ) = Γ′ and κ =

{
G 7→ ι(G) if G ∈ Γ

F [ηx.F/x] 7→ F ′[ηx.F ′/x]

π1

` Γ′, F ′
π2

` ∆′, G′
(⊗)

` Γ′,∆′, F ′ ⊗G′
(Loc(ι))

` Γ,∆, F ⊗G

−→
r

π1

` Γ′, F ′
(Loc(κ))

` Γ, F

π2

` ∆′, G′
(Loc(λ))

` ∆, G
(⊗)

` Γ,∆, F ⊗G
with κ =

{
H 7→ ι(H) if H ∈ Γ
F 7→ F ′

and λ =

{
H 7→ ι(H) if H ∈ ∆
G 7→ G′

π

` Γ′, F ′, G′
(O)

` Γ′, F ′OG′
(Loc(ι))

` Γ, FOG

−→
r

π

` Γ′, F ′, G′
(Loc(κ))

` Γ, F,G
(O)

` Γ, FOG

with ι =

 H 7→ ι(H) if H ∈ Γ
F 7→ F ′

G 7→ G′

π1

` Γ′, C

π2

` ∆′, C⊥
(cut)

` Γ′,∆′
(Loc(ι))

` Γ,∆

−→
r

π1

` Γ′, C
(Loc(κ))

` Γ, C

π2

` ∆′, C⊥
(Loc(λ))

` ∆, C⊥
(cut)

` Γ,∆

with κ =

{
H 7→ ι(H) if H ∈ Γ
C 7→ C

and λ =

{
H 7→ ι(H) if H ∈ ∆
C⊥ 7→ C⊥

π

` Γ′′
(Loc(κ))

` Γ′
(Loc(ι))

` Γ

−→
r

π

` Γ′′
(Loc(κ ◦ ι))

` Γ

(id)
` F ′, G′

(Loc(ι))
` F,G

−→
r

(id)
` F ′, G′

Figure 9.2: Commutation of logical rules with relocations where η ∈ {µ, ν}. (The case for (N) and
(⊕), (⊥) is similar to that of (⊗) and (O) respectively. The case for (⊥) and (1) is similar to that of
(id).) Here r is the formula which is principal after the rule application.

Proof. Consider some π0 ∈ CSeq(πm) such that the number of (cut) inferences (say nc) on a path
from Γ1 to Γ2 is minimal. If nc = 1, we are done. Otherwise, we claim that there exists π1 such that
π0 −→comm π1, π1 ∈ CSeq(πm), and the distance between Γ1 and Γ2 less than nc. This immediately
contradicts the minimality of nc. Therefore the only thing left to show is that such a π1 exists.

Since nc > 1, we observe that in π0, Γ1 and Γ2 are introduced by different cuts (since they are
cut-connected, they are necessarily introduced by cuts). Wlog, assume that Γ2 is introduced by a
cut inference c that is higher than the cut inference c′ introducing Γ1. Since there is a multicut with
premisses ` Γ1 and ` Γ2, c′ can be permuted down until it is exactly above a cut rule c′′ (possibly c).
Consider π1 where c′ permutes below c′′. Note that π1 satisfies all requisite conditions.

Lemma 9.2.3. Suppose πm has finitely many mcuts. Let π, π′ ∈ CSeq(πm). Then, π −→∗comm π′.

Proof. Since there are finitely many mcuts, wlog, there is exactly one mcut given by (ι, |= ). Let
{` Γi}i∈[n] be its premisses. Then, by Lemma 9.2.1, ` Γ occurs in π and π′. Since there can be no
merge reductions above them, the subtree rooted under ` Γi is identical in π, π′, and πm for all i ∈ [n].
We will induct on the size of the of graph of |= . Let Γ1,Γ2,Γ

′
1 and Γ′2 be such that the lowest cut in π
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(respectively, π′) has premisses ` Γ1 and ` Γ2 (respectively ` Γ′1 and ` Γ′2). If {Γ1,Γ2} = {Γ′1,Γ′2},
we consider the subproofs rooted at Γ1 and Γ2 and apply the induction hypothesis. Otherwise, wlog,
assume Γ1 6= Γ′1. Then, ` Γ1 occurs above ` Γ′1 in π′. We permute the cut with premisse ` Γ1 below
the lowermost cut (by way of a finite sequence of −→comm rules), so that we are in the same situation
as before.

Lemma 9.2.4. Let πm, π′m such that πm −→m π′m. Then, there exists π, π′ ∈ µMALL∞ such that
the following holds.

1. Either π′ = π or π −→c π
′;

2. π′ ∈ CSeq(π′m);

3. d(πm, π
′
m) ≥ d(π, π′).

Proof. If πm −→merge π
′
m then, choose any π ∈ CSeq(πm) and π′ = π. Otherwise, there is a formula

occurrence F such that F is principal after the rule application that takes πm to π′m. Then, there exists
Γ,Γ′ that is cut-connected on (F, F⊥). By Lemma 9.2.2, there exists π ∈ CSeq(πm) which has a cut
c on Γ and Γ′. By simple case analysis on each multicut reduction rule (other than merge, observe that
one can apply the corresponding rule−→c on c. Let π′ be the result of this rule application. Checking
π′ ∈ CSeq(π′m) and d(πm, π

′
m) ≥ d(π, π′) is immediate.

Lemma 9.2.5. Let {πim}i∈ω be a strongly convergent sequence of µMALL∞m proofs such that π0
m ∈

µMALL∞, πim −→m πi+1
m , and πm as limit. Then, there exists a strongly convergent sequence

{πi}i∈ω of µMALL∞ proofs such that

1. for all i ∈ ω, πi −→c π
i+1,

2. π ∈ CSeq(πm) where π is its limit, and

3. there exists a subsequence {πσ(i)}i∈ω such that πσ(0) = π0 = π0
m and for all i ∈ ω,

πσ(i) ∈ CSeq(πi).

Proof. We will construct {πσ(i)}i∈ω by induction on i. One can duly obtain {πi}i∈ω from our con-
struction. If i = 0, then let π0 = πσ(0) = π0

m. Suppose i > 0. Since πi−1
m −→m πim, by Lemma 9.2.4,

there exists π, π′ such that π −→c π
′, π ∈ CSeq(πi−1

m ), π′ ∈ CSeq(πim), d(πi−1
m , πim) ≥ d(π, π′)

and either π = π′ or π −→c π
′. By induction hypothesis, we have πσ(i−1) ∈ CSeq(πi−1

m ). Now,
by Lemma 9.2.3, πσ(i−1) −→comm π. Choose πσ(i) = π′. Note that, the d(πi−1

m , πim) ≥ d(π, π′)
condition implies that {πi}i∈ω inherits the strong convergence of {πim}i∈ω.

The only thing left to show is that the limits are the same. Note that πσ(i) ∈ CSeq(πim) has the
same cuts as πim up to several merge rules. Therefore, if a multicut is removed in in the limit πm, then
it goes higher and higher in {πim}i∈ω. Consequently, the cuts corresponding to this multicut are also
removed in π, the limit of {πi}i∈ω. Similarly, if a multicut is not removed in πm, the cuts corresponding
to it are not removed in π. Therefore, π ∈ CSeq(πm).

Theorem 9.2.1. If π0 is a µMALL∞ proof, then, there is a sequence of µMALL∞ proofs {πi}i∈ω
with πi −→c π

i+1 strongly converging to a cut-free µMALL∞ proof π′.

Proof. Let {πim}i∈ω be a µMALL∞m fair reduction sequence such that π0
m = π0. By Theorem 4.5.2,

it is a strongly convergent sequence with a cut-free limit π′. By Lemma 9.2.5, there exists a strongly
convergent sequence {πi}i∈ω with limit π′′ ∈ CSeq(π′). Since, π′ is cut-free, π′′ = π′. Hence
done.

Corollary 9.2.1.1. Let S,S ′ be fair reduction sequences from a proof π0. Then, they strongly
converge to the same limit.

This same investigation can be done for cut elimination with respect to the bouncing thread cut-
elimination (cf. Theorem 4.5.3). The details are outside the scope of this thesis. We end this section
by showing that Figure 4.1b indeed has a productive cut-elimination using the−→c reduction rules.
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π −→c

(id)
` (νx.x)αii, (µy.y)βi

(µ)
` (νx.x)αii, (µy.y)β

(ν2)
` (νx.x)α, (µy.y)β

(id)
` (νx.x)β⊥ii, (µy.y)γi

(µ)
` (νx.x)β⊥ii, (µy.y)γ

(ν2)
` (νx.x)β⊥ , (µy.y)γ

(cut)
` (νx.x)α, (µy.y)γ

π

` (νy.y)γ⊥
(cut)

` (νx.x)α

−→c

(id)
` (νx.x)αii, (µy.y)βi

(µ)
` (νx.x)αii, (µy.y)β

(id)
` (νx.x)β⊥ii, (µy.y)γi

(µ)
` (νx.x)β⊥ii, (µy.y)γ

(ν2)
` (νx.x)β⊥ , (µy.y)γ

(cut)
` (νx.x)αii, (µy.y)γ

(ν)
` (νx.x)αi, (µy.y)γ

π

` (νy.y)γ⊥
(cut)

` (νx.x)αi
(ν)

` (νx.x)α

−→c

(id)
` (νx.x)β⊥ii, (µy.y)γi

(µ)
` (νx.x)β⊥ii, (µy.y)γ

(Loc)
` (νx.x)αiii, (µy.y)γ

(ν2)
` (νx.x)αi, (µy.y)γ

π

` (νy.y)γ⊥
(cut)

` (νy.y)αi
(ν)

` (νx.x)α

Figure 9.3: A productive sequence of cut-elimination
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ϕ
...S

Γ ϕ⊥

cut

ax∞inf

νx.x

ν

νx.x

ν
c

c

(a) A template infinet

...
(ν)

` Γ, νx.x
(ν)

` Γ, νx.x
(ν)

` Γ, νx.x

(b) The normal proof π

Γ
...

ax∞inf

νx.x

ν

νx.x

ν

c

c

(c) Desequentialisation of π

Figure 9.5: Discovering the subnet erasure rule

π =

π′

5
` Γ, A⊥

...
(ν)

` νX.X,A
(ν)

` νX.X,A
(cut)

` Γ, νX.X →µMALL∞

π′

5
` Γ, A⊥

...
(ν)

` νX.X,A
(cut)

` Γ, νX.X
(ν)

` Γ, νX.X →µMALL∞

π′

5
` Γ, A⊥

...
(cut)

` Γ, νX.X
(ν)

` Γ, νX.X
(ν)

` Γ, νX.X →µMALL∞ . . .

Figure 9.6: A productive infinite reduction

9.3 Cut-elimination in infinets with axioms
In Section 9.1 cuts were eliminated only at the limit. In this section, we have finite axioms which
interact with cuts by annihilating one another. In Section 7.2, we saw that, in order to have such
cut/ax reduction rules in proof-nets with explicit handling of addresses, we need relocation cells.
Consequently, infinets in this section have the loc component.

9.3.1 The subnet-erasure rule
The nets in Section 9.1 not only have no finite axioms, but they are also axiom-free. In particular,
this means that every word in an infinite axiom is infinite. This is not necessarily the case in general.
Consider the infinet R = ({F {iω}, A{ε}, A⊥{ε}, G{iω}}, {{A,A⊥}}, {{αiω, β}, {γiω, β⊥}}) where
F = νx.xα, G = νx.xγ , and A = ϕβ for any arbitrary formula ϕ. Unless we devise new reduction
rules, we have no cut reduction rule that can be applied on this net. Therefore, we need to define new
reduction rules for infinite axioms.

Note that a straightforward adaptation of the rule for finite axioms makes no sense. Imagine we
reduce the cut construing the infinite axiom on the right as a finite axiom. It would result in reducing
R to the object in Figure 9.5c which is not an infinet. The type of the infinite path on the right changes
to A⊥ at the limit viz. the relocation cell changes not just the addresses but the formula itself. Now,
imagine we reduce the cut and and the infinite axiom on the left. Similarly, it would reduce to an
untyped object as above.

To justify a better rule, consider the template of an infinet where such a rule is potentially applica-
ble in Figure 9.5a. Note that S is an arbitrary infinet with doors Γ and ϕ⊥. To get an intuition for the
rule, we go back to the sequent calculus. Let π be a sequentialisation of the infinet above such that
dsq(π′) = S. The infinite axiom is represented in π by the infinite branch and the only way to make it
interact with π′ (corresponding to S interacting with the infinite axiom in the net) using the rules in
Definition 9.2.2 is by commuting the cut with the ν-rule. Iterating such permutations yields infinite
reduction sequence such that every proof in this sequence desequentialises toR. The sequence con-
verges to the cut-free proof in Figure 9.5b where π′ has been deleted and Γ is supported by the infinite
branch. Desequentialised, this yields the proof-structure in Figure 9.5c. So, an infinitary axiom and
a cut interact by removing the whole subinfinet “above” the cut. Consequently, we have the following
rule where S is a subnet with ϕ⊥ as door.
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a b a⊥ b⊥
ax ax

a⊗ b
⊗

a⊥Ob⊥
O

c

(a) Let ϕ⊥ = a⊥Ob⊥

a b a⊥ b⊥
ax ax

aOb
O

a⊥ ⊗ b⊥
⊗

c

(b) Let ϕ⊥ = a⊥ ⊗ b⊥

Figure 9.7: Instances of S from Example 9.3.1

ϕ ∆ →µMLL∞ Γ ∆S

Γ ϕ⊥

cut

ax∞inf ax∞inf

Although this operation will be represented by a single rule it does not correspond to one step of
cut-elimination in the sequent calculus but to an infinite sequence of permutations.

Proposition 9.3.1. The subnet-erasure rule preserves correctness.

Proof sketch. We use the notation in the graph rewriting rule above and denote the infinet on the left
to beR and proof-structure on the right toR′. We first note that it is impossible for the rule to break
connectedness. Potentially there could be a cycle involving the infinite axiom. The wires in and out of
the infinite axiom in the cycle cannot be of ∆ or we could reproduce the same cycle in R. Therefore,
they are from Γ. Now since R is DR-correct, these wires are not connected in S which breaks the
connectedness of S. Finally observe that the set of tensors, cuts, and pars in R is a subset of the set
of tensors, cuts, and pars in R and same dependencies. Therefore, if DepGrph(R′) has a ray then so
does DepGrph(R). Hence done.

Example 9.3.1. We provide two concrete examples of S. In the first one, we observe that S must
be a subnet. In the second example, we observe that any subnet works.

1. Consider the net in Figure 9.7a. Note that the smallest subnet with a⊥Ob⊥ as door i.e.
K(a⊥Ob⊥) has the door a⊗ b. If we consider the smaller substructure with doors a and b,
then a, b both get grafted into the infinite axiom, thereby breaking DR-correctness.

2. Let ϕ = a⊗ b and S be the net in Figure 9.7b. Note that there are two distinct subnets with
a⊥⊗b⊥ as door viz. K(a⊥⊗b⊥) and Q(a⊥⊗b⊥). We can choose to delete either one of them
and obtain a correct net. Both of them correspond to two different reduction sequences in
sequent proofs (the reduction sequence corresponding to Q(a⊥⊗b⊥) commutes down the
par-rule at some point and the reduction sequence corresponding to K(a⊥⊗b⊥) doesn’t).
However, this is non-confluent as we obtain different cut-free normal forms.

Remark 9.3.1. In Example 9.3.1, when we considered Figure 9.7b, the reduction sequence cor-
responding to the erasure of Q(a⊥ ⊗ b⊥) infinitely commutes down the par-rule. Therefore, it
is not a fair reduction sequence. Consequently, we consider a smaller set of reduction rules:
instead of deleting any subnet, we specifically delete kingdoms. This not only helps us restore
confluence but it also restores fairness.

Definition 9.3.1. The cut elimination relation→µMLL∞ is the binary relation over proof struc-
tures generated by the rules in Definition 7.2.12 and the following rule:

(Γ ∪ {F⊥U , F {ε}},K ∪ {{F, F⊥}},Θ ∪ {θ ∪ {α}})→{F,F⊥} (Γ′,K′,Θ′)
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where addr(F ) = α. Let K(F⊥) = (Γ′′,K′′,Θ′′). Then, K′ = K \ K′′. For all FU , if there
exists u ∈ U such that (F, u) is a door in Γ′′ then FU

′ ∈ Γ′ where U ′ is pruned at u. Finally,
Θ′ = (Θ \Θ′′) ∪ {θ′′} where θ′′ = θ ∪ {addr(G) | G ∈ Γ′′}.

Proposition 9.3.2. Cut-reduction on infinets is confluent.

Proof sketch. Let R be an infinet that reduces to R1 and R2 by the rule r1 and r2 respectively. If
r1 = r2, then R1 = R2 and we are done. Assume that r1 6= r2. If r1, r2 are not kingdom erasure
rules, then there cannot be any critical pairs. Therefore, one can apply r2 onR1 and r1 onR2 to obtain
an infinetR′.

Now without loss of generality, assume that r1 is a kingdom erasure that deletes the K(F ) in R.
If the cut on which r2 acts not in K(F ) then this is not a critical pair and one can apply r2 onR1 and
r1 on R2 as before. Otherwise, note that r2 cannot be applied on R1 but r1 can be applied on R2 to
giveR1 as follows.

R

R1 R2

r1 r2

r1

In any rewriting system, the diamond property implies confluence. Hence done.

Finally, reduction sequences and fair reduction sequences are defined in the same way as Defini-
tion 9.1.5.

9.3.2 Limits of reduction sequences
It is difficult to make a big-step guess of the normal form in this case. There is a good reason for that.
Axiom-free nets are computationally less expressive than general µMLL∞ nets. Construing cuts as
computation via the CH correspondence, guessing the normal form essentially amounts to guessing
the value of some function at some input without going through the function’s small-step semantics.
The more complicated a function is, the harder it is to guess the normal form.

Here is what we can salvage from the technique in Section 9.1: let the distance between two
infinetsR = (Γ,K,Θ) andR′ = (Γ′,K′,Θ′) be defined as d(R,R′) = d1(Γ,Γ′) + d2(K,K′) where d2

is the distance between sets of cuts as defined in Section 9.1. Note that this distance d is reflexive and
transitive but does not satisfy the identity of indiscernibles. So, one can prove that w.r.t. d, any fair
reduction sequence {Ri}i∈ω converges to a net with the same non-cut doors as any termRi and no
cuts. However, there can be several such nets and this is as far as we can go.

Instead, we define a metric on the set of infinets by appealing the heights of the cuts in a sequen-
tialisation: basically, we use a sequentialisation to give a tree-like ordering to a proof-structure, and
hence, a notion of distance compatible with the reduction. This method works for progressing infinets,
as we have Theorem 9.2.1 for the sequent calculus.

Thus, infinitary cut-elimination is carried out in correct and progressing µMLL∞ proof-structures:
correctness allows us to use the tree topology of the sequentialisations; while the progress condition
ensures productivity. However, we do not have a straightforward one-one correspondence between
reduction sequences in proofs and proof-nets because proof-nets quotient several commutation steps.
In fact, the kingdom-erasure rule corresponds to an infinite reduction sequence.

Definition 9.3.2. We define the family of relations {⇒h| h ∈ N} on µMLL∞ proofs such that
π0 ⇒h π

′ if the prefixes of π0 and π′ of height h are identical and one of the following holds.

• either π′ is the limit of an infinite sequence (πi)i>0 such that for all i ≥ 0, πi+1 is obtained
from πi by a permutation;

• or, there exists a finite sequence (πi)i6n such that for all i ≤ n− 1, πi+1 is obtained from
πi by a permutation of an inference rule, and π′ can be obtained from πn by an external
cut-reduction.

Proposition 9.3.3. LetR,R′ be progresing infinets such thatR →κ R′. Then, there exists π, π′

such that dsq(π) = R, dsq(π′) = R′, and π ⇒h π
′. Diagrammatically, we have the following.
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R R′

π π′

κ

h

dsq(•) dsq(•)

Proof. Fix a sequentialisation π ofR. We will now construct π′. There are two cases.

Case 1. κ labels a kingdom erasure reduction. As discussed earlier, this can be simulated by an
infinite number of permutations above the cut rule in π (while not modifying anything below).

Case 2. κ labels a reduction that is not a kingdom erasure. Then, it corresponds to one external step
of cut-elimination in π after a finite (possibly none) number of commutation steps.

Definition 9.3.3. Let S = {Ri}i∈λ be a reduction sequence. A sequentialisation of S is de-
fined as a sequence of proofs {πi}i∈λ such that for all i ∈ λ such that i + 1 ∈ λ, dsq(πi) = Ri,
dsq(πi+1) = Ri+1, πi ⇒hi πi+1 and for all π′ such that πi ⇒h′ π

′, we have h′ ≤ h. Diagrammat-
ically we have the following.

R0 R1 R2 · · · Rk · · ·

π0 π1 π2 · · · πk · · ·
h0 h1 h2 hk−1 hk

Proposition 9.3.4. Let {πi}i∈ω be a sequentialisation of a reduction sequence such that for all
i ∈ ω, πi ⇒hi πi+1. Then, {πi}i∈ω has a limit.

Proof. Fix an arbitrary i. Let Ri = dsq(πi), Ri+1 = dsq(πi+1), and Ri →κ Ri+1 for some κ. By
construction, κ is a cut that occurs in πi but not in πi+1. Therefore, πi and πi+1 differs at the height
κ occurs. Since for all π′ such that πi ⇒h′ π

′, we have h′ ≤ h, we have that κ occurs in πi at height
h. Now, there can be at most finitely many cuts at a particular height, therefore for all m ∈ N, there
exists n > 0 such that for all i ≥ n, hi > m. Therefore, {hi}i∈ω diverges. Consequently, the sequence
{πi}i∈ω is Cauchy with respect to the standard distance on infinite trees. Furthermore, we recall that
the class of infinite trees with respect to this distance is a complete metric space. Therefore, every
Cauchy sequence has a limit.

Lemma 9.3.1. Let S = {Ri}i∈ω be a fair reduction sequence such thatR0 is progressing. Then,
every sequentialisation of S converges to a cut-free proof.

Proof. Let {πi}i∈ω be a sequentialisation of S. By Proposition 9.3.4, it strongly converges to a pre-
proof π. Since every⇒h rule is a (finite or infinite) sequence of cut-reduction rules, we have a transfi-
nite reduction sequence S ′ = {π′i}i<α (for some α ∈ Ord) such that:

1. {πi}i∈ω is its subsequence;

2. π′β −→c π
′
β+1 for all β < α;

3. π′λ = sup{π′β | β < λ} for limit ordinals λ < α;

Clearly, for all i < α there exists j < ω such that dsq(π′i) = Rj and S ′ also converges to π. Therefore,
by the compression lemma there is a subsequence S ′′ = {π′′i }i<ω of length at most ω which converges
to π. We claim that S ′ is fair. Suppose not. Then, there exists i < ω such that there is a cut C in πi
such that for all k > i, no cut reduction rule is applied on C in πk. Let dsq(πi) = Rj . Then, no cut
reduction rule is applied on C inRk for all k > j. Therefore, S ′ is fair. SinceR0 is progressing, π′′0 is
a proof. Therefore, by Theorem 9.2.1, π is cut-free and satisfies the progress condition.

Lemma 9.3.2. Let S = {Ri}i∈ω be a fair reduction sequence such thatR0 is progressing. Let S1

and S2 be two sequentialisations of S such that they converge to π1 and π2 respectively. Then,
dsq(π1) = dsq(π2).

Proof. This is trivial. By Lemma 9.3.1, π1 and π2 are cut-free and by Corollary 9.2.1.1 they are
equivalent up to permutations. By Theorem 8.4.1, dsq(π1) = dsq(π2).
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Figure 9.8: Cut reduction on the desequentialisation of the pre-proofs in Figures 4.1a and 4.1b

It may not be obvious why fairness is necessary for Lemma 9.3.2. Suppose we consider a reduction
sequence starting fromR0 = (Γ,K,Θ). In the absence of fairness, two sequentialisations can reduce
two different strict subsets K′ and K′′ of K. So in the limit of one will contains the cuts from K \ K′
while the other limit will contain cuts from K \ K′. Therefore the cannot desequentialise to the same
infinet.

Definition 9.3.4. Let S = {Ri}i∈λ be a reduction sequence such that R0 is progressing. The
limit of S is defined as the desequentialisation of the limit of a sequentialisation of S.

By Lemma 9.3.2, Definition 9.3.4 is well-defined. The following theorems follows.

Theorem 9.3.1. Let S = {Ri}i∈λ be a reduction sequence such thatR0 is progressing. Then, its
limit is a cut-free infinet.

Consider the desequentialisation of the pre-proofs in Figures 4.1a and 4.1b and the steps of cut
reduction on it in Figure 9.8 using the rules in Definition 9.3.1. Observe it closely resembles the
reduction sequence in Figure 9.3. However, providing the same reasoning as above for bouncing
threads is not possible bouncing thread validity is not stable under permutation of inference rules.
Therefore, although we have a reduction sequence over infinets, proving that it has a limit is not clear.

In conclusion. In this part, we developed a theory of non-wellfounded proof-nets and in this chap-
ter, the theory developed so far culminated to realise (at least a part of) its raison d’être. We proved
cut-elimination for simple infinets with the help of the cut-elimination result in the sequent calcu-
lus and proved cut-elimination for axiom-free infinets completely independently. The main stumbling
block in this chapter has been to find limits of infinite reduction sequence of proof-nets.
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Conclusion
We pitched this thesis on the following premise.

Linear logic with fixed points (µMALL) has an intricate provability relation and the study of its
computational content can be done much more systematically in the framework of proof-nets.

In Part I, we developed the provability semantics of several wellfounded calculi for µMALL and
showed that decision problems for all established systems for µMALL are all undecidable but some
are more undecidable than others. In particular we showed that the circular system is Σ0

1-complete
while the non-wellfounded system is (Σ0

1∪Π0
1)-hard which helped us to separate these systems based

on the set of theorems they prove. In Part II, we developed proof-nets for µMALL systems and it turned
out to be especially challenging for the non-wellfounded situation. However, the study revealed inter-
esting objects on non-wellfounded proofs viz. trips that promise connections with GoI. Furthermore,
we proved cut-elimination on non-wellfounded proof-nets that required interesting non-local cut-
reduction rules involving classic gadgets from proof-net theory such as kingdoms. We believe that
we have justified our pitch and we conclude with several directions that have opened up during our
investigation.

Perspectives on Part I
Provability relation of the non-wellfounded calculus. We sketched a proof idea for obtaining
truth semantics for the non-wellfounded calculus and conjectured that provability of a formula in this
calculus is in the analytic hierarchy. For both ideas, it is crucial to consider intermediary systems that
are non-wellfounded and infinitely branching. Thus, to understand the exact provability relation of the
non-wellfounded calculus, it is imperative to understand its relation with infinitely branching systems.

Understand the relation of the non-wellfounded system with infinitely branching systems.

Since the calculus is highly undecidable and non-regularisable, it is also interesting to obtain
fragments such that they are decidable or regularisable or both. We showed that the finite fragment
is already undecidable and the N-free finite fragment is equivalent to MELL. On the other hand, the
additive fragment is easily decided. It is interesting to consider the decidability of the multiplicative
fragment of the non-wellfounded calculus. We showed that the additive fragment is regularisable and
also certain non-wellfounded proofs of multiplicative formulas (like that of νx.xOx) are regularisable.
Therefore, it is interesting to obtain a natural fragment that would contain both additive formulas and
νx.xOx at the least.

Obtain natural non-trivial fragments of the non-wellfounded system that are decidable or reg-
ularisable or both.

Provability of the circular calculus. We showed that the non-wellfounded calculus and circular
calculus prove different sets of theorems. Hence they cannot have the same provability semantics.
In fact, we believe the technique of going through intermediary infinitely branching systems will not
work since infinitely branching systems are inherently non-uniform.

170
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However, the truth semantics of the circular system is really interesting. In particular, the com-
pleteness proof for the circular system will be technically interesting: circular proofs do not admit cuts
whereas the completeness of phase semantics usually gives cut admissibility. Moreover, the result will
have deep implications. Note that we have already obtained the truth semantics of the wellfounded
system and proved that it has the same complexity as the circular system. Therefore, if these systems
do not prove the same set of theorems, then that cannot be exhibited by a complexity argument. How-
ever, if we interpret formulas provable in the circular calculus in the same mathematical model as that
for the wellfounded system, we can check if they prove the same set of theorems.

Obtain the truth semantics for the circular system in order to answer the Brotherston-
Simpson conjecture for µMALL viz. if the wellfounded and circular system prove the same
set of theorems.

Refining the completeness of wellfounded systems. Completeness of phase semantics usually
gives cut admissibility and that was also the case in the proof systems we considered. It was espe-
cially interesting in the infinitely branching systems since cut admissibility for such systems is usually
proved using cut-ranks. Techniques involving cut ranks used to obtain cut-admissibility also provide
upper bounds on the size of the cut-free proof. It would be interesting to see if our completeness proof
can be refined to obtain such bounds.

The wellfounded system with Park’s (co)induction rules has the focusing property but assigning
polarities to fixed point operators is not apriori clear. In fact, it holds for both possible assignments (the
proofs being quite different). In the circular and non-wellfounded case, one can syntactically argue
that µ has to be positive (consequently ν should be negative). Categorical semantics of the polarised
wellfounded system also informs us that µ should indeed be positive. Can phase semantics also shed
light on the polarities of fixed points?

Refine the completeness of wellfounded systems to obtain upper bounds on sizes of cut-free
proofs and polarities of fixed point formulas.

Perspectives on Part II
Strengthen the results for infinets. We discussed the correctness and sequentialisation of con-
nected infinets. However, as we saw that infinets can be inherently disconnected and it is important
to lift our results for disconnected infinets. Secondly, a lot of our results were obtained for simple in-
finets which lack crucial computational content and it is imperative to lift our results for infinets with
visitable paths.

Develop the statics of infinets for more generalised structures that are potentially disconnected
and might have visitable paths.

On the dynamics side, our most general result relies on the cut-elimination in the sequent calcu-
lus. To really reap the benefits of the canonicity of proof-nets, it is necessary to prove this independent
of the sequent calculus result. Furthermore, the bouncing thread progress condition cannot be im-
mediately lifted to proof-nets as it is inherently non-canonical i.e. it is not stable under permutation
of inference rules. It is also related to the previous problem since bouncing threads on infinets would
be special types of visitable paths. The ultimate goal would thus be to define a corresponding bounc-
ing thread progress condition on infinets and show that it is a sufficient condition for ensuring the
productivity of cut-elimination.

Lift bouncing thread progress condition to infinets and prove cut-elimination for bouncing
thread progressing infinets.

Non-wellfounded and circular natural deduction. The translation between sequent calculus
and natural deduction is usually immediate in wellfounded systems. However, the progress condi-
tion does not scale to natural deduction. In fact, preliminary investigations suggest that the natural
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progress condition for natural deduction is the bouncing thread condition. Furthermore, natural de-
duction proofs are also canonical objects like proof-nets. Therefore, the study of non-wellfounded
and circular natural deduction will possibly shed light on the bouncing thread progress condition for
infinets.

Develop infinitary proof theory in the natural deduction setting.

¦
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[FS13] Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-
elimination. In CSL, 2013.

[Gen36] Gerhard Gentzen. Die widerspruchsfreiheit der reinen zahlentheorie. Mathematische
Annalen, 112(1):493–565, Dec 1936.

[Geu92] Herman Geuvers. Inductive and coinductive types with iteration and recursion. In
Proceedings of the 1992 Workshop on Types for Proofs and Programs, Bastad,
pages 193–217, 1992.

[GG89] Carl A. Gunter and Vijay Gehlot. Nets as tensor theories. Technical Report MS-CIS-
89-68, University of Pennsylvania Department of Computer and Information Science,
October 1989.

[GGS16] Silvio Ghilardi, Maria João Gouveia, and Luigi Santocanale. Fixed-point elimination
in the intuitionistic propositional calculus. In Bart Jacobs and Christof Löding, edi-
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[Ler21] Jérôme Leroux. The Reachability Problem for Petri Nets is Not Primitive Recursive.
May 2021.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer, August 2004.

[Lin92] Patrick Lincoln. Computational Aspects of Linear Logic. PhD thesis, Standford
University, 1992.

[Lin95] Patrick Lincoln. Deciding provability of linear logic formulas. In Proceedings of the
Workshop on Advances in Linear Logic, page 109–122, USA, 1995. Cambridge Uni-
versity Press.

[LMAS92] Patrick Lincoln, John Mitchell, Scedrov Andre, and Natarajan Shankar. Decision prob-
lems for propositional linear logic. Annals of Pure and Applied Logic, 56(1):239–311,
1992.

[LPM94] François Leclerc and Christine Paulin-Mohring. Programming with streams in coq: A
case study: The sieve of eratosthenes. In Proceedings of the International Workshop
on Types for Proofs and Programs, TYPES ’93, page 191–212, Berlin, Heidelberg,
1994. Springer-Verlag.
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