Quantitative Inhabitation

Victor Arrial Delia Kesner

Joint work with Giulio Guerrieri

60 ans d'Antonio Bucciarelli, Paris, 20 Juin 2023

Italy

France

Argentina

Brazil

2016 and 2017 **Non-Idempotent Intersection Types for Lambda-Calculus**. Bucciarelli-Kesner-Ventura.

2014 and 2018 Inhabitation for Non-Idempotent Intersection Types. Bucciarelli-Kesner-RonchiDellaRocca

2020

The Bang Calculus Revisited. Bucciarelli-Kesner-Rios-Viso

That Inspired an Amazing Paper ...

That Inspired an Amazing Paper ...

Trailer

Trailer

Typing Problem:

Typing Problem: $\Gamma \vdash t : \sigma$

Typing Problem: $\Gamma \vdash t : \sigma$

Logical: [HodasMiller94] Proof Search and Logic Programming

Logical: [HodasMiller94] Proof Search and Logic Programming

Logical: [HodasMiller94] Proof Search and Logic Programming

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Unifying Frameworks:

• Call-by-Push-Value [Levy99]

- Call-by-Push-Value [Levy99]
- Bang Calculus [EhrhardGuerrieri16]

Unifying Frameworks:

- Call-by-Push-Value [Levy99]
- Bang Calculus [EhrhardGuerrieri16]:

t, u ::= $x \mid \lambda x.t \mid tu$

- Call-by-Push-Value [Levy99]
- Bang Calculus [EhrhardGuerrieri16]:

$$t, u ::= x | \lambda x.t | tu$$
$$| !t$$
Values

- Call-by-Push-Value [Levy99]
- Bang Calculus [EhrhardGuerrieri16]:

$$t, u ::= x | \lambda x.t | tu$$

$$| !t Values$$

$$| der(t) Computations$$

- Call-by-Push-Value [Levy99]
- Distant Bang Calculus [EhrhardGuerrieri16] [BucciarelliKesnerRiosViso20,23]:

$$t, u ::= x | \lambda x.t | tu$$

$$| !t Values$$

$$| der(t) Computations$$

$$| t[x:=u] Let$$

Unifying Frameworks

ANG

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

Can we do the same thing with inhabitation ?

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

$$A,B ::= \sigma \mid A \Rightarrow B$$

$$A,B ::= \sigma \mid A \Rightarrow B$$

$$A,B ::= \sigma \mid A \Rightarrow B$$

 $A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

 $A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$

• Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$

$$A, B ::= \sigma \mid A \Rightarrow B \mid \underline{A} \cap \underline{B}$$

- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

$$A, B ::= \sigma \mid A \Rightarrow B \mid \underline{A} \cap \underline{B}$$

- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

```
Idempotent
[CoppoDezani78,80]
A \cap A = A
```

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

```
Idempotent
[CoppoDezani78,80]
```

```
A\cap A=A
```

Qualitative properties

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

Idempotent [CoppoDezani78,80]	Non-Idempotent [Gardner94], [Kfoury00]
$A \cap A = A$	$A \cap A \neq A$
Qualitative properties	Quantitative properties [deCarvalho07]

Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types		
Non-Idempotent Types		

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	
Idempotent Types		
Non-Idempotent Types		

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	
Idempotent Types	Indecidable	
Non-Idempotent Types	Indecidable	

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	
Non-Idempotent Types	Indecidable	

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urzyczyn99]
Non-Idempotent Types	Indecidable	

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urzyczyn99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18]

Typability and Inhabitation in Intersection Types

Typability and Inhabitation in Intersection Types

Typability and Inhabitation in Intersection Types

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urzyczyn99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18]

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urzyczyn99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18] (CBV) ?

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urzyczyn99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18] (CBV) ?

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urzyczyn99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18] (CBV) <mark>Decidable</mark>

NAME:
$$\mathcal{N}$$
VALUE: \mathcal{V} BANG: \mathcal{B}

Static Properties: [BucciarelliKesnerRiosViso20,23]

Static Properties: [BucciarelliKesnerRiosViso20,23]

NAME :
$$N$$
 VALUE : V **BANG** : B

Static Properties: [BucciarelliKesnerRiosViso20,23]

NAME
$$\Gamma \vdash_N t : \sigma$$
 \Leftrightarrow $\Gamma \vdash_B t$ N : σ VALUE $\Gamma \vdash_V t : \sigma$ \Leftrightarrow $\Gamma \vdash_B t$ V : σ

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

First Goal

Decidability of the (more general) **BANG** Inhabitation Problem (IP).

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the BANG IP.

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

- Decidability by finding all inhabitants in the **BANG** IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

- Decidability by finding all inhabitants in the **BANG** IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute **all** solutions: $Sol(\Gamma, \sigma) := \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\}$

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute all solutions: $Sol(\Gamma, \sigma) := \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\}$

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute all solutions: $\operatorname{Sol}(\Gamma, \sigma) := \{ \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \}$

Problem

 \mathfrak{O} The set So1(Γ, σ) is either empty of infinite

BANG

Instead of just one solution: $\begin{array}{l} \Gamma \vdash \mathbf{t} : \sigma \\ \text{We want to compute all solutions:} \\ \text{Sol}(\Gamma, \sigma) \ := \ \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \} \end{array}$

Problem

 \mathfrak{S} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a finite generator: Basis(Γ, σ) Which is correct and complete: span(Basis(Γ, σ)) = Sol(Γ, σ)

Instead of just one solution: $\begin{array}{l} \Gamma \vdash \mathbf{t} : \sigma \\ \text{We want to compute all solutions:} \\ \text{Sol}(\Gamma, \sigma) \ := \ \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\} \end{array}$

Problem

 \mathfrak{S} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a **finite** generator: Basis(Γ, σ) Which is **correct** and **complete**: span(Basis(Γ, σ)) = Sol(Γ, σ)

Instead of just one solution: $\begin{array}{l} \Gamma \vdash \mathbf{t} : \sigma \\ \text{We want to compute all solutions:} \\ \text{Sol}(\Gamma, \sigma) \ := \ \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\} \end{array}$

Problem

 \mathfrak{S} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a **finite** generator: Basis(Γ, σ) Which is **correct** and **complete**: **span**(Basis(Γ, σ)) = Sol(Γ, σ)

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute all solutions: $\operatorname{Sol}(\Gamma, \sigma) := \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\}$

Problem

 \mathfrak{N} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a **finite** generator: Basis(Γ, σ) Which is **correct** and **complete**: span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

Solution \mathbf{Y} For any typing (Γ, σ) , $\operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma)$ **exists**, is **finite**, **correct** and **complete**.

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute all solutions: $\operatorname{Sol}(\Gamma, \sigma) := \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\}$

Problem

 \mathfrak{N} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a **finite** generator: Basis(Γ, σ) Which is **correct** and **complete**: span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

Solution \mathbf{Y} For any typing (Γ, σ) , $\operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma)$ **exists**, is **finite**, **correct** and **complete**.

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Typing rules

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Typing rules

Grammar rules

Follows two sets of rules: $Sol(\Gamma, \sigma)$ Basis_B

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

- Typing rules
- Grammar rules

The Full Algorithm

The Full Algorithm

The Full Algorithm and its Implementation

Non-deterministic algorithm

Non-deterministic algorithm

Theorem

Non-deterministic algorithm

Theorem

- The inhabitation algorithm terminates.
- **(**) The algorithm is sound and complete (i.e. it exactly computes $Basis_{\mathcal{B}}(\Gamma, \sigma)$).

Non-deterministic algorithm

Theorem

The inhabitation algorithm terminates.

() The algorithm is sound and complete (i.e. it exactly computes $Basis_{\mathcal{B}}(\Gamma, \sigma)$).

More Ambitious Third Goal

Decidability by finding all inhabitants in the BANG IP.

Non-deterministic algorithm

Theorem

- The inhabitation algorithm terminates.
- 🕜 The algorithm is sound and complete (i.e. it exactly computes $t Basis_{\mathscr{B}}(\Gamma,\sigma)$).

More Ambitious Third Goal

- C Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

Solving NAME Inhabitation - Standard Methology

Theorem ([BucciarelliKesnerRios14])

Solution For any typing (Γ, σ) , Basis_N (Γ, σ) exists, is finite, correct and complete.

Theorem ([BucciarelliKesnerRios14])

Solution For any typing (Γ, σ) , **Basis**_{\mathcal{N}} (Γ, σ) **exists**, is **finite**, **correct** and **complete**.

Built an algorithm computing $Basis_{\mathcal{N}}(\Gamma, \sigma)$: [BucciarelliKesnerRios14]

$$\begin{split} \frac{\mathbf{a} \Vdash \mathbf{\Gamma}(\mathbf{\Gamma} + \mathbf{x} : \mathbf{A}, \tau) & \mathbf{x} \notin \operatorname{dom}(\mathbf{\Gamma})}{\lambda \mathbf{x} . \mathbf{a} \Vdash \mathbf{T}(\mathbf{\Gamma}, \mathbf{A} \to \tau)} \text{ (Abs)} \\ & \frac{(\mathbf{a}_i \Vdash \mathbf{T}(\mathbf{\Gamma}_i, \sigma_i))_{i \in I} & \uparrow_{i \in I} \mathbf{a}_i}{\bigvee_{i \in I} \operatorname{H} \mathbf{T}(\mathbf{I}_{+i \in I} \Gamma_i, [\sigma_i]_{i \in I})} \text{ (Union)} \\ & \frac{(\mathbf{a}_i \Vdash \mathbf{T}(\mathbf{\Gamma}_i, \sigma_i))_{i \in I} & \uparrow_{i \in I} \mathbf{a}_i}{\bigvee_{i \in I} \operatorname{H} \mathbf{T}(\mathbf{I}_{+i \in I} \Gamma_i, [\sigma_i]_{i \in I})} \text{ (Union)} \\ & \frac{\mathbf{a} \Vdash \operatorname{H}^{\mathbf{x}: [\mathbf{A}_1 \to \dots \mathbf{A}_n \to \mathbf{B} \to \tau]}(\mathbf{\Gamma}, \mathbf{T}) & \mathbf{b} \Vdash \operatorname{TI}(\mathbf{\Gamma}_2, \mathbf{B}) & n \ge 0}{\mathbf{a} \Vdash \operatorname{H}^{\mathbf{x}: [\mathbf{A}_1 \to \dots \mathbf{A}_n \to \mathbf{B} \to \tau]}(\mathbf{\Gamma}, \tau)} \text{ (Head}_{>0}) \\ & \frac{\mathbf{a} \Vdash \operatorname{H}^{\mathbf{x}: [\tau]}(\emptyset, \tau)}{\mathbf{a} \Vdash \operatorname{H}^{\mathbf{x}: [\mathbf{A}_1 \to \dots \mathbf{A}_n \to \tau]}(\mathbf{\Gamma}, \tau)} \text{ (Head)} \end{split}$$

Theorem NAME $t \in \text{Basis}_{\mathcal{N}}(\Gamma, \sigma)$

Solving VALUE Inhabitation - Usual Methology

Theorem \checkmark For any typing (Γ, σ) , Basis $_{\mathcal{V}}(\Gamma, \sigma)$ exists, is finite, correct and complete.**VALUE**

Solving VALUE Inhabitation - Usual Methology

Theorem			
\checkmark For any typing (Γ, σ) ,	$\mathtt{Basis}_{\mathcal{V}}(\Gamma,\sigma)$	exists, is finite, correct and complete.	VALUE

Built an algorithm computing $Basis_{\mathcal{V}}(\Gamma, \sigma)$:

Solving VALUE Inhabitation - Usual Methology

Theorem

Solution For any typing (Γ, σ) , **Basis**_V (Γ, σ) exists, is finite, correct and complete.

Built an algorithm computing $Basis_{\mathcal{V}}(\Gamma, \sigma)$:

Theorem			
	VALUE	$t\in \texttt{Basis}_{\mathcal{V}}(\Gamma,\sigma)$	

Solving VALUE Inhabitation : through BANG Inhabitation

The Basis is preserved by the embedding:

Solving VALUE Inhabitation : through BANG Inhabitation

The Basis is preserved by the embedding:

Solving VALUE Inhabitation : through BANG Inhabitation

The Basis is preserved by the embedding:

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes $Basis_{\mathcal{B}}(\Gamma, \sigma)$).

- The inhabitation algorithm terminates.
 - The algorithm is sound and complete (i.e. it exactly computes $Basis_{\mathcal{B}}(\Gamma, \sigma)$).

- Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- C Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- C Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- **The algorithm is sound and complete** (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- C Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- 🕜 Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- **The algorithm is sound and complete** (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- C Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- 🕜 Using generic properties so that other encodable models of computation can use these results.

Summary:

- Solving the generalized inhabitation problem
- A several-for-one deal:

OTHERS

An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Summary:

- Solving the generalized inhabitation problem
- A several-for-one deal:

OTHERS

An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

Solvability (for Different Calculi in a Unified Framework)

Summary:

- Solving the generalized inhabitation problem
- A several-for-one deal:

An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

Solvability (for Different Calculi in a Unified Framework)

Thanks for your attention!

OTHERS

Thank you !

Happy Birthday !

Thank you !

