Quantitative Inhabitation

Victor Arrial Delia Kesner
Joint work with Giulio Guerrieri

60 ans d’Antonio Bucciarelli, Paris, 20 Juin 2023

International Antonio

[taly

& “" é*
%
e AL
:a%ﬁ%:“ { France
"Qﬁ*@&,‘% > &
FI‘Q' a

ey
¢l%$

%&f / Vg Argentina

Brazil

Some Fruitful Collaborations on Intersection Types

2016 and 2017 Non-ldempotent Intersection Types for Lambda-Calculus.
Bucciarelli-Kesner-Ventura.

plo

2014 and 2018 Inhabitation for Non-ldempotent Intersection Types.
Bucciarelli-Kesner-RonchiDellaRocca

2020 The Bang Calculus Revisited.
Bucciarelli-Kesner-Rios-Viso

That Inspired an Amazing Paper ...

Trailer

That Inspired an Amazing Paper ...

[BANG]|

Trailer

N\

l
N
N

60 60 60 60 60

e
@(/ (1 O

A

What is Inhabitation ?

Typing Problem:
t

What is Inhabitation ?

Typing Problem:
'rt:o

What is Inhabitation ?

Typing Problem:
koo

Computational: [Milner78]
Typers

What is Inhabitation ?

Typing Problem: . Inhabitation Problem (IP):
Rl | N4

Computational: [Milner78]
Typers

What is Inhabitation ?

Typing Problem: . Inhabitation Problem (IP):
oo | V4 r o

Computational: [Milner78]
Typers

What is Inhabitation ?

Typing Problem: . Inhabitation Problem (IP):
[| V4 Tvrt: o

Computational: [Milner78]
Typers

What is Inhabitation ?

‘o®
-

Inhabitation Problem (IP):
'r/:o0o

Typing Problem:
Foto

@

Computational: [HughesOrchard20]

Computational: [Milner78] Program Synthesis

Typers Logical: [HodasMiller94]

Proof Search and Logic Programming

What is Inhabitation ?

‘o®
-

Inhabitation Problem (IP):
rersr:o

Typing Problem:
Foto

@

Computational: [HughesOrchard20]

Computational: [Milner78] Program Synthesis

Typers Logical: [HodasMiller94]

Proof Search and Logic Programming

What is Inhabitation ?

‘o®
-

Inhabitation Problem (IP):
'rtr:o

Typing Problem:
Foto

@

Computational: [HughesOrchard20]

Computational: [Milner78] Program Synthesis

Typers Logical: [HodasMiller94]

Proof Search and Logic Programming

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

INAME| \VALUE]

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Unifying Frameworks

Different Models of Computation:
Call-by-Name

NAME|

Unifying Frameworks:
e Call-by-Push-Value [Levy99]

Call-by-Value

P ———

[VALUE]

Unifying Frameworks

Different Models of Computation:

Call-by-Name

Unifying Frameworks:
e Call-by-Push-Value [Levy99]

° Bang Calculus [EhrhardGuerrieri16]

Call-by-Value

VALUE|

BANG

Unifying Frameworks

Different Models of Computation:

CE!MaEe Call-by-VaIu&i
[INAME| VALUE]|

Unifying Frameworks:
e Call-by-Push-Value [Levy99]

° Bang Calculus [EhrhardGuerrieri16]:

tbu = x| Axt|tu .
BANG

Unifying Frameworks

Different Models of Computation:

Call-by-Name

Unifying Frameworks:
e Call-by-Push-Value [Levy99]

° Bang Calculus [EhrhardGuerrieri16]:
tbu = x| Axt|tu
| 1t Values

Call-by-Value

VALUE|

BANG

Unifying Frameworks

Different Models of Computation:

CE!MaEe Call-by-VaIu&i
[INAME| VALUE]|

Unifying Frameworks:
e Call-by-Push-Value [Levy99]

° Bang Calculus [EhrhardGuerrieri16]:

tbu = x| Axt|tu .
| 1¢ Values BANG

| der(t) Computations

Unifying Frameworks

Different Models of Computation:

Call-by-Name Callby-Value
INAME| VALUE]

Unifying Frameworks:
e Call-by-Push-Value [Levy99]

¢ Distant Bang Calculus [EhrhardGuerrieri16] [BucciarelliKesnerRiosVis020,23]:

tbu = x|Axt|tu)
| 1z Values BANG’
| der(t) Computations

| t[x:=u] Let

Unifying Frameworks

Different Models of Computation: o)

Unifying agedard s
o Call} Ano™ 3 et T yes0® FoR e A

a
« Distal 3 e

ANG|

Unifying Frameworks o

e
tation {alu
t M¢—~~l=.of Compu cod —
fferen ..
Di he bang Calcuyg Tevisiteq)
Antopj, Bucciareiii 9 Delia Kesnera,b, % Alejandro Rios < Andrég Visg d,« T
Iniy TSité p Gité, ¢y Franc,
b nstitug) TSitGire de frgp, €, Frang,
K nversidad ‘e Bueno, '8enting

ARTIc
Unifying Antice i

Ush-) -Value (CBpy; 2 pro, 0gramm, Ming Paradign, Subsumjp, both Cail-by—Name
Receiveq 5, Septempe, 2022 (CB,) nd Call., y Value {C V) Semanticg € essence Of thig Paradigpy, ;¢ Captureq by the
e Cal Receiveg jp |, evised forp, 26 April 203 Bang Calcyjyg term anguage Onnectipg CBPV ang Lineay Logic,
::;755: 4;”‘2’ 12321\;3 2023 This Paper presents a TeVisiteq Version of the Bang Calculus, Calleq Al enjoying Some
v important properties missing in the Origing| formularion. lndeed, the new Calculyg
. ,{Eywards integrates permutarive conversions to Unblocjc Value Tedexes While pmserving conﬂuence.
° D’ Call-py. “PUsh-yajye A Secong contribution is Telateq to non-idempotent types, We Provige , quanritative type
Bang Calcujyg System for our A!-calculus, giving Upper bounds to the len, th o, the r Ction Normg;
lntersemon types M plys its Size, © alsg €xplore the properties of thig Pe s 'Stem i Tespect to
CBN/CBV transiatiansi St but not least, the quantirarive System js Tefined .
Which transy, Previgy Upper boung ; tWo indap... .
Teductioy, lengtp

Distant Bang: A Subsuming Paradigm

Distant Bang: A Subsuming Paradigm

¢": |[NAME - |BANG]

Distant Bang: A Subsuming Paradigm

¢". [NAME - [BANG]

Static Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

[NAME| ¢ normal form

Distant Bang: A Subsuming Paradigm

¢". [NAME - [BANG]

Static Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

= N
NAME| t normal form = t normal form e
"" BANG

Distant Bang: A Subsuming Paradigm

¢": |[NAME - |BANG]

B ———

Static Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

—_— N
INAME| ¢t normal form o t normal form ——
o BANG

Dynamic Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

[NAME| t>u

Distant Bang: A Subsuming Paradigm

¢". [NAME - [BANG]

Static Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

—_— N
INAME| ¢t normal form o t normal form ——
o BANG

Dynamic Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

INAME| t»u =3 t > u
— BANG

Distant Bang: A Subsuming Paradigm

¢": |[NAME - |BANG]
. |VALUE| - [BANG

Static Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

———— N
NAME| ¢t normal form o t normal form —
BANG

Dynamic Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

[NAME| r»u o t >u”
BANG

Distant Bang: A Subsuming Paradigm

¢": |[NAME - |BANG]
. |VALUE| - [BANG

Static Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

———— N
NAME| t normal form o t normal form —
— BANG

\VALUE| ¢t normal form o ¢ " normal form

Dynamic Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

N N

[NAME| r»u o t >»lu
—) , BANG
VALUE] t»>u o t >u [BANG|

Distant Bang: A Subsuming Paradigm

¢". [NAME - [BANG]
. |VALUE| - [BANG]

Static Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

e N
NAME| t normal form = t normal form e
- BANG

VALUE| t normal form e ¢ " normal form

Dynamic Properties: [BucciarelliKesnerRiosVis020,23, Arrial23]

- N N
NAME)| t>»u & t > u
. , , BANG
GALUE os o ', |BANG|

Can we do the same thing with inhabitation ?

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

AB:=c|A=B

Terminating terms

Simple Types Versus Intersection Types

AB:=c|A=B

Untyped terms

Terminating terms

Typable terms

Simple Types Versus Intersection Types

AB:=c|A=B

Untyped terms

Terminating terms

Typable terms

A,B:=c|A=B|ANB

Terminating terms

AB:=c|A=B|ANB

AB:=c|A=B|ANB

AB:=c|A=B|ANB

m Associativity:
AB:=c|A=B|ANB ANBNO)=ANBNC

m Associativity:
AB:=c|A=B|ANB ANBNO)=ANBNC
m Commutativity:
ANB=BNA

Simple Types Versus Intersection Types

m Associativity:
ABu=c|A=B|ANB ANBNO=M@ANBNC
m Commutativity:
ANB=BNA

Untyped terms m ldempotency?

Terminating terms

Typable terms

Simple Types Versus Intersection Types

m Associativity:
ABui=c|A=B|ANB ANBNC)=ANBNC
m Commutativity:
ANB=BNA

Untyped terms m ldempotency?

Terminating terms Idempotent
[CoppoDezani78,80]

ANA=A

Typable terms

Simple Types Versus Intersection Types

m Associativity:
ABu=c|A=B|ANB ANBNO =MANBNC
m Commutativity:
ANB=BNA

Untyped terms m ldempotency?

Terminating terms Idempotent
[CoppoDezani78,80]

ANA=A

Typable terms

Qualitative properties

Simple Types Versus Intersection Types

A,B:=0c|A=B|ANB

Untyped terms

Terminating terms

Typable terms

m Associativity:
ANBNC)=ANBNC

m Commutativity:
ANB=BNA

m ldempotency?

Idempotent Non-ldempotent
[CoppoDezani78,80] [Gardner94], [Kfoury00]
ANA=A ANA+A

Qualitative properties

Simple Types Versus Intersection Types

A,B:=c|A=B|ANB

Untyped terms

Terminating terms

Typable terms

m Associativity:
ANBNC)=ANBNC

m Commutativity:
ANB=BNA

m ldempotency?

Idempotent Non-ldempotent
[CoppoDezani78,80] [Gardner94], [Kfoury00]
ANA=A ANA+A
Qualitative properties Quantitative properties

[deCarvalho07]

Sim
ple Ty
pes
Versus Intersecti
ion Type
S

AB:=
n=o|A
AsAsociativi(y.
N (B0~)

es §0

y the

rche e
potent

de Rech

of, Paris France:
(fou’00]
A

Informdtica,

oerties

tent 'm\e(sec\\o types in the
nﬂa\‘\zaﬁom we'
\ \le,nad'\(\ona\\y use!

earvact
~ non-'sdempo

—alizatio™ we

Dty e

Typability and Inhabitation in Intersection Types

Typability and Inhabitation in Intersection Types

Typing
Tkt ?

Inhabitation
I'e?:0o

Typability and Inhabitation in Intersection Types

Typing
Tkt ?

Inhabitation
I'e?:0o

Simple Types

Idempotent Types

Non-ldempotent Types

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable
Idempotent Types

Non-ldempotent Types

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable
Idempotent Types Indecidable
Non-ldempotent Types Indecidable

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable
Non-ldempotent Types Indecidable

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urzyczyn99]
Non-ldempotent Types Indecidable

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urzyczyn99]
Non-ldempotent Types Indecidable (CBN) Decidable [BKR"18]

ility an

d Inhabi

abitation in Int
ersecti

on T

ypes

Tvpi
- ypino
The Xxmab'w oble™ fo 3 dempotem
1nter octio® Type®
Anﬁomo cc'\ate\\" Ak er’ s S nchd ALY RoCC
PR Par 1derots i oris OF ,??S 126, Y&S,?aﬁs, nce
2 D\paﬁi\m o &V sorma® Univ e & Porin®: wayy
Absn’ac LT ! At oD for nter b pes £0
A c'\da\)\ e spudy % prob\. m ¥ ghe © “on—\dempoxem
1o a we pr e dec‘\da‘o'\ &bto“g\\ 2 SO\md an comp\ese
sider e D ‘m’na’uon pto‘o\em for o® ex'&ended
L with pairSs and e ptove dec'\dab'\\'\cy
re '\me:est\ g n, S0 it
s W8 pa\ts

i

Typability and Inhabitation in Intersection Types

aract,,.. ide,).
() . erig, Mpo,
Mpleta inh:;:nbab € the

o

Typability and Inhabitation in Intersection Types

. Anteﬂt
SOLVABILITY = TYPABILITY + INHABITATION

ANTONIO BUCCIARELLI ¢, DELIA KESNER®, AND SIMONA RONCHI DELLA ROCCA ©

@ Université de Paris, CNRS, IRIF, France
e-mail address: buccia@irif.fr

b Université de Paris, CNRS, IRIF and Institut Universitaire de France, France
e-mail address: kesnerQirif.fr

¢ Dipartimento di Informatica, Universita di Torino, Italy
e-mail address: ronchi@di.unito.it

ABSTRACT. We extend the classical notion of solvability to a A-calculus equipped with
pattern matching. We prove that solvability can be characterized by means of typability
and inhabitation in an intersection type system P based on non-idempotent types. We show
first that the system P characterizes the set of terms having canonical form, i.e. that a
term is typable if and only if it reduces to a canonical form. But the set of solvable terms
is properly contained in the set of canonical forms. Thus, typability alone is not sufficient
to characterize solvability, in contrast to the case for the A-calculus. We then prove that
typability, together with inhabitation, provides a full characterization of solvability, in the

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urzyczyn99]
Non-ldempotent Types Indecidable (CBN) Decidable [BKR"18]

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urzyczyn99]
Non-ldempotent Types Indecidable (CBN) Decidable [BKR"18]

(CBV) ?

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urzyczyn99]
Non-ldempotent Types Indecidable (CBN) Decidable [BKR"18]

(CBV) ?

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urzyczyn99]
Non-ldempotent Types Indecidable (CBN) Decidable [BKR"18]

(CBV) Decidable

Intersection Types and Distant Bang Calculus

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BucciarelliKesnerRiosVis020,23]

[NAME] : ~ VALUE] : v BANG| : 5

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BucciarelliKesnerRiosVis020,23]

[NAME| : ¥ IVALUE] : v BANG| : 5

Static Properties: [BucciarelliKesnerRiosVis020,23]

[NAME| Ciyit:o

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BucciarelliKesnerRiosVis020,23]

[NAME] : ~ VALUE] : v BANG| : 5

Static Properties: [BucciarelliKesnerRiosVis020,23]

[NAME| Tiyt:o e Tt o .

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BucciarelliKesnerRiosVis020,23]

[NAME] : ~ VALUE] : v BANG| : 5

Static Properties: [BucciarelliKesnerRiosVis020,23]

[NAME| Tiyt:o e Tt o .

[VALUE] Tryt:ioc o Tt

Coming Back to Inhabitation

First Goal
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).

Coming Back to Inhabitation

First Goal + More Ambitious Second Goall
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

’7— 77

ANG NAME [VALUE|

g

Coming Back to Inhabitation

First Goal + More Ambitious Second Goall
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

/- 77/

[BANG| NAME [VALUE|
More Ambitious Third Goal

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

727

AN [VALUE]|

More Ambitious Third Goal
m Decidability by finding all inhabitants in the BANG| IP.

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

|

More Ambitious Third Goal
m Decidability by finding all inhabitants in the BANG| IP.
m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG]| IP.

Coming Back to Inhabitation

First Goal + More Ambitious Second Goall
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

More Ambitious Third Goal
m Decidability by finding all inhabitants in the BANG| IP.

m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Solving the Inhabitation Problem - Methodology

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

We want to compute all solutions:
Sol(l',o) := {t|T+t:0}

(1=

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

We want to compute all solutions
Sol(l',o) = {t|T+t:0}

(1=

Solving the Inhabitation Problem - Methodology
Instead of just one solution:

'rt:o
v We want to compute all solutions
L
— Sol(l',o) := {t|T+t:0}
=
BANG

Problem
The set Sol(T, o) is either empty of infinite

Solving the Inhabitation Problem - Methodology
Instead of just one solution:

'rt:o
v We want to compute all solutions
L
— Sol(l',o) := {t|T+t:0}
=
BANG

Problem
The set Sol(I', o) is either empty of infinite

We compute a finite generator:

Basis(I, o)

Which is correct and complete
span(Basis(I',o)) = Sol(T, o)

Solving the Inhabitation Problem - Methodology
Instead of just one solution:

'rt:o
v We want to compute all solutions
L
— Sol(l',o) := {t|T+t:0}
=
BANG

Problem
The set Sol(I', o) is either empty of infinite

We compute a finite generator:

Basis(I, o)

Which is correct and complete
span(Basis(I',o)) = Sol(T, o)

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

v We want to compute all solutions:
L
- Sol(l',o) := {t|T+t:0}
=

BANG

Problem
The set Sol(I', o) is either empty of infinite
We compute a finite generator:
Basis(I, o)

Which is correct and complete:
span(Basis(I',o)) = Sol(T, o)

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

v We want to compute all solutions:
L
— Sol(l',o) := {t|T+t:0}
=
Problem
The set Sol(I', o) is either empty of infinite BANG J
We compute a finite generator:
Basis(I, o)
Which is correct and complete:
span(Basis(I',o)) = Sol(T, o)

CCLFLUNIITIE

Theorem
For any typing (I', o), Basisg(l', o) exists, is finite, correct and complete.

=

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

v We want to compute all solutions:
L
— Sol(l',o) := {t|T+t:0}
=
Problem
The set Sol(I', o) is either empty of infinite BANG J
We compute a finite generator:
Basis(I, o)
Which is correct and complete:
span(Basis(I',o)) = Sol(T, o)

CCLFLUNIITIE

Theorem
For any typing (I', o), Basisg(I', o) exists, is finite, correct and complete.

=

Following the Typing and a Grammar

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:
m Typing rules

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:
m Typing rules Basisg

m Grammar rules

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:
m Typing rules
m Grammar rules

The Full Algorithm

g+~ Der(g)
g Var | [o]lF$(z,0) | alby HXIT(T;[0])
x kg H¥191(0;0) der(a) Iy H¥I7)(T; 0)

g+ App(9a,)
T=T,+Ip
M=alFS(z,0 = 0)

alkg, BN I M= 6) blkg, N(Tp: M)
ab g H<17I(T; 0)

g9
T=I"+x:[7]
girg | alky BXITN(T0) all- $(z,0) alky B (1 o') g~ g | alby N(T;0)
alby () alrg N(T;0) NH 2, N(T;0) N
g+ Bng(g')
g+ Lam(g") I
fix x ¢ dom(T) | alby N(T,x: M; a) T =+ierl (ailFg N(Ti71)),; Tier ai g+ Bng(L) |
Ix.alFy N(T; Mo o) s 'Vierai kg N(T [7ilier) ’ 'Likg N(O;TD)

g+~ Sub(ga, g5)
P=T.+T+z:[pl, fix y¢dom(T) U {x}
n e [0,52(p)], MII-S(p, [©1,---,0n]) alrg, HET (I, y: Mio) blbg, HEPI(T,; M)

a[y\b] g HX1F1(T;0)

g+ Sub(9a, 95)
I=T,+T; fix y¢dom(I)U {x}
n € [Lsz(D)], [pilieping I S(z.[O1,-., 0n])

jelLn] olkS(p;0) alrg, H¥ P (T y s [pi)iepuagy30) b Ihg, HEIT (003 [pileping)
ES-CH

a[y\b] Iy HXFI(T;0)
g+ Sub(ga, g5)
P=T,+T+z:[r], fix y¢dom(T)
n € [0,52(z)], MIIFS(z,[O1,- .., 0nl) albg, N(Ta,y: M) blkg, H=IF1(Ty; M)
a[y\b] IFy N(T;0)

5L

g™ App(9a, 1)
=T+
M= cllFS(z,0= o)

alkg, B¥ (I M= 6) blkg, N(Ty; M)

ab g H¥I71(T; 0)

The Full Algorithm

g~ App(9a, 9p)
[=I,+1I,
M=clFS(z,0=0) | alrg, BT M= 0) blkg, N(Ip; M)
AP

ab Iy H¥IFI(T; o)

P

The Full Algorithm

I'=T,+1}
Tas M= o) (Tp; M)
AP

T 0)

P

The Full Algorithm

g~ App(9a» 9p)

alkg, blkg,
ab I

APP

The Full Algorithm

g~ App(9a, 9p)
[=I,+1I,
M=clFS(z,0=0) | alrg, BT M= 0) blkg, N(Ip; M)
AP

ab Iy H¥IFI(T; o)

P

The Full Algorithm

g+~ Der(g)
g Var | [o]lF$(z,0) | alby HXIT(T;[0])
x kg H¥191(0;0) der(a) Iy H¥I7)(T; 0)

g+ App(9a,)
T=T,+Ip
M=alFS(z,0 = 0)

alkg, BN I M= 6) blkg, N(Tp: M)
ab g H<17I(T; 0)

g9
T=I"+x:[7]
girg | alky BXITN(T0) all- $(z,0) alky B (1 o') g~ g | alby N(T;0)
alby () alrg N(T;0) NH 2, N(T;0) N
g+ Bng(g')
g+ Lam(g") I
fix x ¢ dom(T) | alby N(T,x: M; a) T =+ierl (ailFg N(Ti71)),; Tier ai g+ Bng(L) |
Ix.alFy N(T; Mo o) s 'Vierai kg N(T [7ilier) ’ 'Likg N(O;TD)

g+~ Sub(ga, g5)
P=T.+T+z:[pl, fix y¢dom(T) U {x}
n e [0,52(p)], MII-S(p, [©1,---,0n]) alrg, HET (I, y: Mio) blbg, HEPI(T,; M)

a[y\b] g HX1F1(T;0)

g+ Sub(9a, 95)
I=T,+T; fix y¢dom(I)U {x}
n € [Lsz(D)], [pilieping I S(z.[O1,-., 0n])

jelLn] olkS(p;0) alrg, H¥ P (T y s [pi)iepuagy30) b Ihg, HEIT (003 [pileping)
ES-CH

a[y\b] Iy HXFI(T;0)
g+ Sub(ga, g5)
P=T,+T+z:[r], fix y¢dom(T)
n € [0,52(z)], MIIFS(z,[O1,- .., 0nl) albg, N(Ta,y: M) blkg, H=IF1(Ty; M)
a[y\b] IFy N(T;0)

5L

The Full Algorithm and its Implementation

g+~ Der(g')
g Var | [o] IF S(z,0)
VAR
x kg H*e1(0;0)

g+ App(9a. gp)
T=T,+T;

o st
-

r

)

=

Wi ©

aatie”
e
oo

o O

e
jon
e
oS T
oo

P

HETN (0 [piieqing)

github/ArrialVictor/InhabitationLambdaBang

Properties of the Inhabitation Algorithm

Properties of the Inhabitation Algorithm

Non-deterministic algorithm
\
—

-

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

\
P
e | L4
<= 0 mmpy
- 9

pa—

Theorem

The inhabitation algorithm terminates.

Properties of the Inhabitation Algorithm

Non-deterministic algorithm
\
- P

< A | ==
,7/ ~

Theorem
The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes Basisg(I', 0)).

Properties of the Inhabitation Algorithm

Non-deterministic algorithm
\
My
T

-= 0 mmpy
,,—/ <

Theorem
The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes Basisg(I', 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the [BANG]| IP.

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

N\

-t

Theorem
The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes Basisg(I', 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the [BANG| IP.
m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG| IP.

m Using generic properties so that other encodable models of computation can use these results.

Solving [NAME Inhabitation - Standard Methology

Solving [NAME Inhabitation - Standard Methology

Theorem ([BucciarelliKesnerRios14])

For any typing (', o), Basisy(I,0) exists, is finite, correct and complete.

Solving [NAME Inhabitation - Standard Methology

Theorem ([BucciarelliKesnerRios14])

For any typing (',0), Basisy(I,o) exists, is finite, correct and complete.

Built an algorithm computing Basisy(I', o) : [BucciarelliKesnerRios14]

alFT(C+x:4,7) x ¢ dom(T")
Ax.alk T(D,A — 7)

(Abs)

(a; Ik T(Ty,04))ier Tier a
V ai - TI(+ierTs, [oilier)
el

[=T1+0y alFgM=-b=B7(y gy 7)) bIFTI(My,B) n>

ab - Hx:[Ala...AnaBAT] (F, 7_)

(Union)

0
(Heads)

—————— (Head
x - H"’[T]((D, T) (Heado)

alF Hx:[Ala“.AnﬁT](F, 7_)

alFT(C+x:[A; = ...A, = 7],7T)

(Head)

Solving [NAME Inhabitation : through [BANG| Inhabitation

Solving MAME| Inhabitation : through [BANG| Inhabitation

The Basis is preserved by the embedding:

Theorem

t € Basisy(I', 0)

z
|
L

Solving [MAME| Inhabitation : through [BANG| Inhabitation

The Basis is preserved by the embedding:

Theorem
[NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG|

Solving [NAME Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
[NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG|

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME teBasisy(l,o) o [t eBasisg(l, o) BANG

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME teBasisy(l,o) o [t eBasisg(l, o) BANG

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy[,0) &

t N € Basisg(l,0)

[BANG|

Decoding

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy[,0) o

t N € Basisg(l,0)

[BANG|

Decoding

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy[,0) o

t N € Basisg(l,0)

[BANG|

Decoding

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy[,0) o

t N € Basisg(l,0)

[BANG|

Decoding

Embedding

Solving [VALUE| Inhabitation - Usual Methology

Solving VALUE| Inhabitation - Usual Methology

Theorem

For any typing (I, 0), Basis(I',o) exists, is finite, correct and complete.

VALUE|

Solving VALUE| Inhabitation - Usual Methology

Theorem

For any typing (I,), Basis(I',o) exists, is finite, correct and complete.

Built an algorithm computing Basisq/(I',0) :

Solving VALUE| Inhabitation - Usual Methology

Theorem

For any typing (I,), Basis(I',o) exists, is finite, correct and complete.

[VALUE]

Built an algorithm computing Basisq (I, o) :

I1#0
! o, r=xloilies \

< B (0,0 X N [olien) LFN@D

T=T+D; N
M=ollFSE[o=0]) | alk B (@M= 0]) ok N@:M) |
waz b H () © JxlFN@D"™

1#0
C=0"+x:[r]) T = +ierl
olkS(r,o) | alkH(10) fix x € dom() | (ailF N(Tyyx: Mizo1))ier Tier ai
alF N(T;0) " Ax. Vierai IF N(T; [Mi = 0ilie;)

T=T,+Tp+z:[p], fixy¢dom(I)U {x} i
ne[0,s2(p)], MIFS(p,[O1,....0n]) | alk HF(Tay: Mio) b HIV) (5 M)

aly\b] I+ HE (I3 0)

[=T,+T; fixy¢dom(T)U {x}
n € [Lsz(D)], [piliepm I S(7. [O1,..., On])
jen] al-S(p;0)

alt B Ty s Doiliequopyi0) b B T [pidiequn)

a[y\b] IF HY1(r;0)

T=T,+T,+z:[7], fixy¢dom(T)
ne[o,52()], MIkS(5,[01,-..,00]) | alk N(Toy: Mio) bl HZ (5 M)
aly\b] IF N(T;0)

Solving [VALUE| Inhabitation : through [BANG| Inhabitation

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
[VALUE] t € Basisy(T, o)

Solving [VALUE| Inhabitation : through [BANG| Inhabitation

The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy(l,0) & 1t eBasisgl, o) BANG

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:
Theorem

N7

VALUE] teBasisy(l,0) & 1t eBasisgl, o) BANG|

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem

[VALUE] teBasisy(l,0) & 1t eBasisgl, o) BANG|

Basisg

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:
Theorem

N7

VALUE] teBasisy(l,0) & 1t eBasisgl, o) BANG|

Basisg

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
[VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Properties of the Indirect NAME and [VALUE| Algorithm

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem

The inhabitation algorithm terminates. @
The algorithm is sound and complete é

(i.e. it exactly computes Basisg(I', 0)).

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem
The inhabitation algorithm terminates. 6\
) . “d
The algorithm is sound and complete {V"/‘\

(i.e. it exactly computes Basisg(I', 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the | BANG| IP.

m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem
The inhabitation algorithm terminates. \ A\ N
() <\ 2
The algorithm is sound and complete (V"/‘A/ - /‘{p. . @Vv\s
(i.e. it exactly computes Basis (I, 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the | BANG| IP.

m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem
The inhabitation algorithm terminates. \ PN N
L ‘\6/ L, Qe \))/9/
The algorithm is sound and complete @p/ \/(‘&9. <,
(i.e. it exactly computes Basis (T, 0)). \/

More Ambitious Third Goal
Decidability by finding all inhabitants in the | BANG| IP.

Decidability of the [NAME| and [VALUE] IP by finding all inhabitants from those of the [BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem
The inhabitation algorithm terminates. \ PN N
L ‘\6/ L, Qe \))/9/
The algorithm is sound and complete @p/ \/(‘&9. <,
(i.e. it exactly computes Basis (T, 0)). \/

More Ambitious Third Goal
Decidability by finding all inhabitants in the | BANG| IP.

Decidability of the [NAME| and [VALUE] IP by finding all inhabitants from those of the [BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem

The inhabitation algorithm terminates. 2N\ A
©) 2 <
The algorithm is sound and complete A - ,/‘/@‘/ &
g o \%“ < & qp

(i.e. it exactly computes Basis (I, 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the [BANG]| IP.
Decidability of the [NAME| and [VALUE] IP by finding all inhabitants from those of the [BANG]| IP.

Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem

The inhabitation algorithm terminates. N A
“6 @%} \36
The algorithm is sound and complete / - ,/‘/ > 4
I P oz @ >

(i.e. it exactly computes Basis (I, 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the [BANG]| IP.
Decidability of the [NAME| and [VALUE] IP by finding all inhabitants from those of the [BANG]| IP.

Using generic properties so that other encodable models of computation can use these results.

Conclusion

Summary:
m Solving the generalized inhabitation problem
m A several-for-one deal: [BANG| [NAME| |[VALUE]
m An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Conclusion

Summary:
m Solving the generalized inhabitation problem
m A several-for-one deal: [BANG| [NAME| |[VALUE]
m An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:
m Solvability (for Different Calculi in a Unified Framework)

Conclusion

Summary:
m Solving the generalized inhabitation problem
m A several-for-one deal: [BANG| [NAME| |[VALUE]
m An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:
m Solvability (for Different Calculi in a Unified Framework)

Thanks for your attention!

Thank you !

The Inhabitation

Antonio Bucciarelli!, D

* Univ Paris Diderot, Sorbo

Int

ANTONIO g, CIARELLL, ppypy BSNER
: UC + DELIA g
Y IRIF, ONpg g Uiy Paris Iyergy —~
iderot,

Dipartimento
n honour o7 1

C a\c\)
v
The

PR

LVABILITY = TYPABILITY + INHABITATION

Non—'\dempot/ent intersection
Lambda-Ca\cn\us

et and DELIA KESNER

ANTONIO BUCCIARELLL", DELIA KESNER", AND SIMONA RONCHI DELLA ROCCA~

* Université de Paris, CNRS, TRIF, France
eemal addrees: bucciaisitle

Thank you !

: tent
ion [~~~ far Non-idempo
The Inhabitation INHABITATYON FOR NON—IDEMPDTENT INTERSECT10N TYPES
Int

ANTONIQ BUCCIAREL -, DELIA Kisypg AND SIMON 4 RONCHI DRy ROCCA -

- IRIF, CONRS apg Uniy Paris Dige, ot,
“mail adgpeys {bucein kesnery o'y The p,

. iarellil, De g cajy, -
Antonio Bucciar et 0 g Anton; Ulus TeVisiteq
is Diderot, Sorbo el e soncg o U i Bl Dej
! Univ Paris Diderot, il "2 Kesne
Uni 2 Dipartimento honour of py) I ""t‘/'andm Rigg
— 3 -Mdrésv,-s
0
N BILITY + INHABITATION
\C = TYPAI ces
ca LVABILITY = CHI DELLA ROCCA
pare = ELIA KESNER", AND SIMONA RONCH] ag -
e ARELL, D ST
The on 10 BUCCIARELI
ctil ANTON
nt interse ¢ do Paris, ONRS, TRIF, France
jdempote s s, et
- u e mail a
Non bda-Caleul A KESNER
Lam and DEL!

