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Typability and Inhabitation in Intersection Types

. Anteﬂt
SOLVABILITY = TYPABILITY + INHABITATION

ANTONIO BUCCIARELLI ¢, DELIA KESNER®, AND SIMONA RONCHI DELLA ROCCA ©

@ Université de Paris, CNRS, IRIF, France
e-mail address: buccia@irif.fr

b Université de Paris, CNRS, IRIF and Institut Universitaire de France, France
e-mail address: kesnerQirif.fr

¢ Dipartimento di Informatica, Universita di Torino, Italy
e-mail address: ronchi@di.unito.it

ABSTRACT. We extend the classical notion of solvability to a A-calculus equipped with
pattern matching. We prove that solvability can be characterized by means of typability
and inhabitation in an intersection type system P based on non-idempotent types. We show
first that the system P characterizes the set of terms having canonical form, i.e. that a
term is typable if and only if it reduces to a canonical form. But the set of solvable terms
is properly contained in the set of canonical forms. Thus, typability alone is not sufficient
to characterize solvability, in contrast to the case for the A-calculus. We then prove that
typability, together with inhabitation, provides a full characterization of solvability, in the
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m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.
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alkg, BN I M= 6) blkg, N(Tp: M)
ab g H<17I(T; 0)

g9
T=I"+x:[7]
girg | alky BXITN(T0) all- $(z,0) alky B (1 o') g~ g | alby N(T;0)
alby () alrg N(T;0) NH 2, N(T;0) N
g+ Bng(g')
g+ Lam(g") I
fix x ¢ dom(T) | alby N(T,x: M; a) T =+ierl (ailFg N(Ti71)),; Tier ai g+ Bng(L) |
Ix.alFy N(T; Mo o) s 'Vierai kg N(T [7ilier) ’ 'Likg N(O;TD)

g+~ Sub(ga, g5)
P=T.+T+z:[pl, fix y¢dom(T) U {x}
n e [0,52(p)], MII-S(p, [©1,---,0n]) alrg, HET (I, y: Mio)  blbg, HEPI(T,; M)

a[y\b] g HX1F1(T;0)

g+ Sub(9a, 95)
I=T,+T;  fix y¢dom(I)U {x}
n € [Lsz(D)], [pilieping I S(z.[O1,-., 0n])

jelLn] olkS(p;0) alrg, H¥ P (T y s [pi)iepuagy30) b Ihg, HEIT (003 [pileping)
ES-CH

a[y\b] Iy HXFI(T;0)
g+ Sub(ga, g5)
P=T,+T+z:[r], fix y¢dom(T)
n € [0,52(z)], MIIFS(z,[O1,- .., 0nl) albg, N(Ta,y: M) blkg, H=IF1(Ty; M)
a[y\b] IFy N(T;0)
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The Full Algorithm and its Implementation

g+~ Der(g')
g Var | [o] IF S(z,0)
VAR
x kg H*e1(0;0)

g+ App(9a. gp)
T=T,+T;

o st
-

r

)

=

Wi ©

aatie”
e
oo

o O

e
jon
e
oS T
oo

P

HETN (0 [piieqing)

github/ArrialVictor/InhabitationLambdaBang
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Theorem
The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes Basisg(I', 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the [ BANG| IP.
m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG| IP.

m Using generic properties so that other encodable models of computation can use these results.
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Solving [NAME Inhabitation - Standard Methology

Theorem ([BucciarelliKesnerRios14])

For any typing (',0), Basisy(I,o) exists, is finite, correct and complete.

Built an algorithm computing Basisy(I', o) : [BucciarelliKesnerRios14]

alFT(C+x:4,7) x ¢ dom(T")
Ax.alk T(D,A — 7)

(Abs)

(a; Ik T(Ty,04))ier Tier a
V ai - TI(+ierTs, [oilier)
el

[=T1+0y alFgM=-b=B7(y gy 7)) bIFTI(My,B) n>

ab - Hx:[Ala...AnaBAT] (F, 7_)

(Union)

0
(Heads)

—————— (Head
x - H"’[T]((D, T) (Heado)

alF Hx:[Ala“.AnﬁT](F, 7_)

alFT(C+x:[A; = ...A, = 7],7T)

(Head)
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Solving VALUE| Inhabitation - Usual Methology

Theorem

For any typing (I, ), Basis(I',o) exists, is finite, correct and complete.

[VALUE]

Built an algorithm computing Basisq (I, o) :

I1#0
! o, r=xloilies \

< B (0,0 X N [olien) LFN@D

T=T+D; N
M=ollFSE[o=0]) | alk B (@M= 0]) ok N@:M) |
waz b H () © JxlFN@D"™

1#0
C=0"+x:[r] ) T = +ierl
olkS(r,o) | alkH(10) fix x € dom() | (ailF N(Tyyx: Mizo1))ier Tier ai
alF N(T;0) " Ax. Vierai IF N(T; [Mi = 0ilie;)

T=T,+Tp+z:[p], fixy¢dom(I)U {x} i
ne[0,s2(p)], MIFS(p,[O1,....0n]) | alk HF(Tay: Mio) b HIV) (5 M)

aly\b] I+ HE (I3 0)

[=T,+T; fixy¢dom(T)U {x}
n € [Lsz(D)], [piliepm I S(7. [O1,..., On])
jen] al-S(p;0)

alt B Ty s Doiliequopyi0) b B T [pidiequn)

a[y\b] IF HY1(r;0)

T=T,+T,+z:[7], fixy¢dom(T)
ne[o,52()], MIkS(5,[01,-..,00]) | alk N(Toy: Mio) bl HZ (5 M)
aly\b] IF N(T;0)
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Further questions and ongoing work:
m Solvability (for Different Calculi in a Unified Framework)

Thanks for your attention!
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