# Quantitative Inhabitation 

Victor Arrial Delia Kesner<br>Joint work with Giulio Guerrieri

60 ans d'Antonio Bucciarelli, Paris, 20 Juin 2023


Italy<br>France<br>Argentina<br>Brazil

2016 and 2017 Non-Idempotent Intersection Types for Lambda-Calculus. Bucciarelli-Kesner-Ventura.


2014 and 2018 Inhabitation for Non-Idempotent Intersection Types.
Bucciarelli-Kesner-RonchiDellaRocca

$2020 \quad$ The Bang Calculus Revisited.
Bucciarelli-Kesner-Rios-Viso


That Inspired an Amazing Paper ...

That Inspired an Amazing Paper ...

## Trailer

That Inspired an Amazing Paper ...

## Trailer




What is Inhabitation?

What is Inhabitation?

Typing Problem:
$t$

What is Inhabitation?

Typing Problem:
$\Gamma \vdash t: \sigma$

What is Inhabitation?


Typing Problem:
$\Gamma \vdash t: \sigma$

Computational: [Milner78]
Typers

## What is Inhabitation?



Typing Problem:

Computational: [Milner78]
Typers

## What is Inhabitation?



Typing Problem:Inhabitation Problem (IP): $\Gamma$
$\sigma$

Computational: [Milner78]
Typers

## What is Inhabitation?



Typing Problem:
「 $t: \sigma$Inhabitation Problem (IP):
$\Gamma \vdash t: \sigma$

Computational: [Milner78]
Typers

## What is Inhabitation?



Typing Problem:
$\Gamma \vdash t: \sigma$

Computational: [Milner78]
Typers


Inhabitation Problem (IP):
$\Gamma \vdash t: \sigma$
Computational: [HughesOrchard20]
Program Synthesis

## Logical: [HodasMiller94]

Proof Search and Logic Programming

## What is Inhabitation?



Typing Problem:
$\Gamma \vdash t: \sigma$

Computational: [Milner78]
Typers


Inhabitation Problem (IP):
$\Gamma \vdash t: \sigma$
Computational: [HughesOrchard20]
Program Synthesis

## Logical: [HodasMiller94]

Proof Search and Logic Programming

## What is Inhabitation?



Typing Problem:
$\Gamma \vdash t: \sigma$

Computational: [Milner78]
Typers


Inhabitation Problem (IP):
$\Gamma \vdash t: \sigma$

Computational: [HughesOrchard20]
Program Synthesis

## Logical: [HodasMiller94]

Proof Search and Logic Programming

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

## Quantitative Inhabitation for Different Lambda Calculi in a Unifying

 Framework
## Unifying Frameworks

Unifying Frameworks

## Different Models of Computation:

Call-by-Name
NAME
Call-by-Value
VALUE

## Quantitative Inhabitation for Different Lambda Calculi in a Unifying

 FrameworkQuantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Unifying Frameworks

## Different Models of Computation:

Call-by-Name
NAME

Call-by-Value VALUE

Unifying Frameworks:

- Call-by-Push-Value [Levy99]


## Unifying Frameworks

## Different Models of Computation:

Call-by-Name


Call-by-Value
VALUE

Unifying Frameworks:

- Call-by-Push-Value [Levy99]
- Bang Calculus [EhrhardGuerrieri16]


## Unifying Frameworks

## Different Models of Computation:

Call-by-Name
NAME

Call-by-Value
VALUE

Unifying Frameworks:

- Call-by-Push-Value [Levy99]
- Bang Calculus [EhrhardGuerrieri16]:

$$
t, u \quad::=\quad x|\lambda x . t| t u
$$

## Unifying Frameworks

## Different Models of Computation:

Call-by-Name


Call-by-Value VALUE

Unifying Frameworks:

- Call-by-Push-Value [Levy99]
- Bang Calculus [EhrhardGuerrieri16]:

$$
\begin{array}{ccc}
t, u \quad::= & x|\lambda x . t| t u & \\
\mid!t & \text { Values }
\end{array}
$$

BANG

## Unifying Frameworks

## Different Models of Computation:

Call-by-Name


Call-by-Value VALUE

Unifying Frameworks:

- Call-by-Push-Value [Levy99]
- Bang Calculus [EhrhardGuerrieri16]:

```
t,u ::= x|\lambdax.t|tu
    | !t Values
    | der(t) Computations
```


## Unifying Frameworks

## Different Models of Computation:

Call-by-Name
Call-by-Value
NAME

VALUE

Unifying Frameworks:

- Call-by-Push-Value [Levy99]
- Distant Bang Calculus [EhrhardGuerrieri16] [BucciarelliKesnerRiosViso20,23]:

$$
\begin{array}{rlc}
t, u:= & x|\lambda x . t| t u & \\
& \mid!t & \text { Values } \\
& \mid \operatorname{der}(t) & \text { Computations } \\
& \mid t[x:=u] & \text { Let }
\end{array}
$$

## Unifying Frameworks

## Different Models of Computation:

The Bang Calculus Revisited
$3,4(\boxtimes)$
Call-bu-N. Revisited

Unifying

- Distal

2 Institut Universitaire Aires, Buenos Aires, Argentina
argentina

4 Universidad Nacho
 subsuming botadigm was recent CBPV and version of the Ban the original system.

ANE tics. The paramge connecting revisited verities missing conversions to contribuan language consents a revest properties mutative cone. A second contrive type

## Unifying Frameworks



Distant Bang: A Subsuming Paradigm

Distant Bang: A Subsuming Paradigm

$$
t^{N}: \text { NAME } \rightarrow \text { BANG }
$$

Distant Bang: A Subsuming Paradigm

$$
t^{N}: \text { NAME } \rightarrow \text { BANG }
$$

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]
NAME $\quad t$ normal form

Distant Bang: A Subsuming Paradigm

$$
t^{N}: \text { NAME } \rightarrow \text { BANG }
$$

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]
NAME $\quad t$ normal form $\quad \Leftrightarrow \quad t^{N}$ normal form
BANG

Distant Bang: A Subsuming Paradigm

$$
t^{N}: \text { NAME } \rightarrow \text { BANG }
$$

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]
NAME $t$ normal form $\quad \Leftrightarrow \quad t^{N}$ normal form
BANG

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

$$
\text { NAME } \quad t \rightarrow u
$$

Distant Bang: A Subsuming Paradigm

$$
t^{N}: \text { NAME } \rightarrow \text { BANG }
$$

Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]
NAME $t$ normal form $\quad \Leftrightarrow \quad t^{N}$ normal form
BANG

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]
NAME $\quad t \rightarrow u \quad \Leftrightarrow \quad t^{N} \rightarrow u^{N}$

Distant Bang: A Subsuming Paradigm


Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]
NAME $\quad t$ normal form $\quad \Leftrightarrow \quad t^{N}$ normal form
BANG

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]
NAME $\quad t \rightarrow u \quad \Leftrightarrow \quad t{ }^{N} \rightarrow u^{N}$

Distant Bang: A Subsuming Paradigm


Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

| NAME | $t$ normal form | $\Leftrightarrow$ | $t^{N}$ normal form |
| :--- | :--- | :--- | :--- |
| VALUE | $t$ normal form | $\Leftrightarrow$ | $t^{V}$ normal form |

BANG

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

| NAME | $t \rightarrow u$ | $\Leftrightarrow$ | $t^{N} \rightarrow u^{N}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| VALUE | $t \rightarrow u$ | $\Leftrightarrow$ | $t^{V} \rightarrow u^{V}$ |  |

Distant Bang: A Subsuming Paradigm


Static Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

| NAME | $t$ normal form | $\Leftrightarrow$ | $t^{N}$ normal form |
| :--- | :--- | :--- | :--- |
| VALUE | $t$ normal form | $\Leftrightarrow$ | $t^{V}$ normal form |

BANG

Dynamic Properties: [BucciarelliKesnerRiosViso20,23, Arrial23]

| NAME | $t \rightarrow u$ | $\Leftrightarrow$ | $t^{N} \rightarrow u^{N}$ |
| :--- | :--- | :--- | :--- |
| VALUE | $t \rightarrow u$ | $\Leftrightarrow$ | $t^{V} \rightarrow u^{V} \quad$ BANG |

Can we do the same thing with inhabitation ?

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

## Simple Types Versus Intersection Types

$$
A, B::=\sigma \mid A \Rightarrow B
$$



## Simple Types Versus Intersection Types

$$
A, B::=\sigma \mid A \Rightarrow B
$$



## Simple Types Versus Intersection Types

$$
A, B::=\sigma \mid A \Rightarrow B
$$

Untyped terms
Terminating terms

Typable terms

$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$



$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$



$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$



$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$

Untyped terms
Terminating terms

Typable terms

- Associativity:
$A \cap(B \cap C)=(A \cap B) \cap C$

$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$



- Associativity:

$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$

$A \cap(B \cap C)=(A \cap B) \cap C$

- Commutativity:
$A \cap B=B \cap A$

Simple Types Versus Intersection Types

- Associativity:

$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$


$A \cap(B \cap C)=(A \cap B) \cap C$

- Commutativity:
$A \cap B=B \cap A$
■ Idempotency?


Simple Types Versus Intersection Types

- Associativity:

$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$


$A \cap(B \cap C)=(A \cap B) \cap C$

- Commutativity:
$A \cap B=B \cap A$
$\square$ Idempotency?
Idempotent [CoppoDezani78,80]


Simple Types Versus Intersection Types

- Associativity:
$A \cap(B \cap C)=(A \cap B) \cap C$
- Commutativity:
$A \cap B=B \cap A$
- Idempotency?

Idempotent [CoppoDezani78,80]

Typable terms


Simple Types Versus Intersection Types

- Associativity:
$A \cap(B \cap C)=(A \cap B) \cap C$
■ Commutativity:

$$
A \cap B=B \cap A
$$

$\square$ Idempotency?

| Idempotent | Non-Idempotent |
| :---: | :---: |
| [CoppoDezani78,80] | [Gardner94], [Kfoury00] |

$$
A \cap A \neq A
$$

Simple Types Versus Intersection Types

■ Associativity:

$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$


$A \cap(B \cap C)=(A \cap B) \cap C$
■ Commutativity:

$$
A \cap B=B \cap A
$$

$\square$ Idempotency?
Idempotent
[CoppoDezani78,80]

Non-Idempotent [Gardner94], [Kfoury00]

$$
A \cap A \neq A
$$

Qualitative properties
Quantitative properties [deCarvalho07]


- Associativity:

$$
A, B::=\sigma|A \Rightarrow B| A \cap B
$$

## Untyped term - for the

Non-idempotentus
IA KESNER**, Institut de Recherche en
potent
fou'00]
A DANIEL
Goiania, Brazil.

## Typability and Inhabitation in Intersection Types



Typability and Inhabitation in Intersection Types


Typability and Inhabitation in Intersection Types


## Typability and Inhabitation in Intersection Types



## Typability and Inhabitation in Intersection Types

|  | Typing <br> $? \vdash t: ?$ | Inhabitation <br> $\Gamma \vdash ?: \sigma$ |
| :---: | :---: | :---: |
| Simple Types | Decidable |  |
| Idempotent Types | Indecidable |  |
| Non-Idempotent Types | Indecidable |  |

## Typability and Inhabitation in Intersection Types

|  | Typing <br> $? \vdash t: ?$ | Inhabitation <br> $\Gamma \vdash ?: \sigma$ |
| :---: | :---: | :---: |
| Simple Types | Decidable | Decidable |
| Idempotent Types | Indecidable |  |
| Non-Idempotent Types | Indecidable |  |

## Typability and Inhabitation in Intersection Types

|  | Typing <br> $?+t: ?$ | Inhabitation <br> $\Gamma \vdash ?: \sigma$ |
| :---: | :---: | :---: |
| Simple Types | Decidable | Decidable |
| Idempotent Types | Indecidable | Indecidable [Urzyczyn99] |
| Non-Idempotent Types | Indecidable |  |

## Typability and Inhabitation in Intersection Types

|  | Typing <br> $?+t: ?$ | Inhabitation <br> $\Gamma \vdash ?: \sigma$ |
| :---: | :---: | :---: |
| Simple Types | Decidable | Decidable |
| Idempotent Types | Indecidable | Indecidable [Urzyczyn99] <br> Non-Idempotent Types |
| Indecidable | (CBN) Decidable [BKR'18] |  |

## Typability and Inhabitation in Intersection Types

Antonio Bucciarelli ${ }^{1}$, Delia Kesner ${ }^{1}$, and Simona Charis, France
Univ Paris Cit, PPS, UMR 7126 , CNRS, Paly
Universita di Torino, Italy
 be undecidable. We study the prove decidability throun problem the inhabitation we prove the decidability inn. and we consider the with pairs, and interesting in with pairs.

## Typability and Inhabitation in Intersection Types



## Typability and Inhabitation in Intersection Types



## Typability and Inhabitation in Intersection Types

|  | Typing <br> $?+t: ?$ | Inhabitation <br> $\Gamma \vdash ?: \sigma$ |
| :---: | :---: | :---: |
| Simple Types | Decidable | Decidable |
| Idempotent Types | Indecidable | Indecidable [Urzyczyn99] <br> Non-Idempotent Types |
| Indecidable | (CBN) Decidable [BKR'18] |  |

## Typability and Inhabitation in Intersection Types

|  | Typing <br> $?+t: ?$ | Inhabitation <br> $\Gamma \vdash ?: \sigma$ |
| :---: | :---: | :---: |
| Simple Types | Decidable | Decidable |
| Idempotent Types | Indecidable | Indecidable [Urzyczyn99] <br> Non-Idempotent Types |
| Indecidable | (CBN) Decidable [BKR'18] <br> (CBV) ? |  |

## Typability and Inhabitation in Intersection Types

|  | Typing <br> $?+t: ?$ | Inhabitation <br> $\Gamma \vdash ?: \sigma$ |
| :---: | :---: | :---: |
| Simple Types | Decidable | Decidable |
| Idempotent Types | Indecidable | Indecidable [Urzyczyn99] <br> Non-Idempotent Types |
| Indecidable | (CBN) Decidable [BKR'18] <br> (CBV) ? |  |

## Typability and Inhabitation in Intersection Types

|  | Typing <br> $?+t: ?$ | Inhabitation <br> $\Gamma \vdash ?: \sigma$ |
| :---: | :---: | :---: |
| Simple Types | Decidable | Decidable |
| Idempotent Types | Indecidable | Indecidable [Urzyczyn99] <br> Non-Idempotent Types |
| Indecidable | (CBN) Decidable [BKR'18] <br> (CBV) Decidable |  |

## Intersection Types and Distant Bang Calculus

Three Typing Systems: [BucciarelliKesnerRiosViso20,23]

$$
\text { NAME : } \mathcal{N} \quad \text { VALUE : } v
$$

BANG: $\mathcal{B}$

Three Typing Systems: [BucciarelliKesnerRiosViso20,23]

$$
\begin{array}{|l|l|l:}
\hline \text { NAME }: \mathcal{N A N E}: ~ \\
\text { VALUE }
\end{array}
$$

Static Properties: [BucciarelliKesnerRiosViso20,23]

$$
\text { NAME } \quad \Gamma \vdash_{N} t: \sigma
$$

Three Typing Systems: [BucciarelliKesnerRiosViso20,23]

$$
\begin{array}{lll}
\hline \text { NAME }: \mathcal{N} & \text { VALUE }: \mathcal{V} \quad \text { BANG: }
\end{array}
$$

Static Properties: [BucciarelliKesnerRiosViso20,23]

$$
\text { NAME } \quad \Gamma \vdash_{\mathcal{N}} t: \sigma \quad \Leftrightarrow \quad \Gamma \vdash_{\mathcal{B}} t^{N}: \sigma
$$

Three Typing Systems: [BucciarelliKesnerRiosViso20,23]

Static Properties: [BucciarelliKesnerRiosViso20,23]

| NAME | $\Gamma \vdash_{N} t: \sigma$ | $\Leftrightarrow$ | $\Gamma \vdash_{\mathcal{B}} t^{N}: \sigma$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| VALUE | $\Gamma \vdash_{V} t: \sigma$ | $\Leftrightarrow$ | $\Gamma \vdash_{\mathcal{B}} t^{V}: \sigma$ |  |

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

## Coming Back to Inhabitation

## Coming Back to Inhabitation

## First Goal

■ Decidability of the (more general) BANG Inhabitation Problem (IP).

## Coming Back to Inhabitation

## First Goal + More Ambitious Second Goal

■ Decidability of the (more general) BANG Inhabitation Problem (IP).

- Decidability of the NAME and VALUE IP from decidability of the BANG IP.



## Coming Back to Inhabitation

## First Goal + More Ambitious Second Goal

$\square$ Decidability of the (more general) BANG Inhabitation Problem (IP).
■ Decidability of the NAME and VALUE IP from decidability of the BANG IP.


More Ambitious Third Goal

## Coming Back to Inhabitation

## First Goal + More Ambitious Second Goal

■ Decidability of the (more general) BANG Inhabitation Problem (IP).
■ Decidability of the NAME and VALUE IP from decidability of the BANG IP.


More Ambitious Third Goal

- Decidability by finding all inhabitants in the BANG IP.


## Coming Back to Inhabitation

## First Goal + More Ambitious Second Goal

■ Decidability of the (more general) BANG Inhabitation Problem (IP).
■ Decidability of the NAME and VALUE IP from decidability of the BANG IP.


More Ambitious Third Goal

- Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.


## Coming Back to Inhabitation

## First Goal + More Ambitious Second Goal

■ Decidability of the (more general) BANG Inhabitation Problem (IP).

- Decidability of the NAME and VALUE IP from decidability of the BANG IP.


More Ambitious Third Goal

- Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.

■ Using generic properties so that other encodable models of computation can use these results.


Solving the Inhabitation Problem - Methodology

## Solving the Inhabitation Problem - Methodology



Instead of just one solution:
$\Gamma \vdash \mathrm{t}: \sigma$
We want to compute all solutions:
Sol $(\Gamma, \sigma):=\{\mathbf{t} \mid \Gamma \vdash \mathbf{t}: \sigma\}$

## Solving the Inhabitation Problem - Methodology



Instead of just one solution:
$\Gamma \vdash \mathbf{t}: \sigma$
We want to compute all solutions:
Sol $(\Gamma, \sigma):=\{\mathbf{t} \mid \Gamma \vdash \mathbf{t}: \sigma\}$

## Solving the Inhabitation Problem - Methodology



Instead of just one solution:
$\Gamma \vdash \mathbf{t}: \sigma$
We want to compute all solutions:
Sol $(\Gamma, \sigma):=\{\mathbf{t} \mid \Gamma \vdash \mathbf{t}: \sigma\}$

## Problem

( The set $\operatorname{Sol}(\Gamma, \sigma)$ is either empty of infinite BANG

Solving the Inhabitation Problem - Methodology


Instead of just one solution:

$$
\Gamma \vdash \mathbf{t}: \sigma
$$

We want to compute all solutions:
Sol $(\Gamma, \sigma):=\{\mathbf{t} \mid \Gamma \vdash \mathbf{t}: \sigma\}$

## Problem

( The set $\operatorname{Sol}(\Gamma, \sigma)$ is either empty of infinite

## BANG



We compute a finite generator:

$$
\operatorname{Basis}(\Gamma, \sigma)
$$

Which is correct and complete:

$$
\operatorname{span}(\operatorname{Basis}(\Gamma, \sigma))=\operatorname{Sol}(\Gamma, \sigma)
$$

## Solving the Inhabitation Problem - Methodology



Instead of just one solution:
$\Gamma \vdash \mathbf{t}: \sigma$
We want to compute all solutions:
Sol $(\Gamma, \sigma):=\{\mathbf{t} \mid \Gamma \vdash \mathbf{t}: \sigma\}$

## Problem

( The set $\operatorname{Sol}(\Gamma, \sigma)$ is either empty of infinite

## BANG

We compute a finite generator:

$$
\operatorname{Basis}(\Gamma, \sigma)
$$

Which is correct and complete:

$$
\operatorname{span}(\operatorname{Basis}(\Gamma, \sigma))=\operatorname{Sol}(\Gamma, \sigma)
$$

Solving the Inhabitation Problem - Methodology


Instead of just one solution:

$$
\Gamma \vdash \mathbf{t}: \sigma
$$

We want to compute all solutions:
Sol $(\Gamma, \sigma):=\{\mathbf{t} \mid \Gamma \vdash \mathbf{t}: \sigma\}$

## Problem

( The set $\operatorname{Sol}(\Gamma, \sigma)$ is either empty of infinite

## BANG



We compute a finite generator:
Basis( $\Gamma, \sigma$ )
Which is correct and complete:

$$
\operatorname{span}(\operatorname{Basis}(\Gamma, \sigma))=\operatorname{Sol}(\Gamma, \sigma)
$$

Solving the Inhabitation Problem - Methodology


Instead of just one solution:

$$
\Gamma \vdash \mathbf{t}: \sigma
$$

We want to compute all solutions:

```
Sol(\Gamma,\sigma) := {t|\Gamma\vdasht:\sigma}
```


## Problem

© The set $\operatorname{Sol}(\Gamma, \sigma)$ is either empty of infinite

## BANG

We compute a finite generator:
Basis( $\Gamma, \sigma$ )
Which is correct and complete:

$$
\operatorname{span}(\operatorname{Basis}(\Gamma, \sigma))=\operatorname{Sol}(\Gamma, \sigma)
$$

## Theorem

$\checkmark$ For any typing $(\Gamma, \sigma)$, Basis $\mathcal{B}_{\mathcal{B}}(\Gamma, \sigma)$ exists, is finite, correct and complete.

Solving the Inhabitation Problem - Methodology


Instead of just one solution:

$$
\Gamma \vdash \mathbf{t}: \sigma
$$

We want to compute all solutions:

```
Sol(\Gamma,\sigma) := {t|\Gamma\vdasht:\sigma}
```


## Problem

© The set $\operatorname{Sol}(\Gamma, \sigma)$ is either empty of infinite

## BANG

We compute a finite generator:
Basis( $\Gamma, \sigma$ )
Which is correct and complete:

$$
\operatorname{span}(\operatorname{Basis}(\Gamma, \sigma))=\operatorname{Sol}(\Gamma, \sigma)
$$

## Theorem

$\checkmark$ For any typing $(\Gamma, \sigma)$, Basis $\mathcal{B}_{\mathcal{B}}(\Gamma, \sigma)$ exists, is finite, correct and complete.

Following the Typing and a Grammar

Following the Typing and a Grammar

## Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Following the Typing and a Grammar

## Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Following the Typing and a Grammar

## Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:
■ Typing rules


Following the Typing and a Grammar

## Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

- Typing rules
- Grammar rules


Following the Typing and a Grammar

## Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

- Typing rules
- Grammar rules



## The Full Algorithm

$$
\begin{aligned}
& \frac{g \text { ma } \operatorname{Var} \mid}{x \Vdash_{g} H^{x:[\sigma]}(\emptyset ; \sigma)} \text { VAR } \quad \begin{array}{c}
g \text { mad } \operatorname{Der}\left(g^{\prime}\right) \\
{[\sigma] \Vdash-S(\tau, \diamond)}
\end{array}{a \Vdash_{g^{\prime}} H^{x:[\tau]}(\Gamma ;[\sigma])}_{\operatorname{der}(a) \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)} \text { DR } \\
& g \rightsquigarrow \operatorname{App}\left(g_{a}, g_{b}\right) \\
& \Gamma=\Gamma_{a}+\Gamma_{b} \\
& \begin{array}{c|cc}
\mathcal{M} \Rightarrow \sigma \|-S(\tau, \diamond \Rightarrow \sigma) & a \Vdash_{g_{a}} H^{x:[\tau]}\left(\Gamma_{a} ; \mathcal{M} \Rightarrow \sigma\right) \quad b \Vdash_{g_{b}} N\left(\Gamma_{b} ; \mathcal{M}\right) \\
a b \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)
\end{array} \\
& \underbrace{g \nrightarrow g^{\prime} \mid a \Vdash_{g^{\prime}} H^{x:[\tau]}(\Gamma ; \sigma)} \operatorname{l}_{g} H^{x:[\tau]}(\Gamma ; \sigma) \quad H-H \\
& \frac{\left.\begin{array}{l}
g \neq g^{\prime} \\
\Gamma=\Gamma^{\prime}+x:[\tau] \\
\sigma \|-S(\tau, \diamond)
\end{array} \right\rvert\, a \Vdash_{g^{\prime}} H^{x:[\tau]}\left(\Gamma^{\prime} ; \sigma\right)}{a \Vdash_{g} N(\Gamma ; \sigma)} N \quad \frac{g \rightsquigarrow \rightarrow g^{\prime} \mid a \Vdash_{g^{\prime}} N(\Gamma ; \sigma)}{a \Vdash_{g} N(\Gamma ; \sigma)}{ }_{N-N} \\
& g m \operatorname{Bng}\left(g^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad I \neq \emptyset
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma=\Gamma_{a}+\Gamma_{b}+z: \begin{array}{l}
g \mathrm{~mm} \operatorname{Sub}(\rho], \quad \text { fix } y \notin \operatorname{dom}(\Gamma) \cup\{x\}
\end{array} \\
& \frac{n \in \llbracket 0, \mathrm{sz}(\rho) \rrbracket, \mathcal{M} \Vdash \mid S\left(\rho,\left[\diamond_{1}, \ldots, \diamond_{n}\right]\right)}{a[y \backslash b] \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)} \quad a \Vdash_{g_{a}} H^{x:[\tau]}\left(\Gamma_{a}, y: \mathcal{M} ; \sigma\right) \quad b \Vdash_{g_{b}} H^{z:[\rho]}\left(\Gamma_{b} ; \mathcal{M}\right) \underset{\text { ES-H }}{ } \\
& g \xrightarrow{\rightsquigarrow} \operatorname{Sub}\left(g_{a}, g_{b}\right) \\
& \Gamma=\Gamma_{a}+\Gamma_{b}, \quad \text { fix } y \notin \operatorname{dom}(\Gamma) \cup\{x\} \\
& n \in \llbracket 1, \mathrm{sz}(\tau) \rrbracket,\left[\rho_{i}\right]_{i \in \llbracket 1, n \rrbracket} \| \vdash S\left(\tau,\left[\diamond_{1}, \ldots, \diamond_{n}\right]\right) \\
& \begin{array}{l|l}
j \in \llbracket 1, n \rrbracket, \sigma \| \Vdash S\left(\rho_{j}, \diamond\right) & a \Vdash_{g_{a}} H^{y:\left[\rho_{j}\right]}\left(\Gamma_{a}, y:\left[\rho_{i}\right.\right. \\
\hline a[y \backslash b] \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)
\end{array} \\
& \begin{array}{c}
g m \operatorname{Sub}\left(g_{a}, g_{b}\right) \\
\Gamma=\Gamma_{a}+\Gamma_{b}+z:[\tau], \quad \text { fix } y \notin \operatorname{dom}(\Gamma)
\end{array} \\
& \frac{n \in \llbracket 0, \text { sz }(\tau) \rrbracket, \mathcal{M} \Vdash \Vdash S\left(\tau,\left[\diamond_{1}, \ldots, \diamond_{n}\right]\right) \mid a \Vdash_{g_{a}} N\left(\Gamma_{a}, y: \mathcal{M} ; \sigma\right) \quad b \Vdash_{g_{b}} H^{z:[\tau]}\left(\Gamma_{b} ; \mathcal{M}\right)}{a[y \backslash b] \Vdash_{g} N(\Gamma ; \sigma)}{ }_{\text {ES-N }}
\end{aligned}
$$

The Full Algorithm
$g \rightsquigarrow \operatorname{App}\left(g_{a}, g_{b}\right)$

| $\begin{array}{c}\Gamma=\Gamma_{a}+\Gamma_{b} \\ \mathcal{M} \Rightarrow \sigma \\|-S(\tau, \diamond \Rightarrow \sigma)\end{array}$ | $a \Vdash_{g_{a}} H^{x:[\tau]}\left(\Gamma_{a} ; \mathcal{M} \Rightarrow \sigma\right) \quad b \Vdash_{g_{b}} N\left(\Gamma_{b} ; \mathcal{M}\right)$ |
| :---: | :---: | :---: |
| $a b \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)$ |  |

The Full Algorithm

$$
\begin{array}{c|c}
\begin{array}{c}
g \rightsquigarrow \\
\mathcal{M} \operatorname{App}\left(g_{a}, g_{b}\right) \\
\Gamma=\Gamma_{a}+\Gamma_{b} \\
\mathcal{M} \Rightarrow \sigma \| S(\tau, \diamond \Rightarrow \sigma)
\end{array} & a \Vdash_{g_{a}} H^{x:[\tau]}\left(\Gamma_{a} ; \mathcal{M} \Rightarrow \sigma\right) \quad b \Vdash_{g_{b}} N\left(\Gamma_{b} ; \mathcal{M}\right) \\
& a b \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)
\end{array}
$$

The Full Algorithm


The Full Algorithm


The Full Algorithm

$$
\begin{array}{c|c}
\begin{array}{c}
g \rightsquigarrow \\
\mathcal{M} \operatorname{App}\left(g_{a}, g_{b}\right) \\
\Gamma=\Gamma_{a}+\Gamma_{b} \\
\mathcal{M} \Rightarrow \sigma \| S(\tau, \diamond \Rightarrow \sigma)
\end{array} & a \Vdash_{g_{a}} H^{x:[\tau]}\left(\Gamma_{a} ; \mathcal{M} \Rightarrow \sigma\right) \quad b \Vdash_{g_{b}} N\left(\Gamma_{b} ; \mathcal{M}\right) \\
& a b \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)
\end{array}
$$

## The Full Algorithm

$$
\begin{aligned}
& \frac{g \text { ma } \operatorname{Var} \mid}{x \Vdash_{g} H^{x:[\sigma]}(\emptyset ; \sigma)} \text { VAR } \quad \begin{array}{c}
g \text { mad } \operatorname{Der}\left(g^{\prime}\right) \\
{[\sigma] \Vdash-S(\tau, \diamond)}
\end{array}{a \Vdash_{g^{\prime}} H^{x:[\tau]}(\Gamma ;[\sigma])}_{\operatorname{der}(a) \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)} \text { DR } \\
& g \rightsquigarrow \operatorname{App}\left(g_{a}, g_{b}\right) \\
& \Gamma=\Gamma_{a}+\Gamma_{b} \\
& \begin{array}{c|cc}
\mathcal{M} \Rightarrow \sigma \|-S(\tau, \diamond \Rightarrow \sigma) & a \Vdash_{g_{a}} H^{x:[\tau]}\left(\Gamma_{a} ; \mathcal{M} \Rightarrow \sigma\right) \quad b \Vdash_{g_{b}} N\left(\Gamma_{b} ; \mathcal{M}\right) \\
a b \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)
\end{array} \\
& \underbrace{g \nrightarrow g^{\prime} \mid a \Vdash_{g^{\prime}} H^{x:[\tau]}(\Gamma ; \sigma)} \operatorname{l}_{g} H^{x:[\tau]}(\Gamma ; \sigma) \quad H-H \\
& \frac{\left.\begin{array}{l}
g \neq g^{\prime} \\
\Gamma=\Gamma^{\prime}+x:[\tau] \\
\sigma \|-S(\tau, \diamond)
\end{array} \right\rvert\, a \Vdash_{g^{\prime}} H^{x:[\tau]}\left(\Gamma^{\prime} ; \sigma\right)}{a \Vdash_{g} N(\Gamma ; \sigma)} N \quad \frac{g \rightsquigarrow \rightarrow g^{\prime} \mid a \Vdash_{g^{\prime}} N(\Gamma ; \sigma)}{a \Vdash_{g} N(\Gamma ; \sigma)}{ }_{N-N} \\
& g m \operatorname{Bng}\left(g^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad I \neq \emptyset
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma=\Gamma_{a}+\Gamma_{b}+z: \begin{array}{l}
g \mathrm{~mm} \operatorname{Sub}(\rho], \quad \text { fix } y \notin \operatorname{dom}(\Gamma) \cup\{x\}
\end{array} \\
& \frac{n \in \llbracket 0, \mathrm{sz}(\rho) \rrbracket, \mathcal{M} \Vdash \mid S\left(\rho,\left[\diamond_{1}, \ldots, \diamond_{n}\right]\right)}{a[y \backslash b] \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)} \quad a \Vdash_{g_{a}} H^{x:[\tau]}\left(\Gamma_{a}, y: \mathcal{M} ; \sigma\right) \quad b \Vdash_{g_{b}} H^{z:[\rho]}\left(\Gamma_{b} ; \mathcal{M}\right) \underset{\text { ES-H }}{ } \\
& g \xrightarrow{\rightsquigarrow} \operatorname{Sub}\left(g_{a}, g_{b}\right) \\
& \Gamma=\Gamma_{a}+\Gamma_{b}, \quad \text { fix } y \notin \operatorname{dom}(\Gamma) \cup\{x\} \\
& n \in \llbracket 1, \mathrm{sz}(\tau) \rrbracket,\left[\rho_{i}\right]_{i \in \llbracket 1, n \rrbracket} \| \vdash S\left(\tau,\left[\diamond_{1}, \ldots, \diamond_{n}\right]\right) \\
& \begin{array}{l|l}
j \in \llbracket 1, n \rrbracket, \sigma \| \Vdash S\left(\rho_{j}, \diamond\right) & a \Vdash_{g_{a}} H^{y:\left[\rho_{j}\right]}\left(\Gamma_{a}, y:\left[\rho_{i}\right.\right. \\
\hline a[y \backslash b] \Vdash_{g} H^{x:[\tau]}(\Gamma ; \sigma)
\end{array} \\
& \begin{array}{c}
g m \operatorname{Sub}\left(g_{a}, g_{b}\right) \\
\Gamma=\Gamma_{a}+\Gamma_{b}+z:[\tau], \quad \text { fix } y \notin \operatorname{dom}(\Gamma)
\end{array} \\
& \frac{n \in \llbracket 0, \text { sz }(\tau) \rrbracket, \mathcal{M} \Vdash \Vdash S\left(\tau,\left[\diamond_{1}, \ldots, \diamond_{n}\right]\right) \mid a \Vdash_{g_{a}} N\left(\Gamma_{a}, y: \mathcal{M} ; \sigma\right) \quad b \Vdash_{g_{b}} H^{z:[\tau]}\left(\Gamma_{b} ; \mathcal{M}\right)}{a[y \backslash b] \Vdash_{g} N(\Gamma ; \sigma)}{ }_{\text {ES-N }}
\end{aligned}
$$

The Full Algorithm and its Implementation


Properties of the Inhabitation Algorithm

Properties of the Inhabitation Algorithm

Non-deterministic algorithm


Properties of the Inhabitation Algorithm

## Non-deterministic algorithm



## Theorem

The inhabitation algorithm terminates.

Properties of the Inhabitation Algorithm

## Non-deterministic algorithm



## Theorem

The inhabitation algorithm terminates.
Che algorithm is sound and complete (i.e. it exactly computes Basis $\mathcal{B}_{\mathcal{B}}(\Gamma, \sigma)$ ).

Properties of the Inhabitation Algorithm

## Non-deterministic algorithm



## Theorem

The inhabitation algorithm terminates.
(d) The algorithm is sound and complete (i.e. it exactly computes Basis $\mathcal{B}_{\mathcal{B}}(\Gamma, \sigma)$ ).

More Ambitious Third Goal
C) Decidability by finding all inhabitants in the BANG IP.

## Properties of the Inhabitation Algorithm

## Non-deterministic algorithm



## Theorem

The inhabitation algorithm terminates.The algorithm is sound and complete (i.e. it exactly computes Basis $\mathcal{B}_{\mathcal{B}}(\Gamma, \sigma)$ ).

More Ambitious Third Goal
(C) Decidability by finding all inhabitants in the BANG IP.

■ Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
■ Using generic properties so that other encodable models of computation can use these results.

Solving NAME Inhabitation - Standard Methology

Solving NAME Inhabitation - Standard Methology

Theorem ([BucciarelliKesnerRios14])
$\checkmark$ For any typing $(\Gamma, \sigma)$, Basis $_{\mathcal{N}}(\Gamma, \sigma)$ exists, is finite, correct and complete. NAME

Solving NAME Inhabitation - Standard Methology

## Theorem ([BucciarelliKesnerRios14])

$\checkmark$ For any typing $(\Gamma, \sigma)$, $\operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma)$ exists, is finite, correct and complete.

Built an algorithm computing Basis $_{\mathcal{N}}(\Gamma, \sigma)$ : [BucciarelliKesnerRios14]

$$
\begin{gathered}
\frac{\mathrm{a} \Vdash \mathrm{~T}(\Gamma+\mathrm{x}: \mathrm{A}, \tau) \quad \mathrm{x} \notin \operatorname{dom}(\Gamma)}{\lambda \mathrm{x} \cdot \mathrm{a} \Vdash \mathrm{~T}(\Gamma, \mathrm{~A} \rightarrow \tau)}(\mathrm{Abs}) \\
\frac{\left(\mathrm{a}_{i} \Vdash \mathrm{~T}\left(\Gamma_{i}, \sigma_{i}\right)\right)_{i \in I} \quad \uparrow_{i \in I} \mathrm{a}_{i}}{\bigvee_{i \in I} \mathrm{a}_{i} \Vdash \mathrm{TI}\left(+{ }_{i \in I} \Gamma_{i},\left[\sigma_{i}\right]_{i \in I}\right)}(\text { Union }) \\
\frac{\Gamma=\Gamma_{1}+\Gamma_{2} \quad \mathrm{a} \Vdash \mathrm{H}^{\mathrm{x}:\left[\mathrm{A}_{1} \rightarrow \ldots \mathrm{~A}_{n} \rightarrow \mathrm{~B} \rightarrow \tau\right]}\left(\Gamma_{1}, \mathrm{~B} \rightarrow \tau\right) \quad \mathrm{b} \Vdash \mathrm{TI}\left(\Gamma_{2}, \mathrm{~B}\right) \quad n \geq 0}{\mathrm{ab} \Vdash \mathrm{H}^{\mathrm{x}:\left[\mathrm{A}_{1} \rightarrow \ldots \mathrm{~A}_{n} \rightarrow \mathrm{~B} \rightarrow \tau\right]}(\Gamma, \tau)}\left(\mathrm{Head}_{>0}\right) \\
\frac{\mathrm{x} \Vdash \mathrm{H}^{\mathrm{x}:[\tau]}(\emptyset, \tau)}{}\left(\mathrm{Head}_{0}\right) \\
\frac{\mathrm{a} \Vdash \mathrm{H}^{\mathrm{x}:\left[\mathrm{A}_{1} \rightarrow \ldots \mathrm{~A}_{n} \rightarrow \tau\right]}(\Gamma, \tau)}{\mathrm{a} \Vdash \mathrm{~T}\left(\Gamma+\mathrm{x}:\left[\mathrm{A}_{1} \rightarrow \ldots \mathrm{~A}_{n} \rightarrow \tau\right], \tau\right)} \text { (Head) }
\end{gathered}
$$

Solving NAME Inhabitation: through BANG Inhabitation

Solving NAME Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:
Theorem
NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma)$

Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:
Theorem
NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG

Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving NAME Inhabitation: through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

NAME $\quad t \in \operatorname{Basis}_{\mathcal{N}}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{N} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Theorem
For any typing $(\Gamma, \sigma), \quad$ Basis $_{\mathcal{V}}(\Gamma, \sigma)$ exists, is finite, correct and complete. VALUE

Solving VALUE Inhabitation - Usual Methology
Theorem
For any typing $(\Gamma, \sigma), \quad \operatorname{Basis}_{\mathcal{V}}(\Gamma, \sigma)$ exists, is finite, correct and complete. VALUE

Built an algorithm computing Basis $\mathcal{V}(\Gamma, \sigma)$ :

## Solving VALUE Inhabitation - Usual Methology

## Theorem

For any typing $(\Gamma, \sigma), \quad$ Basis $_{\mathcal{V}}(\Gamma, \sigma)$ exists, is finite, correct and complete.

Built an algorithm computing Basis $\mathcal{V}(\Gamma, \sigma)$ :

$$
\begin{aligned}
& {\frac{1}{x \Vdash H_{\mathrm{F}}^{x:[\sigma]}(\emptyset ; \sigma)}}^{\text {VAR-FUN }} \\
& \frac{\left.\begin{array}{l}
I \neq \emptyset \\
x:\left[\sigma_{i}\right]_{i \in I}
\end{array} \right\rvert\,}{x \Vdash N\left(\Gamma ;[\sigma]_{i \in I}\right)} \mathrm{VAR} \text {-vAL } \\
& \frac{1}{\perp_{\vee} I+N(\emptyset ;[])}{ }^{\mathrm{VAR}}{ }_{\perp}
\end{aligned}
$$

$$
\begin{aligned}
& n \in \llbracket 1, \mathrm{sz}(\tau) \rrbracket,\left[\rho_{i}\right]_{i \in \llbracket 1, n]} \|-S\left(\tau,\left[\diamond_{1}, \ldots, \diamond_{n}\right]\right) \\
& \begin{array}{l|ll}
\substack{j \in \llbracket 1, n \rrbracket, \sigma\| \|-S\left(\rho_{j}, \diamond\right)} & a \Vdash H_{Q}^{y:\left[\rho_{j}\right]}\left(\Gamma_{a}, y:\left[\rho_{i}\right]_{i \in \llbracket 1, n \rrbracket \backslash j} ; \sigma\right) & b \Vdash H_{A}^{x:[\tau]}\left(\Gamma_{b} ;\left[\rho_{i}\right]_{i \in \llbracket 1, n]}\right) \\
& a[y \backslash b] \Vdash H_{Q}^{x:[\tau]}(\Gamma ; \sigma)
\end{array} \\
& \Gamma=\Gamma_{a}+\Gamma_{b}+z:[\tau], \quad \text { fix } y \notin \operatorname{dom}(\Gamma) \\
& \begin{array}{c|cc|}
n \in \llbracket 0, \mathrm{sz}(\tau) \rrbracket, \mathcal{M} \| \vdash S\left(\tau,\left[\diamond_{1}, \ldots, \diamond_{n}\right]\right) & a \Vdash N\left(\Gamma_{a}, y: \mathcal{M} ; \sigma\right) \quad b \Vdash H_{A}^{z:[\tau]}\left(\Gamma_{b} ; \mathcal{M}\right) \\
a[y \backslash b] \Vdash N(\Gamma ; \sigma) & \\
&
\end{array} \\
& a[y \backslash b] \Vdash N(\Gamma ; \sigma)
\end{aligned}
$$

Solving VALUE Inhabitation : through BANG Inhabitation

Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma)$

Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:
Theorem
VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG

Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:
Theorem
VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG


Solving VALUE Inhabitation : through BANG Inhabitation
The Basis is preserved by the embedding:

## Theorem

VALUE $\quad t \in \operatorname{Basis}_{V}(\Gamma, \sigma) \quad \Leftrightarrow \quad t^{V} \in \operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma) \quad$ BANG

Properties of the Indirect NAME and VALUE Algorithm

## Theorem

The inhabitation algorithm terminates.
(d) The algorithm is sound and complete
(i.e. it exactly computes Basis $\mathcal{B}_{\mathcal{B}}(\Gamma, \sigma)$ ).

## Theorem

The inhabitation algorithm terminates.
(d) The algorithm is sound and complete (i.e. it exactly computes Basis $\mathcal{B}_{\mathcal{B}}(\Gamma, \sigma)$ ).

## More Ambitious Third Goal

C. Decidability by finding all inhabitants in the BANG IP.

- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.

■ Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and VALUE Algorithm

## Theorem

The inhabitation algorithm terminates.
( The algorithm is sound and complete (i.e. it exactly computes Basis $(\Gamma, \sigma)$ ).

## More Ambitious Third Goal

C) Decidability by finding all inhabitants in the BANG IP.

- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.

■ Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and VALUE Algorithm

## Theorem

The inhabitation algorithm terminates.
(4) The algorithm is sound and complete (i.e. it exactly computes Basis $(\Gamma, \sigma)$ ).

## More Ambitious Third Goal

$\checkmark$ Decidability by finding all inhabitants in the BANG IP.
(C) Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.

■ Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and VALUE Algorithm

## Theorem

The inhabitation algorithm terminates.
( The algorithm is sound and complete (i.e. it exactly computes Basis $(\Gamma, \sigma)$ ).

## More Ambitious Third Goal

$\checkmark$ Decidability by finding all inhabitants in the BANG IP.
(C) Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.

■ Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and VALUE Algorithm

## Theorem

The inhabitation algorithm terminates.The algorithm is sound and complete (i.e. it exactly computes Basis $(\Gamma, \sigma)$ ).

## More Ambitious Third Goal

Decidability by finding all inhabitants in the BANG IP.
(C) Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.

C Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and VALUE Algorithm

## Theorem

The inhabitation algorithm terminates.The algorithm is sound and complete (i.e. it exactly computes Basis $(\Gamma, \sigma)$ ).

## More Ambitious Third Goal

Decidability by finding all inhabitants in the BANG IP.
C Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
Using generic properties so that other encodable models of computation can use these results.

Conclusion

=

## Conclusion

## Summary:

■ Solving the generalized inhabitation problem

- A several-for-one deal: BANG NAME VALUE OTHERS

■ An implementation: (github/ArrialVictor/InhabitationLambdaBang)

## Conclusion

## Summary:

■ Solving the generalized inhabitation problem

- A several-for-one deal: BANG NAME VALUE OTHERS

■ An implementation: (github/ArrialVictor/InhabitationLambdaBang)

## Further questions and ongoing work:

■ Solvability (for Different Calculi in a Unified Framework)

## Conclusion

## Summary:

■ Solving the generalized inhabitation problem

- A several-for-one deal: BANG NAME VALUE OTHERS

■ An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:
■ Solvability (for Different Calculi in a Unified Framework)

## Thanks for your attention!

## Thank you!



## Happy Birthday !

Thank you!


