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Abstract
In this paper we study properties of the encodings of CBN and CBV into a CBPV like

language

1 Introduction

Bang Calculus. P.B. Levy introduced Call-by-Push-Value (CBPV) [13] as a subsuming lan-
guage, so that different evaluation strategies of the λ-calculus can be captured in a uniform
framework by the simple use of two primitives: thunk (to pause a computation) and force (to
resume a computation). This mechanism is powerful enough to encode, in particular, Call-
by-Name (CBN) and Call-by-Value [14] (CBV). The original CBPV has been introduced in a
simply typed framework, but the underlying (untyped) syntax and operational semantics –the
ones we are interested in here– already provide a powerful untyped subsuming mechanism. De-
spite that, CBN and CBV have always been studied notably by developing different techniques
for one and the other. Some rare exceptions are [5, 8, 12, 3], where some particular property
for CBN/CBV (e.g. quantitative typing, factorization, tight typing, inhabitation) is derived
from the corresponding property for a language that is a restriction of CBPV, via a suitable
CBN/CBV encoding. Such a language can be the bang calculus [7, 10, 11] (in turn inspired
by Ehrhard [6], combining ideas from Levy’s CBPV [13] and Girard’s linear logic [9]), or its
variant the λ!-calculus [5, 12] where reduction rules act at a distance.

Normal Form, Simulation and Reverse Simulation. In this work, we are interested in
the preservation of the reduction relation by the encoding. On one hand and from a static point
of view, one may consider the preservation of normal forms: t is a normal form if and only
if te is a normal form, where te is the e-encoding of t. On the second hand and from a more
dynamical point of view, two properties can naturally be considered. Simulation: reduction
steps are transported into the subsuming paradigm (i.e. if t → u in the subsumed language
then te → ue in the subsuming language). Reverse simulation: reduction steps are recovered
from the subsuming paradigm (i.e. if te → ue in the subsuming language then t → u in the
subsumed language).

Some of these properties have been studied for CBPV [13], bang calculus [10] and λ!-calculus
[5] but a full analysis is still missing. In this work, we look into the normal form preservation,
simulation and reverse simulation for the λ!-calculus. In particular, taking into account distance
is not a trivial matter in that it requires modifications of the call-by-value encoding.

2 The λ!-Calculus

We now briefly introduce the λ!-calculus [5]. Given a countably infinite set X of variables
x, y, z, ..., the set Λ! of terms is given by the following inductive definition:

(Terms) t, u ::= x ∈ X | λx.t | tu | t[x\u] | !t | der(t)



xcbn = x xcbv = !x

(λx.t)
cbn

= λx.tcbn (λx.t)
cbv

= !λx.tcbv

(tu)
cbn

= tcbn!ucbn (tu)
cbv

=

{
L ⟨s⟩ucbv if tcbv = L ⟨!s⟩
der(tcbv)ucbv otherwise

(t[x\u])cbn = tcbn[x\!ucbn] (t[x\u])cbv = tcbv[x\ucbv]

Figure 1: CbN and CbV Embeddings for λ!-Calculus [5]

The set Λ! includes λ-terms (variables x, abstractions λx.t and applications tu) as well as three
new constructors: a closure t[x\u] representing a pending explicit substitution [x\u] on a term
t, a bang !t to freeze the execution of t, and a dereliction der(t) to fire again the frozen term t.
The usual notion of α-conversion [4] is extended to the whole set Λ!, and terms are identified up
to α-conversion. We denote by t{x := v} the usual (capture avoiding) meta-level substitution
of the term u for all free occurrences of the variable x in the term t.

The sets of list contexts L, surface contexts S and full contexts F, which can be seen as terms
containing exactly one hole ⋄, are inductively defined as follows:

(List) L ::= ⋄ | L[x\t]
(Surface) S ::= ⋄ | λx.S | S t | t S | S[x\t] | t[x\S] | der(S)

(Full) F ::= ⋄ | λx.F | F t | t F | F[x\t] | t[x\F] | der(F) | !F

The hole can occur everywhere in F, while in S it cannot occur under a !. We write L ⟨t⟩ for the
term obtained by replacing the hole in L with the term t and similarly for S and F.

The following three rewriting rules are the base components of our reduction relations:

L ⟨λx.t⟩u 7→dB L ⟨t[x\u]⟩ t[x\L ⟨!u⟩] 7→s! L ⟨t{x := u}⟩ der(L ⟨!t⟩) 7→d! L ⟨t⟩

Rule dB (resp. s!) is assumed to be capture free, so no free variable of u (resp. t) is captured
by the context L. The rule dB fires a standard β-redex and generates an explicit substitution.
The rule s! fires an explicit substitution provided that its argument is a bang. The rule d!

defrosts a frozen term. In all of these rewrite rules, the reduction acts at a distance [1]: the
main constructors involved in the rule can be separated by a finite –possibly empty– list L of
explicit substitutions. This mechanism unblocks redexes that otherwise would be stuck, e.g.
(λx.x)[y\w]!z 7→dB x[x\!z][y\w] fires a β-redex by taking L = ⋄[y\w] as the list context in
between the function λx.x and the argument !z.

The surface reduction relation →S is the surface closure of any of the three rewrite rules dB,
s! and d!, i.e. →S only fires redexes in surface contexts, and not under bang. Similarly, the full
reduction relation →F is the full closure of any of the rewrite rules, so that →F reduces under
full contexts and thus the bang loses its freezing behavior. For example,

(λx.!der(!x))!y →S (!der(!x))[x\!y] →S !der(!y) →F !y

Note that the first two steps are also →F-steps, while the last step is not an →S-step. More
generally, we have →S⊆→F. Moreover, we denote by ↠S (resp. ↠F) the reflexive and transitive
closure of →S (resp. →F).



3 Call-by-Name – λn

We now briefly introduce the (call-by-name) λn-calculus. Given a countably infinite set X of
variables x, y, z, ..., the set Λn of terms is given by the following inductive definition:

(Terms) t, u ::= x ∈ X | λx.t | tu | t[x\u]

Terms are identified up the the usual notion of α-conversion [4] and we denote by t{x := v}
the expected (capture avoiding) meta-level substitution. The sets of list contexts L, surface
contexts N and full contexts C, are inductively defined as follows:

(List) L ::= ⋄ | L[x\t]
(Surface) N ::= ⋄ | λx.N | N t | N[x\t]

(Full) C ::= ⋄ | λx.C | C t | t C | C[x\t] | t[x\C]

The hole can occur everywhere in C, while in N it cannot occur in the argument of an application
nor an explicit substitution.

The following rewriting rules are the base components of our reduction relations:

L ⟨λx.t⟩u 7→dB L ⟨t[x\u]⟩ t[x\u] 7→s t{x := u}

The surface reduction relation →N (resp. full reduction relation →C) is defined as the surface
closure N (resp. full closure C) of the rules dB and s presented above. Moreover, we denote by
↠N (resp. ↠C) the reflexive transitive closure of the surface reduction →N (resp. full reduction
→C). Finally, a term t ∈ Λn is said in to be a surface (resp. full) normal form if there is no u
such that t →N u (resp. t →C u).

The embedding ·cbn presented in (Fig. 1) has been shown [5] to preserve surface normal
forms. However, this property can be strengthen to also include full normal forms:

Theorem 3.1 (Normal Forms Preservation). Let t ∈ Λn, then t is a surface (resp. full) normal
form if and only if tcbn is a surface (resp. full) normal form.

Rather than just looking at static properties, we are actually interested in dynamic ones.
In particular, surface reduction is well transported into the bang calculus (simulation property
in [5]). Interestingly, we show that it also holds for the full reduction. Moreover, we show that
reverse simulation is also verified for both surface and full reductions.

Theorem 3.2 (Surface/Full Simulation and Reverse Simulation). Let t, u ∈ Λn, then:

• t →N u (resp. t ↠N u) if and only if tcbn →S ucbn (resp. tcbn ↠S ucbn).

• t →C u (resp. t ↠C u) if and only if tcbn →F u
cbn (resp. tcbn ↠F u

cbn).

Moreover, the number of dB (resp. s) steps exactly matches the number of dB (resp. s!) steps.

4 Call-by-Value – λvsub

We now briefly introduce the (distant call-by-value) λvsub-calculus [2]. The set Λv of terms is
given by the following inductive definitions:

(Terms) t, u ::= v | tu | t[x\u]
(Values) v ::= x ∈ X | λx.t



In Λn: (λx.((λy.y)z))z ̸→V (λx.(y[y\z]))zy·cbv y·cbv
In Λ!: (λx.((λy.!y) (!z))) (!z) →S (λx.((!y)[y\!z])) (!z)

Figure 2: A Counterexample of the CbV Reverse Simulation Property

xCBV = !x

(λx.t)
CBV

= !λx.!tCBV

(tu)
CBV

=

{
der(L ⟨s⟩uCBV) if tCBV = L ⟨!s⟩
der(der(tCBV)uCBV) otherwise

(t[x\u])CBV = tCBV[x\uCBV]

Figure 3: A New Call-by-Value Embedding for Bang-calculus

Again, we consider the set of terms up to the usual α-conversion [4] and we denote by t{x := v}
the expected (capture avoiding) meta-level substitution. The sets of list contexts L, surface
contexts V and full contexts C, are inductively defined as follows:

(List) L ::= ⋄ | L[x\t]
(Surface) V ::= ⋄ | V t | t V | V[x\t] | t[x\V]

(Full) C ::= ⋄ | λx.C | C t | t C | C[x\t] | t[x\C]

In particular, the hole can occur everywhere in C, while in V it cannot occur under an abstraction.
The following rewriting rules are the base components of our reduction relations.

L ⟨λx.t⟩u 7→dB L ⟨t[x\u]⟩ t[x\L ⟨v⟩] 7→sV L ⟨t{x := v}⟩

In both these rules the reduction acts at a distance in order to deal with stuck redexes since
this phenomenon also appear in call-by-value. The surface reduction relation →V (resp. full
reduction relation →C) is defined as the surface closure V (resp. full closure C) of the rules dB
and sV presented above. We denote by ↠V (resp. ↠C) the reflexive transitive closure of the
surface reduction →V (resp. full reduction →C) and finally, a term t ∈ Λv is said in to be a
surface (resp. full) normal form if there is no u such that t →V u (resp. t →C u).

The embedding ·cbv presented in Fig. 1 preserves surface normal forms and satisfies the
simulation property for the surface reduction [5]. However, reverse simulation fails for the
surface reduction. A counter example can be found in Fig 2.

We introduce in Fig. 3 a new call-by-value embedding ·CBV solving the issue. The main
difference can be found in the abstraction case where two ! are used instead of one. The
application is then adapted by placing an additional dereliction on the outside. This dereliction
gets rid of the bang on the body of the abstraction once the dB redex has been fired. This
restores access to the body of the previously existing abstraction, matching the phenomenon
at play in distance.

This new embedding has the same good static property of preserving the surface normal
forms and is additionally shown to preserve full normal forms.

Theorem 4.1 (Normal Forms Preservation). Let t ∈ Λv, then t is a surface (resp. full) normal
form if and only if tCBV is a surface (resp. full) normal form.



Moreover and as intended, this new encoding is satisfying both simulation and reverse
simulation properties for both surface and full reductions:

Theorem 4.2 (Surface/Full Simulation and Reverse Simulation). Let t, u ∈ Λvsub, then:

• t →V u (resp. t ↠V u) if and only if tCBV ↠S uCBV.

• t →C u (resp. t ↠C u) if and only if tCBV ↠F u
CBV.

where the number of dB (resp. s) steps exactly matches the number of dB (resp. s!) steps.
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