Victor Arrial ¹ Giulio Guerrieri ^{2,3} Delia Kesner ^{1,4}

¹Université Paris Cité, Paris ²Aix Marseille Univ, Marseille

³Edinburgh Research Centre, Huawei, Edinburgh

⁴Institut Universitaire de France

Boston, January 20, 2023

Victor Arrial ¹ Giulio Guerrieri ^{2,3} Delia Kesner ^{1,4}

¹Université Paris Cité, Paris ²Aix Marseille Univ, Marseille

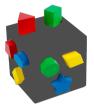
³Edinburgh Research Centre, Huawei, Edinburgh

⁴Institut Universitaire de France

Boston, January 20, 2023

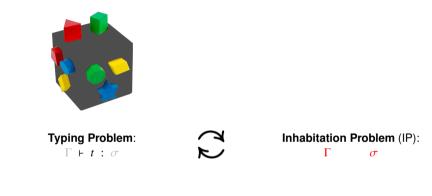
Typing Problem:

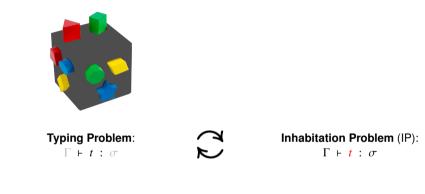
Typing Problem: $\Gamma \vdash t : \sigma$

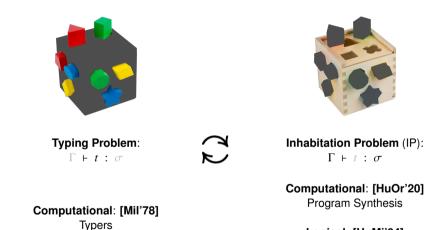


Typing Problem: $\Gamma \vdash t : \sigma$

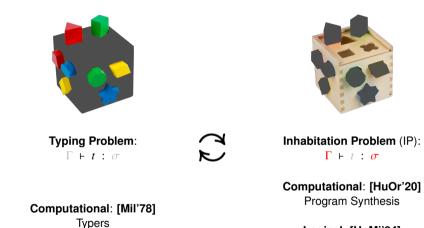




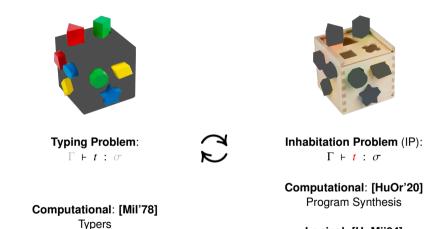




Logical: [HoMi'94] Proof Search and Logic Programming



Logical: [HoMi'94] Proof Search and Logic Programming



Logical: [HoMi'94] Proof Search and Logic Programming

Unifying Frameworks:

• Call-by-Push-Value [Levy'99]

- Call-by-Push-Value [Levy'99]
- Bang Calculus [EG'16]

Unifying Frameworks:

- Call-by-Push-Value [Levy'99]
- Bang Calculus [EG'16]:

t, u ::= $x \mid \lambda x.t \mid tu$

BANG

- Call-by-Push-Value [Levy'99]
- Bang Calculus [EG'16]:

$$t, u ::= x | \lambda x.t | tu$$
$$| !t$$
Values

- Call-by-Push-Value [Levy'99]
- Bang Calculus [EG'16]:

$$t, u ::= x | \lambda x.t | tu$$

$$| !t Values$$

$$| der(t) Computations$$

- Call-by-Push-Value [Levy'99]
- Distant Bang Calculus [EG'16] [BKRV'20]:

$$t, u ::= x | \lambda x.t | tu$$

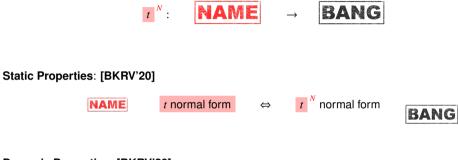
$$| !t Values$$

$$| der(t) Computations$$

$$| t[x:=u] Let$$

Static Properties: [BKRV'20]

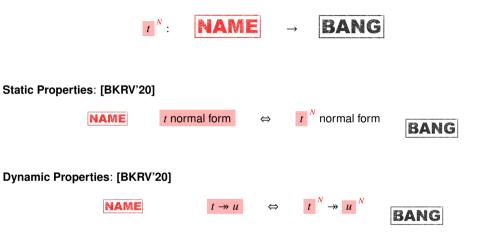
Static Properties: [BKRV'20]

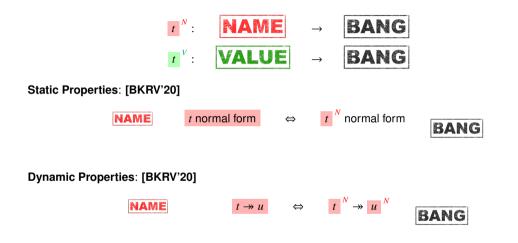


Dynamic Properties: [BKRV'20]

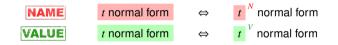
NAME

 $t \twoheadrightarrow u$





Static Properties: [BKRV'20]



Dynamic Properties: [BKRV'20]

BANG

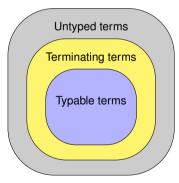
Static Properties: [BKRV'20]

Dynamic Properties: [BKRV'20]

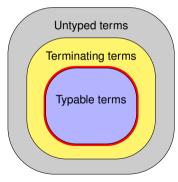
Can we do the same thing with inhabitation ?

Simple Types Versus Intersection Types

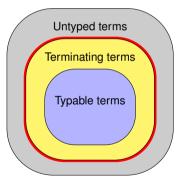
$$A,B ::= \sigma \mid A \Rightarrow B$$



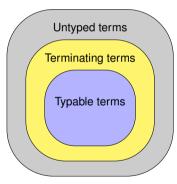
$$A,B ::= \sigma \mid A \Rightarrow B$$



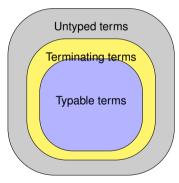
$$A,B ::= \sigma \mid A \Rightarrow B$$



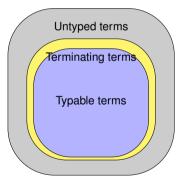
 $A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$



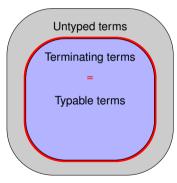
$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$



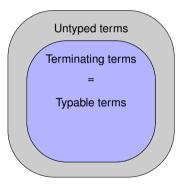
$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$



$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

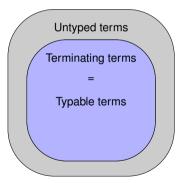


 $A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$



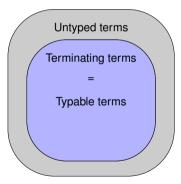
• Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$

$$A, B ::= \sigma \mid A \Rightarrow B \mid \underline{A} \cap \underline{B}$$



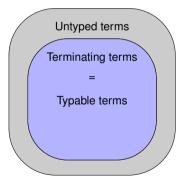
- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$



- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

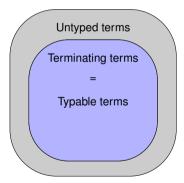
$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$



- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

```
Idempotent
[CoDe'78],[CoDe'80]
A \cap A = A
```

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

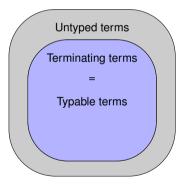


- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

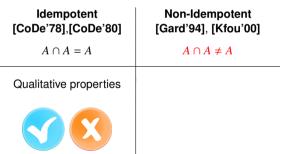
Idempotent [CoDe'78],[CoDe'80] $A \cap A = A$

Qualitative properties

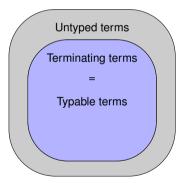
$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$



- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

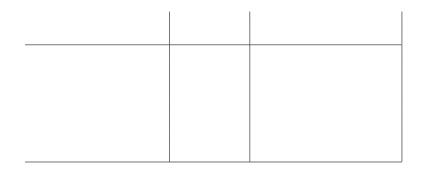


$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$



- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- Commutativity: $A \cap B = B \cap A$
- Idempotency?

Idempotent [CoDe'78],[CoDe'80]	Non-Idempotent [Gard'94], [Kfou'00]
$A \cap A = A$	$A \cap A \neq A$
Qualitative properties	Quantitative properties [dCarv'07]



Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types		
Idempotent Types Non-Idempotent Types		

-

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	
Idempotent Types		
Non-Idempotent Types		

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	
Idempotent Types	Indecidable	
Non-Idempotent Types	Indecidable	

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	
Non-Idempotent Types	Indecidable	

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18]

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18] (CBV) ?

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18] (CBV) ?

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ?: \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18] (CBV) <mark>Decidable</mark>

NAME:
$$N$$
VALUE: \mathcal{V} BANG: \mathcal{B}

NAME:
$$\mathcal{N}$$
VALUE: \mathcal{V} BANG: \mathcal{B}

Static Properties: [BKRV'20]

NAME :
$$\mathcal{N}$$
 VALUE : \mathcal{V} **BANG** : \mathcal{B}

Static Properties: [BKRV'20]

NAME
$$\Gamma \vdash_{\mathcal{N}} t : \sigma \quad \Leftrightarrow \quad \Gamma \vdash_{\mathcal{B}} t^{\mathcal{N}} : \sigma$$
 BANG

NAME :
$$N$$
 VALUE : V **BANG** : B

Static Properties: [BKRV'20]

NAME
$$\Gamma \vdash_N t : \sigma$$
 \Leftrightarrow $\Gamma \vdash_B t$ N : σ VALUE $\Gamma \vdash_V t : \sigma$ \Leftrightarrow $\Gamma \vdash_B t$ V : σ

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

First Goal

Decidability of the (more general) **BANG** Inhabitation Problem (IP).

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the BANG IP.

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

- Decidability by finding all inhabitants in the **BANG** IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

- Decidability by finding all inhabitants in the **BANG** IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute **all** solutions: $Sol(\Gamma, \sigma) := \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\}$

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute all solutions: $Sol(\Gamma, \sigma) := \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\}$

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute all solutions: $\operatorname{Sol}(\Gamma, \sigma) := \{ \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \}$

Problem

 \mathfrak{O} The set So1(Γ, σ) is either empty of infinite

BANG

Instead of just one solution: $\begin{array}{l} \Gamma \vdash \mathbf{t} : \sigma \\ \text{We want to compute all solutions:} \\ \text{Sol}(\Gamma, \sigma) \ := \ \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \} \end{array}$

Problem

 \mathfrak{S} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a finite generator: Basis(Γ, σ) Which is correct and complete: span(Basis(Γ, σ)) = Sol(Γ, σ)

Instead of just one solution: $\begin{array}{l} \Gamma \vdash \mathbf{t} : \sigma \\ \text{We want to compute all solutions:} \\ \text{Sol}(\Gamma, \sigma) \ := \ \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\} \end{array}$

Problem

 \mathfrak{S} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a **finite** generator: Basis(Γ, σ) Which is **correct** and **complete**: span(Basis(Γ, σ)) = Sol(Γ, σ)

Instead of just one solution: $\begin{array}{l} \Gamma \vdash \mathbf{t} : \sigma \\ \text{We want to compute all solutions:} \\ \text{Sol}(\Gamma, \sigma) \ := \ \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\} \end{array}$

Problem

 \mathfrak{S} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a **finite** generator: Basis(Γ, σ) Which is **correct** and **complete**: **span**(Basis(Γ, σ)) = Sol(Γ, σ)

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute all solutions: $\operatorname{Sol}(\Gamma, \sigma) := \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\}$

Problem

 \mathfrak{N} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a **finite** generator: Basis(Γ, σ) Which is **correct** and **complete**: span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

Solution \mathbf{Y} For any typing (Γ, σ) , $\operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma)$ **exists**, is **finite**, **correct** and **complete**.

Instead of just one solution: $\Gamma \vdash \mathbf{t} : \sigma$ We want to compute all solutions: $\operatorname{Sol}(\Gamma, \sigma) := \{\mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma\}$

Problem

 \mathfrak{N} The set So1(Γ, σ) is either empty of infinite

BANG

We compute a **finite** generator: Basis(Γ, σ) Which is **correct** and **complete**: span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

Solution \mathbf{Y} For any typing (Γ, σ) , $\operatorname{Basis}_{\mathcal{B}}(\Gamma, \sigma)$ **exists**, is **finite**, **correct** and **complete**.

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

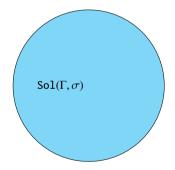
Follows two sets of rules:

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Typing rules



Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Typing rules

Grammar rules

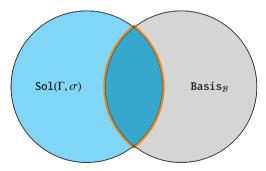
Follows two sets of rules: $Sol(\Gamma, \sigma)$ Basis_B

Computing the basis:

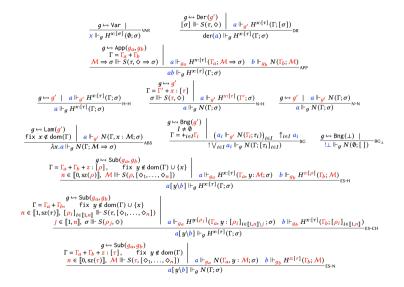
Recreate typing trees, but only on elements of the Basis.

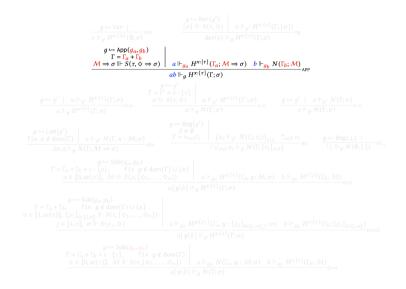
Follows two sets of rules:

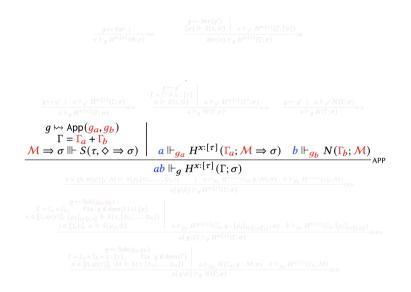
- Typing rules
- Grammar rules

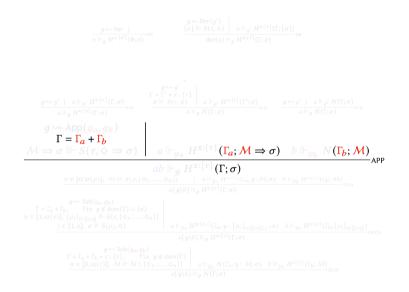


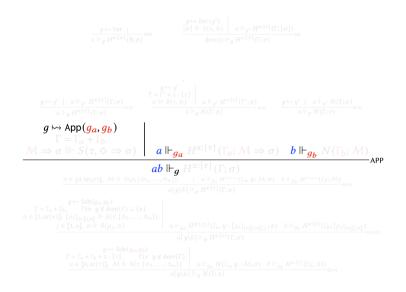
The Full Algorithm

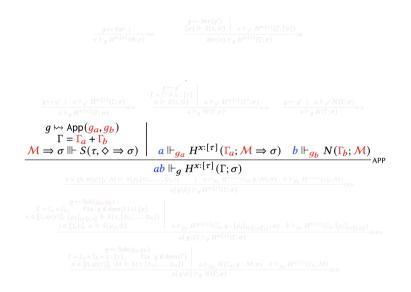




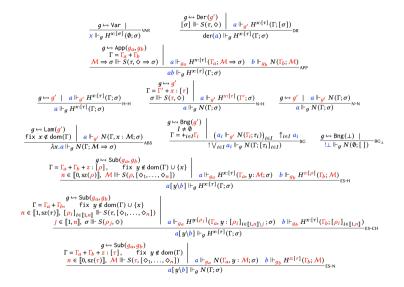








The Full Algorithm

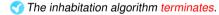


The Full Algorithm and its Implementation

Non-deterministic algorithm

Non-deterministic algorithm

Theorem



Non-deterministic algorithm

Theorem

- The inhabitation algorithm terminates.
- **(**) The algorithm is sound and complete (i.e. it exactly computes $Basis_{\mathcal{B}}(\Gamma, \sigma)$).

Non-deterministic algorithm

Theorem

The inhabitation algorithm terminates.

() The algorithm is sound and complete (i.e. it exactly computes $Basis_{\mathcal{B}}(\Gamma, \sigma)$).

More Ambitious Third Goal

Decidability by finding all inhabitants in the BANG IP.

Non-deterministic algorithm

Theorem

- The inhabitation algorithm terminates.
- 🕜 The algorithm is sound and complete (i.e. it exactly computes $t Basis_{\mathscr{B}}(\Gamma,\sigma)$).

More Ambitious Third Goal

- C Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

Solving NAME Inhabitation - Standard Methology

Theorem ([BKR'14])

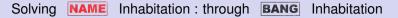
Solution For any typing (Γ, σ) , Basis_N (Γ, σ) exists, is finite, correct and complete.

Theorem ([BKR'14])

Solution For any typing (Γ, σ) , **Basis**_N (Γ, σ) **exists**, is **finite**, **correct** and **complete**.

Built an algorithm computing $Basis_{\mathcal{N}}(\Gamma, \sigma)$: [**BKR'14**]

$$\begin{split} \frac{\mathbf{a} \Vdash \mathbf{T}(\Gamma + \mathbf{x}: \mathbf{A}, \tau) \qquad \mathbf{x} \notin \operatorname{dom}(\Gamma)}{\lambda \mathbf{x}. \mathbf{a} \Vdash \mathbf{T}(\Gamma, \mathbf{A} \to \tau)} \quad \text{(Abs)} \\ \\ \frac{(\mathbf{a}_i \Vdash \mathbf{T}(\Gamma_i, \sigma_i))_{i \in I} \qquad \uparrow_{i \in I} \mathbf{a}_i}{\bigvee_{i \in I} |\mathbf{H} \top \mathbf{I}(+_{i \in I}\Gamma_i, [\sigma_i]_{i \in I})} \quad \text{(Union)} \\ \\ \frac{\Gamma = \Gamma_1 + \Gamma_2 \qquad \mathbf{a} \Vdash \mathbf{H}^{\mathbf{x}: [\mathbf{A}_1 \to \dots \mathbf{A}_n \to \mathbf{B} \to \tau]} (\Gamma_1, \mathbf{B} \to \tau) \quad \mathbf{b} \Vdash \mathbf{TI}(\Gamma_2, \mathbf{B}) \qquad n \geq 0}{\mathbf{a} \mathbf{b} \Vdash \mathbf{H}^{\mathbf{x}: [\mathbf{A}_1 \to \dots \mathbf{A}_n \to \mathbf{B} \to \tau]} (\Gamma, \tau)} \quad \text{(Head}_{>0}) \\ \\ \frac{\mathbf{a} \Vdash \mathbf{H}^{\mathbf{x}: [\mathbf{A}_1 \to \dots \mathbf{A}_n \to \mathbf{A}^-]} (\Gamma, \tau)}{\mathbf{a} \Vdash \mathbf{T}(\Gamma + \mathbf{x}: [\mathbf{A}_1 \to \dots \mathbf{A}_n \to \tau], \tau)} \quad \text{(Head)} \end{split}$$



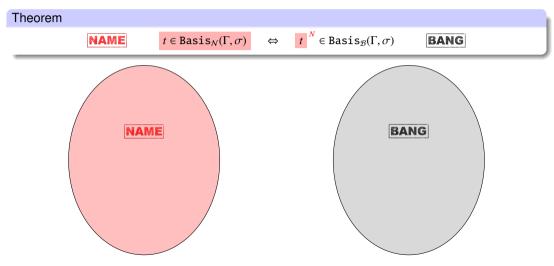
Solving NAME Inhabitation : through BANG Inhabitation

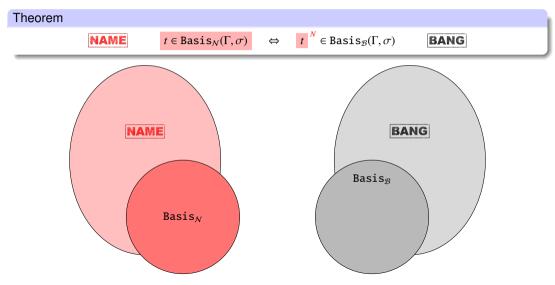
The Basis is preserved by the embedding:

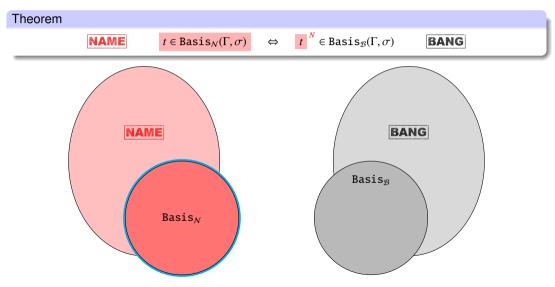
Theorem NAME $t \in \text{Basis}_{\mathcal{N}}(\Gamma, \sigma)$

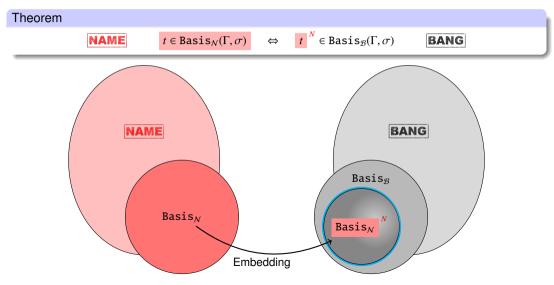
Solving NAME Inhabitation : through BANG Inhabitation

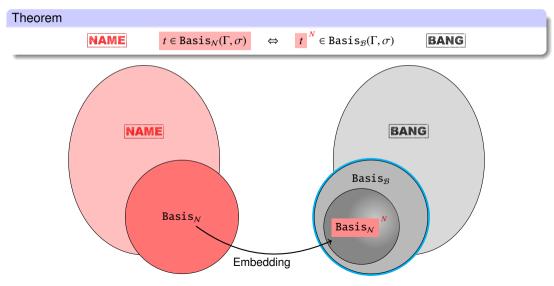
The Basis is preserved by the embedding:

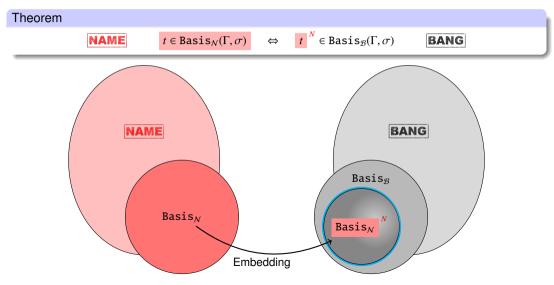


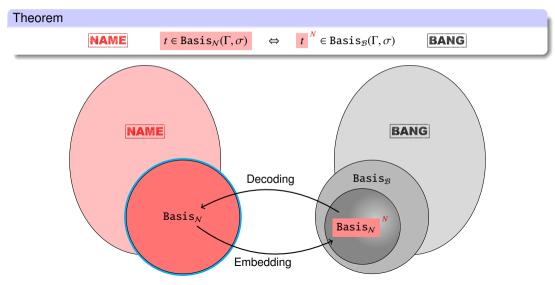


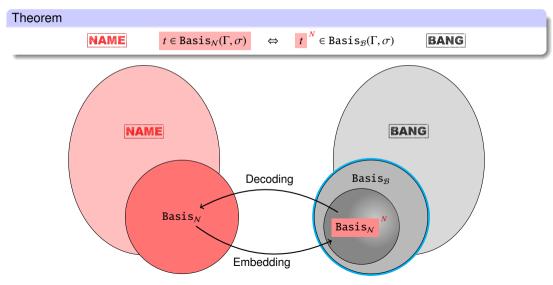


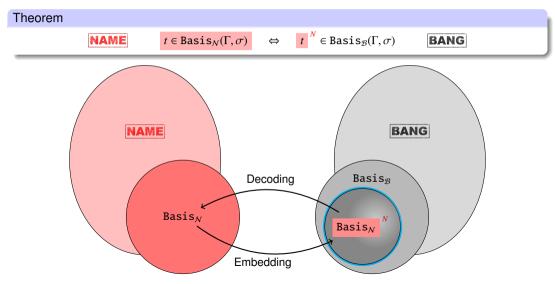


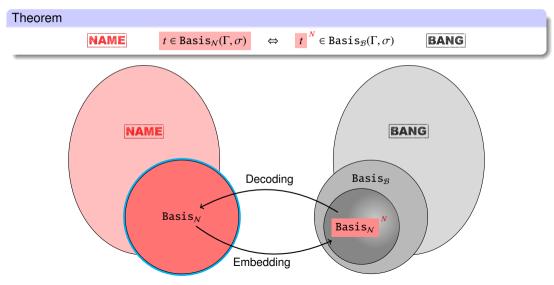


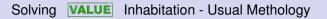












Solving VALUE Inhabitation - Usual Methology

Theorem \checkmark For any typing (Γ, σ) , Basis $_{\mathcal{V}}(\Gamma, \sigma)$ exists, is finite, correct and complete.**VALUE**

Solving VALUE Inhabitation - Usual Methology

Theorem			
\checkmark For any typing (Γ, σ) ,	$\mathtt{Basis}_{\mathcal{V}}(\Gamma,\sigma)$	exists, is finite, correct and complete.	VALUE

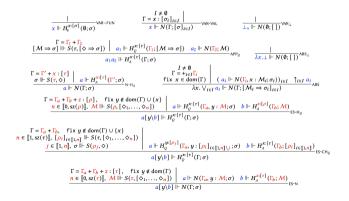
Built an algorithm computing $Basis_{\mathcal{V}}(\Gamma, \sigma)$:

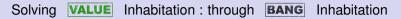
Solving VALUE Inhabitation - Usual Methology

Theorem

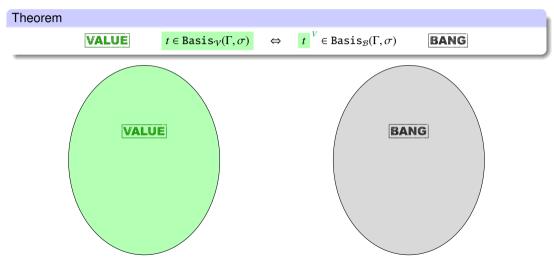
Solution For any typing (Γ, σ) , **Basis**_V (Γ, σ) exists, is finite, correct and complete.

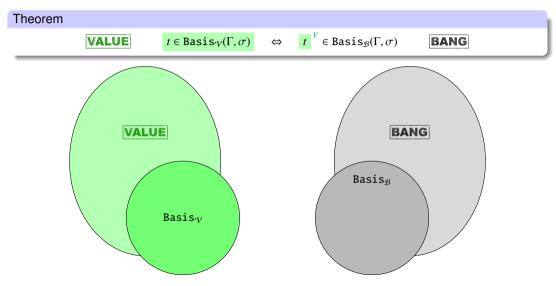
Built an algorithm computing $Basis_{\mathcal{V}}(\Gamma, \sigma)$:

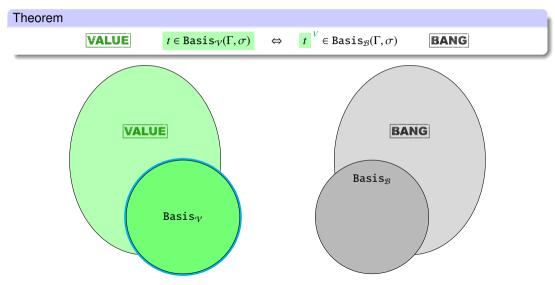


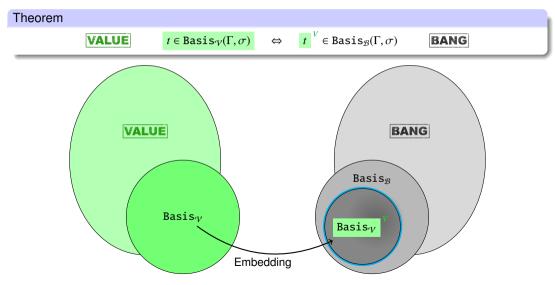


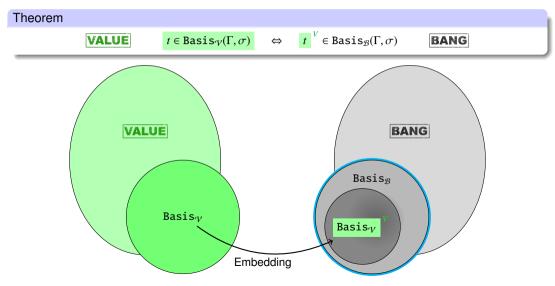
Theorem			
	VALUE	$t\in \texttt{Basis}_{\mathcal{V}}(\Gamma,\sigma)$	

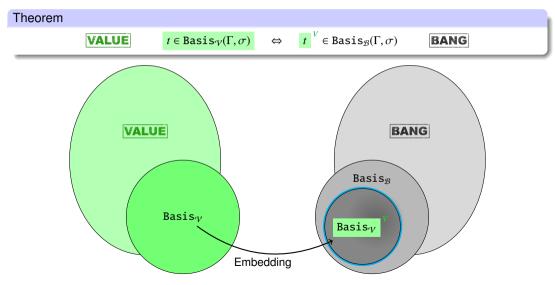


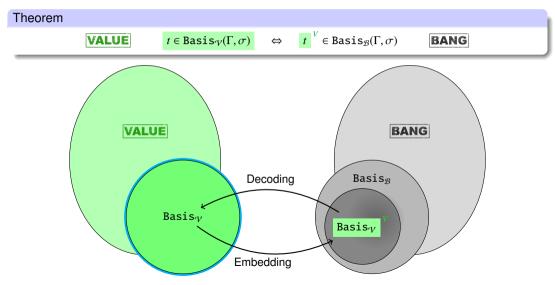


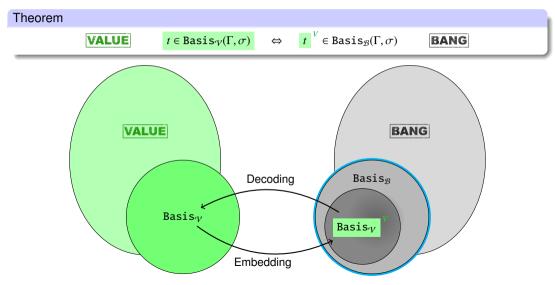


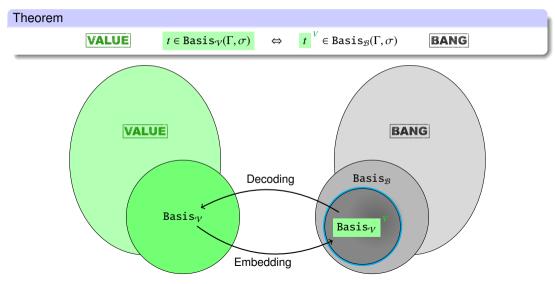


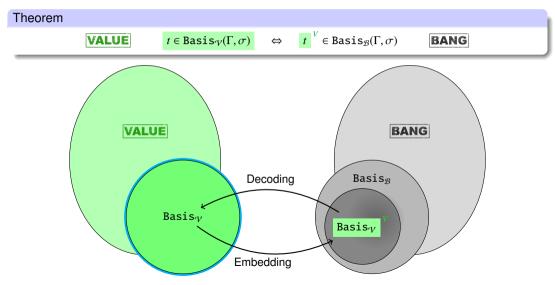












- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes $Basis_{\mathcal{B}}(\Gamma, \sigma)$).

- The inhabitation algorithm terminates.
 - The algorithm is sound and complete (i.e. it exactly computes $Basis_{\mathcal{B}}(\Gamma, \sigma)$).

- Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- C Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- C Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- **The algorithm is sound and complete** (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- C Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- 🕜 Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- **The algorithm is sound and complete** (i.e. it exactly computes Basis (Γ, σ)).

- C Decidability by finding all inhabitants in the BANG IP.
- C Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- 🕜 Using generic properties so that other encodable models of computation can use these results.

Summary:

- Solving the generalized inhabitation problem
- A several-for-one deal:

NAME VALUE OTHERS

An implementation: (github/ArrialVictor/InhabitationLambdaBang)

BANG

Summary:

- Solving the generalized inhabitation problem
- A several-for-one deal: BANG NAME VALUE OTHERS
- An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

- Solvability (for Different Calculi in a Unified Framework)
- Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR'21]

Summary:

- Solving the generalized inhabitation problem
- A several-for-one deal: BANG NAME VALUE OTHERS
- An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

- Solvability (for Different Calculi in a Unified Framework)
- Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR'21]

Thanks for your attention!