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1 INTRODUCTION

Inhabitation. Type systems are formalisms assigning a type to the constructs of a programming
language, usually represented by a term calculus. Types enforce some particular specification (e.g.
termination, memory safety, deadlock freeness, etc), so that they guarantee the construction of well-
behaved terms: łwell-typed programs cannot go wrongž [Milner 1978]. A judgment in a given type
systemX is written ⊲XΓ ⊢ 𝑡 : 𝜎 , where 𝑡 is a term, 𝜎 is the type assigned to 𝑡 , and Γ is an environment

assigning types to the (free) variables of 𝑡 . There are at least three problems naturally arising for a
given type system: (1) type checking: given an environment Γ, a term 𝑡 and a type 𝜎 , decide whether
⊲XΓ ⊢ 𝑡 : 𝜎 ; (2) typability: given a term 𝑡 , decide whether there exists an environment Γ and a type
𝜎 such that ⊲XΓ ⊢ 𝑡 : 𝜎 ; (3) inhabitation: given an environment Γ, and a type 𝜎 , decide whether
there is a term such that ⊲XΓ ⊢ 𝑡 : 𝜎 . Inhabitation corresponds to decide the existence of a program
(term 𝑡 ) that satisfies the given specification (type 𝜎) under some assumptions (environment Γ). The
inhabitation problem is naturally related to proof-search, where the types are seen as propositions
in some underlying logic. Decidability of the inhabitation problem can be also seen as a particular
tool for type-based program synthesis [Bessai et al. 2018; Manna and Waldinger 1980], whose task
is to constructÐfrom scratchÐa program that satisfies some high-level formal specification.
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Quantitative Type Systems. Intersection type systems [Coppo and Dezani-Ciancaglini 1978, 1980]
were introduced for the 𝜆-calculus to increase the typability power of simple types by introducing a
new intersection type constructor ∧, which is, in principle, associative, commutative and idempotent

(i.e. 𝜎 ∧ 𝜎 = 𝜎). Intersection types allow terms to have different types simultaneously, e.g. a term
𝑡 has type 𝜎 ∧ 𝜏 whenever 𝑡 has both the type 𝜎 and the type 𝜏 . In these (idempotent) systems
typability and inhabitation are both undecidable [Urzyczyn 1999]. However, intersection types
constitute a powerful tool to reason about qualitative semantic properties of programs, for example,
there are intersection type systems characterizing different notions of normalization [Coppo et al.
1981; Pottinger 1980], in the sense that a term 𝑡 is typable in a given system if and only if 𝑡 is
normalizing for that particular notion. By removing idempotency [de Carvalho 2007; Gardner
1994], a term of type 𝜎 ∧ 𝜎 ∧ 𝜏 can be seen as a resource that, during execution, can be used once
as a data of type 𝜏 and twice as a data of type 𝜎 . The resulting non-idempotent type systems for
the 𝜆-calculus do not only provide qualitative characterization of operational properties, but also
quantitative ones, in the sense that a term 𝑡 is still typable if and only if is normalizing, and in
addition, any type derivation of 𝑡 gives a bound to the execution time for 𝑡 (the number of steps
to reach a normal form) [Accattoli et al. 2020; de Carvalho 2018]. In such a setting, typability is
still undecidable, nevertheless inhabitation becomes decidable [Bucciarelli et al. 2014, 2018]. In
particular, an algorithm solving the inhabitation problem for a quantitative type system can be seen
as a decidable tool for type-based quantitative program synthesis, which aims to constructÐfrom
scratchÐa program that satisfies some quantitative specification.

Call-by-Push-Value. P.B. Levy [1999] introduced Call-by-Push-Value (CBPV) as a subsuming para-
digm, so that different evaluation strategies of the 𝜆-calculus can be captured in a uniform framework
by the simple use of two primitives: thunk (to pause a computation) and force (to resume a com-
putation). This mechanism is powerful enough to encode, in particular, Call-by-Name (CBN) and
Call-by-Value (CBV), the two most well-known evaluation mechanisms in functional programming.
The original CBPV has been introduced in a simply typed framework, but the underlying (untyped)
syntax and operational semanticsÐthe ones we are interested in hereÐalready provide a powerful
untyped subsuming mechanism. Despite that, CBN and CBV have always been studied notably by
developing different techniques for one and the other. Some rare exceptions are [Bucciarelli et al.
2020; Faggian and Guerrieri 2021; Kesner and Viso 2021], where some particular property for
CBN/CBV (e.g. quantitative typing in the first one, factorization in the second case, tight typing in the
third one) is derived from the corresponding property for a language that is a restriction of CBPV,
via a suitable CBN/CBV encoding. Such a language can be the bang calculus [Ehrhard and Guerrieri
2016; Guerrieri and Manzonetto 2018; Guerrieri and Olimpieri 2021] (in turn inspired by Ehrhard
[2016], combining ideas from Levy’s CBPV [1999] and Girard’s linear logic [1987]), or its variant the
𝜆!-calculus [Bucciarelli et al. 2020; Kesner and Viso 2021] where reduction rules act at a distance.

What this paper is about. We address the challenging problem of inhabitation for 𝜆! in the
framework of quantitative type systems. This constitutes a first proposal in the literature addressing
inhabitation for such class of languages. Our language is given by the 𝜆!-calculus, and its associated
quantitative (non-idempotent) type system is U [Bucciarelli et al. 2020]. We do not simply give
an algorithm searching for a term that can be typed with a given environment Γ and type 𝜎 , but
we solve a more ambitious goal: our algorithm generates (a finite representation of) all and only

such typable terms. Indeed, our algorithm is parametrized by a (tree) grammar, so that a finite set
of answers can be generated by this grammar, from which the whole infinite set of solutions can be
finally recognized. Our inhabitation algorithm is shown to be terminating, sound and complete:
every solution to the inhabitation problem is found, and no solution is forgotten.
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As a general application, we also address inhabitation for other models of computationÐsuch
as CBN and CBVÐthat are encodable in 𝜆!. This is done by essentially using two crucial tools:
(1) an embedding that encodes each model of computation into 𝜆!; (2) a grammar generating
the embedding of the finite set of answers for each model of computation. By instantiating the
general inhabitation algorithm for the 𝜆!-calculus with the image of each embedding, we solve the
inhabitation problem for each corresponding model of computation. Thus, our general methodology
derives an inhabitation algorithm for each alternative model of computation subsumed by our
unifying framework 𝜆!, thus providing a strong and powerful tool for (quantitative) inhabitation.
Concretely, as special cases, we recover the well-known algorithm to solve the inhabitation

problem for CBN [Bucciarelli et al. 2014, 2018], and we obtain a new algorithm (the first one in the
literature) to solve the problem for CBV. The main contributions of the paper are:

(1) We give an inhabitation algorithm for the 𝜆!-calculus equipped with type system U. This
is novel and far from trivial because of the built-in constructors of 𝜆!, which are essential
to encode evaluation strategies with different calling methods, and more sophisticated than
those of the 𝜆-calculus.

(2) Our approach is a several-for-one deal! We solve the type inhabitation problem for 𝜆! once and
for all: from that, we derive the inhabitation algorithms for other models of computations,
including CBN and CBV, for free. While the inhabitation problem was already solved for
CBN [Bucciarelli et al. 2014], the solution for CBV is a particular novel contribution.

(3) Our algorithm gives not only one but all the solutions for a given typing. This is made by a
fine analysis of the completeness property: a crucial (and novel) notion of basis is defined so
that the whole infinite set of solutions can be finitely captured for each input typing.

(4) We provide an open-source implementation of the algorithm in OCaml [Arrial 2023]. The
implementation supports different verbose modes yielding a trace of the algorithm search.

Related works and Applications. Our work relates to the following theoretical and applied topics:

(1) Proof-search: Terms can be seen as proofs by means of the Curry-Howard isomorphism,
so that an inhabitation search algorithm can be seen as a proof search method. In both
cases, only normal terms/cut-free proofs are constructed as outputs. In this respect, proof-
search naturally appeared in the operational semantics of logical languages such as PROLOG,
the idea was further extended to more expressive logical languages by Miller et al. [1991].
Closer to our paper, a proof-search method for a fragment of intuitionistic linear logic was
introduced by Hodas and Miller [1994], and its implementation reported in [Cervesato et al.
2000]. These works only consider exponential formulae in some restricted positions, which
makes the inhabitation problem much easier. The problem was further studied by Hughes
and Orchard [2020] in the context of program synthesis for graded modal types, a type system
with quantitative features. Thus, our ideas for solving quantitative inhabitation provides a
procedure to solve proof-search in future proof-assistants having quantitative features.

(2) Program synthesis: Non-idempotent types can be seen as specifications of resource con-
sumption, so that the inhabitation problem can be seen as a particular case of (quantitative)
program synthesis. This is for example highlighted by Hughes and Orchard [2020] in the
context of graded modal types. Other approaches using combinatory logic with bounded
polymorphic idempotent intersection types have shown to have numerous applications [Bes-
sai 2013; Bessai et al. 2014; Düdder 2014; Plate 2013; Vasileva 2013; Wolf 2013]. But the field
of program synthesis is much larger than the inhabitation problem. There are many ways to
express specifications (not only by means of types) and to search for programs that meet that
specification (not only programs in normal form). The inhabitation problem is only a small
portion of the vast domain of program synthesis, for which this work modestly contributes.
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Aforementioned graded modal types [Orchard et al. 2019] form another resource-aware type
system with some similarities and differences with non-idempotent intersection types. On the
one hand, graded modal types with nonnegative integer grades (resp. infinite grades) can be seen
as a subset of non-idempotent (resp. idempotent) intersection types. There are however several
differences. Graded modal types give a specification of how many times a resource can be used
with a given fixed type, while a non-idempotent type is much more general, as a term may be typed
with different types, each one having a different grade. As a consequence, non-idempotent types
can be used to build denotational models, in the sense that they enjoy subject reduction and subject
expansion, while graded modal types [Orchard et al. 2019] only enjoy subject reduction. Driven
by distinct purposes, these design differences have an important consequence: non-idempotent
intersection types are not only sound with respect to strong normalization, but also complete, in
the sense that a terminating term necessarily has an associated non-idempotent typing derivation.
Such a property can typically be illustrated with the self application term 𝜆𝑥.𝑥𝑥 . Therefore, non-
idempotent intersection types provide an undecidable (semantic) framework, in contrast, graded
modal types give concrete decidable resource-aware typing systems.

On the other hand, graded modal types are more general than non-idempotent intersection types:
grades can be expressed by any pre-ordered semirings (not only nonnegative integers), which do
not have a counterpart in non-idempotent intersection types. Also, graded modal types can express
full polymorphism, whereas non-idempotent intersection types only capture a finitary form of it.
Another interesting remark is that, while it is trivial to erase graded information from graded

modal types to recover a simple type (if no polymorphism is used), it is still an open problem how
to convert a simply typed derivation into a non-idempotent derivation.
Other related works are discussed in Sect. 7.

Summary. Sec. 2 recalls the 𝜆!-calculus and its type system U. Sec. 3 defines the finite basis that
capture the (potentially infinite) set of solutions to the inhabitation problem. Sec. 4 defines a type
relation used to guess types while the algorithm runs. Sec. 5 presents the algorithm and proves its
termination, soundness and completeness. In Sec. 6 we propose two concrete applications of the
general algorithm to solve the inhabitation problems in CBN in CBV. We conclude in Sec. 7.

2 PRELIMINARIES

In this section we first recall some basic standard notions on tree grammars [Comon et al. 2008]. We
then introduce the 𝜆!-calculus [Bucciarelli et al. 2020] (an extension of the bang calculus [Ehrhard
and Guerrieri 2016] which recovers completeness and confluence by introducing reduction rules
acting at a distance), which subsumes the 𝜆-calculus by adding some primitives that allow to
capture, among others, Call-by-Name (CBN) and Call-by-Value (CBV). We first present syntactic
and operational notions of the untyped version of the calculus. We then introduce its quantitative
typing system characterizing normalization. Finally, we formally define the inhabitation problem.

2.1 Some Notations About Grammars

A (regular, first-order) term grammar𝐺 is defined by a tuple𝐺 = (Σ, 𝑆, 𝑅, 𝑠), where Σ is a ranked
alphabet (i.e. symbols have an associated unique arity), 𝑆 is a finite set of nonterminal symbols
(denoted by letters 𝑔 and 𝑛), 𝑠 ∈ 𝑆 is the start symbol, and 𝑅 is a finite set of production rules of
the form 𝐴⇝ 𝑇 , where 𝐴 ∈ 𝑆 and 𝑇 is a term in the associated term algebra TΣ (𝑆), i.e. the set of
all terms built up from symbols in Σ ∪ 𝑆 according to their arities (nonterminals are considered
nullary). We write 𝐴⇝ 𝑇1 | . . . | 𝑇𝑛 if all production rules 𝐴⇝ 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛) start with the same
𝐴 ∈ 𝑆 . Given a production rule 𝐴 ⇝ 𝑇 , if 𝑇 is also a nonterminal symbol, then the rule is called
silent, otherwise it is called non-silent.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 51. Publication date: January 2023.



Quantitative Inhabitation in a Unifying Framework 51:5

A context 𝐶 is an element of the term algebra TΣ∪{^} (𝑆), where ^ is a fresh constant of arity 0

occurring exactly once in 𝐶 . A term 𝑜 ∈ TΣ (𝑆) is derived in a single step into a term 𝑝 ∈ TΣ (𝑆),
written 𝑜 ⇝ 𝑝 , if there is a context𝐶 ∈ TΣ∪{^} (𝑆) and a production rule𝐴⇝ 𝑇 such that 𝑜 = 𝐶 ⟨𝐴⟩

and 𝑝 = 𝐶 ⟨𝑇 ⟩, where the generic notation 𝐶 ⟨𝑈 ⟩ is used to denote the term obtained by replacing
the symbol ^ in 𝐶 by𝑈 . The reflexive-transitive closure of⇝ is denoted by⇝⇝.

We may also make use of patterns for specific shapes of the production rules of some grammars. A
pattern is notedG ⇝ H , whereG ∈ J is ameta-variable for nonterminal symbols andH ∈ TΣ (J).
E.g., consider a grammar whose alphabet contains two symbols Lam(_) and Bng(_) of arity 1 and
whose productions rules are constrained by the patterns G ⇝ Lam(G′) and G ⇝ Bng(G′), then
the rules of𝐺 can only be of the form 𝑛1 ⇝ Lam(𝑛2) and 𝑛3 ⇝ Bng(𝑛4), where 𝑛𝑖 ∈ 𝑆 for all 𝑖 . This
notion is inherited from meta-variables in higher-order rewriting [Klop et al. 1993].

2.2 The 𝜆!-Calculus

Let us first introduce the term syntax of the 𝜆!-calculus [Bucciarelli et al. 2020]. Given a countably
infinite setX of variables 𝑥,𝑦, 𝑧, . . . , the set of terms Λ is given by the following inductive definition:

(Terms) 𝑡,𝑢, 𝑠 F 𝑥 ∈ X | 𝑡𝑢 | 𝜆𝑥.𝑡 | !𝑡 | der(𝑡) | 𝑡 [𝑥\𝑢]

The set Λ includes 𝜆-terms (variables 𝑥 , abstractions 𝜆𝑥 .𝑡 and applications 𝑡𝑢) as well as
three new constructors: a closure 𝑡 [𝑥\𝑢] representing a pending explicit substitution (ES) [𝑥\𝑢]

on a term 𝑡 , a bang !𝑡 to freeze the execution of 𝑡 , and a dereliction der(𝑡) to fire again the frozen
term 𝑡 . From now on, we set 𝐼 ≔ 𝜆𝑧.𝑧, Δ ≔ 𝜆𝑥.𝑥 !𝑥 , and Ω ≔ Δ!Δ.

Abstractions 𝜆𝑥 .𝑡 and closures 𝑡 [𝑥\𝑢] bind the variable 𝑥 in the term 𝑡 . The notions of free and
bound variables are defined as expected, in particular fv(𝜆𝑥.𝑡) ≔ fv(𝑡) \ {𝑥} and fv(𝑡 [𝑥\𝑢]) ≔

fv(𝑢) ∪ (fv(𝑡) \ {𝑥}). The usual notion of 𝛼-conversion [Barendregt 1984] is extended to the whole
set Λ, and terms are identified up to 𝛼-conversion. We denote by 𝑡{𝑥\𝑢} the usual (capture avoiding)
meta-level substitution of the term 𝑢 for all free occurrences of the variable 𝑥 in the term 𝑡 .
Full contexts (F), surface contexts (S) and list contexts (L), which can be seen as terms

containing exactly one hole ^, are inductively defined as follows:

F F ^ | F𝑡 | 𝑡F | 𝜆𝑥.F | !F | der(F) | F[𝑥\𝑡] | 𝑡 [𝑥\F]
S F ^ | S𝑡 | 𝑡S | 𝜆𝑥.S | der(S) | S[𝑥\𝑡] | 𝑡 [𝑥\S]
L F ^ | L[𝑥\𝑡]

L and S are special cases of F. The hole can occur everywhere in F, while in S it cannot occur under
a !. We write F⟨𝑡⟩ for the term obtained by replacing the hole in F with the term 𝑡 .
The following rewriting rules are the base components of our reduction relations. Any term

having the shape of the left-hand side of one of these three rules is called a redex.

(Distant Beta) L⟨𝜆𝑥.𝑡⟩𝑢 ↦→dB L⟨𝑡 [𝑥\𝑢]⟩

(Substitute Bang) 𝑡 [𝑥\L⟨!𝑢⟩] ↦→s! L⟨𝑡{𝑥\𝑢}⟩

(Distant Bang) der(L⟨!𝑡⟩) ↦→d! L⟨𝑡⟩

Rule dB (resp. s!) is assumed to be capture free, so no free variable of 𝑢 (resp. 𝑡 ) is captured by
the context L. The rule dB fires a standard 𝛽-redex and generates an ES. The rule s! fires an ES
provided that its argument is a bang. The rule ↦→d! defrosts a frozen term. In all of these rewrite
rules, the reduction acts at a distance [Accattoli and Kesner 2010]: the main constructors involved
in the rule can be separated by a finiteÐpossibly emptyÐlist L of ES. This mechanism unblocks
redexes that otherwise would be stuck, e.g. (𝜆𝑥 .𝑥) [𝑦\𝑤]!𝑧 ↦→dB 𝑥 [𝑥\!𝑧] [𝑦\𝑤] fires a 𝛽-redex by
taking L = ^[𝑦\𝑤] as the list context in between the function 𝜆𝑥.𝑥 and the argument !𝑧.

The surface reduction relation →S is the surface closure of any of the three rewrite rules ↦→dB,
↦→s! and ↦→d!, i.e. →S only fires redexes in surface contexts, and not under bang. Similarly, the full
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reduction relation →F is the full closure of any of the rewrite rules, so that →F reduces under full
contexts and thus the bang looses its freezing behavior. For example,

(𝜆𝑥.!der(!𝑥))!𝑦 →S (!der(!𝑥)) [𝑥\!𝑦] →S !(der(!𝑦)) →F !𝑦

Note that the first two steps are also→F-steps, while the last step is not an→S-step. More generally,
we have→S⊊→F. For R ∈ {S, F},↠R is the reflexive-transitive closure of →R .

Some terms of the 𝜆!-calculus do not contain any redex. Terms without any redex for the surface
reduction (i.e. under surface contexts) are called surface normal forms. Terms without any redex
for the full reduction (i.e. under full contexts) are called full normal forms. For example, the term
!(der(!𝑦)) is a surface normal form but not a full normal form since der(!𝑦) is a redex under a bang.
As a matter of fact, some ill-formed terms are not redexes but neither represent a desired

computation result. They are called clashes and have one of the following forms:

L⟨!𝑠⟩𝑢 𝑠 [𝑥\L⟨𝜆𝑥.𝑢⟩] der(L⟨𝜆𝑥 .𝑢⟩) 𝑡 (L⟨𝜆𝑥.𝑢⟩) if 𝑡 ≠ L′⟨𝜆𝑦.𝑠⟩

This previous static notion of ill-formed term is lifted to a dynamic level. Indeed, a term 𝑡 is a
surface clash-free if it does not S-reduce to a term with a clash outside the scope of some bang,
i.e. if there are no surface context S and clash 𝑐 such that 𝑡 ↠S S⟨𝑐⟩. Similarly, a term 𝑡 is full
clash-free if there are no full context F and clash 𝑐 such that 𝑡 ↠F F⟨𝑐⟩. For example, 𝑥 !(𝑦 (𝜆𝑧.𝑧))
is surface clash-free but not full clash-free since it has a clash 𝑦 (𝜆𝑧.𝑧) under a bang. Both notions
are stable under reduction. Finally, some terms contain neither redexes nor clashes. A surface

clash-free normal form (resp. full clash-free normal form) is a surface normal form which is
surface clash-free (resp. full normal form which is full clash-free). These are the desired results of
the computation, and they can even be characterized by a tree grammar [Bucciarelli et al. 2020].
Given R ∈ {S, F}, a term 𝑡 is said to be R-normalizing iff 𝑡 ↠R 𝑝 for some R-normal form 𝑝 .

As →S⊊→F, some terms may be S-normalizing but not F-normalizing, e.g. 𝑥 !(Δ!Δ).

2.3 TheQuantitative Typing System

We now present the quantitative typing systemU [Bucciarelli et al. 2020], based on [de Carvalho
2007; Gardner 1994]. It contains functional and intersection types. Intersection is considered
to be associative, commutative but not idempotent, thus an intersection type is represented by a
(possibly empty) finite multiset [𝜎𝑖 ]𝑖∈𝐼 . Formally, given a countably infinite set TV of type variables
𝛼, 𝛽,𝛾, . . . , we inductively define:

(Types) 𝜎, 𝜏, 𝜌 ::= 𝛼 ∈ TV | M | M ⇒ 𝜎

(Multitypes) M,N ::= [𝜎𝑖 ]𝑖∈𝐼 where 𝐼 is a finite set

(Type) environments, noted Γ,Δ, are functions from variables to multitypes, assigning the empty

multitype [ ] to all the variables except a finite number (possibly zero). The empty environment,
which maps every variable to [ ], is denoted by ∅. The domain of Γ is dom(Γ) = {𝑥 ∈ X | Γ(𝑥) ≠ [ ]}.
Given the environments Γ andΔ, Γ+Δ is the environmentmapping𝑥 to Γ(𝑥)⊎Δ(𝑥), where⊎ denotes
multiset union; and +𝑖∈𝐼Δ𝑖 is its obvious extension to the non-binary case, in particular +𝑖∈𝐼Δ𝑖 = ∅

if 𝐼 = ∅. We use Γ,Δ to denote Γ + Δ when dom(Γ) ∩ dom(Δ) = ∅, thus 𝑥1 : M1, . . . , 𝑥𝑛 : M𝑛 is the
environment assigning M𝑖 to 𝑥𝑖 , for 1 ≤ 𝑖 ≤ 𝑛, and [ ] to any other variable. We write Γ\\𝑥 for the
environment assigning [ ] to 𝑥 , and acting as Γ otherwise.

A typing judgment is a triple of the form Γ ⊢ 𝑡 : 𝜎 , where Γ is a typing environment, 𝑡 is a term
(called the subject of the typing judgment), and 𝜎 is a type. The typing systemU for the 𝜆!-calculus
is defined by the rules in Fig. 1. The axiom rule (ax) is relevant, i.e. there is no weakening. Rules
(abs), (app) and (es) are standard. Rule (bag) has as many premises as elements in the finite
(possibly empty) set of indices 𝐼 : the conclusion types !𝑢 with a multitype gathering all the (possibly
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ax
𝑥 : [𝜎] ⊢ 𝑥 : 𝜎

Γ𝑢 ⊢ 𝑢 : M ⇒ 𝜎 Γ𝑠 ⊢ 𝑠 : M
app

Γ𝑢 + Γ𝑠 ⊢ 𝑢𝑠 : 𝜎

( Γ𝑖 ⊢ 𝑢 : 𝜏𝑖 )𝑖∈𝐼 𝐼 finite
bng

+𝑖∈𝐼 Γ𝑖 ⊢ !𝑢 : [𝜏𝑖 ]𝑖∈𝐼

Γ ⊢ 𝑢 : 𝜏
abs

Γ\\𝑥 ⊢ 𝜆𝑥.𝑢 : Γ(𝑥) ⇒ 𝜏
Γ𝑢 ⊢ 𝑢 : 𝜎 Γ𝑠 ⊢ 𝑠 : Γ𝑢 (𝑥)

es
(Γ𝑢\\𝑥) + Γ𝑠 ⊢ 𝑢 [𝑥\𝑠] : 𝜎

Γ ⊢ 𝑢 : [𝜎]
der

Γ ⊢ der(𝑢) : 𝜎

Fig. 1. Type System U for the 𝜆!-calculus.

different) types in the premises typing 𝑢. In particular, when 𝐼 = ∅, the rule has no premises, and it
types any bang !𝑢 with the empty multitype, leaving the subterm 𝑢 untyped. Rule (der) forces the
argument of a dereliction to be typed by a multitype of cardinality 1.

A type derivation in systemU is a tree obtained by successively applying rules in Fig. 1. The
typing judgment at the root of the type derivation is the conclusion of the derivation. We write
Π ⊲U Γ ⊢ 𝑡 : 𝜎 (or simply Π ⊲ Γ ⊢ 𝑡 : 𝜎) if Π is a type derivation in system U with conclusion
Γ ⊢ 𝑡 : 𝜎 . A term is called U-typable if there exists a derivation Π ⊲U Γ ⊢ 𝑡 : 𝜎 for some Γ, 𝜎 .
The size #(Π) of a type derivation Π is the number of typing rules different from (bng) in Π. For
example, the type derivation Π below has size 2.

Π =

ax
𝑥 : [[ ] ⇒ 𝛼] ⊢ 𝑥 : [ ] ⇒ 𝛼

bng
∅ ⊢ !Ω : [ ]

app
𝑥 : [[ ] ⇒ 𝛼] ⊢ 𝑥 !Ω : 𝛼

(1)

The salient property of systemU is that it characterizes S-normalizing and clash-free terms. Indeed,
the term 𝑥 !Ω above is S-normalizing (and clash-free) but not F-normalizing.

Theorem 2.1 ([Bucciarelli et al. 2020]).

(1) Let R ∈ {S, F} and 𝑡 →R 𝑡 ′. There is Π ⊲ Γ ⊢ 𝑡 : 𝜎 iff there is Π′
⊲ Γ ⊢ 𝑡 ′ : 𝜎 .

(2) A term 𝑡 isU-typable iff 𝑡 is S-normalizing to a surface clash-free normal form.

Now that the type system U for the 𝜆!-calculus have been presented, we formally define the
inhabitation problem.

Definition 2.2. A typing is a pair (Γ;𝜎), where Γ is a type environment and 𝜎 is a type. The
inhabitation problem (IP) on the input typing (Γ;𝜎) consists of searching for a term 𝑡 (if any)
typable with (Γ;𝜎), i.e. such that there is some derivation Π ⊲ Γ ⊢ 𝑡 : 𝜎 .

The inhabitation problem is not trivial. For instance, typings (∅;𝛼) and (∅; ( [ ] ⇒ [ ]) ⇒ [ ]) are
not inhabited, i.e. there is no derivation Π such that Π ⊲ ∅ ⊢ 𝑡 : 𝛼 or Π ⊲ ∅ ⊢ 𝑡 : ( [ ] ⇒ [ ]) ⇒ [ ] for
any term 𝑡 ; while the typing (𝑥 : [[ ] ⇒ 𝛼] ;𝛼) is inhabited by 𝑥 !Ω, as shown by derivation Π in (1).

3 APPROXIMANTS

We aim to provide an algorithm solving the inhabitation problem for any given input typing (Γ;𝜎).
The algorithm should be able to find at least one term typable with (Γ;𝜎) in system U, if it exists,
and fail otherwise. But we are more ambitious: we aim to recognize all (completeness) and only

(soundness) such terms. Still, given a typing (Γ;𝜎), the corresponding solution setÐthe set of terms
typable with 𝜎 in the environment ΓÐis either empty or infinite. For example, the term 𝑡0 ≔ 𝑥 is a
solution for the typing (𝑥 : [𝜏] ;𝜏), and an infinite family (𝑡𝑖 )𝑖∈N of solutions can be generated by
setting 𝑡𝑖+1 ≔ (𝜆𝑧.𝑧)!𝑡𝑖 . This observation generalizes to any other inhabited typing. Thus, to avoid
compromising termination and completeness of the algorithm, our method consists in producing
for each typing a finite basis (if any) from which the whole solution set can be recovered.

A first (naïve) idea would be to consider a basis consisting of surface clash-free normal solutions,
since for any typing, every solution of the inhabitation problem has a surface clash-free normal
form (Thm. 2.1.2) that is typable with the same given typing (Thm. 2.1.1). Unfortunately, this does
not solve the issue. Some typings have infinitely many surface clash-free normal solutions, obtained
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for example by hiding the previous family (𝑡𝑖 )𝑖∈N under a bang. As redexes under a bang cannot be
further S-reduced, surface clash-free normal forms are not restrictive enough to obtain a finite basis.
If we instead consider a basis consisting of full clash-free normal solutions, we would not be

able to recover all solutions: not every typable term has a full clash-free normal form, as witnessed
by the typable term 𝑥 !Ω in example (1). The problem arises from the fact that typable terms may
contain untyped subtermsÐas the subterm Ω in (1) Ðthat do not necessarily F-normalizes, making
full clash-free normal forms too restrictive to obtain a finite basis.

By distinguishing between typed and untyped redexes through an appropriate notion of reduction
driven by type derivationsÐand not only by the syntax of termsÐwe come up with a set of normal

type derivations that do not contain any typed redex. Terms typed by such derivationsÐsimply
called normal solutionsÐdo not yet provide a finite basis, however, it suffices to abstract away all
their untyped subterms to get the canonical solutions that finally provide a finite basis for each
possible input for the IP.

3.1 Normal Type Derivations

We introduce the notion of typed location distinguishing typed subterms from the untyped ones.

Definition 3.1. The set l(𝑡) of locations of 𝑡 ∈ Λ is the set of contexts F such that F⟨𝑢⟩ = 𝑡 for
some 𝑢. Given Π𝑡 ⊲ Γ ⊢ 𝑡 : 𝜎 , the set tl(Π𝑡 ) ⊆ l(𝑡) of typed locations of 𝑡 in Π𝑡 is defined by
induction on Π𝑡 (we refer to the names of the rules in Fig. 1):

ax : tl(Π𝑡 ) ≔ {^};

es : tl(Π𝑡 ) ≔ {^} ∪ {F[𝑥\𝑠] | F∈ tl(Π𝑢)} ∪ {𝑢 [𝑥\F] | F∈ tl(Π𝑠 )} with 𝑡 =𝑢 [𝑥\𝑠], premises Π𝑢,Π𝑠 ;

abs : tl(Π𝑡 ) ≔ {^} ∪ {𝜆𝑥.F | F ∈ tl(Π𝑢)} with 𝑡 = 𝜆𝑥.𝑢 and premise Π𝑢 ;

app : tl(Π𝑡 ) ≔ {^} ∪ {F𝑠 | F∈ tl(Π𝑢)} ∪ {𝑢F | F∈ tl(Π𝑠 )} with 𝑡 = 𝑢𝑠 and premises Π𝑢,Π𝑠 ;

bng : tl(Π𝑡 ) ≔ {^} ∪
⋃

𝑖∈𝐼 {!F | F ∈ tl(Π𝑖
𝑢)} with 𝑡 = !𝑢 and premises (Π𝑖

𝑢)𝑖∈𝐼 ;

der : tl(Π𝑡 ) ≔ {^} ∪ {der(F) | F ∈ tl(Π𝑢)} with 𝑡 = der(𝑢) and premise Π𝑢 .

Given a derivation Π ⊲ Γ ⊢ 𝑡 : 𝜎 , a redex 𝑟 in 𝑡 is a typed redex in Π if 𝑡 = F⟨𝑟 ⟩ and F ∈ tl(Π).

Example 3.2. In the derivation Π in (2) below, the term Ω is not a typed redex in Π (even though
Ω is a redex), because (𝜆𝑥 .𝑦)!Ω = F⟨Ω⟩ with F = (𝜆𝑥.𝑦)!^ ∉ tl(Π). However, the redex (𝜆𝑥.𝑦)!Ω is
a typed redex in Π because (𝜆𝑥 .𝑦)!Ω = F⟨(𝜆𝑥 .𝑦)!Ω⟩ with F = ^ ∈ tl(Π).

Π =

ax
𝑦 : [𝜎] ⊢ 𝑦 : 𝜎

abs
𝑦 : [𝜎] ⊢ 𝜆𝑥.𝑦 : [ ] ⇒ 𝜎

bng
∅ ⊢ !Ω : [ ]

app
𝑦 : [𝜎] ⊢ (𝜆𝑥.𝑦)!Ω : 𝜎

(2)

Given Π ⊲ Γ ⊢ 𝑡 : 𝜎 , we say that Π is a normal (type) derivation, written Π ⊲
nf
Γ ⊢ 𝑡 : 𝜎 , if for all

F ∈ tl(Π), 𝑡 = F⟨𝑢⟩ implies that𝑢 is not a typed redex in Π. A term 𝑠 is said to be a normal solution

for the typing (Γ;𝜎) if there exists a normal type derivation Π such that Π ⊲
nf
Γ ⊢ 𝑠 : 𝜎 . Thus e.g. the

derivation Π in (1) is normal and the term 𝑥 !Ω is a normal solution for (𝑥 : [[ ] ⇒ 𝛼] ;𝛼). However,
Π is not a normal in (2) since (𝜆𝑥 .𝑦)!Ω is a typed redex.
Using Thm. 2.1.1, we now introduce the notion of typed reduction on derivations, which only

fires typed redexes to construct normal derivations. As this is not a syntactic notion, it cannot be
defined by case analysis on the term structure. Still, when looking at terms only (i.e. the subject of
derivations), typed reduction is a special case of full reduction.

Definition 3.3. Let Π ⊲ Γ ⊢ 𝑡 : 𝜎 and 𝑡 →F 𝑡
′. Given Π

′
⊲ Γ ⊢ 𝑡 ′ : 𝜎 obtained by Thm. 2.1.1, (Π, 𝑡)

typed reduces to (Π′, 𝑡 ′), noted (Π, 𝑡) →T (Π′, 𝑡 ′), if there exists a typed location F ∈ tl(Π) and
two terms 𝑢,𝑢′ such that 𝑡 = F⟨𝑢⟩ and 𝑡 ′ = F⟨𝑢′⟩ with 𝑢 ↦→R 𝑢′ and R ∈ {dB, s!, d!}.
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Example 3.4. Given Π as in (2) and Π
′, Π′′ as below, we have (Π, (𝜆𝑥 .𝑦)!Ω) →T (Π′, 𝑦), since

F = ^ is a typed location in Π and (𝜆𝑥.𝑦)!Ω →F 𝑦; but (Π, (𝜆𝑥 .𝑦)!Ω) ̸→T (Π′′, (𝜆𝑥.𝑦)!((𝑧𝑧) [𝑧\!Δ]))

because (𝜆𝑥.𝑦) (!^) is not a typed location in Π, even though (𝜆𝑥.𝑦)!Ω →F (𝜆𝑥 .𝑦)!((𝑧𝑧) [𝑧\!Δ]).

Π
′
=

ax
𝑦 : [𝜎] ⊢ 𝑦 : 𝜎 Π

′′
=

ax
𝑦 : [𝜎] ⊢ 𝑦 : 𝜎

abs
𝑦 : [𝜎] ⊢ 𝜆𝑥.𝑦 : [ ] ⇒ 𝜎

bng
∅ ⊢ !((𝑧𝑧) [𝑧\!Δ]) : [ ]

app
𝑦 : [𝜎] ⊢ (𝜆𝑥.𝑦)!((𝑧𝑧) [𝑧\!Δ]) : 𝜎

Let us now study the properties of the typed reduction. From Def. 3.3, it follows that Π ⊲ Γ ⊢ 𝑡 : 𝜎

is a normal type derivation if and only if there is no (Π′, 𝑡 ′) such that (Π, 𝑡) →T (Π′, 𝑡 ′). Moreover,
typing reduction decreases the size of the type derivations:

Theorem 3.5 (Weighted Subject Reduction). If (Π, 𝑡) →T (Π′, 𝑡 ′), then #(Π) > #(Π′). So,→T

is strongly normalizing.

This property yields for any inhabited typing (Γ;𝜎) a corresponding normal solution obtained by
typed reduction. Thus, normal type derivations already provide an interesting tool to find a basis for
each possible input typing. However, we are not completely done yet: a normal solution may still
contain arbitrary untyped subtermsÐintroduced by the rule (bng) without premisesÐwhich can be
replaced by any other term, without compromising the normality of the derivation, thus generating
infinitely many normal solutions. For instance, in the derivation Π in (1), the untyped subterm Ω

can be replaced by any other term. The next goal is then to introduce a canonical representative for
these undesirable subterms in order to obtain a finite basis for each typing.

3.2 Approximants of Normal Type Derivations

Since untyped subterms do not carry any typing information, we can represent them by some
constants. So, we extend the original term calculus with a set of constants C, the resulting set of
C-terms, denoted by ΛC , is inductively defined as follows:

𝑎, 𝑏 F c ∈ C | 𝑥 ∈ X | 𝜆𝑥 .𝑎 | 𝑎𝑏 | 𝑎[𝑥\𝑏] | !𝑎 | der(𝑎)

In particular, the elements of Λ⊥ ≔ Λ{⊥} are called ⊥-terms. Note that Λ ⊊ Λ⊥. The set Λ⊥

comes with a preorder ⪯ given by the full contextual closure of ⊥ ⪯ 𝑎 for all 𝑎 ∈ Λ⊥. For example,
!⊥[𝑧\𝑥⊥] ⪯ !𝑧 [𝑧\𝑥⊥] ⪯ !𝑧 [𝑧\𝑥 !𝑦]. Given a set {𝑎𝑖 }𝑖∈𝐼 of ⊥-terms, its least upper bound, if any,
is denoted by

∨

𝑖∈𝐼 𝑎𝑖 (in particular,
∨

𝑖∈𝐼 𝑎𝑖 = ⊥ if 𝐼 = ∅). We write ↑𝑖∈𝐼 𝑎𝑖 to state that
∨

𝑖∈𝐼 𝑎𝑖 exists.
Thus, e.g., given 𝑎1 = !⊥[𝑧\𝑥 !𝑦] and 𝑎2 = !𝑧 [𝑧\𝑥⊥], we have

∨

𝑖∈𝐼 𝑎𝑖 = !𝑧 [𝑧\𝑥 !𝑦] for 𝐼 = {1, 2}.
Intuitively, the constant⊥ in⊥-terms canonically represents subterms that are untyped in system

U. Formally, we extend the typing judgments of systemU (and the notions of normal type derivation
and solution) to ⊥-terms, as expected. So, the rule (bng) used without any premises can introduce
a bang ⊥-term, possibly containing ⊥ as a subterm, e.g.

bng
∅ ⊢ !⊥ : [ ] or

bng
∅ ⊢ !((𝜆𝑥 .⊥)𝑦) : [ ] .

With each normal derivation Π we can associate a canonical representative A(Π), obtained by
replacing all maximal untyped subterms of the subject of Π with ⊥.

Definition 3.6. Given a normal derivation Π ⊲
nf
Γ ⊢ 𝑎 : 𝜎 , the approximant A(Π) of Π is a

⊥-term defined by induction on Π as follows:

ax : A(Π) ≔ 𝑥, with 𝑎 = 𝑥 ;

es : A(Π) ≔ A(Π𝑏) [𝑥\A(Π𝑐 )], with 𝑎 = 𝑏 [𝑥\𝑐], and premises Π𝑏,Π𝑐 ;

abs : A(Π) ≔ 𝜆𝑥.A(Π𝑏) , with 𝑎 = 𝜆𝑥 .𝑏, and premise Π𝑏 ;

app : A(Π) ≔ A(Π𝑏) A(Π𝑐 ) , with 𝑎 = 𝑏𝑐, and premises Π𝑏,Π𝑐 ;

bng : A(Π) ≔ !
∨

𝑖∈𝐼 A(Π𝑖
𝑏
), with 𝑎 = !𝑏, and premises (Π𝑖

𝑏
)𝑖∈𝐼 ;

der : A(Π) ≔ der(A(Π𝑏)), with 𝑎 = der(𝑏), and premise Π𝑏 .
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Thus, e.g.,A(Π) = 𝑥 !⊥ for the normal type derivation Π in (1), as the rule (bng) has no premises.
The approximant of normal derivations is always well defined, thanks to the lemma below and
since, given 𝑎 ∈ Λ⊥, ↑𝑖∈𝐼 𝑎𝑖 holds for every {𝑎𝑖 }𝑖∈𝐼 ⊆ {𝑏 ∈ Λ⊥ | 𝑏 ⪯ 𝑎}

Lemma 3.7. For every 𝑎 ∈Λ⊥, if Π ⊲
nf
Γ ⊢ 𝑎 :𝜎 then A(Π) ⪯𝑎.

The set Λ⊥ can be produced by a grammar. We thus introduce a general class of grammars with
an associated notion of generation.

Definition 3.8. A C-grammar𝐺 = (ΣC, 𝑆, 𝑅, 𝑠) is a first-order tree grammar whose set of ranked
alphabet ΣC is given by the zero-ary symbols in C ∪ {Var}, the unary symbols Der(_), Bng(_) and
Lam(_), and the binary symbols App(_, _) and Sub(_, _). Such grammars will be used to generate
terms with constants. Indeed, a term 𝑎 ∈ ΛC is an instance of 𝑜 ∈ TΣC

(𝑆), written 𝑐 I 𝑜 , if:

𝑥 ∈X
𝑥 I Var

c∈C
cI c

𝑎 I 𝑜
der(𝑎) I Der(𝑜)

𝑎 I 𝑜
!𝑎 I Bng(𝑜)

𝑎 I 𝑜 𝑥 ∈X
𝜆𝑥 .𝑎 I Lam(𝑜)

𝑎 I 𝑜 𝑏 I 𝑝

𝑎𝑏 I App(𝑜, 𝑝)

𝑎 I 𝑜 𝑏 I 𝑝 𝑥 ∈X

𝑎[𝑥\𝑏] I Sub(𝑜, 𝑝)

A C-term 𝑎 ∈ ΛC is produced by a nonterminal symbol 𝑛 ∈ 𝑆 , noted 𝑎 ⊏− 𝑛, if there is an
𝑜 ∈ TΣC

(𝑆) such that 𝑛 ⇝⇝ 𝑜 and 𝑎 is an instance of 𝑜 ; and 𝑎 is produced by a C-grammar𝐺 , noted
𝑎 ⊏− 𝐺 , if 𝑎 is produced by the start symbol 𝑠 of the grammar 𝐺 . We set L(𝐺) ≔ {𝑎 ∈ ΛC | 𝑎 ⊏− 𝐺}.

Thus, termswith constants are higher-order terms, seen here as instances of a first-order grammar.
From now on, we will only consider (and characterize) ⊥-terms that are approximants of normal
derivations. We define a special grammar B for that.

Definition 3.9. The grammar B is a C-grammar where C = {⊥}, the set of nonterminal symbols
is {cne, cna, cnb, cno}, the start symbol is cno, and the set of production rules is given below:

cne⇝ Var | App(cne, cna) | Der(cne) | Sub(cne, cne) cnb⇝ cne | Lam(cno) | Sub(cnb, cne)

cna⇝ cne | Bng(cno) | Bng(⊥) | Sub(cna, cne) cno⇝ cna | cnb

If 𝑎 ⊏− cno, then 𝑎 is called a (clash-free) canonical ⊥-term; and if 𝑎 ⊏− cne, then 𝑎 is called a
(clash-free) canonical neutral ⊥-term.

Example 3.10. We have 𝑧𝑦 ⊏− cne. Indeed, 𝑧𝑦 I App(Var, Var) and

cne⇝ App(cne, cna) ⇝ App(cne, cne) ⇝ App(Var, cne) ⇝ App(Var, Var).

Similarly, it can be shown that (𝑦𝑥) [𝑥\𝑧𝑦] ⊏− cne, (𝜆𝑥.𝑥) [𝑥 ′\𝑧𝑦] ⊏− cno and (𝜆𝑥.𝑥) [𝑥 ′\𝑧𝑦] ⊏− cnb.

The grammar B, as well as the notion of production, will be crucial concepts in Sects. 5 and 6.

Proposition 3.11. A ⊥-term 𝑎 is canonical iff 𝑎 is the approximant of some normal derivation.

A normal type derivation is a canonical derivation if it types its approximant, i.e. if it is of the
form Π ⊲

nf
Γ ⊢ 𝑎 : 𝜎 with 𝑎 = A(Π); we then say that 𝑎 is a canonical solution for the typing

(Γ;𝜎). Thus e.g. the derivation Π in (1) is normal but not canonical, while the derivation Π
′ below

is canonical, and A(Π′) = 𝑥 !⊥ is a canonical solution for the typing (𝑥 : [[ ] ⇒ 𝛼] ;𝛼).

Π
′
=

ax
𝑥 : [[ ] ⇒ 𝛼] ⊢ 𝑥 : [ ] ⇒ 𝛼

bng
∅ ⊢ !⊥ : [ ]

app
𝑥 : [[ ] ⇒ 𝛼] ⊢ 𝑥 !⊥ : 𝛼

(3)

The approximant of a normal derivationÐderiving a normal solution for some typingÐis indeed a
canonical solution for such a typing:

Proposition 3.12 (Canonicity of approximants). Let Π ⊲
nf
Γ ⊢ 𝑎 :𝜎 with 𝑎 ∈ Λ⊥. Then, A(Π)

is a canonical solution for the typing (Γ;𝜎).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 51. Publication date: January 2023.



Quantitative Inhabitation in a Unifying Framework 51:11

Summing up, each solution to the inhabitation problem for a given typing can be represented by
a canonical solution. Indeed, a basis for a typing (Γ;𝜎) is the set:

Basis(Γ;𝜎) ≔ {𝑏 ∈ Λ⊥ | 𝑏 canonical solution for (Γ;𝜎)}

Next theorem guarantees that Basis(Γ;𝜎) generates the whole solution set to the inhabitation
problem for the typing (Γ;𝜎). To formalize this notion, we define the span of a set 𝑆 ⊆ Λ⊥ as the
set of terms obtained by full expansion of redexes of terms greater than the elements of 𝑆 :

Span(𝑆) ≔ {𝑡 ∈ Λ | ∃𝑎 ∈ 𝑆, ∃𝑢 ∈ Λ, 𝑎 ⪯ 𝑢 and 𝑡 ↠F 𝑢}

By defining the solution set to the IP for the typing input (Γ;𝜎) as Sol(Γ;𝜎) ≔ {𝑡 ∈ Λ |

∃Π ⊲ Γ ⊢ 𝑡 : 𝜎}, we conclude with a crucial property of our basis:

Theorem 3.13 (Sound&complete basis). For every typing (Γ;𝜎), Span(Basis(Γ;𝜎)) = Sol(Γ;𝜎).

Thm. 3.13 gives the key argument to the completeness property of our inhabitation algorithm
(Sect. 5). Also, termination of our algorithm (Cor. 5.14) entails finiteness of the basis for every typing:
this is why it suffices to represent the solutions to the inhabitation problem by canonical solutions.

4 SUBTYPE SEARCH

Using the results in Sect. 3, we know now how to restrict the solution set to a finite basis without
loosing completeness: we must consider (the approximant of) canonical type derivations. We now
wish to build an IP algorithm able to find all such normal type derivations, but this is not immediate.
In particular, some types needed for the recursive calls cannot be simply deduced from the given
input typing, since (even normal) derivations may not have the subformula property. Let us take for
example the application rule app in Fig. 1. The typeM of the argument 𝑢 appears in both premises
but does not seem, in principle, to be present in the given input typing. A naive algorithm would
try to make recursive calls with every possible multitype M, but this would break termination. A
(terminating) algorithm requires a subtler mechanism.

In this section we first focus on the head subtype property, which links, by means of a subtyping
relation, the conclusion type of any type derivation of a canonical neutral ⊥-term to its typing
environment. We then propose a terminating algorithm computing all possible subtypes of a given
type. This algorithm is designed so that the search for subtypes can be guided by some partial
knowledge about their forms. This will notably be used for the application and explicit substitution
cases of the inhabitation algorithm.

4.1 Head Subtype Property

Canonical neutral ⊥-terms (Def. 3.9) are built from variables, applications, derelictions and ES. In
the last three corresponding typing rules (app, der and es in Fig. 1), the conclusion type is contained
in the type of its left (or unique) premise. By construction, the subject of this left premise is also a
canonical neutral term, and thus, by induction, one has that the conclusion type of the associated
derivation is contained in the type of its leftmost axiom (typing the leftmost variable occurrence,
called the syntactic head). By definition of the axiom rule, the type of this variable is also contained
in its typing environment. However, the syntactic head of a canonical neutral ⊥-term may be
captured by some ES, so its type may be erased from the environment. Hence, the conclusion type
of a derivation does not seem, at first sight, to necessarily appear in its typing environment.
Fortunately, the relation between the type of the conclusion and the typing environment can

be restored thanks to the notion of semantic head variable: it is the leftmost free variable modulo
unfolding. We then consider a notion of semantic head type of a derivation Π which is the type
given by Π to the semantic head variable of its subject. It turns out that the semantic head type
appears in the environment of the conclusion, which finally solves our problem.
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Definition 4.1 (Semantic head variable/type). Let 𝑎 ⊏− cne be a canonical neutral ⊥-term. Its
semantic head variable shv(𝑎) ∈ fv(𝑎) is defined by induction as follows:

shv(𝑥) ≔ 𝑥 shv(der(𝑢)) ≔ shv(𝑢) shv(𝑡𝑢) ≔ shv(𝑡) shv(𝑡 [𝑥\𝑢]) ≔ shv(𝑡){𝑥\shv(𝑢)}.

The semantic head type sht(Π) of a Π ⊲ Γ ⊢ 𝑎 : 𝜎 with 𝑎 ⊏− cne is defined by induction on Π:

ax : sht(Π) ≔ 𝜎 ;

es : sht(Π) ≔

{

sht(Π𝑐 ) if shv(𝑏) = 𝑥,

sht(Π𝑏) otherwise,
with 𝑎 = 𝑏 [𝑥\𝑐] and premises Π𝑏,Π𝑐 ;

app : sht(Π) ≔ sht(Π𝑏), with 𝑎 = 𝑏𝑐 and premises Π𝑏,Π𝑐 ;

der : sht(Π) ≔ sht(Π𝑏), with 𝑎 = der(𝑏) and premise Π𝑏 .

For instance, if Π ⊲ 𝑦 : [[ ] ⇒ 𝜎] ⊢ 𝑥 [𝑥\𝑦]𝑧 : 𝜎 , then shv(𝑡) = 𝑦 and sht(Π) = [ ] ⇒ 𝜎 .
The following notion of subtype will be used to capture the relation between the type of the

conclusion of a derivation and its environment (forthcoming Lem. 4.3).

Definition 4.2. The subtype relation ⪯ is a binary relation on types defined by the rules below.

𝜏 = 𝜎
refl

𝜏 ⪯ 𝜎
𝜏 ⪯ M 𝑜𝑟 𝜏 ⪯ 𝜌

arrow
𝜏 ⪯ (M ⇒ 𝜌)

∃ 𝑗 ∈ 𝐼 , 𝜏 ⪯ 𝜌 𝑗
mult

𝜏 ⪯ [𝜌𝑖 ]𝑖∈𝐼
.

It can be shown that ⪯ is a non-strict partial order. The equality in the rule (refl) is considered
modulo associativity and commutativity of the multitype constructor, e.g.

[ ] ⇒ [𝜌2, 𝜌1] ⪯ [[ ] ⇒ 𝛼, [[ ] ⇒ [𝜌1, 𝜌2]] ⇒ 𝛼 ′] (4)

Using the notions of semantic head variable and type, as well as the subtype relation, we can
now state a fundamental property to make the inhabitation algorithm decidable.

Lemma 4.3 (Head Subtype). Let Π ⊲ Γ ⊢𝑎 :𝜎 with 𝑎 ⊏− cne, then 𝜎 ⪯ sht(Π) and Γ(shv(𝑎)) =

M ⊎ [sht(Π)] for some M.

We will see in Sec. 5 that the subtype relation plays a crucial role in the inhabitation algorithm.
We thus design a subalgorithm computing all the subtypes of a given type.

4.2 Subtype Search

We now introduce an algorithm to search for all the subtypes of a given type, in a general form. If
we seek for a solution having the form of an application 𝑡𝑢, we then search for a multitype M that
not only is the type of the right premise typing 𝑢, but also appears as a subtype of the type of the
left premise typing 𝑡 (cf. rule app in Fig. 1). We will therefore generalize our subtype search problem
to the search of subtypes having a specific shape. This specific shape is denoted using partial

types, which are types containing placeholders ^1, . . . ,^𝑛 . Given a partial type 𝑝 with 𝑛 ≥ 0

placeholders and a list of types 𝜏1, . . . , 𝜏𝑛 , we write 𝑝 ⟨𝜏1, · · · , 𝜏𝑛⟩ for the type obtained by replacing
each placeholder ^𝑖 by the type 𝜏𝑖 . For example, if 𝑝 = [^1, 𝜎] ⇒ ^2 then 𝑝 ⟨𝜏1, 𝜏2⟩ = [𝜏1, 𝜎] ⇒ 𝜏2.

Definition 4.4. Let 𝜏, 𝜎 be types and 𝑝 a partial type. Then 𝜏 is a subtype of 𝜎 with partial

knowledge 𝑝 , noted 𝜏 ⪯𝑝 𝜎 , if 𝜏 ⪯ 𝜎 and 𝜏 = 𝑝 ⟨𝜏1, · · · , 𝜏𝑛⟩ for some types 𝜏1, . . . , 𝜏𝑛 .

Testing for subtype with a specific shape (i.e. partial knowledge) amounts to matching. For
instance, coming back to example (4), [ ] ⇒ [𝜌2, 𝜌1] ⪯^⇒[𝜌1,𝜌2 ] [[ ] ⇒ 𝛼, [[ ] ⇒ [𝜌1, 𝜌2]] ⇒ 𝛼 ′].
Given a term 𝜎 and a partial type 𝑝 , the Subtype with Partial Knowledge (SPK) algorithm

yields a type 𝜏 such that 𝜏 ⪯𝑝 𝜎 if such a type exists, and otherwise fails. When the partial shape
is empty, i.e. 𝑝 = ^, the SPK algorithm just yields a subtype of the input 𝜎 . The rules of the SPK
algorithm are presented in Fig. 2: the notation 𝜏 ⊪ 𝑆 (𝜎, 𝑝) is formed of a call 𝑆 (𝜎, 𝑝) with input
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∃𝜏1, . . . , 𝜏𝑛, 𝜎 = 𝑝 ⟨𝜏1 · · · 𝜏𝑛⟩
match

𝑝 ⟨𝜏1 · · · 𝜏𝑛⟩ ⊪ 𝑆 (𝜎, 𝑝)

∃𝑖 ∈ 𝐼 , 𝜏 ⊪ 𝑆 (𝜎𝑖 , 𝑝)
bag

𝜏 ⊪ 𝑆 ( [𝜎𝑖 ]𝑖∈𝐼 , 𝑝)

𝜏 ⊪ 𝑆 (M, 𝑝)
⇒1

𝜏 ⊪ 𝑆 (M ⇒ 𝜎, 𝑝)

𝜏 ⊪ 𝑆 (𝜎, 𝑝)
⇒2

𝜏 ⊪ 𝑆 (M ⇒ 𝜎, 𝑝)

Fig. 2. Rules of the SPK Algorithm.

(𝜎, 𝑝) and an answer 𝜏 to this call. In every run of the algorithm, the call of the lower part of each
rule generates the recursive calls of the upper part of the corresponding rule. Once a match has
been finally done, the answer travels downwards to the final rule.
Rules (⇒1), (⇒2) and (bag) correspond to an immediate subtype. Rule (match) corresponds

to the reflexivity closure of the relation, taking into account the matching of the input type 𝜎
with respect to the parameter 𝑝 . As in the (refl) rule (Def. 4.2), equality is considered modulo
commutativity and associativity of the multitype constructor. Coming back to example (4), if
𝜎 = [[ ] ⇒ 𝛼, [[ ] ⇒ [𝜌1, 𝜌2]] ⇒ 𝛼 ′], one has: [ ] ⇒ [𝜌2, 𝜌1] ⊪ 𝑆 (𝜎,^ ⇒ [𝜌1, 𝜌2]).

Different runs of the algorithm may yield different solutions, e.g. if 𝜎0 = [𝛼] ⇒ 𝛼 ′, three runs
are all possible from the same call: [𝛼] ⇒ 𝛼 ′

⊪ 𝑆 (𝜎0,^) and 𝛼 ⊪ 𝑆 (𝜎0,^) and 𝛼
′
⊪ 𝑆 (𝜎0,^).

As expected, the SPK algorithm is sound and complete:

Lemma 4.5 (Soundness and completeness of SPK). Let 𝜏, 𝜎 be types and 𝑝 be a partial type.

Then, 𝜏 ⪯𝑝 𝜎 if and only if 𝜏 ⊪ 𝑆 (𝜎, 𝑝).

The SPK algorithm is non-deterministic. Indeed, to compute all subtypes of a given type, every
possible run is executed. We then need to show that there is a finite number of possible immediate
runs (finite degree), which is straightforward, and that each of these runs terminates (finite depth).
To prove finite depth, we consider a positive measure on types called constructor size, given by:

sz(𝛼) ≔ 1 sz( [𝜎𝑖 ]𝑖∈𝐼 ) ≔
∑

𝑖∈𝐼 sz(𝜎𝑖 ) + 1 sz(M ⇒ 𝜎) ≔ sz(M) + sz(𝜎) + 1.

Lemma 4.6 (Termination of SPK). The SPK algorithm terminates. More precisely:

(1) Finite depth: Every run of the algorithm terminates.

(2) Finite degree: For any possible input, the set of all possible immediate recursive calls is finite.

Thus, from a call 𝑆 (𝜎, 𝑝), algorithm SPK can compute all subtypes of 𝜎 with partial knowledge 𝑝 .

5 THE INHABITATION ALGORITHM

This section is devoted to algorithm InhU solving the IP for systemU. We first discuss the general
form of its rules (Sect. 5.1), then we present InhU and give some execution examples (Sect. 5.2).
We state termination, soundness and completeness for InhU (Sect. 5.3). We then introduce a more

abstract version of the algorithm (Sect. 5.4), called Inh𝐺U , whose executions are controlled through a

parametric grammar𝐺 . Termination, soundness and completeness are preserved by Inh𝐺U (Sect. 5.5).

5.1 General Form of the Algorithm Rules

The InhU algorithm aims to build any possible type derivation for a given typing. Due to the
properties shown in Sect. 3, InhU only returns canonical ⊥-terms, since Thm. 3.13 ensures that
this is sufficient to span the whole solution set. Our algorithm InhU is then intimately associated
with grammar B from Def. 3.9, which produces all possible canonical ⊥-terms. We now give an
informal and introductory presentation of the algorithm, focusing on the following salient features.

Tree Structure. Type derivations are made of typing rules assembled into a tree structure, so the
inhabitation algorithm is written in a similar spirit: each rule of the typing system U has at least a
corresponding rule in InhU , declined in variants as we will explain. The algorithm builds a tree
having the rules of InhU for (hyper) edges and sequents of the form 𝑎 ⊩ Call for nodes, where
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Requirement1...
Requirement𝑛

�

�

�

�

� 𝑎1 ⊩ Call1 · · · 𝑎𝑚 ⊩ Call𝑚

⊙(𝑎1, ..., 𝑎𝑚) ⊩ Call

Fig. 3. Pattern of the Inh
U

Algorithm Rules

Call is any kind of call (different kinds of calls are detailed later), and 𝑎 is an answer (a canonical
⊥-term) to the call. Such a tree is built by the algorithm search in two subsequent stages:

• bottom-up on the right-hand sides ( in Fig. 3): from a node of the form _ ⊩ Call, corre-
sponding to the conclusion of some rule of the algorithm (meaning that InhU is searching for
an answer for the call Call), the algorithm performs recursive calls _ ⊩ Call1, . . . , _ ⊩ Call𝑛
Ðthe premises of the corresponding algorithm rule;

• top-down on the left-hand sides ( in Fig. 3): once the tree of recursive calls is completed, the
algorithm computes the answer by going down from the leaves to the root; the conclusion
answer ⊙(𝑎1, . . . , 𝑎𝑚) for the call Call, written ⊙(𝑎1, . . . , 𝑎𝑚) ⊩ Call, where ⊙ is any term
constructor of 𝜆!, is built from the premises answers 𝑎1 ⊩ Call1, . . . , 𝑎𝑚 ⊩ Call𝑛 .

Moreover, at any node, the set of applicable rules is regulated by some preliminary requirements.
The general form of the rules of the algorithm InhU (Fig. 4) follows the pattern in Fig. 3, with𝑛,𝑚 ≥ 0

(if 𝑛 = 0 or𝑚 = 0, no preliminary requirement or recursive call is written in the rule, respectively).

Preliminary Requirements. Each rule of InhU may need some preliminary requirements, which
are specified by formulas existentially quantifying some elements, marked in red (see Fig. 4).
These requirements are independent of the answer and, for each rule, they must be checked before

any recursive call of the bottom-up stage ( in Fig. 3). For example, the rule (NP-H) in Fig. 4
has two requirements, the first one demands the existence of some splitting of the environment
Γ = Γ

′ + 𝑥 : [𝜏], and the last one requires a subtype verification 𝜎 ⊪ 𝑆 (𝜏,^) with respect to the
type 𝜏 found in the first requirement.

Non-Determinism. Given an input for the algorithm, different searches are possible. First, it
cannot be uniquely determined which rule has to be applied at each step of the search. Second,
even when the rule to be used is chosen, it is not always possible to uniquely decompose the inputs
to build the inhabitation subproblems of the recursive searches. Which rule or decomposition to
choose is generally unknown and several combinations may yield different answers, so that all
of them should be tried. Last but not least, the subtype search of the SPK algorithm (Sect. 4) used
by InhU may also produce multiple answers. Just as above, all combinations have to be tested.
Producing all possible answers is therefore achieved by constructing all possible searches out of
the set of non-deterministic rules presented in Fig. 4.

Two Kinds of Recursive Call. The algorithm InhU has two different kinds of calls, generically
denoted Call: they are either 𝑁 -calls of the form 𝑁 (Γ;𝜎), 𝑁A (Γ;𝜎), or 𝑁B (Γ;𝜎), or 𝐻 -calls of the
form 𝐻𝑥 :[𝜏 ] (Γ;𝜎). The three former calls (resp. latter call) correspond to the search for a solution
to the IP with input (Γ;𝜎) (resp. (Γ + 𝑥 : [𝜏] ;𝜎)). In 𝐻 -calls, a specific variable 𝑥 and type [𝜏] is
picked out of the type environment to act as a search hint. Motivated by Sect. 4, these hints will set
the semantic head of the solution. In fact, 𝑁 -calls correspond to the search of solutions generated
by the nonterminal symbol cno of grammar B, and similarly for 𝑁𝐴, 𝑁𝐵 and 𝐻 with respect to the
symbols cna, cnb and cne, respectively. Some rules are represented parametrically using a generic
call 𝑁P with P ∈ {𝐴, 𝐵}, to denote either 𝑁𝐴 or 𝑁𝐵 .
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|
VAR

𝑥 ⊩ 𝐻𝑥 :[𝜎 ] (∅;𝜎 )

[𝜎 ] ⊪ 𝑆 (𝜏,^) | 𝑎 ⊩ 𝐻𝑥 :[𝜏 ] (Γ; [𝜎 ] )
DR

der(𝑎) ⊩ 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

Γ = Γ
′ + 𝑥 : [𝜏 ]

𝜎 ⊪ 𝑆 (𝜏,^)

�

�

�

𝑎 ⊩ 𝐻𝑥 :[𝜏 ] (Γ′;𝜎 )
NP -H

𝑎 ⊩ 𝑁P (Γ;𝜎 )

Γ = Γ𝑎 + Γ𝑏
M ⇒ 𝜎 ⊪ 𝑆 (𝜏,^ ⇒ 𝜎 )

�

�

� 𝑎 ⊩ 𝐻𝑥 :[𝜏 ] (Γ𝑎 ;M ⇒ 𝜎 ) 𝑏 ⊩ 𝑁A (Γ𝑏 ;M)
APP

𝑎𝑏 ⊩ 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

| 𝑎 ⊩ 𝑁P (Γ;𝜎 )
N-NP

𝑎 ⊩ 𝑁 (Γ;𝜎 )

fix 𝑥 ∉ dom(Γ) | 𝑎 ⊩ 𝑁 (Γ, 𝑥 : M;𝜎 )
ABS

𝜆𝑥.𝑎 ⊩ 𝑁B (Γ;M ⇒ 𝜎 )

𝐼 ≠ ∅
Γ = +𝑖∈𝐼 Γ𝑖

�

�

� (𝑎𝑖 ⊩ 𝑁 (Γ𝑖 ;𝜏𝑖 ) )𝑖∈𝐼 ↑𝑖∈𝐼 𝑎𝑖
BG

!
∨

𝑖∈𝐼 𝑎𝑖 ⊩𝑔 𝑁A (Γ; [𝜏𝑖 ]𝑖∈𝐼 )

|
BG⊥

!⊥ ⊩𝑔 𝑁A (∅; [ ] )

Γ = Γ𝑎 + Γ𝑏 + 𝑧 : [𝜌 ] , fix 𝑦 ∉ dom(Γ) ∪ {𝑥 },
𝑛 ∈ J0, sz(𝜌 )K, M ⊪ 𝑆 (𝜌, [^1, . . . ,^𝑛 ] )

�

�

�

� 𝑎 ⊩ 𝐻𝑥 :[𝜏 ] (Γ𝑎, 𝑦 : M;𝜎 ) 𝑏 ⊩ 𝐻𝑧:[𝜌 ] (Γ𝑏 ;M)
ES-H

𝑎[𝑦\𝑏 ] ⊩ 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

Γ = Γ𝑎 + Γ𝑏 , fix 𝑦 ∉ dom(Γ) ∪ {𝑥 }
𝑛 ∈ J1, sz(𝜏 )K, [𝜌𝑖 ]𝑖∈J1,𝑛K ⊪ 𝑆 (𝜏, [^1, . . . ,^𝑛 ] )

𝑗 ∈ J1, 𝑛K, 𝜎 ⊪ 𝑆 (𝜌 𝑗 ,^)

�

�

�

�

�

� 𝑎 ⊩ 𝐻𝑦:[𝜌 𝑗 ] (Γ𝑎, 𝑦 : [𝜌𝑖 ]𝑖∈J1,𝑛K\𝑗 ;𝜎 ) 𝑏 ⊩ 𝐻𝑥 :[𝜏 ] (Γ𝑏 ; [𝜌𝑖 ]𝑖∈J1,𝑛K )
ES-CH

𝑎[𝑦\𝑏 ] ⊩ 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

Γ = Γ𝑎 + Γ𝑏 + 𝑧 : [𝜏 ] , fix 𝑦 ∉ dom(Γ),
𝑛 ∈ J0, sz(𝜏 )K, M ⊪ 𝑆 (𝜏, [^1, . . . ,^𝑛 ] )

�

�

�

� 𝑎 ⊩ 𝑁P (Γ𝑎, 𝑦 : M;𝜎 ) 𝑏 ⊩ 𝐻𝑧:[𝜏 ] (Γ𝑏 ;M)
ES-NP

𝑎[𝑦\𝑏 ] ⊩ 𝑁P (Γ;𝜎 )

Fig. 4. Rules of the Algorithm Inh
U

for SystemU

(P ∈ {A,B} in rules (NP -H), (N-NP ) and (ES-NP ) )

Run. Given an input typing (Γ;𝜎), a run of InhU is a tree of recursive calls starting from the root
𝑁 (Γ;𝜎); its (hyper) edges are the rules in Fig. 4. A run is built bottom-up by making a particular
choice among the non-deterministic ones discussed above (including the existentially quantified
elements in red). When no more recursive calls are possible, the following conditions have to be
fulfilled to obtain a valid run and compute the answer (at the top-down stage):

• all the leaves of the tree correspond to rule (VAR) or (BG⊥), the only ones with no premises,
• in all the instances of the rule (BG), the least upper bound of all recursive answers (↑𝑖∈𝐼 𝑎𝑖 )
exists (this is necessarily checked at the top-down stage, after all recursive calls).

Otherwise, the run is considered failed. Notice that for a same input, there may be different runs
generated by different non-deterministic choices. Some of these runs may fail while others may
succeed. Several examples are given in Example 5.1.

5.2 The Algorithm

The rules of the InhU algorithm for the type systemU are presented in Fig. 4, where we use the
notation J𝑚,𝑛K := {𝑚,𝑚 + 1, . . . , 𝑛} for all𝑚,𝑛 ∈ N with𝑚 ≤ 𝑛.

We chose 𝐻 -calls 𝐻𝑥 :[𝜏 ] (Γ;𝜎) to represent searches for solutions with a specific semantic head
𝑥 : [𝜏]. The rule (NP-H) converts an 𝑁 -call into an 𝐻 -call and its requirements are therefore
justified by Lem. 4.3: the recursive call is done with a chosen head which must contain as subtype
the input type 𝜎 . First, a variable 𝑥 must be isolated in the environment ΓÐthis is done by the
splitting requirement Γ = Γ

′ + 𝑥 : [𝜏]Ðso that in a second step the subtype check is performed on
the type of this variable 𝑥 .

Rule (ABS) searches for an inhabitant that is an abstraction. By 𝛼-conversion, the bound variable
chosen in the answer is arbitrary fixed once and for all outside the domain of its environment Γ.
Rules (ES-H) and (ES-CH) correspond to the search for an inhabitant 𝑎[𝑦\𝑏] with a given

semantic head 𝑥 : [𝜏]. Here again, the bound variable 𝑦 is arbitrary fixed once and for all. By
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construction, the semantic head is either in 𝑎 (left premise) or 𝑏 (right premise). The rule is therefore
duplicated to handle both possibilities.
More precisely, rule (ES-H) treats the case where the left semantic head is not captured by the

substitution. The left premise therefore shares the semantic head with that of the main call (in
the conclusion) and a new semantic head is required for the right premise. Again by Lem. 4.3,
this new semantic head has to be contained in the input type environment. This is done by the
splitting requirement Γ = Γ𝑎 + Γ𝑏 + 𝑧 : [𝜌], where the variable 𝑧 may also appear in the premises
environments Γ𝑎 and Γ𝑏 The type M of the right premise is however unknown and has to be
deduced: it is aÐpossibly emptyÐmultitype which, by Lem. 4.3, is contained in the newly chosen
semantic head 𝑧. We can find it using the requirement 𝑛 ∈ J0, sz(𝜌)K, M ⊪ 𝑆 (𝜌, [^1, . . . ,^𝑛]).
Note that if 𝑛 = 0, the requirement becomesM ⊪ 𝑆 (𝜌, [ ]).
Rule (ES-CH) treats the case where the semantic head of the left premise is captured by the

substitution. Thus, the right premise shares the semantic head with the main call (in the conclusion).
Similarly to (ES-H), the multitype [𝜌𝑖 ]𝑖∈J1,𝑛K in the right premise has to be deduced before the

recursive call. However, since the head is captured, we seek a non-empty multitype. So, the search
is implemented by the requirement 𝑛 ∈ J1, sz(𝜏)K, [𝜌𝑖 ]𝑖∈J1,𝑛K ⊪ 𝑆 (𝜏, [^1, . . . ,^𝑛]). The head of

the left premise is then selected as one of the elements of the newly obtained multiset. The last
requirement checks the head subtype property on the chosen type 𝑗 ∈ J1, 𝑛K, 𝜎 ⊪ 𝑆 (𝜌 𝑗 ,^).
The typing (bng) rule of systemU has two corresponding rules in InhU : a special rule (BG⊥)

handling the case where the constant ⊥ is introduced, and another rule (BG) dealing with the non-
empty cases. Note that in the (bng) rule, the least upper bound of the approximants of all premises
always exists (see page 10), whereas in InhU the recursive calls do not guarantee this property. This
is why (BG) explicitly requires ↑𝑖∈𝐼 𝑎𝑖 . The other requirement splits the environment as expected.

Example 5.1. Let us see an example of the IP in 𝜆! using the algorithm InhU for the input typing
(𝑥 : [[[𝛼]]] ;𝛼). All the solutions given by the algorithm are:

der(der(𝑥)) der(𝑦) [𝑦\𝑥] der(𝑦 [𝑦\𝑥]) 𝑧 [𝑧\𝑦] [𝑦\𝑥] 𝑦 [𝑦\der(𝑥)] 𝑧 [𝑧\𝑦 [𝑦\𝑥]] .

We describe a particular run of the algorithm finding the solution der(der(𝑥)) from the starting call
𝑁 (𝑥 : [[[𝛼]]] ;𝛼). The run starts by applying rule (N-NA), followed by rule (NA-H). In the latter, the
head 𝑥 : [[[𝛼]]] is chosen from the environment and the subtype inequation 𝛼 ⪯ [[[𝛼]]] is checked,
which yields the call 𝐻𝑥 :[ [ [𝛼 ] ] ] (∅;𝛼). Then, rule (DR) is applied twice, with the corresponding
subtype verifications [𝛼] ⪯ [[[𝛼]]] and [[𝛼]] ⪯ [[[𝛼]]]. Finally, rule (VAR) is applied and the
solution der(der(𝑥)) is built, by composing the answers of the previous rules in a top-down way.
Notice that if the second use of the (DR) rule were replaced by the (APP) rule, its second

requirement would have failed, since one cannot find a type M such that M ⇒ [𝛼] ≤ [[[𝛼]]],
and therefore the entire run would have failed.
We now describe another particular run of the algorithm finding the solution 𝑦 [𝑦\der(𝑥)]

from the starting call 𝑁 (𝑥 : [[[𝛼]]] ;𝛼). The run starts by applying rule (N-NA), followed by
rule (ES-NA). In the latter, the environment is split into two empty environments, plus a head
𝑥 : [[[𝛼]]]. The subtype inequation M ⪯ [[[𝛼]]] is solved by taking M = [𝛼]. Two calls are then
carried out separately: on the one hand, a fresh variable𝑦 is fixed and a call 𝑁A (𝑦 : [𝛼] ;𝛼) is carried
out. By applying rules (NA-H) and (VAR), the algorithm yields 𝑦 as a solution to this first recursive
call. On the other hand, the call 𝐻𝑥 :[ [ [𝛼 ] ] ] (∅; [𝛼]) is performed. By applying rules (DR) and (VAR),
the algorithm yields der(𝑥) as a solution to this second recursive call. Finally, both solutions are
assembled using an explicit substitution to build the solution 𝑦 [𝑦\der(𝑥)] for the initial call.
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5.3 Properties of the Algorithm InhU

The first crucial property of algorithm InhU is the following one:

Theorem 5.2 (Termination of InhU ). The algorithm InhU is terminating.

We postpone however the proof to Sect. 5.5, as Thm. 5.2 is a consequence of Cor. 5.14, stating

termination for the parametric algorithm Inh
𝐺
U . As for now, we discuss soundness and completeness.

The actual answers (outputs) of the InhU algorithm for a typing input (Γ;𝜎), written InhU (Γ;𝜎),
are sound and complete for the IP in a twofold sense: with respect to the expected answers of InhU

on (Γ;𝜎), which is given by the set Basis(Γ;𝜎), and with respect to the whole solution set to the
IP on (Γ;𝜎), given by InhU (Γ;𝜎), both notions coming from Sect. 3.2.
We prove that actual and expected answers coincide:

Theorem 5.3 ( InhU is sound & complete). For any typing (Γ;𝜎), InhU (Γ;𝜎) = Basis(Γ;𝜎).

The outputs of InhU łspanž the solution set for the IP on a typing input.

Corollary 5.4 (Sound & complete solution to IP). For any typing (Γ;𝜎), Span(InhU (Γ;𝜎))

= Sol(Γ;𝜎).

Proof. We have Span(InhU (Γ;𝜎)) =𝑇ℎ𝑚. 5.3 Span(Basis(Γ;𝜎)) =𝑇ℎ𝑚. 3.13 Sol(Γ;𝜎). □

To summarize, the output of the algorithm InhU (Γ;𝜎) yields a compact representation of all
possible terms typable with the given input (Γ;𝜎). Thus, InhU (Γ;𝜎) can also be queried for
emptiness, and moreover, one can check whether a given term is among those represented.

5.4 A (Parametric) Abstract Approach

The InhU algorithm for systemU is intimately linked to grammar B (Def. 3.9) of canonical solutions:

different calls 𝑁 (Γ;𝜎), 𝑁A (Γ;𝜎), 𝑁B (Γ;𝜎) and 𝐻
𝑥 :[𝜏 ] (Γ;𝜎) are introduced to account for the search

in different subgrammars (cno, cna, cnb and cne, respectively). The grammar B then guides the
search by hardcoding its production rules in the algorithm rules. A more general algorithm is
then naturally suggested by this first one: it is constructed by processing separately the typing
requirements from the grammatical ones. As a consequence, it allows one to target different solution
sets using a unique algorithm. Indeed, it turns out that the rules of InhU cannot only be guided
by the grammar B, but also by a more general class of grammars, called NH-grammars, which can
be used as a parameter for the algorithm. Their set of nonterminal symbols is bi-partitioned in
two disjoint subsets, production rules follow a peculiar kind of patterns, and an upward closure
condition must be satisfied.

Definition 5.5. An NH-grammar is an {⊥}-grammar (see Def. 3.8)𝐺 = (Σ{⊥}, 𝑆𝑁 ∪ 𝑆𝐻 , 𝑅, 𝑠) such
that 𝑆𝑁 ∩ 𝑆𝐻 = ∅, the start symbol 𝑠 ∈ 𝑆𝑁 and the production rules in 𝑅 follow the patterns below:

G ⇝ G′ G ⇝ Bng(⊥) G ⇝ Bng(G′) G ⇝ Lam(G′) G ⇝ Sub(G1,G2) G ⇝ G′

G ⇝ G′ G ⇝ Var G ⇝ Der(G′) G ⇝ App(G1,G2) G ⇝ Sub(G1,G2)

where G,G′,G1,G2 are meta-variables for arbitrary nonterminal symbols, written in green or
purple depending on whether they must be instantiated by nonterminal symbols which belong to
𝑆𝑁 or 𝑆𝐻 , respectively. Moreover, two additional conditions are required:

(1) For all 𝑛 ∈ 𝑆𝑁 ∪ 𝑆𝐻 , 𝑛 ⇝⇝ 𝑛 does not hold;
(2) For all rule 𝑛⇝ Bng(𝑛′) in 𝑅 with 𝑛′ ∈ 𝑆𝑁 , for all {𝑎𝑖 }𝑖∈𝐼 ⊆ Λ⊥, such that ↑𝑖∈𝐼 𝑎𝑖 , if 𝑎𝑖 ⊏− 𝑛′

for all 𝑖 ∈ 𝐼 then !
∨

𝑖∈𝐼 𝑎𝑖 ⊏− 𝑛.
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𝑔⇝ Var |
VAR

𝑥 ⊩𝑔 𝐻𝑥 :[𝜎 ] (∅;𝜎 )

𝑔⇝ Der(𝑔′ )
[𝜎 ] ⊪ 𝑆 (𝜏,^)

�

�

�

� 𝑎 ⊩𝑔′ 𝐻
𝑥 :[𝜏 ] (Γ; [𝜎 ] )

DR

der(𝑎) ⊩𝑔 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

𝑔⇝ App(𝑔𝑎, 𝑔𝑏 )
Γ = Γ𝑎 + Γ𝑏

M ⇒ 𝜎 ⊪ 𝑆 (𝜏,^ ⇒ 𝜎 )

�

�

�

�

� 𝑎 ⊩𝑔𝑎 𝐻𝑥 :[𝜏 ] (Γ𝑎 ;M ⇒ 𝜎 ) 𝑏 ⊩𝑔𝑏 𝑁 (Γ𝑏 ;M)
APP

𝑎𝑏 ⊩𝑔 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

𝑔⇝ 𝑔′ | 𝑎 ⊩𝑔′ 𝐻
𝑥 :[𝜏 ] (Γ;𝜎 )

H-H
𝑎 ⊩𝑔 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

𝑔⇝ 𝑔′

Γ = Γ
′ + 𝑥 : [𝜏 ]

𝜎 ⊪ 𝑆 (𝜏,^)

�

�

�

�

� 𝑎 ⊩𝑔′ 𝐻
𝑥 :[𝜏 ] (Γ′;𝜎 )

N-H
𝑎 ⊩𝑔 𝑁 (Γ;𝜎 )

𝑔⇝ 𝑔′ | 𝑎 ⊩𝑔′ 𝑁 (Γ;𝜎 )
N-N

𝑎 ⊩𝑔 𝑁 (Γ;𝜎 )

𝑔⇝ Lam(𝑔′ )
fix 𝑥 ∉ dom(Γ)

�

�

�

� 𝑎 ⊩𝑔′ 𝑁 (Γ, 𝑥 : M;𝜎 )
ABS

𝜆𝑥.𝑎 ⊩𝑔 𝑁 (Γ;M ⇒ 𝜎 )

𝑔⇝ Bng(𝑔′ )
𝐼 ≠ ∅

Γ = +𝑖∈𝐼 Γ𝑖

�

�

�

�

�

(

𝑎𝑖 ⊩𝑔′ 𝑁 (Γ𝑖 ;𝜏𝑖 )
)

𝑖∈𝐼
↑𝑖∈𝐼 𝑎𝑖

BG
!
∨

𝑖∈𝐼 𝑎𝑖 ⊩𝑔 𝑁 (Γ; [𝜏𝑖 ]𝑖∈𝐼 )

𝑔⇝ Bng(⊥) |
BG⊥

!⊥ ⊩𝑔 𝑁 (∅; [ ] )

𝑔⇝ Sub(𝑔𝑎, 𝑔𝑏 )
Γ = Γ𝑎 + Γ𝑏 + 𝑧 : [𝜌 ] , fix 𝑦 ∉ dom(Γ) ∪ {𝑥 }

𝑛 ∈ J0, sz(𝜌 )K, M ⊪ 𝑆 (𝜌, [^1, . . . ,^𝑛 ] )

�

�

�

�

� 𝑎 ⊩𝑔𝑎 𝐻𝑥 :[𝜏 ] (Γ𝑎, 𝑦 :M;𝜎 ) 𝑏 ⊩𝑔𝑏 𝐻𝑧:[𝜌 ] (Γ𝑏 ;M)
ES-H

𝑎[𝑦\𝑏 ] ⊩𝑔 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

𝑔⇝ Sub(𝑔𝑎, 𝑔𝑏 )
Γ = Γ𝑎 + Γ𝑏 , fix 𝑦 ∉ dom(Γ) ∪ {𝑥 }

𝑛 ∈ J1, sz(𝜏 )K, [𝜌𝑖 ]𝑖∈J1,𝑛K ⊪ 𝑆 (𝜏, [^1, . . . ,^𝑛 ] )

𝑗 ∈ J1, 𝑛K, 𝜎 ⊪ 𝑆 (𝜌 𝑗 ,^)

�

�

�

�

�

�

�

𝑎 ⊩𝑔𝑎 𝐻𝑦:[𝜌 𝑗 ] (Γ𝑎, 𝑦 : [𝜌𝑖 ]𝑖∈J1,𝑛K\𝑗 ;𝜎 ) 𝑏 ⊩𝑔𝑏 𝐻𝑥 :[𝜏 ] (Γ𝑏 ; [𝜌𝑖 ]𝑖∈J1,𝑛K )
ES-CH

𝑎[𝑦\𝑏 ] ⊩𝑔 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

𝑔⇝ Sub(𝑔𝑎, 𝑔𝑏 )
Γ = Γ𝑎 + Γ𝑏 + 𝑧 : [𝜏 ] , fix 𝑦 ∉ dom(Γ)
𝑛 ∈ J0, sz(𝜏 )K, M ⊪ 𝑆 (𝜏, [^1, . . . ,^𝑛 ] )

�

�

�

�

� 𝑎 ⊩𝑔𝑎 𝑁 (Γ𝑎, 𝑦 : M;𝜎 ) 𝑏 ⊩𝑔𝑏 𝐻𝑧:[𝜏 ] (Γ𝑏 ;M)
ES-N

𝑎[𝑦\𝑏 ] ⊩𝑔 𝑁 (Γ;𝜎 )

Fig. 5. Rules of the Parametric Algorithm Inh
𝐺
U

for SystemU

Example 5.6. Grammar B (Def. 3.9) is a special case of NH-grammar, where 𝑆𝑁 = {cno, cna, cnb},
𝑆𝐻 = {cne} and the start symbol is cno. In particular, the productions rules cno⇝ cna | cnb are of
the form G ⇝ G′, while the production rules cna⇝ cne and cnb⇝ cne are of the form G ⇝ G′.

Lemma 5.7. The grammar B is an NH-grammar.

From now on, the notation Inh
𝐺
U will be used to emphasize the particular NH-grammar 𝐺 that

equips the set of rules of the new parametric algorithm in Fig. 5. In the new algorithm Inh
𝐺
U , the

search is now guided by the NH-grammar𝐺 . Instead of hardcoding the productions using a number
of different names for the calls, the rules of the parametric algorithm are built to explicitly navigate
any NH-grammar 𝐺 using only two kinds of calls, 𝑁 and 𝐻 , and the following features:

• Sequents are now of the form 𝑎 ⊩𝑔 Call, where 𝑔 is a nonterminal symbol of the NH-grammar
𝐺 , considered as the parameter of Call. This parameter specifies which nonterminal symbol
guides the search and thus in which subgrammar the search must be conducted.

• The preliminary requirements of each algorithm rule are now enriched with grammar re-
quirements; thus e.g. in rule (N-H) of Fig. 5 it is also required the existence of some rule of
the form 𝑔⇝ 𝑔′ in the NH-grammar 𝐺 .

Thus for example, in rule (VAR) of Fig. 5, a call 𝐻𝑥 :[𝜎 ] (∅;𝜎) with parameter 𝑔 only succeeds if a
production rule of the form 𝑔⇝ Var belongs to the associated grammar 𝐺 . In the case of grammar
𝐺 = B, this only happens if 𝑔 = cne. A more interesting example is rule (N-N), where a call 𝑁 (Γ;𝜎)
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with parameter 𝑔 may occur with any kind of silent rule 𝑔⇝ 𝑔′ of the grammar 𝐺 (there are four
of such silent rules in the particular case 𝐺 = B: cno⇝ cna | cnb and cnb⇝ cne and cna⇝ cne).

Given an input typing (Γ;𝜎), a run of Inh𝐺U is a tree of recursive parametrized calls starting from
the root 𝑁 (Γ;𝜎) with the start nonterminal symbol of the associated grammar 𝐺 . Notice that now
three different rules (N-N), (H-H) and (N-H) are associated with silent production rules 𝑔⇝ 𝑔′ in
the grammar 𝐺 . They are called silent rules, while the others are called non-silent rules.

Example 5.8. Let us see now some examples of the IP in 𝜆! using the parametric algorithm Inh
B
U ,

that is, Inh𝐺U where𝐺 is instantiated by the particular NH-grammar B. We show the answers given
by our implementation [Arrial 2023] in the mode verbose 0. Different levels of verbose mode are
available. In particular, this allows us to visualize the different type derivations that are constructed
by the algorithm when searching for the basis. The first example has already been discussed in
Example 5.1 using the non-parametric algorithm InhU .

--- Example 1 ---

Inh N(x:[[[𝛼 ]]]; 𝛼)

Sol > z[z:=y[y:=x]], y[y:=der(x)], z[z:=y][y:=x],

der(y)[y:=x], der(y[y:=x]), der(der(x))

--- Example 2 ---

Inh N(∅; [[𝛼]->𝛼 ]->[𝛼]->𝛼)

Sol > 𝜆x.x, 𝜆x.𝜆y.x!y

--- Example 3 ---

Inh N(∅; [[[𝛼 ]->[𝛼 ]]->[[𝛼 ]->[𝛼 ]]])

Sol > !𝜆x.!x, !𝜆x.!𝜆y.x!y, !𝜆y.!𝜆z.(!x)[x:=y!z],

!𝜆y.!𝜆z.!x[x:=y!z], !𝜆x.!𝜆y.!der(x!y)

--- Example 4 ---

Inh N(∅; ([]->[])->[])

Sol > ∅

--- Example 5 ---

Inh N(x:[[]->𝛼 ]; 𝛼)

Sol > x!⊥

--- Example 6 ---

Inh N(∅; [[𝛼 ]->[𝛼 ]])

Sol > !𝜆x.!x

We briefly revisit the run from Example 5.1 which finds the solution der(der(𝑥)) for the typing
(𝑥 : [[[𝛼]]] ;𝛼). In the parametric algorithm Inh

B
U , the run starts from the call 𝑁 (𝑥 : [[[𝛼]]] ;𝛼)

with parameter cno, and rule (N-N) is applied. Since cno ⇝ cna is a production rule of the
NH-grammar B, then the next recursive call is 𝑁 (𝑥 : [[[𝛼]]] ;𝛼) with parameter cna. Note that
taking cnb as parameter also works. Afterwards, rule (N-H) is applied, and cna⇝ cne fulfills the
grammar requirement. Rule (DR) follows twice, where the grammar requirement is instantiated
with cne⇝ Der(cne). Finally, rule (VAR) is applied since cne⇝ Var is a production rule of B.

A comparison between Examples 5.1 and 5.8 showsÐwith an exampleÐthat algorithm Inh
B
U

behaves like InhU , and in particular they return the same output, despite the former uses a different
approach that separates the typing requirements from the grammatical ones. This holds in general.

Proposition 5.9. For every typing (Γ;𝜎), InhU (Γ;𝜎) = Inh
B
U (Γ;𝜎).

5.5 Properties of the Parametric Algorithm Inh
𝐺
U

All our work introduced in Sects. 4 and 5 generalizes to arbitrary NH-grammars. In particular,
statements referring to cne are generalized to subsets produced by nonterminal symbols in 𝑆𝐻 .

Termination. The Inh𝐺U algorithm is non-deterministic, and generating a finite basis for a given
input means generating all possible runs. So, we focus on the proof of termination, which relies on
two properties: every run of the algorithm terminates (finite depth, the hardest and subtlest part of
the termination proof), and there is a finite number of runs for every possible input (finite degree).

Termination of InhU (Thm. 5.2) turns out to be a corollary of termination of Inh𝐺U (Cor. 5.14).

Finite Depth. We prove that every run of the algorithm Inh
𝐺
U terminates by building a decreasing

measure along recursive calls, which is defined in terms of the input of these calls. Some rules
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of Inh𝐺U clearly invoke recursive calls with smaller inputs, for example (BG) and (ABS). Other
rules invoke recursive calls with subtypes in the input provided by the SPK algorithm, for example,
(DR), (APP), (ES-H), (ES-CH) and (ES-N); these subtypes are extracted from the input of the
main call, so that the inputs of the recursive calls turn out to be smaller than the one of the main
call. However, building such a decreasing measure along the recursive calls is not straightforward.
First, we extend the constructor size for types defined before Lem. 4.6 to environments and calls:

sz(Γ)≔
∑︁

𝑥∈dom(Γ)

sz(Γ(𝑥)) sz(𝐻𝑥 :[𝜏 ] (Γ;𝜎))≔ sz(Γ) + sz( [𝜏]) − sz(𝜎) sz(𝑁 (Γ;𝜎))≔ sz(Γ) + sz(𝜎).

The constructor size is clearly decreasing for the recursive calls of rules (VAR), (BG), (BG⊥),
(DR), (APP) and (ABS). However, this measure is not still decreasing for rules (ES-H), (ES-CH)
and (ES-N). We then introduce another measure which decreases in these cases. The depth dpt(𝜏)

of a type 𝜏 is defined as (with 𝑛 ≥ 0):

dpt(𝛼) ≔ 0 dpt(M ⇒ 𝜎) ≔ dpt(M) + dpt(𝜎) dpt( [𝜎𝑖 ]𝑖∈J1,𝑛K) ≔ 𝑛 +
∑︁

𝑖∈J1,𝑛K

dpt(𝜎𝑖 ).

We extend the notion of depth to environments and calls as follows:

dpt(Γ) ≔
∑︁

𝑥∈dom(Γ)

dpt(Γ(𝑥)) dpt(𝐻𝑥 :[𝜏 ] (Γ;𝜎)) ≔ dpt(Γ) + dpt( [𝜏]) dpt(𝑁 (Γ;𝜎)) ≔ dpt(Γ).

For example, dpt(𝑥 : [𝛼, [𝛽]]) = 3 and dpt(𝑥 : [𝛼] , 𝑦 : [𝛽]) = 2. Finally, the composite measure

m(Call) of a call (either a 𝐻 -call or a 𝑁 -call) is given by:

m(Call) ≔ (sz(Call), dpt(Call))

We can use the lexicographic order >lex to compare themeasures of two related calls. In particular,
given two calls 𝑐, 𝑐′ such that 𝑐 calls 𝑐′, then m(𝑐) ≥lex m(𝑐′). Formally,

Lemma 5.10. The measure is strictly decreasing on non-silent rules and decreasing on silent rules.

Silent rules are used to navigate the grammar without tampering the typing, thus leaving the
measure possibly constant. Condition 1 in the definition of NH-grammar (Def. 5.5) is therefore
required to prove that silent rules cannot be used infinitely often. This is crucial to prove termination.

Lemma 5.11. The number of consecutive non-silent production rules in any NH-grammar is bounded.

Combining these two lemmas gives the first termination argument.

Lemma 5.12 (Run termination). Every run of the Inh𝐺U algorithm terminates.

Finite Degree. We now focus on bounding the number of non-deterministic possible calls for a

given input, so that the algorithm results to be finitely branching. Indeed, for every rule of Inh𝐺U ,
several non-deterministic recursive calls are possible. The bound on non-determinism is due to
three reasons: (1) a finite number of production rules; (2) a finite number of splittings for a given
environment; (3) a finite number of subtypes generated by the SPK algorithm (Lem. 4.6).

Lemma 5.13 (Finite branching). The set of possible immediate recursive calls generated by Inh𝐺U
for any input and any parameter is finite.

Using finite depth (Lem. 5.12), finite degree (Lem. 5.13) and König’s Lemma, we conclude:

Corollary 5.14 (Termination of Inh𝐺U ). The Inh𝐺U algorithm terminates.

Soundness and completeness of InhU (Thm. 5.3) can be generalized to Inh𝐺U for any NH-grammar

𝐺 . The idea is that nonterminal symbols in 𝑆𝑁 (resp. 𝑆𝐻 ) are used in Inh
𝐺
U to drive 𝑁 -calls (resp.

𝐻 -calls). Condition 2 in the definition of NH-grammar (Def. 5.5) is crucial to prove completeness.
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Theorem 5.15 (The parametric algorithm is sound and complete). Let𝐺 be an NH-grammar.

For any typing (Γ;𝜎), Inh𝐺U (Γ;𝜎) = Basis(Γ;𝜎) ∩ L(𝐺).

To summarize, a major consequence of the parametrization of the algorithm InhU by any NH-

grammar𝐺 is that we can now use the same algorithm Inh
𝐺
U for all languages encodable into 𝜆!. In

other words, using the (same) algorithm for different languages is made possible by the grammar
parameter indicating to the algorithm which kind of syntax should be followed to construct an
inhabitant. We think that this feature is an important contribution of our approach, which gives a
unified treatment of inhabitation for different models of computation.

6 CBN/CBV INHABITATION

This section discusses a direct application of our work, consisting in restricting the algorithm Inh
𝐺
U

to solve the inhabitation problem for Call-by-Value (CBV) and Call-by-Name (CBN). We first give a
general presentation of the operational semantics of both CBN and CBV in a simple framework with
ES. Then, we define new grammars BN and BV to solve the inhabitation problems for the CBN and

CBV cases by instantiating the generalized Inh
𝐺
U algorithm (Sect. 5.2). Indeed, both grammars BN

and BV are instances of the general class of NH-grammars (Sect. 5.4). This methodology results in
particular in two different inhabitation algorithms, one for CBV and another for CBN, both inheriting
the properties of the general one for 𝜆!. While the resulting CBV inhabitation algorithm is an original
contribution of this paper (Sect. 6.3), our resulting CBN inhabitation algorithm is in some sense
similar to the original CBN algorithm in the literature [Bucciarelli et al. 2018].

CBN and CBV calculi. Both CBN and CBV settings are specified using 𝜆-calculi with ES, as in [Ac-
cattoli and Paolini 2012]. For both calculi, the set Λ𝜆 of terms is inductively defined as follows
(note that der and ! are absent):

(Terms) 𝑡,𝑢 F 𝑣 | 𝑡𝑢 | 𝑡 [𝑥\𝑢] (Values) 𝑣 F 𝑥 | 𝜆𝑥 .𝑡

Full contexts F are terms with exactly one occurrence of the symbol ^. Reductions for CBN and
CBV are driven by the following notion of contexts, which allow actions at a distance:

(List Contexts) L F ^ | L[𝑥\𝑡]
(CBN Contexts) N F ^ | N𝑢 | 𝜆𝑥.N | N[𝑥\𝑢]
(CBV Contexts) V F ^ | V𝑢 | 𝑡V | V[𝑥\𝑢] | 𝑡 [𝑥\V]

The CBN reduction relation →N is defined as the closure of the rules dB and NS below under
contexts N, while the CBV reduction relation →V is defined as the closure of the rules dB and VS

below under contexts V.

L⟨𝜆𝑥 .𝑡⟩𝑢 ↦→dB L⟨𝑡 [𝑥\𝑢]⟩ 𝑡 [𝑥\𝑢] ↦→NS 𝑡{𝑥\𝑢} 𝑡 [𝑥\L⟨𝑣⟩] ↦→VS L⟨𝑡{𝑥\𝑣}⟩

Rule dB (resp. VS) is assumed to be capture free, thus no free variable of 𝑢 (resp. 𝑡 ) is captured by
context L. CBN and CBV differ in that CBN can always fire an ES, while CBV can only if the ES argu-
ment is a value, possibly wrapped by a finite list of ES. So, e.g. (𝜆𝑥 .𝑦𝑥𝑥) (𝐼 𝐼 ) →N (𝑦𝑥𝑥) [𝑥\𝐼 𝐼 ] →N

𝑦 (𝐼 𝐼 ) (𝐼 𝐼 ) ↠N 𝑦𝐼 (𝐼 𝐼 ) ↠N 𝑦𝐼𝐼 and (𝜆𝑥 .𝑦𝑥𝑥) (𝐼 𝐼 ) →V (𝑦𝑥𝑥) [𝑥\𝐼 𝐼 ] ↠V (𝑦𝑥𝑥) [𝑥\𝐼 ] ↠V 𝑦𝐼𝐼 . No-
tice how reduction →V unblocks redexes, e.g. given 𝛿 ≔ 𝜆𝑧.𝑧𝑧, the term 𝑡 ≔ (𝜆𝑦.𝛿) (𝑥𝑥)𝛿 ,
which is a normal form in Plotkin’s CBV [Plotkin 1975], is now non-terminating 𝑡 →V 𝛿 [𝑦\𝑥𝑥]𝛿

→V (𝑧𝑧) [𝑧\𝛿] [𝑦\𝑥𝑥] →V (𝛿𝛿) [𝑦\𝑥𝑥] ↠V (𝛿𝛿) [𝑦\𝑥𝑥], as one would expect, since it is also denota-
tionally non-terminating [Carraro and Guerrieri 2014; Paolini and Ronchi Della Rocca 1999].
In order to define appropriate notions of typed reduction, we also need to introduce full CBN

reduction, written→FN, (resp. full CBV reduction, written→FV), given as the closure of the rewriting
rules dB and NS (resp. dB and VS) under full contexts .
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ax
𝑥 : [𝜎] ⊢ 𝑥 : 𝜎

Γ, 𝑥 : [𝜏𝑖 ]𝑖∈𝐼 ⊢ 𝑡 :𝜎 (Γ𝑖 ⊢ 𝑢 :𝜏𝑖 )𝑖∈𝐼 𝐼 finite
es

Γ +𝑖∈𝐼 Γ𝑖 ⊢ 𝑡 [𝑥\𝑢] : 𝜎

Γ ⊢ 𝑡 : 𝜎
abs

Γ\\𝑥 ⊢ 𝜆𝑥 .𝑡 : Γ(𝑥) ⇒ 𝜎

Γ ⊢ 𝑡 : [𝜏𝑖 ]𝑖∈𝐼 ⇒ 𝜎 (Γ𝑖 ⊢ 𝑢 :𝜏𝑖 )𝑖∈𝐼 𝐼 finite
app

Γ +𝑖∈𝐼 Γ𝑖 ⊢ 𝑡𝑢 : 𝜎

Fig. 6. Type System N for the CBN 𝜆-calculus.

ax
𝑥 : M ⊢ 𝑥 : M

Γ ⊢ 𝑡 : 𝜎 Γ
′ ⊢ 𝑢 : Γ(𝑥)

es
(Γ\\𝑥) + Γ

′ ⊢ 𝑡 [𝑥\𝑢] : 𝜎

(Γ𝑖 ⊢ 𝑡 : 𝜎𝑖 )𝑖∈𝐼 𝐼 finite
abs

+𝑖∈𝐼 Γ𝑖\\𝑥 ⊢ 𝜆𝑥.𝑡 : [Γ𝑖 (𝑥) ⇒ 𝜎𝑖 ]𝑖∈𝐼

Γ ⊢ 𝑡 : [M ⇒ 𝜎] Γ
′ ⊢ 𝑢 : M

app
Γ + Γ

′ ⊢ 𝑡𝑢 : 𝜎

Fig. 7. Type SystemV for the CBV 𝜆-calculus.

CBN and CBV type systems. We now present the quantitative type systems N and V for CBN and
CBV, respectively, already studied in [Bucciarelli et al. 2020]. Types and judgments are the same as
for system U. The typing rules of systems N and V are in Figs. 6 and 7, respectively. A derivation
Π in systemN with conclusion Γ ⊢ 𝑡 : 𝜎 is noted Π ⊲N Γ ⊢ 𝑡 : 𝜎 , and similarly with ⊲V for systemV .
Notice how typed terms may contain untyped subterms in both systems. Indeed, in system N ,

untyped subterms are introduced by rules (es) and (app) with an empty set 𝐼 ; in systemV , untyped
subterms are introduced by rule (ax) with an empty multiset, or rule (abs) with an empty set 𝐼 .
The salient property of type systems N andV is the characterization of normalization in CBN

and CBV, respectively.

Theorem 6.1 (Characterization of normalization, [Bucciarelli et al. 2020]). Let 𝑡 in Λ𝜆 .

(1) CBN normalization: 𝑡 is N -typable if and only if it is→N-normalizing.

(2) CBV normalization: 𝑡 isV-typable if and only if it is →V-normalizing.

Both CBN and CBV can be embedded into the 𝜆!-calculus by preserving the typing. This makes it
possible to decide the CBN/CBV inhabitation problem using the original InhU algorithm.

6.1 Call-by-Name Inhabitation

We now consider the inhabitation problem for CBN equipped with the typing system N (Fig. 6).
First, we specify which are the new tools and notions needed to face the IP for CBN, which are in
fact adapted from those in Sect. 3. Since we have already discussed those notions at length in the
previous sections, the new inherited definitions for CBN are now just briefly mentioned, or presented
in a sober way. Then, instead of building a new algorithm from scratch, we show that there is an
embedding of CBN into 𝜆! (Def. 6.3) which does not only preserve typing, but also the crucial notion

of basis, thus allowing to restrict the search of the Inh𝐺U algorithm on a new grammar called BN, in
order to solve the CBN inhabitation (Lem. 6.5). Finally, we compare the resulting algorithm obtained
by this method, with the original one in the literature [Bucciarelli et al. 2018].

Soundness and Completeness of the Basis. Appropriate notions of N-typed locations, normal

N-derivations, and N-typed reductions are introduced as expected for the type system N and
the CBN reduction relation, following these same concepts for the 𝜆!-calculus (Sect. 3), but taking
into account how untyped subterms may now occur in N -typed terms. Indeed, untyped subterms
can be now introduced by using an empty set 𝐼 in the typing rules (es) and (app). As in 𝜆!, one
constant ⊥ is added to the set Λ𝜆 to canonically represent untyped subterms of typed terms. The
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resulting set ΛN
⊥ of ⊥-terms of CBN is given by the inductive definition below:

𝑎, 𝑏 F ⊥ | 𝑥 | 𝜆𝑥 .𝑎 | 𝑎𝑏 | 𝑎[𝑥\𝑏]

A preorder ⪯N on Λ
N
⊥ is given by the full contextual closure of ⊥⪯N𝑎 for any ⊥-terms 𝑎. Then

N-approximants of normalN -derivations Π, notedAN (Π), as well as canonicalN-derivations,
and canonical N-solutions, are defined following the same concepts as in Sect. 3. Canonical
N -solutions can be produced by the C-grammar N below, where C = {⊥} and c is the start symbol:

(N) a⇝ Var | App(a, b) b⇝ c | ⊥ c⇝ Lam(c) | a.

Grammar N will play a major role to develop our CBN inhabitation algorithm. Indeed, in a new

grammar, so that the same Inh𝐺U algorithm presented in Sect. 5, and not a new one, will be used on
this new grammar to generate the CBN basis.
The key notions of basis and span for the CBN case are also defined as expected:

BasisN (Γ;𝜎) ≔ {𝑏 ∈ Λ
N
⊥ | 𝑏 canonical N -solution for (Γ;𝜎)}

SpanN (𝑆) ≔ {𝑡 ∈ Λ𝜆 | ∃𝑎 ∈ 𝑆, ∃𝑢 ∈ Λ𝜆, 𝑎 ⪯N 𝑢 and 𝑡 ↠FN 𝑢}

The solution set of the CBN IP for the typing (Γ;𝜎) is SolN (Γ;𝜎) ≔ {𝑡 ∈ Λ𝜆 | ∃ Π ⊲N Γ ⊢ 𝑡 : 𝜎}. It
is generated by the basis as expected:

Lemma 6.2 (Sound&Complete Basis). For any typing (Γ;𝜎), SpanN (BasisN (Γ;𝜎)) = SolN (Γ;𝜎).

Embedding in 𝜆!. Now that the basis of solutions for CBN inhabitation have been presented, we
focus on relating CBV to 𝜆!. We use the embedding below introduced by [Bucciarelli et al. 2020]:

Definition 6.3. The CBN embedding (_)cbn : Λ𝜆 → Λ is defined as follows:

𝑥cbn ≔ 𝑥 (𝜆𝑥 .𝑡)cbn ≔ 𝜆𝑥.𝑡cbn (𝑡𝑢)cbn ≔ 𝑡cbn!𝑢cbn (𝑡 [𝑥\𝑢])cbn ≔ 𝑡cbn [𝑥\!𝑢cbn] .

Example 6.4. Let 𝐼 ≔ 𝜆𝑥 .𝑥 and Δ ≔ 𝜆𝑥 .𝑥 !𝑥 and 𝛿 ≔ 𝜆𝑧.𝑧𝑧. We have 𝐼 cbn = 𝐼 and 𝛿cbn = Δ and

(𝛿𝛿)cbn = Δ !Δ. Moreover, ((𝑥𝑦)𝑧)cbn = (𝑥 !𝑦)!𝑧.

An intuitive way to understand this encoding is given by the following fact: while any argument
(right-hand side of application or substitution) can be erased/duplicated in CBN, only bang terms
can be erased/duplicated in the 𝜆!-calculus, so that arguments must be translated to bang terms.

The embedding _cbn translates→FN-reduction steps (in CBN) into→F-reduction steps (in 𝜆!) [Buc-
ciarelli et al. 2018]. Beyond this untyped result, we need to show that the embedding also preserves
typing and canonicity, which are used to decide the IP. For that, we first extend the previous
embedding on terms to ⊥-terms by setting in particular ⊥cbn

≔ ⊥. Note that the embedding is
injective, and that its preimage, denoted (_)−cbn, can be described by a simple erasure of bangs (!).
From now on, we annotate with an index U all the previously defined functions/predicates

related to the 𝜆!-calculus and systemU, to avoid confusion with the corresponding notions for CBN.
For example, we now denote by BasisU (Γ;𝜎) the set Basis(Γ;𝜎) (Sect. 3.2). Next lemma states that
typing, normal derivations and approximants of the two systems are related by the CBN embedding.

Lemma 6.5 (Bridge).

(1) (CBN → 𝜆!) Let Π ⊲N Γ ⊢ 𝑎 : 𝜎 . Then there exists Π′
⊲U Γ ⊢ 𝑎cbn : 𝜎 . Moreover, if Π is normal

then Π
′ is also normal and AU (Π′) = AN (Π)cbn when defined.

(2) (𝜆! → CBN) Let Π ⊲U Γ ⊢ 𝑎 : 𝜎 . Then for the unique 𝑏 ∈ 𝑎−cbn, there exists Π′
⊲N Γ ⊢ 𝑏 : 𝜎 .

Moreover, if Π is normal then Π
′ is also normal and AU (Π) = AN (Π′)cbn when defined.

Thus, the translation of an element of BasisN (Γ;𝜎) is an element of BasisU (Γ;𝜎). Conversely,
any ⊥-term that translates to an element of BasisU (Γ;𝜎) is an element of BasisN (Γ;𝜎).
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CBN Inhabitation. Having all these results in mind, one could now build a direct new algorithm
solving the inhabitation problem for CBN. However, since the CBN basis is translated to the 𝜆! basis,

we can easily exploit the original Inh𝐺U algorithm to also decide the IP for CBN, where the driving
grammar 𝐺 is no longer B, but another NH-grammar. For that, let us focus on the image of the CBN
basis by considering the C-grammar BN below, where C = {⊥} and nno is the start symbol:

(BN) nne⇝ Var | App(nne, nna) nna⇝ Bng(nno) | Bng(⊥) nno⇝ Lam(nno) | nne

Grammar BN can also be seen as the image grammar N via the CBV embedding, as well as the
intersection of the canonicals ⊥-terms of 𝜆! with the image of the CBN embedding. Formally,

Lemma 6.6. Grammar BN is an NH-grammar. Moreover, for every 𝑎 ∈ Λ⊥

𝑎 ⊏− BN ⇔ ∃𝑏 ⊏− N, 𝑎 = 𝑏cbn ⇔ ∃𝑏 ⊏− Λ
N
⊥ , 𝑎 = 𝑏cbn and 𝑎 ⊏− B.

Using Cor. 5.14 and Thm. 5.15, we deduce that InhBNU terminates and computes the image of
the CBN basis through the embedding. A simple erasure of bangs on the results of the algorithm
Inh

BN
U (Γ;𝜎) allows us to decide the IP for CBN.

Theorem 6.7. For any typing (Γ;𝜎), SpanN (InhBNU (Γ;𝜎)−cbn) = SolN (Γ;𝜎).

Proof. By soundness and completeness of the parametric algorithm (Thm. 5.15) applied to

the NH-grammar BN (Lem. 6.6), one has InhBNU (Γ;𝜎) = BasisU (Γ;𝜎) ∩ L(N)cbn. Using the bridge

(Lem. 6.5), one obtains InhBNU (Γ;𝜎)−cbn = BasisN (Γ;𝜎) and by soundness and completeness of the

basis (Lem. 6.2), one concludes that SpanN (InhBNU (Γ;𝜎)−cbn) = SolN (Γ;𝜎). □

Example 6.8. Let us see some examples of the IP in CBN, that is, some examples of runs of Inh𝐺U
using the grammar 𝐺 = BN, for the same input typings as in Example 5.1. We show the answers
given by our implementation [Arrial 2023] in the mode verbose 0.

--- Example 1 ---

Inh N(x:[[[𝛼 ]]]; 𝛼)

Sol > ∅

--- Example 2 ---

Inh N(∅; [[𝛼]->𝛼 ]->[𝛼]->𝛼)

Sol > 𝜆x.x, 𝜆x.𝜆y.xy

--- Example 3 ---

Inh N(∅; [[[𝛼 ]->[𝛼 ]]->[[𝛼 ]->[𝛼 ]]])

Sol > ∅

--- Example 4 ---

Inh N(∅; ([]->[])->[])

Sol > ∅

--- Example 5 ---

Inh N(x:[[]->𝛼 ]; 𝛼)

Sol > x⊥

--- Example 6 ---

Inh N(∅; [[𝛼 ]->[𝛼 ]])

Sol > ∅

6.2 CBN Inhabitation Direct Method

By instantiating the Inh𝐺U algorithm with the grammar BN, one can see that our (indirect) algorithm

Inh
BN
U , working on the type system U and being driven by BN, encodes a (direct) algorithm solving

the IP for CBN, working on systemN and grammar N. Indeed, grammar BN is the image of grammar
N by the CBN encoding. The direct algorithm for CBN, called InhN , can be obtained by an operation
of łpreimage extractionž, it decides the IP for CBN but without passing through 𝜆!: its answers are
directly canonical N -solutions, which (canonically) represent type derivations in system N .
We obtain the set of rules presented in Fig. 8 which is perfectly isomorphic to the original one

[Bucciarelli et al. 2014]. It is worth highlighting that sz(_) alone is sufficient to show termination
of these two (direct) isomorphic algorithms, where the answers do not contain neither derelictions,
nor ES. This a clue that the IP for CBN is considerably easier than the one for 𝜆!.
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|
VAR

𝑥 ⊩ 𝐻𝑥 :[𝜎 ] (∅;𝜎 )

Γ = Γ1 + Γ2

[M ⇒ 𝜎 ] ⊪ 𝑆 (𝜏, [^ ⇒ 𝜎 ] )

�

�

� 𝑎1 ⊩ 𝐻𝑥 :[𝜏 ] (Γ1; [M ⇒ 𝜎 ] ) 𝑎2 ⊩ 𝑁A (Γ2;M)
APP

𝑎1𝑎2 ⊩ 𝐻𝑥 :[𝜏 ] (Γ;𝜎 )

𝐼 ≠ ∅
Γ = +𝑖∈𝐼 Γ𝑖

�

�

� ( 𝑎𝑖 ⊩ 𝑁 (Γ𝑖 ;𝜎𝑖 ) )𝑖∈𝐼 ↑𝑖∈𝐼 𝑎𝑖
SUP∨

𝑖∈𝐼 𝑎𝑖 ⊩ 𝑁A (Γ; [𝜎𝑖 ]𝑖∈𝐼 )

|
BOT

⊥ ⊩ 𝑁A (∅; [ ] )

Γ = Γ
′ + 𝑥 : [𝜏 ]

𝜎 ⊪ 𝑆 (𝜏,^)

�

�

�

𝑎 ⊩ 𝐻𝑥 :[𝜏 ] (Γ′;𝜎 )
N−H

𝑎 ⊩ 𝑁 (Γ;𝜎 )

fix 𝑥 ∈ dom(Γ) | 𝑎′ ⊩ 𝑁 (Γ, 𝑥 : M;𝜎 )
ABS

𝜆𝑥.𝑎′ ⊩ 𝑁 (Γ;M ⇒ 𝜎 )

Fig. 8. Rules of the Direct Algorithm InhN for System N

6.3 Call-by-Value Inhabitation

As in the CBN case, we start by briefly outlining the tools needed to face the IP for CBV, although
highlighting some important differences. Again, instead of building a new inhabitation algorithm
for CBV from scratch, we show that there is an embedding of CBV into 𝜆! (Def. 6.10) which preserves

the crucial notions of typing and basis, thus allowing once again to exploit the Inh𝐺U algorithm
on a new grammar, this time called BV, in order to solve the CBV inhabitation (Lem. 6.12). We also
provide the expected completeness and correction properties.

Soundness and Completeness of the Basis. Appropriate notions of V-typed locations, normal

V-derivations, and V-typed reductions are introduced as expected for the type system V and
the CBV reduction relation, following these same concepts for the 𝜆!-calculus (Sect. 3), but taking
into account how untyped subterms may now occur in V-typed terms (see p. 22, after Fig. 7).
As in 𝜆!, constants are introduced to canonically represent untyped subterms. However, in

CBV, two distinct constants are used: indeed, untyped subterms introduced by the (ax) rule are
always variables, whereas those introduced by the (abs) rule are arbitrary terms. The former
are represented by the constant ⊥v and the latter by the constant ⊥. The resulting set ΛV

⊥,⊥v
of

(⊥,⊥v)-terms of CBV is given by the inductive definition below:

𝑎, 𝑏 F ⊥ | ⊥v | 𝑥 | 𝜆𝑥 .𝑎 | 𝑎𝑏 | 𝑎[𝑥\𝑏]

A preorder ⪯V on Λ
V
⊥,⊥v

is given by theV-contextual closure of ⊥v ⪯V𝑥 for any variable 𝑥 and
⊥⪯V𝑎 for any ⊥v-term 𝑎. Thus e.g. ⊥v (𝑦⊥) ⪯V 𝑥 (𝑦 (𝑧𝑤)). ThenV-approximants of normalV-
derivations Π, noted AV (Π), as well as canonical V-derivations, and canonical V-solutions,
are defined following the same concepts as in Sect. 3. CanonicalV-solutions can be generated by
the following C-grammar V, where C = {⊥,⊥v} and c is the start nonterminal symbol:

(V) a⇝ Var | Sub(a, b) c⇝ Lam(⊥) | Lam(c) | ⊥v | Var | b | Sub(c, b)

b⇝ App(a, c) | App(b, c) | Sub(b, b)

Notice that the grammar V characterizing canonical V-solutions is significantly more complex
than the grammar N of canonical N-solutions. In particular, it makes use of the binary symbol
Sub(_, _) absent in grammar N: such a symbol produces ⊥-terms with explicit substitutions (ES)
that are necessary in to denote CBV normal forms (i.e. 𝑥 [𝑥\𝑦𝑧]), in contrast to the CBN case.
The key notions of basis and span for the CBN case are also defined as expected:

BasisV (Γ;𝜎) ≔ {𝑏 ∈ Λ
V
⊥,⊥v

| 𝑏 canonical V-solution for (Γ;𝜎)}
SpanV (𝑆) ≔ {𝑡 ∈ Λ𝜆 | ∃𝑎 ∈ 𝑆, ∃𝑢 ∈ Λ𝜆, 𝑎 ⪯V 𝑢 and 𝑡 ↠FV 𝑢}

The solution set of the CBV IP for the typing (Γ;𝜎) is SolV (Γ;𝜎) ≔ {𝑡 ∈ Λ𝜆 | ∃ Π ⊲V Γ ⊢ 𝑡 : 𝜎}.
As expected, the solution set is generated by the basis, as stated below.
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Lemma 6.9 (Sound&Complete Basis). For any typing (Γ;𝜎), SpanV (BasisV (Γ;𝜎))=SolV (Γ;𝜎).

Embedding in 𝜆!. Now we focus on relating CBV to 𝜆!. This is done by means of the following
embedding introduced by [Bucciarelli et al. 2020]:

Definition 6.10. The CBV embedding (_)cbv : Λ𝜆 → Λ is defined as follows:

𝑥cbv ≔ !𝑥 (𝜆𝑥 .𝑡)cbv ≔ !𝜆𝑥 .𝑡cbv

(𝑡𝑢)cbv ≔

{

L⟨𝑠⟩𝑢cbv if 𝑡cbv = L⟨!𝑠⟩

der(𝑡cbv)𝑢cbv otherwise
(𝑡 [𝑥\𝑢])cbv ≔ 𝑡cbv [𝑥\𝑢cbv]

Example 6.11. As in Example 6.4, let 𝐼 ≔ 𝜆𝑥 .𝑥 and Δ ≔ 𝜆𝑥.𝑥 !𝑥 and 𝛿 ≔ 𝜆𝑧.𝑧𝑧. We have 𝐼 cbv =

!𝜆𝑥.!𝑥 and 𝛿cbv = !Δ = !(𝛿cbn) and (𝛿𝛿)cbv = Δ !Δ = (𝛿𝛿)cbn. Moreover, ((𝑥𝑦)𝑧)cbv = der(𝑥 !𝑦) !𝑧.

While any value can be erased/duplicated in CBV, only bang terms can be erased/duplicated in
the 𝜆!-calculus, so that values must be translated to bang terms. However, this remark alone is
not sufficient to achieve a CBV embedding enjoying good properties, and in particular to translate
CBV-normal forms into 𝜆!-normal forms. The translation of applications is precisely designed in
order to guarantee this property.

The embedding _cbv translates→FN-reduction steps (in CBV) into→F-reduction steps (in 𝜆!) [Buc-
ciarelli et al. 2018]. Beyond this untyped result, we now show that the embedding preserves typing,
canonical solutions, and the basis, which are needed to decide the IP. For that, we first extend the
previous embedding on terms to (⊥,⊥v)-terms, by setting in particular:

⊥cbv
≔ ⊥ ⊥v

cbv
≔ !⊥ (𝜆𝑥 .⊥)cbv ≔ !⊥

Notice that this extension is no longer injective: it identifies two canonical ways of introducing
an untyped subterm. However, as we shall see, the typing and canonicity are preserved on the
entire preimage (_)−cbv of the embedding. Moreover, the preimage of this embedding does not
only correspond to erasing bangs and derelictions, but also to replacing each constant !⊥ in the
𝜆! side by two possible terms 𝜆𝑥 .⊥ and ⊥v in the CBV side. Next lemma states that typing, normal
derivations and approximants are related by the CBV embedding.

Lemma 6.12 (Bridge).

(1) (CBV → 𝜆!) Let Π ⊲V Γ ⊢ 𝑎 : 𝜎 . Then there exists Π′
⊲U Γ ⊢ 𝑎cbv : 𝜎 . Moreover, if Π is normal

then Π is also normal and AU (Π′) = AV (Π)cbv when defined;

(2) (𝜆! → CBV) Let Π ⊲U Γ ⊢ 𝑎 : 𝜎 . Then for any 𝑏 ∈ 𝑎−cbv, there exists Π′
⊲V Γ ⊢ 𝑏 : 𝜎 . Moreover, if

Π is normal then Π′ is also normal andAU (Π) = AV (Π′)cbv withAV (Π′) = 𝑏 if 𝑎 = AU (Π)

when defined.

As with CBN, the translation of an element of BasisV (Γ;𝜎) is also an element of BasisU (Γ;𝜎).
Conversely, any⊥-term in the preimage of an element of BasisU (Γ;𝜎) is an element of BasisV (Γ;𝜎).

CBV Inhabitation. Again, we use the restriction of the Inh𝐺U algorithm on a new NH-grammar to
decide the IP for CBV. For that, let us focus on the image of the CBV basis. Consider the following
C-grammar BV, where C = {⊥} and vno is the start symbol:

(BV) vnev ⇝ Var vnef ⇝ Var | Sub(vnef, vnea)

vned ⇝ Der(vnea) vnea ⇝ App(vnef, vno) | App(vned, vno) | Sub(vnea, vnea)

vnb ⇝ Lam(vno) | vnev vno ⇝ Bng(vnb) | Bng(⊥) | vnea | Sub(vno, vnea)

Grammar BV can also be seen as the image grammar V via the CBV embedding, as well as the
intersection of the canonicals ⊥-terms of 𝜆! with the image of the CBV embedding. Formally,
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Lemma 6.13. Grammar BV is an NH-grammar. Moreover, for every 𝑎 ∈ Λ⊥

𝑎 ⊏− BV ⇔ ∃𝑏 ⊏− V, 𝑎 = 𝑏cbv ⇔ ∃𝑏 ⊏− Λ
V
⊥,⊥v

, 𝑎 = 𝑏cbv and 𝑎 ⊏− B.

Using Cor. 5.14 and Thm. 5.15, we deduce that InhBVU terminates and computes the image of the
CBV basis through the embedding. A simple erasure on the results allows us to decide the IP for CBV.

Theorem 6.14. For every typing (Γ;𝜎), SpanV (InhBVU (Γ;𝜎)−cbv) = SolV (Γ;𝜎).

Proof. By soundness and completeness of the parametric algorithm (Thm. 5.15) applied to

the NH-grammar BV (Lem. 6.13), one has InhBVU (Γ;𝜎) = BasisU (Γ;𝜎) ∩ L(V)cbv. By the bridge

(Lem. 6.12), InhBVU (Γ;𝜎)−cbv = BasisV (Γ;𝜎) and so, by soundness and completeness of the basis

(Lem. 6.9), SpanV (InhBVU (Γ;𝜎)−cbv) = SolV (Γ;𝜎). □

Example 6.15. Let us see some examples of the IP in CBV, i.e., some runs of Inh𝐺U using the
grammar 𝐺 = BV, for the same input typings as in Examples 5.1 and 6.8. We show the answers
given by our implementation [Arrial 2023] in the mode verbose 0.

--- Example 1 ---

Inh N(x:[[[𝛼 ]]]; 𝛼)

Sol > ∅

--- Example 2 ---

Inh N(∅; [[𝛼]->𝛼 ]->[𝛼]->𝛼)

Sol > ∅

--- Example 3 ---

Inh N(∅; [[[𝛼 ]->[𝛼 ]]->[[𝛼 ]->[𝛼 ]]])

Sol > 𝜆x.x, 𝜆x.𝜆y.xy, 𝜆y.𝜆z.(x)[x:=yz]

--- Example 4 ---

Inh N(∅; ([]->[])->[])

Sol > ∅

--- Example 5 ---

Inh N(x:[[]->𝛼 ]; 𝛼)

Sol > x_, x(𝜆_.⊥)

--- Example 6 ---

Inh N(∅; [[𝛼 ]->[𝛼 ]])

Sol > 𝜆x.x

6.4 CBV Inhabitation Direct Method

For the sake of completeness, we also briefly present a direct algorithm solving the IP problem for
CBV which does not pass through 𝜆!. For that, we follow the same ideas used to obtain the direct
algorithm InhN for CBN in Sect. 6.2. Indeed, the (indirect) algorithm Inh

BV
U , working on systemU

and grammar BV, was obtained by instantiating the general Inh𝐺U algorithm with grammar BV.

Grammar BV is the image of grammar V by the CBV encoding so that InhBVU encodes some (direct)
algorithm solving the IP for CBV and working on system V and grammar V. This direct algorithm,
called InhV , can also be obtained by the łpreimage extractionž, and does not pass through 𝜆!. The
rules of InhV (Fig. 9) appear quite similar to the ones of InhU (Fig. 4), and much more complex
than the ones of the inhabitation algorithm for CBN in [Bucciarelli et al. 2014]. This suggests that
the IP in CBV has the same level of complexity as in 𝜆!, and is considerably harder than in CBN.

7 CONCLUSION

This paper solves the challenging problem of inhabitation for 𝜆! in the framework of quantitative
type systems: we present an algorithm deciding the inhabitation problem for the 𝜆!-calculus and
the quantitative type system U. For each given typing, the algorithm does not only search for one
inhabitant, but generates a finite basis representing, and being able to generate, all and only all the
possible solutions. This makes our method very powerful.

A several-for-one deal! One of the most original points of our work is the use of a grammar to
parametrize the inhabitation algorithm for the 𝜆!-calculus in order to also solve the IP for other
models of computation encodable inside 𝜆!. To the best of our knowledge, this is the first time that
inhabitation is solved in such a generic way. This means in particular that the same algorithm can
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|
VAR−FUN

𝑥 ⊩ 𝐻
𝑥 :[𝜎 ]
F (∅;𝜎 )

𝐼 ≠ ∅
Γ = 𝑥 : [𝜎𝑖 ]𝑖∈𝐼

�

�

�

VAR-VAL
𝑥 ⊩ 𝑁 (Γ; [𝜎 ]𝑖∈𝐼 )

|
VAR⊥

⊥v ⊩ 𝑁 (∅; [ ] )

Γ = Γ1 + Γ2

[M ⇒ 𝜎 ] ⊪ 𝑆 (𝜏, [^ ⇒ 𝜎 ] )

�

�

� 𝑎1 ⊩ 𝐻
𝑥 :[𝜏 ]
Q (Γ1; [M ⇒ 𝜎 ] ) 𝑎2 ⊩ 𝑁 (Γ2;M)

APPQ

𝑎1𝑎2 ⊩ 𝐻
𝑥 :[𝜏 ]
A (Γ;𝜎 )

|
ABS⊥

𝜆𝑥.⊥ ⊩ 𝑁 (∅; [ ] )

Γ = Γ
′ + 𝑥 : [𝜏 ]

𝜎 ⊪ 𝑆 (𝜏,^)

�

�

�

𝑎 ⊩ 𝐻
𝑥 :[𝜏 ]
A (Γ′;𝜎 )

N-HA
𝑎 ⊩ 𝑁 (Γ;𝜎 )

𝐼 ≠ ∅
Γ = +𝑖∈𝐼 Γ𝑖

fix 𝑥 ∈ dom(Γ)

�

�

�

�

� ( 𝑎𝑖 ⊩ 𝑁 (Γ𝑖 , 𝑥 : M𝑖 ;𝜎𝑖 ) )𝑖∈𝐼 ↑𝑖∈𝐼 𝑎𝑖
ABS

𝜆𝑥.
∨

𝑖∈𝐼 𝑎𝑖 ⊩ 𝑁 (Γ; [M𝑖 ⇒ 𝜎𝑖 ]𝑖∈𝑖 )

Γ = Γ𝑎 + Γ𝑏 + 𝑧 : [𝜌 ] , fix 𝑦 ∉ dom(Γ) ∪ {𝑥 }
𝑛 ∈ J0, sz(𝜌 )K, M ⊪ 𝑆 (𝜌, [^1, . . . ,^𝑛 ] )

�

�

�

� 𝑎 ⊩ 𝐻
𝑥 :[𝜏 ]
Q (Γ𝑎, 𝑦 : M;𝜎 ) 𝑏 ⊩ 𝐻

𝑧:[𝜌 ]
A (Γ𝑏 ;M)

ES-HQ

𝑎[𝑦\𝑏 ] ⊩ 𝐻
𝑥 :[𝜏 ]
Q (Γ;𝜎 )

Γ = Γ𝑎 + Γ𝑏 , fix 𝑦 ∉ dom(Γ) ∪ {𝑥 }
𝑛 ∈ J1, sz(𝜏 )K, [𝜌𝑖 ]𝑖∈J1,𝑛K ⊪ 𝑆 (𝜏, [^1, . . . ,^𝑛 ] )

𝑗 ∈ J1, 𝑛K, 𝜎 ⊪ 𝑆 (𝜌 𝑗 ,^)

�

�

�

�

�

� 𝑎 ⊩ 𝐻
𝑦:[𝜌 𝑗 ]

Q (Γ𝑎, 𝑦 : [𝜌𝑖 ]𝑖∈J1,𝑛K\𝑗 ;𝜎 ) 𝑏 ⊩ 𝐻
𝑥 :[𝜏 ]
A (Γ𝑏 ; [𝜌𝑖 ]𝑖∈J1,𝑛K )

ES-CHQ

𝑎[𝑦\𝑏 ] ⊩ 𝐻
𝑥 :[𝜏 ]
Q (Γ;𝜎 )

Γ = Γ𝑎 + Γ𝑏 + 𝑧 : [𝜏 ] , fix 𝑦 ∉ dom(Γ)
𝑛 ∈ J0, sz(𝜏 )K, M ⊪ 𝑆 (𝜏, [^1, . . . ,^𝑛 ] )

�

�

�

� 𝑎 ⊩ 𝑁 (Γ𝑎, 𝑦 : M;𝜎 ) 𝑏 ⊩ 𝐻
𝑧:[𝜏 ]
A (Γ𝑏 ;M)

ES-N
𝑎[𝑦\𝑏 ] ⊩ 𝑁 (Γ;𝜎 )

Fig. 9. Rules of the Direct Algorithm InhV for System V

(Q ∈ {𝐹,A} in rules (APPQ), (ES-HQ), (ES-CHQ) )

be used not only to search for inhabitants in 𝜆! but also in other languages encodable within it: this
is done by just changing the parameter of the algorithm to another tree grammar. In particular, we
propose two restrictions of our algorithm so as to naturally derive inhabitation algorithms for CBN
and CBV 𝜆-calculi in a quantitative framework. This is done by using (untyped and typed) appropriate
embeddings of CBN/CBV into the 𝜆!-calculus. In the first case, we use the CBN embedding by Girard,
and the resulting CBN inhabitation algorithm is isomorphic to the one in [Bucciarelli et al. 2014,
2018]. In the second one, we use the CBV embedding in [Bucciarelli et al. 2020], and the resulting
CBV inhabitation algorithm is new: we provide the first proof of decidability of the IP for a non-
idempotent intersection type system that characterizes CBV normalization. Indeed, some preliminary
ideas towards a possible CBV algorithm appear in [Kerinec et al. 2021], but their type system does not
validate (i.e. subject reduction fails) permutation rules to unblock redexes [Accattoli and Guerrieri
2022a,b], and their calculus without permutations contains normal forms that are untypable.
Therefore, soundness and completeness of their inhabitation algorithm are not guaranteed.

It is worth noticing that, although our method encodes the inhabitation problems of CBN/CBV
into the one for the 𝜆!-calculus, direct algorithms (Sect. 6.2 for CBN, Sect. 6.4 for CBV) can also be
derived from the encoded ones. This means that the 𝜆! technology could also be forgotten at the
end. Although we have not explored a general methodology to derive direct inhabitation algorithms
for calculi encodable in 𝜆!, we give two concrete examples, leaving the topic for future work.

A non-trivial problem. What makes difficult our algorithm with respect to the quantitative
CBN case [Bucciarelli et al. 2014, 2018] is the presence of special built-in constructors in the 𝜆!-
calculus, notably dereliction and explicit substitutions (ES), which are precisely needed to subsume
a reasonable version of CBV. For example, rule (der) in systemUÐtyping derelictionsÐdoes not
only break the subformula property (the type in the premise is not a subtype of the conclusion),
but the type in the conclusion is a strict subtype of that of the premise, a phenomenon which
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jeopardizes the termination of the algorithm. However, we are able to highlight a measure defined
on the input parameters of the algorithm which is strictly decreasing along each recursive call.
This gives a non-trivial argument for the termination property of our algorithm. Also, we aim to
find all the solutions for a given typing, and some of these solutions may contain (nested) ES: they
are neither trivial, nor easy to find.
One may think that ES are syntactically redundant, since a closure of the form 𝑡 [𝑥\𝑠] can be

seen as syntactic sugar for a 𝛽-like redex (𝜆𝑥 .𝑡)𝑠 . But the problem would be still there. Indeed, the
real issue is that in calculi like CBV and 𝜆! some (normal) terms may contain ES (or 𝛽-like redexes)
that cannot be fired because the argument is not of the right form (a value in CBV, a bang in 𝜆!).
This problem is absent in CBN, where there is no restriction to fire a 𝛽-redex (a normal form cannot
contain ES). This is one of the reasons that makes the IP for CBV or 𝜆! much harder than in CBN.
It is worth mentioning the existence of an inhabitation algorithm for a pattern matching lan-

guage with ES appearing in [Bucciarelli et al. 2021]. However, the algorithm does not search for
approximants with nested substitutions, so that it is less expressive from a program synthesis point
of view, i.e. the algorithm does not construct a complete basis generating all possible answers.
More generally, the 𝜆!-calculus not only subsumes CBN and CBV 𝜆-calculi, but is a richer and

more expressive language than CBN and CBV. This causes another difficulty to design our algorithm
that does not appear in CBN and CBV: the presence of clashes, which are ill-formed terms that are
meaningless even though normal. Type system U and our inhabitation algorithm are conceived to
exclude clashes from the search space.

Future work. Using the tools developed in this paper, we are currently considering an encoding
of the approximation theorems for CBN and CBV into the approximation theorem for 𝜆!. We would
like also to investigate how the natural notion of level in 𝜆! captures new notions of reductions for
CBN and CBV. Last, but not least, we conjecture that our inhabitation algorithm will play a key role
to characterize solvability in 𝜆!. Indeed, in languages with call-by-value flavor, as for example in
𝜆-calculus with pattern matching [Bucciarelli et al. 2021], solvability was shown to be equivalent
to typability and inhabitation. We conjecture the same will happen in the 𝜆!-calculus, so that the
problem solved in this paper would be a crucial step forward solvability in 𝜆!.
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