Genericity Through Stratification

<u>Victor Arrial</u> Université Paris Cité Paris Giulio Guerrieri University of Sussex Brighton Delia Kesner Université Paris Cité Paris

Logic in Computer Science (LICS) Tallinn, July 8, 2024

Key properties:

- (Operational and Logical Characterizations)
- Genericity Lemmas
- Consistency when equating all meaningless terms

Call-by-Name

 $(\lambda x.y\,\Omega)\,\Omega$

Call-by-Name

$$(\lambda x.y\,\Omega)\,\Omega\\ \downarrow\\ y\,\Omega$$

Call-by-Name

$$\begin{matrix} (\lambda x.y\,\Omega)\,\Omega \\ \downarrow \\ y\,\Omega \\ \not \downarrow \end{matrix}$$

Call-by-Name

Call-by-Value

 $(\lambda x.y\,\Omega)\,{\color{red}\Omega}$

Call-by-Name

$$(\lambda x.y\,\Omega)\,\Omega\\ \downarrow\\ y\,\Omega\\ \downarrow$$

$$(\lambda x.y\,\Omega)\,\Omega$$

$$\downarrow$$

$$(\lambda x.y\,\Omega)\,\Omega$$

Call-by-Name

$$(\lambda x.y\,\Omega)\,\Omega\\ \downarrow\\ y\,\Omega\\ \downarrow$$

$$(\lambda x.y\,\Omega)\,\Omega\\ \downarrow\\ (\lambda x.y\,\Omega)\,\Omega\\ \downarrow\\ \vdots$$

Call-by-Name

$$(\lambda x.y\,\Omega)\,\Omega\\ \downarrow_0\\ y\,\Omega\\ \not\downarrow_0$$

$$(\lambda x.y \Omega) \Omega$$

$$\downarrow_0$$

$$(\lambda x.y \Omega) \Omega$$

$$\downarrow_0$$

$$\vdots$$

Call-by-Name

$$\begin{array}{c} (\lambda x.y\,\Omega)\,\Omega \\ \downarrow_0 \\ y\,\Omega \\ \downarrow_1 \\ y\,\Omega \end{array}$$

$$(\lambda x.y \Omega) \Omega$$

$$\downarrow_0$$

$$(\lambda x.y \Omega) \Omega$$

$$\downarrow_0$$

$$\vdots$$

Call-by-Name

$$(\lambda x.y\,\Omega)\,\Omega\\ \downarrow_0\\ y\,\Omega\\ \downarrow_1\\ y\,\Omega\\ \downarrow_1\\ \vdots$$

$$(\lambda x.y \Omega) \Omega$$

$$\downarrow_0$$

$$(\lambda x.y \Omega) \Omega$$

$$\downarrow_0$$

$$\vdots$$

MEANINGFUL

 \exists testing context T, T $\langle {\color{red} t} \rangle$ \rightarrow^* Obs

MEANINGFUL

 \exists testing context T, T $\langle t
angle
ightarrow^*$ Obs

MEANINGFUL

 \exists testing context T, T $\langle t \rangle \, o^*$ Obs

MEANINGFUL

 \exists testing context T, T $\langle t \rangle \rightarrow^*$ Obs where T ::= $\diamond \mid (\lambda x.T) t \mid Tt$

MEANINGFUL

 \exists testing context T, T $\langle t \rangle \rightarrow^*$ Obs where T ::= $\diamond \mid (\lambda x.T) t \mid Tt$

$$\exists T, T\langle t \rangle \rightarrow^* Id$$

MEANINGFUL

 \exists testing context T, T $\langle t \rangle \rightarrow^*$ Obs where T ::= $\diamond \mid (\lambda x.T) t \mid Tt$

$$\exists \, \mathtt{T}, \; \mathtt{T} \langle t \rangle \, o^* \, \mathtt{Id}$$

MEANINGFUL Id

MEANINGLESS

 $\lambda x.\Omega, \Omega$

MEANINGFUL

 \exists testing context T, T $\langle t \rangle \rightarrow^*$ Obs where T ::= $\diamond \mid (\lambda x.T) t \mid Tt$

$$\exists \, \mathtt{T}, \; \mathtt{T} \langle t \rangle \, o^* \, \mathtt{Id}$$

MEANINGFUL Id

MEANINGLESS

 $\lambda x.\Omega, \Omega$

$$\exists \, \mathtt{T}, \, \mathtt{T} \langle t \rangle \, \to^* v$$

MEANINGFUL

 \exists testing context T, T $\langle t \rangle \rightarrow^*$ Obs where T ::= $\diamond \mid (\lambda x.T) t \mid Tt$

$$\exists \, \mathtt{T}, \; \mathtt{T}\langle t \rangle \, \overset{lack}{
ightarrow^*} \, \mathtt{Id}$$

MEANINGFUL Id

MEANINGLESS $\lambda x.\Omega,\ \Omega$

$$\exists T, T\langle t \rangle \rightarrow^* v$$

MEANINGFUL Id, $\lambda x.\Omega$ **MEANINGLESS** Ω

Lemma (Lifting)

VALUE

Call-by-Name and Call-by-Value

$$t$$
 MEANINGLESS \leadsto

$$\mathcal{QA}(t) := \bot$$

$$t$$
 MEANINGLESS \leadsto $\mathcal{QA}(t) := \bot$

$$t$$
 MEANINGLESS \leadsto

$$QA(t) := \bot$$

$$t$$
 MEANINGLESS \leadsto $\mathcal{QA}(t) := \bot$

Theorem ((Surface) Genericity)

VALUE

Let t be **MEANINGLESS** such that $C\langle t \rangle$ has a \rightarrow -normal form. Then, there exists $n \in \mathbb{N}$ such that for any $u \in \Lambda$, there exists \rightarrow -normal forms t', u' such that $C\langle t \rangle \to^* t'$ and $C\langle u \rangle \to^* u'$.

Theorem (Quantitative (Surface) Genericity)

VALUE

Let t be **MEANINGLESS** such that $C\langle t \rangle$ has a \rightarrow -normal form. Then, there exists $n \in \mathbb{N}$ such that for any $u \in \Lambda$, there exists \rightarrow -normal forms t', u' such that $C\langle t \rangle \rightarrow^n t'$ and $C\langle u \rangle \rightarrow^n u'$.

Theories: Equivalence relations on Λ .

 $\lambda_{\mathtt{v}} ext{-theories:}$ Contextually closed theory containing β_{v} .

 λ_v -theories: Contextually closed theory containing β_v .

 $\lambda_{\rm v}$ -theories: Contextually closed theory containing β_v .

Theories: Equivalence relations on Λ .

 λ_v -theories: Contextually closed theory containing β_v .

Theories: Equivalence relations on Λ .

 λ_v -theories: Contextually closed theory containing β_v .

Consistent: There exists two distinct points.

Sensible Theory: $\lambda_{\rm v}$ -theory equating all <code>MEANINGLESS</code> terms.

Sensible Theory: λ_v -theory equating all **MEANINGLESS** terms.

MEANINGFUL

MEANINGLESS

Sensible Theory: λ_v -theory equating all **MEANINGLESS** terms.

MEANINGFUL

MEANINGLESS

Sensible Theory: λ_v -theory equating all **MEANINGLESS** terms.

MEANINGFUL

MEANINGLESS

Theory \mathcal{H}_{v} : Smallest sensible λ_{v} -theory.

Sensible Theory: λ_v -theory equating all **MEANINGLESS** terms.

MEANINGFUL

MEANINGLESS

Theory \mathcal{H}_{v} : Smallest sensible λ_{v} -theory.

Theorem (Full Genericity)

VALUE

Let $\mathsf{C}\langle t \rangle \to_\omega^* s$ with t **MEANINGLESS** and s a \to_ω -normal form, then for any $u \in \Lambda$, $\mathsf{C}\langle u \rangle \to_\omega^* s$.

Sensible Theory: λ_v -theory equating all **MEANINGLESS** terms.

MEANINGFUL

MEANINGLESS

Theory \mathcal{H}_{v} : Smallest sensible λ_{v} -theory.

Theorem (Full Genericity)

VALUE

Let $\mathsf{C}\langle t \rangle \to_\omega^* s$ with t **MEANINGLESS** and s a \to_ω -normal form, then for any $u \in \Lambda$, $\mathsf{C}\langle u \rangle \to_\omega^* s$.

Theorem

VALUE

The theory $\mathcal{H}_{\mathtt{v}}$ is consistent.

Theory $\mathcal{H}_{\mathtt{v}}^*$: Maximal Consistent Extension of $\mathcal{H}_{\mathtt{v}}$

Theory $\mathcal{H}_{\mathtt{v}}^* :$ Maximal Consistent Extension of $\mathcal{H}_{\mathtt{v}}$

Theory $\mathcal{H}_{\mathbf{v}}^*$: t - u

Theory $\mathcal{H}_{\mathbf{v}}^*$: t - u when \forall C, C $\langle t \rangle$ **MEANINGFUL** iff C $\langle u \rangle$ **MEANINGFUL**.

Corollary

VALUE

The theory \mathcal{H}_{v}^{*} extends \mathcal{H}_{v} .

Theory $\mathcal{H}_{\mathbf{v}}^*$: t - u when \forall C, C $\langle t \rangle$ **MEANINGFUL** iff C $\langle u \rangle$ **MEANINGFUL**.

Theorem (Surface Genericity)

VALUE

Let $C\langle t \rangle$ be **MEANINGFUL** with t **MEANINGLESS**, then for every $u \in \Lambda$, $C\langle u \rangle$ is **MEANINGFUL**.

Corollary

VALUE

The theory \mathcal{H}_{v}^{*} extends \mathcal{H}_{v} .

Theory $\mathcal{H}^*_{\mathtt{v}}$: Maximal Consistent Extension of $\mathcal{H}_{\mathtt{v}}$

Theory $\mathcal{H}_{\mathbf{v}}^*$: t-u when \forall C, C $\langle t \rangle$ **MEANINGFUL** iff C $\langle u \rangle$ **MEANINGFUL**.

Theorem (Surface Genericity)

VALUE

Let $C\langle t \rangle$ be **MEANINGFUL** with t **MEANINGLESS**, then for every $u \in \Lambda$, $C\langle u \rangle$ is **MEANINGFUL**.

Corollary

VALUE

The theory \mathcal{H}_{v}^{*} extends \mathcal{H}_{v} .

Theorem

VALUE

The theory \mathcal{H}_{v}^{*} is unique maximal consistent $\lambda_{v}\text{-theory}$ extending $\mathcal{H}_{v}.$

Theory $\mathcal{H}_{\mathbf{v}}^*$: t-u when \forall C, C $\langle t \rangle$ **MEANINGFUL** iff C $\langle u \rangle$ **MEANINGFUL**.

Theorem (Surface Genericity)

VALUE

Let $C\langle t \rangle$ be **MEANINGFUL** with t **MEANINGLESS**, then for every $u \in \Lambda$, $C\langle u \rangle$ is **MEANINGFUL**.

Corollary

VALUE

The theory \mathcal{H}_{v}^{*} extends \mathcal{H}_{v} .

Theorem

VALUE

The theory \mathcal{H}_{v}^{*} is unique maximal consistent λ_{v} -theory extending \mathcal{H}_{v} .

Theory $\mathcal{H}^*_{\mathtt{v}}$: Maximal Consistent Extension of $\mathcal{H}_{\mathtt{v}}$

Theory $\mathcal{H}_{\mathbf{v}}^*$: t-u when \forall C, C $\langle t \rangle$ **MEANINGFUL** iff C $\langle u \rangle$ **MEANINGFUL**.

Theorem (Surface Genericity)

VALUE

Let $C\langle t \rangle$ be **MEANINGFUL** with t **MEANINGLESS**, then for every $u \in \Lambda$, $C\langle u \rangle$ is **MEANINGFUL**.

Corollary

VALUE

The theory \mathcal{H}_{v}^{*} extends \mathcal{H}_{v} .

Theorem

VALUE

The theory \mathcal{H}_{v}^{*} is unique maximal consistent λ_{v} -theory extending \mathcal{H}_{v} .

Theory $\mathcal{H}^*_{\mathtt{v}}$: Maximal Consistent Extension of $\mathcal{H}_{\mathtt{v}}$

Theory $\mathcal{H}_{\mathbf{v}}^*$: t-u when \forall C, C $\langle t \rangle$ **MEANINGFUL** iff C $\langle u \rangle$ **MEANINGFUL**.

Theorem (Surface Genericity)

VALUE

Let $C\langle t \rangle$ be **MEANINGFUL** with t **MEANINGLESS**, then for every $u \in \Lambda$, $C\langle u \rangle$ is **MEANINGFUL**.

Corollary

VALUE

The theory \mathcal{H}_{v}^{*} extends \mathcal{H}_{v} .

Theorem

VALUE

The theory \mathcal{H}_{v}^{*} is unique maximal consistent λ_{v} -theory extending \mathcal{H}_{v} .

Summary:

- Novel simple technique to prove Stratified Quantitative Genericity
- Generalizes Surface and Full Genericity
- Consistency of theories \mathcal{H} and \mathcal{H}^* (and coincides with observational equivalence).
- Applies to both CBN and CBV without any trick

Summary:

- Novel simple technique to prove Stratified Quantitative Genericity
- Generalizes Surface and Full Genericity
- Consistency of theories \mathcal{H} and \mathcal{H}^* (and coincides with observational equivalence).
- Applies to both CBN and CBV without any trick

Further questions and future work:

- Dynamic approximations for other properties
- Meaningfulness in Call-by-Need
- Criterions or key elements of meaningfulness ?

Summary:

- Novel simple technique to prove Stratified Quantitative Genericity
- Generalizes Surface and Full Genericity
- Consistency of theories \mathcal{H} and \mathcal{H}^* (and coincides with observational equivalence).
- Applies to both CBN and CBV without any trick

Further questions and future work:

- Dynamic approximations for other properties
- Meaningfulness in Call-by-Need
- Criterions or key elements of meaningfulness?

```
History of meaningfulness in call-by-value 

→ TLLA - Today 16h50

Meaningfulness in a unifying paradigm 
→ FSCD - Friday 14h00
```

Summary:

- Novel simple technique to prove Stratified Quantitative Genericity
- Generalizes Surface and Full Genericity
- Consistency of theories \mathcal{H} and \mathcal{H}^* (and coincides with observational equivalence).
- Applies to both CBN and CBV without any trick

Further questions and future work:

- Dynamic approximations for other properties
- Meaningfulness in Call-by-Need
- Criterions or key elements of meaningfulness?

```
History of meaningfulness in call-by-value  

→ TLLA - Today 16h50

Meaningfulness in a unifying paradigm  

→ FSCD - Friday 14h00
```

Thank you!