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Theorem ([BKR’14])

For any typing (',0), Basisy(I,o) exists, is finite, correct and complete.

Built an algorithm computing Basisy(I', o) : [BKR’14]

alFT(C+x:4,7) x ¢ dom(T")
Ax.alk T(D,A — 7)

(Abs)

(a; IF T(Ty,09))ier tier ai
V ai - TI(+ierTs, [ovlier)
el
D=Ti+0y alb@®> =50 B 7) bIFTI(T2B) n>
ab I- Hx:[Ala...AnaBAT] (F, 7_)

(Union)

0
(Heads)

————— (Head
x - Hx’[r]((D, T) (Heado)

alF Hx:[AlH“.AnﬁT](F, 7_)

alFT(C+x:[A; = ...A, = 7],7T)

(Head)
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C=0"+x:[r] ) T = +ierl
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alF N(T;0) " Ax. Vierai IF N(T; [Mi = 0ilie;)
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aly\b] I+ HE (I3 0)
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alt B Ty s Doiliequopyi0) b B T [pidiequn)
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Thanks for your attention!



