Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Victor Arrial ¹ Giulio Guerrieri ^{2,3} Delia Kesner ^{1,4}

¹Université Paris Cité, Paris ²Aix Marseille Univ, Marseille

³Edinburgh Research Centre, Huawei, Edinburgh

⁴Institut Universitaire de France

Marseille - I2M, May 4, 2023

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Victor Arrial ¹ Giulio Guerrieri ^{2,3} Delia Kesner ^{1,4}

¹Université Paris Cité, Paris ²Aix Marseille Univ, Marseille

³Edinburgh Research Centre, Huawei, Edinburgh

⁴Institut Universitaire de France

Marseille - I2M, May 4, 2023

Typing Problem:

Typing Problem:

 $\Gamma \vdash t : \sigma$

Typing Problem:

 $\Gamma \vdash t : \sigma$

Computational: [Mil'78]

Typers

Typing Problem: $\Gamma \vdash t : \sigma$

(2)

Inhabitation Problem (IP):

Computational: [Mil'78]
Typers

Typing Problem: $\Gamma \vdash t : \sigma$

(2)

Inhabitation Problem (IP):

Γ

 σ

Computational: [Mil'78]
Typers

Typing Problem: $\Gamma \vdash t : \sigma$

(2)

Inhabitation Problem (IP):

 $\Gamma \vdash \textit{t} : \sigma$

Computational: [Mil'78]
Typers

Typing Problem: $\Gamma \vdash t : \sigma$

Computational: [Mil'78]
Typers

Inhabitation Problem (IP): $\Gamma \vdash t : \sigma$

Computational: [HuOr'20] Program Synthesis

Logical: **[HoMi'94]**Proof Search and Logic Programming

Typing Problem: $\Gamma \vdash t : \sigma$

Computational: [Mil'78]
Typers

Inhabitation Problem (IP):

 $\Gamma \vdash t : \sigma$

Computational: [HuOr'20] Program Synthesis

Logical: [HoMi'94]
Proof Search and Logic Programming

Typing Problem: $\Gamma \vdash t : \sigma$

Computational: [Mil'78]
Typers

Inhabitation Problem (IP): $\Gamma \vdash t : \sigma$

Computational: [HuOr'20] Program Synthesis

Logical: **[HoMi'94]**Proof Search and Logic Programming

Quantitative Inhabitation for Different Lambda Calculi in a Unifying

Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Different Models of Computation:

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Different Models of Computation:

Unifying Frameworks:

Call-by-Push-Value [Levy'99]

Different Models of Computation:

- Call-by-Push-Value [Levy'99]
- Bang Calculus [EG'16]

Different Models of Computation:

- Call-by-Push-Value [Levy'99]
- Bang Calculus [EG'16]:

$$t, u ::= x \mid \lambda x.t \mid tu$$

Different Models of Computation:

- Call-by-Push-Value [Levy'99]
- Bang Calculus [EG'16]:

$$t, u ::= x \mid \lambda x.t \mid tu$$
$$\mid !t$$

Different Models of Computation:

Unifying Frameworks:

- Call-by-Push-Value [Levy'99]
- Bang Calculus [EG'16]:

$$t, u ::= x \mid \lambda x.t \mid tu$$
$$\mid !t$$
$$\mid der(t)$$

Values Computations

Different Models of Computation:

- Call-by-Push-Value [Levy'99]
- Distant Bang Calculus [EG'16] [BKRV'20]:

BANG

Static Properties: [BKRV'20]

NAME

t normal form

BANG

Static Properties: [BKRV'20]

NAME

t normal form \Leftrightarrow t $\stackrel{N}{t}$ normal form

BANG

Static Properties: [BKRV'20]

NAME

t normal form

 \Leftrightarrow t^N normal form

BANG

Dynamic Properties: [BKRV'20]

NAME

Static Properties: [BKRV'20]

NAME

t normal form \Leftrightarrow t $\stackrel{N}{t}$ normal form

BANG

Dynamic Properties: [BKRV'20]

NAME

BANG

NAME BANG VALUE BANG

Static Properties: [BKRV'20]

NAME

t normal form \Leftrightarrow t $\stackrel{N}{t}$ normal form

BANG

Dynamic Properties: [BKRV'20]

NAME

Static Properties: [BKRV'20]

Dynamic Properties: [BKRV'20]

Static Properties: [BKRV'20]

Dynamic Properties: [BKRV'20]

Can we do the same thing with inhabitation?

Quantitative Inhabitation for Different Lambda Calculi in a Unifying Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying **Framework**

Simple Types Versus Intersection Types

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

Associativity:

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A, B := \sigma \mid A \Rightarrow B \mid A \cap B$$

Untyped terms

Terminating terms

=
Typable terms

Associativity:

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Commutativity:

$$A\cap B=B\cap A$$

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

Untyped terms

Terminating terms

=
Typable terms

Associativity:

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Commutativity:

$$A \cap B = B \cap A$$

Idempotency?

$$A,B ::= \sigma \mid A \Rightarrow B \mid {\color{red} A \cap B}$$

Associativity:

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Commutativity:

$$A \cap B = B \cap A$$

Idempotency?

Idempotent [CoDe'78],[CoDe'80]

$$A \cap A = A$$

$$A,B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

Associativity:

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Commutativity:

$$A \cap B = B \cap A$$

Idempotency?

Idempotent [CoDe'78],[CoDe'80]

$$A \cap A = A$$

Qualitative properties

$$A, B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

Untyped terms

Terminating terms

=
Typable terms

Associativity:

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Commutativity:

$$A \cap B = B \cap A$$

Idempotency?

Idempotent [CoDe'78],[CoDe'80]

$$A \cap A = A$$

Non-Idempotent [Gard'94], [Kfou'00]

$$A \cap A \neq A$$

Qualitative properties

$$A,B ::= \sigma \mid A \Rightarrow B \mid A \cap B$$

Associativity:

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Commutativity:

$$A \cap B = B \cap A$$

Idempotency?

Idempotent [CoDe'78],[CoDe'80]

$$A \cap A = A$$

Non-Idempotent [Gard'94], [Kfou'00]

$$A \cap A \neq A$$

Qualitative properties

Quantitative properties [dCarv'07]

Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ? : \sigma$

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ? : \sigma$
Simple Types		
Idempotent Types		
Non-Idempotent Types		

Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ? : \sigma$
Decidable	
	? + <i>t</i> : ?

	Typing ?	Inhabitation $\Gamma \vdash ? : \sigma$
Simple Types	Decidable	
Idempotent Types	Indecidable	
Non-Idempotent Types	Indecidable	

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ? : \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	
Non-Idempotent Types	Indecidable	

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ? : \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ? : \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18]

	Typing ? ⊢ <i>t</i> : ?	Inhabitation $\Gamma \vdash ? : \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18] (CBV) ?

	Typing ?	Inhabitation $\Gamma \vdash ? : \sigma$
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18] (CBV) ?

	Typing ?	Inhabitation Γ ⊦ ? : σ
Simple Types	Decidable	Decidable
Idempotent Types	Indecidable	Indecidable [Urz'99]
Non-Idempotent Types	Indecidable	(CBN) Decidable [BKR'18] (CBV) Decidable

Three Typing Systems: [BKRV'20]

NAME : N

VALUE: V

BANG: B

Three Typing Systems: [BKRV'20]

NAME : N

VALUE : V

 $BANG : \mathcal{B}$

Static Properties: [BKRV'20]

NAME

 $\Gamma \vdash_{\mathcal{N}} t : \sigma$

Three Typing Systems: [BKRV'20]

NAME : N

VALUE : V

BANG : B

Static Properties: [BKRV'20]

NAME

 $\Gamma \vdash_{\mathcal{N}} t : \sigma \iff \Gamma \vdash_{\mathcal{B}} t^{N} : \sigma$

BANG

Three Typing Systems: [BKRV'20]

NAME : N

VALUE : V

 $BANG : \mathcal{B}$

Static Properties: [BKRV'20]

NAME VALUE

Quantitative Inhabitation for Different Lambda Calculi in a Unifying

Framework

First Goal

■ **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the BANG IP.

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

- Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal

- **Decidability** of the (more general) **BANG** Inhabitation Problem (IP).
- Decidability of the NAME and VALUE IP from decidability of the BANG IP.

More Ambitious Third Goal

- Decidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

Instead of **just one** solution:

 $\Gamma \vdash \mathbf{t} : \sigma$

We want to compute **all** solutions:

$$\mathsf{Sol}(\Gamma,\sigma) \; := \; \{\, \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \,\}$$

Instead of just one solution:

 $\Gamma \vdash \mathbf{t} : \sigma$

We want to compute all solutions:

 $Sol(\Gamma, \sigma) := \{ \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \}$

Instead of **just one** solution:

$$\Gamma \vdash \mathbf{t} : \sigma$$

We want to compute **all** solutions:

$$\mathsf{Sol}(\Gamma,\sigma) := \{ \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \}$$

Problem

BANG

Instead of **just one** solution:

$$\Gamma \vdash \mathbf{t} : \sigma$$

We want to compute **all** solutions:

$$\mathsf{Sol}(\Gamma,\sigma) := \{ \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \}$$

Problem

We compute a **finite** generator:

Basis (Γ, σ)

Which is **correct** and **complete**:

$$\operatorname{span}(\operatorname{Basis}(\Gamma,\sigma)) \ = \ \operatorname{Sol}(\Gamma,\sigma)$$

Instead of **just one** solution:

$$\Gamma \vdash \mathbf{t} : \sigma$$

We want to compute **all** solutions:

$$Sol(\Gamma, \sigma) := \{ \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \}$$

Problem

We compute a **finite** generator:

Basis (Γ, σ)

Which is **correct** and **complete**:

$$\operatorname{span}(\operatorname{Basis}(\Gamma,\sigma)) \ = \ \operatorname{Sol}(\Gamma,\sigma)$$

Instead of **just one** solution:

$$\Gamma \vdash \mathbf{t} : \sigma$$

We want to compute **all** solutions:

$$\mathsf{Sol}(\Gamma,\sigma) := \{ \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \}$$

Problem

We compute a **finite** generator:

Basis (Γ, σ)

Which is **correct** and **complete**:

$${\tt span}(\,{\tt Basis}(\Gamma,\sigma)\,)\,=\,{\tt Sol}(\Gamma,\sigma)$$

Instead of just one solution:

$$\Gamma \vdash \mathbf{t} : \sigma$$

We want to compute **all** solutions:

$$Sol(\Gamma, \sigma) := \{ \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \}$$

Problem

BANG

We compute a finite generator:

Basis (Γ, σ)

Which is **correct** and **complete**:

 $\operatorname{span}(\operatorname{Basis}(\Gamma,\sigma)) \ = \ \operatorname{Sol}(\Gamma,\sigma)$

Theorem

 \P For any typing (Γ, σ) , Basis $_{\mathcal{B}}(\Gamma, \sigma)$ exists, is finite, correct and complete.

BANG

Instead of just one solution:

$$\Gamma \vdash \mathbf{t} : \sigma$$

We want to compute **all** solutions:

$$Sol(\Gamma, \sigma) := \{ \mathbf{t} \mid \Gamma \vdash \mathbf{t} : \sigma \}$$

Problem

BANG

We compute a finite generator:

Basis (Γ, σ)

Which is **correct** and **complete**:

 $\operatorname{span}(\operatorname{Basis}(\Gamma,\sigma)) \ = \ \operatorname{Sol}(\Gamma,\sigma)$

Theorem

 \P For any typing (Γ, σ) , Basis $_{\mathcal{B}}(\Gamma, \sigma)$ exists, is finite, correct and complete.

BANG

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules: Sol (Γ, σ)

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

- Typing rules
- Grammar rules

Computing the basis:

Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

- Typing rules
- Grammar rules

$$\frac{g \mapsto \operatorname{Var} \mid}{x \Vdash_g H^{\operatorname{Xi}[\sigma]}(\emptyset; \sigma)^{\operatorname{VAR}}} = \frac{g \mapsto \operatorname{Der}(g') \mid}{\operatorname{der}(a) \Vdash_g H^{\operatorname{Xi}[\tau]}(\Gamma; [\sigma])} \underset{\Gamma = \Gamma_a + \Gamma_b}{\operatorname{De}} = \frac{g \mapsto \operatorname{Sub}(g_a, g_b)}{\operatorname{In}(\Gamma; \sigma)} = \frac{g \mapsto \operatorname{Sub}(g_a, g_b)}{\operatorname{In}(\Gamma; \sigma)}$$

```
g \mapsto \mathsf{App}(g_a, g_b)
             \Gamma = \Gamma_a + \Gamma_b
                                                              a \Vdash_{g_a} H^{x:[\tau]}(\Gamma_a; \mathcal{M} \Rightarrow \sigma) \quad b \Vdash_{g_b} N(\Gamma_b; \mathcal{M})
\mathcal{M} \Rightarrow \sigma \Vdash S(\tau, \diamond \Rightarrow \sigma)
                                                              ab \Vdash_{a} H^{x:[\tau]}(\Gamma;\sigma)
```

```
g \mapsto \mathsf{App}(g_a, g_b)
                \Gamma = \Gamma_a + \Gamma_b
                                                                         a \Vdash_{g_a} H^{x:[\tau]}(\Gamma_a; \mathcal{M} \Rightarrow \sigma) \quad b \Vdash_{g_b} N(\Gamma_b; \mathcal{M})
\mathcal{M} \Rightarrow \sigma \Vdash S(\tau, \diamond \Rightarrow \sigma)
                                                                      ab \Vdash_q H^{x:[\tau]}(\Gamma;\sigma)
                     n \in [0, \mathsf{sz}(\rho)], \ M \Vdash S(\rho, | \diamondsuit_1, \dots, \diamondsuit_n|) | a \Vdash_{a_n} H^{*_{n+1}}(\Gamma_a, u; M; \sigma) \mid B \Vdash_{a_n} H^{*_{n+1}}(\Gamma_b; M)
```

```
\Gamma = \Gamma_a + \Gamma_b
                                                   a \Vdash_{a_0} H^{x:[\tau]}(\Gamma_a; \mathcal{M} \Rightarrow \sigma) \quad b \Vdash_{a_b} N(\Gamma_b; \mathcal{M})
                                                 ab \Vdash_{\sigma} H^{x:[\tau]}(\Gamma;\sigma)
```

```
g \mapsto \mathsf{App}(g_a, g_b)
                                                                  a \Vdash_{q_a} H^{x:[\tau]}(\Gamma_a; \mathcal{M} \Rightarrow \sigma) \quad b \Vdash_{q_b} N(\Gamma_b; \mathcal{M})
                                                               ab \Vdash_{\boldsymbol{q}} H^{x:[\tau]}(\Gamma;\sigma)
           n \in [0, \mathsf{sz}(\rho)], \ M \Vdash S(\rho, [\lozenge_1, \ldots, \lozenge_n]) | a \Vdash_{q_a} H^{\wedge_{1^{k_1}}}(\Gamma_a, y : M; \sigma) \quad b \Vdash_{q_b} H^{\sim_{1^{k_1}}}(\Gamma_b; M)
```

```
g \mapsto \mathsf{App}(g_a, g_b)
                \Gamma = \Gamma_a + \Gamma_b
                                                                         a \Vdash_{g_a} H^{x:[\tau]}(\Gamma_a; \mathcal{M} \Rightarrow \sigma) \quad b \Vdash_{g_b} N(\Gamma_b; \mathcal{M})
\mathcal{M} \Rightarrow \sigma \Vdash S(\tau, \diamond \Rightarrow \sigma)
                                                                      ab \Vdash_q H^{x:[\tau]}(\Gamma;\sigma)
                     n \in [0, \mathsf{sz}(\rho)], \ M \Vdash S(\rho, | \diamondsuit_1, \dots, \diamondsuit_n|) | a \Vdash_{a_n} H^{*_{n+1}}(\Gamma_a, u; M; \sigma) \mid B \Vdash_{a_n} H^{*_{n+1}}(\Gamma_b; M)
```

$$\frac{g \mapsto \operatorname{Var} \mid}{x \Vdash_g H^{\operatorname{Xi}[\sigma]}(\emptyset; \sigma)^{\operatorname{VAR}}} = \frac{g \mapsto \operatorname{Der}(g') \mid}{\operatorname{der}(a) \Vdash_g H^{\operatorname{Xi}[\tau]}(\Gamma; [\sigma])} \underset{\Gamma = \Gamma_a + \Gamma_b}{\operatorname{De}} = \frac{g \mapsto \operatorname{Sub}(g_a, g_b)}{\operatorname{In}(\Gamma; \sigma)} = \frac{g \mapsto \operatorname{Sub}(g_a, g_b)}{\operatorname{In}(\Gamma; \sigma)}$$

The Full Algorithm and its Implementation

Non-deterministic algorithm

Non-deterministic algorithm

Theorem

Non-deterministic algorithm

Theorem

- The inhabitation algorithm terminates.
- \bigcirc The algorithm is sound and complete (i.e. it exactly computes $\mathtt{Basis}_{\mathcal{B}}(\Gamma, \sigma)$).

Non-deterministic algorithm

Theorem

- The inhabitation algorithm terminates.
- \bigcirc The algorithm is sound and complete (i.e. it exactly computes $\mathtt{Basis}_{\mathcal{B}}(\Gamma,\sigma)$).

More Ambitious Third Goal

Oecidability by finding all inhabitants in the BANG IP.

Non-deterministic algorithm

Theorem

- The inhabitation algorithm terminates.
- \bigcirc The algorithm is sound and complete (i.e. it exactly computes $\mathtt{Basis}_{\mathcal{B}}(\Gamma,\sigma)$).

More Ambitious Third Goal

- Oecidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

Solving NAME Inhabitation - Standard Methology

Theorem ([BKR'14])

Basis_N (Γ, σ) exists, is finite, correct and complete. \bigcirc For any typing (Γ, σ) ,

NAME

Theorem ([BKR'14])

 \P For any typing (Γ, σ) , Basis_N (Γ, σ) exists, is finite, correct and complete.

NAME

Built an algorithm computing Basis_N (Γ, σ) : [BKR'14]

$$\frac{\mathbf{a} \Vdash \mathbf{T}(\Gamma + \mathbf{x} : \mathbf{A}, \tau) \qquad \mathbf{x} \notin \mathsf{dom}(\Gamma)}{\lambda \mathbf{x}. \mathbf{a} \Vdash \mathbf{T}(\Gamma, \mathbf{A} \to \tau)} \text{ (Abs)}$$

$$\frac{(\mathbf{a}_i \Vdash \mathbf{T}(\Gamma_i, \sigma_i))_{i \in I} \qquad \uparrow_{i \in I} \mathbf{a}_i}{\bigvee_{i \in I} \mathbf{T}(\mathbf{I}_i, [\sigma_i]_{i \in I})} \text{ (Union)}$$

$$\frac{\Gamma = \Gamma_1 + \Gamma_2 \qquad \mathbf{a} \Vdash \mathbf{H}^{\mathbf{x}:[A_1 \to \dots A_n \to B \to \tau]}(\Gamma_1, \mathbf{B} \to \tau) \qquad \mathbf{b} \Vdash \mathbf{TI}(\Gamma_2, \mathbf{B}) \qquad n \geq 0}{\mathbf{a} \mathbf{b} \Vdash \mathbf{H}^{\mathbf{x}:[A_1 \to \dots A_n \to B \to \tau]}(\Gamma, \tau)} \text{ (Head_0)}$$

$$\frac{\mathbf{a} \Vdash \mathbf{H}^{\mathbf{x}:[A_1 \to \dots A_n \to \tau]}(\Gamma, \tau)}{\mathbf{a} \Vdash \mathbf{T}(\Gamma, \mathbf{x}) \mapsto \mathbf{a}} \text{ (Head_0)}$$

Solving NAME Inhabitation : through BANG Inhabitation

The Basis is preserved by the embedding:

NAME

 $t \in \mathtt{Basis}_{\mathcal{N}}(\Gamma, \sigma)$

Solving NAME Inhabitation : through BANG Inhabitation

The Basis is preserved by the embedding:

Solving **VALUE** Inhabitation - Usual Methology

Theorem

 \bigcirc For any typing (Γ, σ) , Basis $_{\mathcal{V}}(\Gamma, \sigma)$ exists, is finite, correct and complete. **VALUE**

Solving **VALUE** Inhabitation - Usual Methology

Theorem

Basis $_{\mathcal{V}}(\Gamma, \sigma)$ exists, is finite, correct and complete.

VALUE

Built an algorithm computing $\operatorname{Basis}_{\mathcal{V}}(\Gamma,\sigma)$:

 \P For any typing (Γ, σ) , Basis $_{\mathcal{V}}(\Gamma, \sigma)$ exists, is finite, correct and complete.

VALUE

Built an algorithm computing Basis $_{\mathcal{V}}(\Gamma, \sigma)$:

```
\frac{\left|\begin{array}{c|c} I \neq \emptyset \\ x \Vdash H^{N(\sigma)}(\theta;\sigma) \end{array}\right|^{VAR-FUN}}{x \Vdash N(\Gamma; [\sigma]_{\{\sigma\}})} = \frac{1}{x \vdash N(\emptyset; [\sigma]_{\{\sigma\}})} VAR-VAL \qquad \frac{\left|\begin{array}{c|c} I \neq \emptyset \\ \bot_{V} \Vdash N(\emptyset; [\sigma]_{\{\sigma\}}) \end{array}\right|^{VAR-FUN}}{x \vdash N(\emptyset; [\sigma]_{\{\sigma\}})} = \frac{1}{x \vdash N(\emptyset; [\sigma]_{\{\sigma\}})} VAR-VAL \qquad \frac{1}{x \vdash N(\emptyset; [\sigma
                                                                                                                           \begin{bmatrix} \mathcal{M} \Rightarrow \sigma \end{bmatrix} \Vdash S(\tau, [\diamondsuit \Rightarrow \sigma]) \quad \middle| \quad a_1 \Vdash H_0^{\pi(\tau)}(\Gamma_1; [\mathcal{M} \Rightarrow \sigma]) \quad a_2 \Vdash N(\Gamma_2; \mathcal{M}) \\ & \qquad \qquad \downarrow \\ \\ & \qquad \qquad \downarrow 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                a_1a_2 \Vdash H^{x:[\tau]}_{\star}(\Gamma; \sigma)
                                                                                                                   \begin{array}{c|c} \Gamma = \Gamma' + x : \{ \Gamma \} \\ \sigma \Vdash S(\Gamma, \diamond) & a \Vdash H_{\Gamma}^{\infty[\Gamma]}(\Gamma'; \sigma) \\ \hline a \Vdash N(\Gamma; \sigma) & a \Vdash N(\Gamma; \sigma) \end{array} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} \\ \times \frac{I \neq \emptyset}{a \Vdash N(\Gamma; M; \sigma)} 
                                                                                                                                                                                                                            \Gamma = \Gamma_0 + \Gamma_0 + z : [\rho], \quad \text{fix } u \notin \text{dom}(\Gamma) \cup \{x\}
                                                                                                                                                                                                                                                                                               = \frac{\Gamma_a + \Gamma_b + z : [\rho]}{n \in [0, sz(\rho)], \ M \Vdash S(\rho, [\diamondsuit_1, \dots, \diamondsuit_n])} \quad a \Vdash H_0^{\infty[\tau]}(\Gamma_a, y : \mathcal{M}; \sigma) \quad b \Vdash H_A^{\infty[\rho]}(\Gamma_b; \mathcal{M}) 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               a[y \mid b] \Vdash H_{\alpha}^{x:[\tau]}(\Gamma; \sigma)
                                                                                                                  \Gamma = \Gamma_0 + \Gamma_0, fix u \notin dom(\Gamma) \cup \{x\}
n \in [1, sz(\tau)], [\rho_i]_{i \in [1, n]} \Vdash S(\tau, [\diamond_1, \dots, \diamond_n])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                a \Vdash H_{\mathcal{Q}}^{\mathcal{Y}:\left[\rho_{i}\right]}\left(\Gamma_{a}, y:\left[\rho_{i}\right]_{i \in \left[\!\left[1,n\right]\!\right] \setminus i}; \sigma\right) \quad b \Vdash H_{A}^{\mathbf{x}:\left[\tau\right]}\left(\Gamma_{b};\left[\rho_{i}\right]_{i \in \left[\!\left[1,n\right]\!\right]}\right)_{\mathsf{ESCHO}}
                                                                                                                                                                                                                                                     i \in [1, n], \sigma \Vdash S(o_i, \diamondsuit)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        a[y \mid b] \Vdash H_o^{x:[\tau]}(\Gamma; \sigma)
                                                                                                                                                                                                                                                                                                                                                                                                                                                         \Gamma = \Gamma_a + \Gamma_b + z : [\tau], \quad \text{fix } y \notin \text{dom}(\Gamma)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 \Gamma = \Gamma_a + \Gamma_b + z : [\tau], \quad \text{fix } y \notin \text{dom}(1)
n \in [0, \text{sz}(\tau)], \quad M \Vdash S(\tau, [\diamondsuit_1, \dots, \diamondsuit_n]) \quad a \Vdash N(\Gamma_a, y : M; \sigma) \quad b \Vdash H_A^{z: [\tau]}(\Gamma_b; M)
\Gamma_{S \in N} = \{0, \text{sz}(\tau)\}, \quad S \vdash \{0, \text{sz}(\tau)\}, 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 a[u \mid b] \Vdash N(\Gamma; \sigma)
```


The Basis is preserved by the embedding:

VALUE

 $t \in \mathtt{Basis}_{\mathcal{V}}(\Gamma, \sigma)$

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes $Basis_{\mathcal{B}}(\Gamma, \sigma)$).

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes $\mathtt{Basis}_{\mathcal{B}}(\Gamma, \sigma)$).

- Oecidability by finding all inhabitants in the BANG IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- Oecidability by **finding all inhabitants** in the **BANG** IP.
- Decidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- Oecidability by finding all inhabitants in the BANG IP.
- Obecidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- Oecidability by finding all inhabitants in the BANG IP.
- Obecidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- Oecidability by **finding all inhabitants** in the **BANG** IP.
- Obecidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

- The inhabitation algorithm terminates.
- The algorithm is sound and complete (i.e. it exactly computes Basis (Γ, σ)).

- Oecidability by finding all inhabitants in the BANG IP.
- Obecidability of the NAME and VALUE IP by finding all inhabitants from those of the BANG IP.
- Using generic properties so that other encodable models of computation can use these results.

Conclusion

Summary:

Solving the generalized inhabitation problem

■ A several-for-one deal: BANG NAME VALUE OTHERS

 $\blacksquare \ \, \text{An implementation:} \qquad (\texttt{github/ArrialVictor/InhabitationLambdaBang})$

Conclusion

Summary:

- Solving the generalized inhabitation problem
- A several-for-one deal: BANG NAME VALUE OTHERS
- An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

- Solvability (for Different Calculi in a Unified Framework)
- Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR'21]

Conclusion

Summary:

- Solving the generalized inhabitation problem
- A several-for-one deal: BANG NAME VALUE OTHERS
- An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

- Solvability (for Different Calculi in a Unified Framework)
- Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR'21]

Thanks for your attention!