
Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Victor Arrial 1 Giulio Guerrieri 2 ,3 Delia Kesner 1 ,4

1Université Paris Cité, Paris 2Aix Marseille Univ, Marseille

3Edinburgh Research Centre, Huawei, Edinburgh

4 Institut Universitaire de France

Marseille - I2M, May 4, 2023

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Victor Arrial 1 Giulio Guerrieri 2 ,3 Delia Kesner 1 ,4

1Université Paris Cité, Paris 2Aix Marseille Univ, Marseille

3Edinburgh Research Centre, Huawei, Edinburgh

4 Institut Universitaire de France

Marseille - I2M, May 4, 2023

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:
Γ ⊢ t : σ

Inhabitation Problem (IP):
Γ ⊢ t : σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:

Γ ⊢

t

: σ
Inhabitation Problem (IP):

Γ ⊢ t : σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:
Γ ⊢ t : σ

Inhabitation Problem (IP):
Γ ⊢ t : σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:
Γ ⊢ t : σ

Inhabitation Problem (IP):
Γ ⊢ t : σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:
Γ ⊢ t : σ

Inhabitation Problem (IP):

Γ ⊢ t : σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:
Γ ⊢ t : σ

Inhabitation Problem (IP):
Γ

⊢ t :

σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:
Γ ⊢ t : σ

Inhabitation Problem (IP):
Γ ⊢ t : σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:
Γ ⊢ t : σ

Inhabitation Problem (IP):
Γ ⊢ t : σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:
Γ ⊢ t : σ

Inhabitation Problem (IP):
Γ ⊢ t : σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Victor Arrial , Giulio
Guerrieri , , Delia

Kesner ,

What is Inhabitation ?

Typing Problem:
Γ ⊢ t : σ

Inhabitation Problem (IP):
Γ ⊢ t : σ

Computational: [Mil’78]
Typers

Computational: [HuOr’20]
Program Synthesis

Logical: [HoMi’94]
Proof Search and Logic Programming

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

Unifying Frameworks:

• Call-by-Push-Value [Levy’99]

• Distant Bang Calculus [BKRV’20]:

t, u ::= x | λx.t | tu
| ! t Values

| der(t) Computations

| t [x := u] Let

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

Unifying Frameworks:

• Call-by-Push-Value [Levy’99]

• Distant Bang Calculus [BKRV’20]:

t, u ::= x | λx.t | tu
| ! t Values

| der(t) Computations

| t [x := u] Let

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

Unifying Frameworks:

• Call-by-Push-Value [Levy’99]

•

Distant

Bang Calculus [EG’16]

[BKRV’20]:

t, u ::= x | λx.t | tu
| ! t Values

| der(t) Computations

| t [x := u] Let

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

Unifying Frameworks:

• Call-by-Push-Value [Levy’99]

•

Distant

Bang Calculus [EG’16]

[BKRV’20]:

t, u ::= x | λx.t | tu
| ! t Values

| der(t) Computations

| t [x := u] Let

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

Unifying Frameworks:

• Call-by-Push-Value [Levy’99]

•

Distant

Bang Calculus [EG’16]:

[BKRV’20]:

t, u ::= x | λx.t | tu

| ! t Values

| der(t) Computations

| t [x := u] Let

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

Unifying Frameworks:

• Call-by-Push-Value [Levy’99]

•

Distant

Bang Calculus [EG’16]:

[BKRV’20]:

t, u ::= x | λx.t | tu
| ! t Values

| der(t) Computations

| t [x := u] Let

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

Unifying Frameworks:

• Call-by-Push-Value [Levy’99]

•

Distant

Bang Calculus [EG’16]:

[BKRV’20]:

t, u ::= x | λx.t | tu
| ! t Values

| der(t) Computations

| t [x := u] Let

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

Unifying Frameworks:

• Call-by-Push-Value [Levy’99]

• Distant Bang Calculus [EG’16] [BKRV’20]:

t, u ::= x | λx.t | tu
| ! t Values

| der(t) Computations

| t [x := u] Let

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Distant Bang: A Subsuming Paradigm

t
N

: →

t
V

: →

Static Properties: [BKRV’20]

t normal form ⇔ t
N

normal form

t normal form ⇔ t
V

normal form

Dynamic Properties: [BKRV’20]

t ↠ u ⇔ t
N
↠ u N

t ↠ u ⇔ t
V
↠ u V

Can we do the same thing with inhabitation ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Distant Bang: A Subsuming Paradigm

t
N

: →

t
V

: →

Static Properties: [BKRV’20]

t normal form ⇔ t
N

normal form

t normal form ⇔ t
V

normal form

Dynamic Properties: [BKRV’20]

t ↠ u ⇔ t
N
↠ u N

t ↠ u ⇔ t
V
↠ u V

Can we do the same thing with inhabitation ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Distant Bang: A Subsuming Paradigm

t
N

: →

t
V

: →

Static Properties: [BKRV’20]

t normal form

⇔ t
N

normal form

t normal form ⇔ t
V

normal form

Dynamic Properties: [BKRV’20]

t ↠ u ⇔ t
N
↠ u N

t ↠ u ⇔ t
V
↠ u V

Can we do the same thing with inhabitation ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Distant Bang: A Subsuming Paradigm

t
N

: →

t
V

: →

Static Properties: [BKRV’20]

t normal form ⇔ t
N

normal form

t normal form ⇔ t
V

normal form

Dynamic Properties: [BKRV’20]

t ↠ u ⇔ t
N
↠ u N

t ↠ u ⇔ t
V
↠ u V

Can we do the same thing with inhabitation ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Distant Bang: A Subsuming Paradigm

t
N

: →

t
V

: →

Static Properties: [BKRV’20]

t normal form ⇔ t
N

normal form

t normal form ⇔ t
V

normal form

Dynamic Properties: [BKRV’20]

t ↠ u

⇔ t
N
↠ u N

t ↠ u ⇔ t
V
↠ u V

Can we do the same thing with inhabitation ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Distant Bang: A Subsuming Paradigm

t
N

: →

t
V

: →

Static Properties: [BKRV’20]

t normal form ⇔ t
N

normal form

t normal form ⇔ t
V

normal form

Dynamic Properties: [BKRV’20]

t ↠ u ⇔ t
N
↠ u N

t ↠ u ⇔ t
V
↠ u V

Can we do the same thing with inhabitation ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Distant Bang: A Subsuming Paradigm

t
N

: →

t
V

: →

Static Properties: [BKRV’20]

t normal form ⇔ t
N

normal form

t normal form ⇔ t
V

normal form

Dynamic Properties: [BKRV’20]

t ↠ u ⇔ t
N
↠ u N

t ↠ u ⇔ t
V
↠ u V

Can we do the same thing with inhabitation ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Distant Bang: A Subsuming Paradigm

t
N

: →

t
V

: →

Static Properties: [BKRV’20]

t normal form ⇔ t
N

normal form

t normal form ⇔ t
V

normal form

Dynamic Properties: [BKRV’20]

t ↠ u ⇔ t
N
↠ u N

t ↠ u ⇔ t
V
↠ u V

Can we do the same thing with inhabitation ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Distant Bang: A Subsuming Paradigm

t
N

: →

t
V

: →

Static Properties: [BKRV’20]

t normal form ⇔ t
N

normal form

t normal form ⇔ t
V

normal form

Dynamic Properties: [BKRV’20]

t ↠ u ⇔ t
N
↠ u N

t ↠ u ⇔ t
V
↠ u V

Can we do the same thing with inhabitation ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B

| A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B

| A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B

| A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent

Non-Idempotent

[CoDe’78],[CoDe’80]

[Gard’94], [Kfou’00]

A ∩ A = A

A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent

Non-Idempotent

[CoDe’78],[CoDe’80]

[Gard’94], [Kfou’00]

A ∩ A = A

A ∩ A , A

Qualitative properties

Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties

Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B | A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable Decidable

Idempotent Types Indecidable Indecidable [Urz’99]

Non-Idempotent Types Indecidable
(CBN) Decidable [BKR’18]

(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable Decidable

Idempotent Types Indecidable Indecidable [Urz’99]

Non-Idempotent Types Indecidable
(CBN) Decidable [BKR’18]

(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types

Decidable Decidable

Idempotent Types

Indecidable Indecidable [Urz’99]

Non-Idempotent Types

Indecidable
(CBN) Decidable [BKR’18]

(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable

Decidable

Idempotent Types

Indecidable Indecidable [Urz’99]

Non-Idempotent Types

Indecidable
(CBN) Decidable [BKR’18]

(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable

Decidable

Idempotent Types Indecidable

Indecidable [Urz’99]

Non-Idempotent Types Indecidable

(CBN) Decidable [BKR’18]
(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable Decidable

Idempotent Types Indecidable

Indecidable [Urz’99]

Non-Idempotent Types Indecidable

(CBN) Decidable [BKR’18]
(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable Decidable

Idempotent Types Indecidable Indecidable [Urz’99]

Non-Idempotent Types Indecidable

(CBN) Decidable [BKR’18]
(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable Decidable

Idempotent Types Indecidable Indecidable [Urz’99]

Non-Idempotent Types Indecidable
(CBN) Decidable [BKR’18]

(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable Decidable

Idempotent Types Indecidable Indecidable [Urz’99]

Non-Idempotent Types Indecidable
(CBN) Decidable [BKR’18]

(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable Decidable

Idempotent Types Indecidable Indecidable [Urz’99]

Non-Idempotent Types Indecidable
(CBN) Decidable [BKR’18]

(CBV) ?

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Typability and Inhabitation in Intersection Types

Typing Inhabitation
? ⊢ t : ? Γ ⊢ ? : σ

Simple Types Decidable Decidable

Idempotent Types Indecidable Indecidable [Urz’99]

Non-Idempotent Types Indecidable
(CBN) Decidable [BKR’18]

(CBV) Decidable

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BKRV’20]

: N : V : B

Static Properties: [BKRV’20]

Γ ⊢N t : σ ⇔ Γ ⊢B t
N

: σ

Γ ⊢V t : σ ⇔ Γ ⊢B t
V

: σ

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BKRV’20]

: N : V : B

Static Properties: [BKRV’20]

Γ ⊢N t : σ ⇔ Γ ⊢B t
N

: σ

Γ ⊢V t : σ ⇔ Γ ⊢B t
V

: σ

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BKRV’20]

: N : V : B

Static Properties: [BKRV’20]

Γ ⊢N t : σ

⇔ Γ ⊢B t
N

: σ

Γ ⊢V t : σ ⇔ Γ ⊢B t
V

: σ

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BKRV’20]

: N : V : B

Static Properties: [BKRV’20]

Γ ⊢N t : σ ⇔ Γ ⊢B t
N

: σ

Γ ⊢V t : σ ⇔ Γ ⊢B t
V

: σ

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BKRV’20]

: N : V : B

Static Properties: [BKRV’20]

Γ ⊢N t : σ ⇔ Γ ⊢B t
N

: σ

Γ ⊢V t : σ ⇔ Γ ⊢B t
V

: σ

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Coming Back to Inhabitation

First Goal

+ More Ambitious Second Goal

Decidability of the (more general) Inhabitation Problem (IP).

Decidability of the and IP from decidability of the IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Coming Back to Inhabitation

First Goal

+ More Ambitious Second Goal

Decidability of the (more general) Inhabitation Problem (IP).

Decidability of the and IP from decidability of the IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal

Decidability of the (more general) Inhabitation Problem (IP).

Decidability of the and IP from decidability of the IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal

Decidability of the (more general) Inhabitation Problem (IP).

Decidability of the and IP from decidability of the IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal

Decidability of the (more general) Inhabitation Problem (IP).

Decidability of the and IP from decidability of the IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal

Decidability of the (more general) Inhabitation Problem (IP).

Decidability of the and IP from decidability of the IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal

Decidability of the (more general) Inhabitation Problem (IP).

Decidability of the and IP from decidability of the IP.

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving the Inhabitation Problem - Methodology

Instead of just one solution:
Γ ⊢ t : σ

We want to compute all solutions:
Sol(Γ, σ) := { t | Γ ⊢ t : σ }

Problem

The set Sol(Γ, σ) is either empty of infinite

We compute a finite generator:
Basis(Γ, σ)

Which is correct and complete:
span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving the Inhabitation Problem - Methodology

Instead of just one solution:
Γ ⊢ t : σ

We want to compute all solutions:
Sol(Γ, σ) := { t | Γ ⊢ t : σ }

Problem

The set Sol(Γ, σ) is either empty of infinite

We compute a finite generator:
Basis(Γ, σ)

Which is correct and complete:
span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving the Inhabitation Problem - Methodology

Instead of just one solution:
Γ ⊢ t : σ

We want to compute all solutions:
Sol(Γ, σ) := { t | Γ ⊢ t : σ }

Problem

The set Sol(Γ, σ) is either empty of infinite

We compute a finite generator:
Basis(Γ, σ)

Which is correct and complete:
span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving the Inhabitation Problem - Methodology

Instead of just one solution:
Γ ⊢ t : σ

We want to compute all solutions:
Sol(Γ, σ) := { t | Γ ⊢ t : σ }

Problem

The set Sol(Γ, σ) is either empty of infinite

We compute a finite generator:
Basis(Γ, σ)

Which is correct and complete:
span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving the Inhabitation Problem - Methodology

Instead of just one solution:
Γ ⊢ t : σ

We want to compute all solutions:
Sol(Γ, σ) := { t | Γ ⊢ t : σ }

Problem

The set Sol(Γ, σ) is either empty of infinite

We compute a finite generator:
Basis(Γ, σ)

Which is correct and complete:
span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving the Inhabitation Problem - Methodology

Instead of just one solution:
Γ ⊢ t : σ

We want to compute all solutions:
Sol(Γ, σ) := { t | Γ ⊢ t : σ }

Problem

The set Sol(Γ, σ) is either empty of infinite

We compute a finite generator:
Basis(Γ, σ)

Which is correct and complete:
span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving the Inhabitation Problem - Methodology

Instead of just one solution:
Γ ⊢ t : σ

We want to compute all solutions:
Sol(Γ, σ) := { t | Γ ⊢ t : σ }

Problem

The set Sol(Γ, σ) is either empty of infinite

We compute a finite generator:
Basis(Γ, σ)

Which is correct and complete:
span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving the Inhabitation Problem - Methodology

Instead of just one solution:
Γ ⊢ t : σ

We want to compute all solutions:
Sol(Γ, σ) := { t | Γ ⊢ t : σ }

Problem

The set Sol(Γ, σ) is either empty of infinite

We compute a finite generator:
Basis(Γ, σ)

Which is correct and complete:
span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving the Inhabitation Problem - Methodology

Instead of just one solution:
Γ ⊢ t : σ

We want to compute all solutions:
Sol(Γ, σ) := { t | Γ ⊢ t : σ }

Problem

The set Sol(Γ, σ) is either empty of infinite

We compute a finite generator:
Basis(Γ, σ)

Which is correct and complete:
span(Basis(Γ, σ)) = Sol(Γ, σ)

Theorem

For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Typing rules

Grammar rules

Sol(Γ, σ) BasisB

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Typing rules

Grammar rules

Sol(Γ, σ) BasisB

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Typing rules

Grammar rules

Sol(Γ, σ) BasisB

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Typing rules

Grammar rules

Sol(Γ, σ)

BasisB

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Typing rules

Grammar rules

Sol(Γ, σ) BasisB

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Typing rules

Grammar rules

Sol(Γ, σ) BasisB

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

The Full Algorithm

and its Implementation

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

The Full Algorithm

and its Implementation

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

The Full Algorithm

and its Implementation

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

The Full Algorithm

and its Implementation

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

The Full Algorithm

and its Implementation

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

The Full Algorithm

and its Implementation

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

The Full Algorithm

and its Implementation

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

The Full Algorithm and its Implementation

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes BasisB(Γ, σ)).

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes BasisB(Γ, σ)).

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes BasisB(Γ, σ)).

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes BasisB(Γ, σ)).

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes BasisB(Γ, σ)).

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes BasisB(Γ, σ)).

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation - Standard Methology

Theorem ([BKR’14])

For any typing (Γ, σ), BasisN (Γ, σ) exists, is finite, correct and complete.

Built an algorithm computing BasisN (Γ, σ) : [BKR’14]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation - Standard Methology

Theorem ([BKR’14])

For any typing (Γ, σ), BasisN (Γ, σ) exists, is finite, correct and complete.

Built an algorithm computing BasisN (Γ, σ) : [BKR’14]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation - Standard Methology

Theorem ([BKR’14])

For any typing (Γ, σ), BasisN (Γ, σ) exists, is finite, correct and complete.

Built an algorithm computing BasisN (Γ, σ) : [BKR’14]

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ)

⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Decoding

Embedding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Decoding

Embedding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisN (Γ, σ) ⇔ t
N
∈ BasisB(Γ, σ)

BasisN

BasisB

BasisN
N

Decoding

Embedding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation - Usual Methology

Theorem

For any typing (Γ, σ), BasisV(Γ, σ) exists, is finite, correct and complete.

Built an algorithm computing BasisV(Γ, σ) :

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation - Usual Methology

Theorem

For any typing (Γ, σ), BasisV(Γ, σ) exists, is finite, correct and complete.

Built an algorithm computing BasisV(Γ, σ) :

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation - Usual Methology

Theorem

For any typing (Γ, σ), BasisV(Γ, σ) exists, is finite, correct and complete.

Built an algorithm computing BasisV(Γ, σ) :

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation - Usual Methology

Theorem

For any typing (Γ, σ), BasisV(Γ, σ) exists, is finite, correct and complete.

Built an algorithm computing BasisV(Γ, σ) :

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ)

⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem

t ∈ BasisV(Γ, σ) ⇔ t
V
∈ BasisB(Γ, σ)

BasisV

BasisB

BasisV
V

Embedding

Decoding

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Indirect and Algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete
(i.e. it exactly computes BasisB(Γ, σ)).

−→

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Indirect and Algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete
(i.e. it exactly computes BasisB(Γ, σ)).

−→

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Indirect and Algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete
(i.e. it exactly computes BasisB(Γ, σ)).

−→

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Indirect and Algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete
(i.e. it exactly computes Basis

B

(Γ, σ)).

−→

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Indirect and Algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete
(i.e. it exactly computes Basis

B

(Γ, σ)).

−→

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Indirect and Algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete
(i.e. it exactly computes Basis

B

(Γ, σ)).

−→

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Indirect and Algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete
(i.e. it exactly computes Basis

B

(Γ, σ)).

−→

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Properties of the Indirect and Algorithm

Theorem

The inhabitation algorithm terminates.

The algorithm is sound and complete
(i.e. it exactly computes Basis

B

(Γ, σ)).

−→

More Ambitious Third Goal

Decidability by finding all inhabitants in the IP.

Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Conclusion

Summary:

Solving the generalized inhabitation problem

A several-for-one deal:

An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

Solvability (for Different Calculi in a Unified Framework)

Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR’21]

Thanks for your attention!

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Conclusion

Summary:

Solving the generalized inhabitation problem

A several-for-one deal:

An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

Solvability (for Different Calculi in a Unified Framework)

Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR’21]

Thanks for your attention!

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Conclusion

Summary:

Solving the generalized inhabitation problem

A several-for-one deal:

An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

Solvability (for Different Calculi in a Unified Framework)

Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR’21]

Thanks for your attention!

Quantitative
Inhabitation for

Different Lambda
Calculi in a Unifying

Framework

Conclusion

Summary:

Solving the generalized inhabitation problem

A several-for-one deal:

An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:

Solvability (for Different Calculi in a Unified Framework)

Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR’21]

Thanks for your attention!

