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Unifying Frameworks:

• Call-by-Push-Value [Levy’99]
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Simple Types Versus Intersection Types

A, B ::= σ | A⇒ B

| A ∩ B

Untyped terms

Terminating terms

Typable terms

=

Associativity:
A ∩ (B ∩C) = (A ∩ B) ∩C

Commutativity:
A ∩ B = B ∩ A

Idempotency?

Idempotent Non-Idempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]

A ∩ A = A A ∩ A , A

Qualitative properties Quantitative properties
[dCarv’07]
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For any typing (Γ, σ), BasisB(Γ, σ) exists, is finite, correct and complete.
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Decidability of the and IP by finding all inhabitants from those of the IP.

Using generic properties so that other encodable models of computation can use these results.
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Solvability (for Different Calculi in a Unified Framework)

Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR’21]
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