Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Victor Arrial ' Giulio Guerrieri 22 Delia Kesner '*

1 Université Paris Cité, Paris 2Aix Marseille Univ, Marseille
3Edinburgh Research Centre, Huawei, Edinburgh

4Institut Universitaire de France

Marseille - 12M, May 4, 2023

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Victor Arrial ' Giulio Guerrieri 22 Delia Kesner '*

1 Université Paris Cité, Paris 2Aix Marseille Univ, Marseille
3Edinburgh Research Centre, Huawei, Edinburgh

4Institut Universitaire de France

Marseille - 12M, May 4, 2023

What is Inhabitation ?

Typing Problem:
t

What is Inhabitation ?

Typing Problem:
F'rt:o

What is Inhabitation ?

Typing Problem:
[

Computational: [Mil’'78]
Typers

What is Inhabitation ?

Typing Problem: . Inhabitation Problem (IP):
R | 4

Computational: [Mil’78]
Typers

What is Inhabitation ?

Typing Problem: . Inhabitation Problem (IP):
kot | V4 r o

Computational: [Mil’78]
Typers

What is Inhabitation ?

Typing Problem: . Inhabitation Problem (IP):
kot | V4 Tr+1t: o0

Computational: [Mil’78]
Typers

What is Inhabitation ?

74
U

Inhabitation Problem (IP):
re::o0o

o
L

Typing Problem:
ot

@

Computational: [HuOr’20]

Computational: [Mil'78] Program Synthesis

Typers Logical: [HoMi'94]

Proof Search and Logic Programming

What is Inhabitation ?

74
U

Inhabitation Problem (IP):
resr:o

o
L

Typing Problem:
ot

@

Computational: [HuOr’20]

Computational: [Mil'78] Program Synthesis

Typers Logical: [HoMi'94]

Proof Search and Logic Programming

What is Inhabitation ?

74
U

Inhabitation Problem (IP):
reret:o

o
L

Typing Problem:
ot

@

Computational: [HuOr’20]

Computational: [Mil'78] Program Synthesis

Typers Logical: [HoMi'94]

Proof Search and Logic Programming

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Unifying Frameworks

Different Models of Computation:

Call-by-Name Call-by-Value

INAME| \VALUE]

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Unifying Frameworks

Different Models of Computation:
Call-by-Name

NAME|

Unifying Frameworks:
e Call-by-Push-Value [Levy’99]

Call-by-Value

P ———

[VALUE]

Unifying Frameworks

Different Models of Computation:

Call-by-Name

Unifying Frameworks:
e Call-by-Push-Value [Levy’99]

o Bang Calculus [EG’16]

Call-by-Value

[VALUE]

BANG

Unifying Frameworks

Different Models of Computation:

Call-by-Name

Unifying Frameworks:
e Call-by-Push-Value [Levy’99]

o Bang Calculus [EG’16]:

tbu = x| Axt|tu

Call-by-Value

[VALUE]

BANG

Unifying Frameworks

Different Models of Computation:

Call-by-Name

Unifying Frameworks:
e Call-by-Push-Value [Levy’99]

o Bang Calculus [EG’16]:
tbu = x| Axt|tu
| 1t Values

Call-by-Value

[VALUE]

BANG

Unifying Frameworks

Different Models of Computation:

Call-by-Name

Unifying Frameworks:
e Call-by-Push-Value [Levy’99]

o Bang Calculus [EG’16]:

tbu = x| Axt|tu
| 1t
| der(t)

Values
Computations

Call-by-Value

[VALUE]

BANG

Unifying Frameworks

Different Models of Computation:

Call-by-Name

Unifying Frameworks:
e Call-by-Push-Value [Levy’99]

¢ Distant Bang Calculus [EG’16] [BKRV’20]:

tbu = x| Axt|tu
| 1 Values
| der(t) Computations

| t[x:=u] Let

Call-by-Value

VALUE|

BANG

Distant Bang: A Subsuming Paradigm

Distant Bang: A Subsuming Paradigm

¢": |[NAME - |BANG]

Distant Bang: A Subsuming Paradigm
¢": |[NAME - |BANG]

Static Properties: [BKRV’20]

[NAME| ¢ normal form

Distant Bang: A Subsuming Paradigm
¢": |[NAME - |BANG]

Static Properties: [BKRV’20]

YT N
NAME| t normal form o t normal form I:J
o BANG

Distant Bang: A Subsuming Paradigm
¢": |[NAME - |BANG]

Static Properties: [BKRV’20]

= N
NAME| t normal form = t normal form e
"" BANG

Dynamic Properties: [BKRV’20]

[NAME| r»u

Distant Bang: A Subsuming Paradigm
¢": |[NAME - |BANG]

Static Properties: [BKRV’20]

= N
NAME| t normal form = t normal form e
"" BANG

Dynamic Properties: [BKRV’20]

[NAME| r»u o t >u"
BANG

Distant Bang: A Subsuming Paradigm

¢": |[NAME - |BANG]
. |VALUE| - [BANG

Static Properties: [BKRV’20]

———— N
NAME| t normal form o t normal form I::'
BANG

Dynamic Properties: [BKRV’20]

[NAME| r-» - |
NANE a < H~R BANG

Distant Bang: A Subsuming Paradigm

¢": |[NAME - |BANG]
. |VALUE| - [BANG

Static Properties: [BKRV’20]

[NAME| ¢ normal form o ¢ " normal form
VALUE]| ¢ normal form o ¢ " normal form

Dynamic Properties: [BKRV’20]

[NAME| r»u o " s

v v

VALUE] t>u & t > u

[BANG|

[BANG|

Distant Bang: A Subsuming Paradigm

¢": |[NAME - |BANG]
. |VALUE| - [BANG

Static Properties: [BKRV’20]

T Y N

NAME| t normal form o t normal form —
— , BANG
VALUE] ¢ normal form o t normal form

Dynamic Properties: [BKRV’20]

YT N N
NAME| t>»u = t > u
i , , BANG
VALUE] t»>u o t >u [BANG|

Can we do the same thing with inhabitation ?

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

Quantitative Inhabitation for Different Lambda Calculi in a Unifying
Framework

AB:=c|A=B

Terminating terms

Simple Types Versus Intersection Types

AB:=c|A=B

Untyped terms

Terminating terms

Typable terms

Simple Types Versus Intersection Types

AB:=c|A=B

Untyped terms

Terminating terms

Typable terms

A,B:=c|A=B|ANB

Terminating terms

AB:=c|A=B|ANB

AB:=c|A=B|ANB

AB:=c|A=B|ANB

m Associativity:
AB:=c|A=B|ANB ANBNO)=ANBNC

m Associativity:
AB:=c|A=B|ANB ANBNO)=ANBNC
m Commutativity:
ANB=BNA

Simple Types Versus Intersection Types

m Associativity:
ABu=c|A=B|ANB ANBNO=M@ANBNC
m Commutativity:
ANB=BNA

Untyped terms m ldempotency?

Terminating terms

Typable terms

Simple Types Versus Intersection Types

m Associativity:
ABui=c|A=B|ANB ANBNC)=ANBNC
m Commutativity:
ANB=BNA

Untyped terms m ldempotency?

Terminating terms Idempotent
[CoDe’78],[CoDe’80]

ANA=A

Typable terms

Simple Types Versus Intersection Types

m Associativity:
ABu=c|A=B|ANB ANBNO =MANBNC
m Commutativity:
ANB=BNA

Untyped terms m ldempotency?

Terminating terms Idempotent
[CoDe’78],[CoDe’80]

ANA=A

Typable terms

Qualitative properties

Simple Types Versus Intersection Types

A,B:=0c|A=B|ANB

Untyped terms

Terminating terms

Typable terms

m Associativity:
ANBNC)=ANBNC

m Commutativity:
ANB=BNA

m ldempotency?

Idempotent Non-ldempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]
ANA=A ANA+A

Qualitative properties

Simple Types Versus Intersection Types

A,B:=c|A=B|ANB

Untyped terms

Terminating terms

Typable terms

m Associativity:
ANBNC)=ANBNC

m Commutativity:
ANB=BNA

m ldempotency?

Idempotent Non-ldempotent
[CoDe’78],[CoDe’80] [Gard’94], [Kfou’00]
ANA=A ANA+A
Qualitative properties Quantitative properties

[dCarv’07]

Typability and Inhabitation in Intersection Types

Typability and Inhabitation in Intersection Types

Typing
Tkt ?

Inhabitation
I'e?:0o

Typability and Inhabitation in Intersection Types

Typing
Tkt ?

Inhabitation
I'e?:0o

Simple Types

Idempotent Types

Non-ldempotent Types

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable
Idempotent Types

Non-ldempotent Types

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable
Idempotent Types Indecidable
Non-ldempotent Types Indecidable

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable
Non-ldempotent Types Indecidable

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urz’99]
Non-ldempotent Types Indecidable

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urz’99]
Non-ldempotent Types Indecidable (CBN) Decidable [BKR"18]

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urz’99]
Non-ldempotent Types Indecidable (CBN) Decidable [BKR"18]

(CBV) ?

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urz’99]
Non-ldempotent Types Indecidable (CBN) Decidable [BKR"18]

(CBV) ?

Typability and Inhabitation in Intersection Types

Typing Inhabitation
Trt:? r'e?:0
Simple Types Decidable Decidable
Idempotent Types Indecidable Indecidable [Urz’99]
Non-ldempotent Types Indecidable (CBN) Decidable [BKR"18]

(CBV) Decidable

Intersection Types and Distant Bang Calculus

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BKRV’20]

[NAME] : ~ VALUE] : v BANG| : 5

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BKRV’20]

[NAME] : ~ VALUE] : v BANG| : 5

Static Properties: [BKRV’20]

[NAME| Tiyt:o

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BKRV’20]

@EE:N rmﬁ;{

Static Properties: [BKRV’20]

[NAME| Tiyt:o &

Intersection Types and Distant Bang Calculus

Three Typing Systems: [BKRV’20]

NAME| : ~

Static Properties: [BKRV’20]

[NAME| T byt
[VALUE] T byt

IVALUE] :

o

a

=4

Coming Back to Inhabitation

First Goal
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).

Coming Back to Inhabitation

First Goal + More Ambitious Second Goall
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

’7— 77

ANG NAME [VALUE|

g

Coming Back to Inhabitation

First Goal + More Ambitious Second Goall
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

/- 77/

[BANG| NAME [VALUE|
More Ambitious Third Goal

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

727

AN [VALUE]|

More Ambitious Third Goal
m Decidability by finding all inhabitants in the BANG| IP.

Coming Back to Inhabitation

First Goal + More Ambitious Second Goal
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

|

More Ambitious Third Goal
m Decidability by finding all inhabitants in the BANG| IP.
m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG]| IP.

Coming Back to Inhabitation

First Goal + More Ambitious Second Goall
m Decidability of the (more general) [BANG| Inhabitation Problem (IP).
m Decidability of the NAME| and [VALUE]| IP from decidability of the BANG]| IP.

More Ambitious Third Goal
m Decidability by finding all inhabitants in the BANG| IP.

m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Solving the Inhabitation Problem - Methodology

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

We want to compute all solutions:
Sol(l',o) := {t|T+t:0}

(1=

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

We want to compute all solutions
Sol(l',o) = {t|T+t:0}

(1=

Solving the Inhabitation Problem - Methodology
Instead of just one solution:

'rt:o
v We want to compute all solutions
L
— Sol(l',o) := {t|T+t:0}
=
BANG

Problem
The set Sol(T, o) is either empty of infinite

Solving the Inhabitation Problem - Methodology
Instead of just one solution:

'rt:o
v We want to compute all solutions
L
— Sol(l',o) := {t|T+t:0}
=
BANG

Problem
The set Sol(I', o) is either empty of infinite

We compute a finite generator:

Basis(I, o)

Which is correct and complete
span(Basis(I',o)) = Sol(T, o)

Solving the Inhabitation Problem - Methodology
Instead of just one solution:

'rt:o
v We want to compute all solutions
L
— Sol(l',o) := {t|T+t:0}
=
BANG

Problem
The set Sol(I', o) is either empty of infinite

We compute a finite generator:

Basis(I, o)

Which is correct and complete
span(Basis(I',o)) = Sol(T, o)

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

v We want to compute all solutions:
L
- Sol(l',o) := {t|T+t:0}
=

BANG

Problem
The set Sol(I', o) is either empty of infinite
We compute a finite generator:
Basis(I, o)

Which is correct and complete:
span(Basis(I',o)) = Sol(T, o)

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

v We want to compute all solutions:
L
— Sol(l',o) := {t|T+t:0}
=
Problem
The set Sol(I', o) is either empty of infinite BANG J
We compute a finite generator:
Basis(I, o)
Which is correct and complete:
span(Basis(I',o)) = Sol(T, o)

CCLFLUNIITIE

Theorem
For any typing (I', o), Basisg(l', o) exists, is finite, correct and complete.

=

Instead of just one solution:

Solving the Inhabitation Problem - Methodology
I'rt:o

v We want to compute all solutions:
L
— Sol(l',o) := {t|T+t:0}
=
Problem
The set Sol(I', o) is either empty of infinite BANG J
We compute a finite generator:
Basis(I, o)
Which is correct and complete:
span(Basis(I',o)) = Sol(T, o)

CCLFLUNIITIE

Theorem
For any typing (I', o), Basisg(I', o) exists, is finite, correct and complete.

=

Following the Typing and a Grammar

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:
m Typing rules

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:
m Typing rules Basisg

m Grammar rules

Following the Typing and a Grammar

Computing the basis:
Recreate typing trees, but only on elements of the Basis.

Follows two sets of rules:
m Typing rules
m Grammar rules

The Full Algorithm

g+~ Der(g)
g Var | [o]lF$(z,0) | alby HXIT(T;[0])
x kg H¥191(0;0) der(a) Iy H¥I7)(T; 0)

g+ App(9a,)
T=T,+Ip
M=alFS(z,0 = 0)

alkg, BN I M= 6) blkg, N(Tp: M)
ab g H<17I(T; 0)

g9
T=I"+x:[7]
girg | alky BXITN(T0) all- $(z,0) alky B (1 o') g~ g | alby N(T;0)
alby () alrg N(T;0) NH 2, N(T;0) N
g+ Bng(g')
g+ Lam(g") I
fix x ¢ dom(T) | alby N(T,x: M; a) T =+ierl (ailFg N(Ti71)),; Tier ai g+ Bng(L) |
Ix.alFy N(T; Mo o) s 'Vierai kg N(T [7ilier) ’ 'Likg N(O;TD)

g+~ Sub(ga, g5)
P=T.+T+z:[pl, fix y¢dom(T) U {x}
n e [0,52(p)], MII-S(p, [©1,---,0n]) alrg, HET (I, y: Mio) blbg, HEPI(T,; M)

a[y\b] g HX1F1(T;0)

g+ Sub(9a, 95)
I=T,+T; fix y¢dom(I)U {x}
n € [Lsz(D)], [pilieping I S(z.[O1,-., 0n])

jelLn] olkS(p;0) alrg, H¥ P (T y s [pi)iepuagy30) b Ihg, HEIT (003 [pileping)
ES-CH

a[y\b] Iy HXFI(T;0)
g+ Sub(ga, g5)
P=T,+T+z:[r], fix y¢dom(T)
n € [0,52(z)], MIIFS(z,[O1,- .., 0nl) albg, N(Ta,y: M) blkg, H=IF1(Ty; M)
a[y\b] IFy N(T;0)

5L

g™ App(9a, 1)
=T+
M= cllFS(z,0= o)

alkg, B¥ (I M= 6) blkg, N(Ty; M)

ab g H¥I71(T; 0)

The Full Algorithm

g~ App(9a, 9p)
[=I,+1I,
M=clFS(z,0=0) | alrg, BT M= 0) blkg, N(Ip; M)
AP

ab Iy H¥IFI(T; o)

P

The Full Algorithm

I'=T,+1}
Tas M= o) (Tp; M)
AP

T 0)

P

The Full Algorithm

g~ App(9a» 9p)

alkg, blkg,
ab I

APP

The Full Algorithm

g~ App(9a, 9p)
[=I,+1I,
M=clFS(z,0=0) | alrg, BT M= 0) blkg, N(Ip; M)
AP

ab Iy H¥IFI(T; o)

P

The Full Algorithm

g+~ Der(g)
g Var | [o]lF$(z,0) | alby HXIT(T;[0])
x kg H¥191(0;0) der(a) Iy H¥I7)(T; 0)

g+ App(9a,)
T=T,+Ip
M=alFS(z,0 = 0)

alkg, BN I M= 6) blkg, N(Tp: M)
ab g H<17I(T; 0)

g9
T=I"+x:[7]
girg | alky BXITN(T0) all- $(z,0) alky B (1 o') g~ g | alby N(T;0)
alby () alrg N(T;0) NH 2, N(T;0) N
g+ Bng(g')
g+ Lam(g") I
fix x ¢ dom(T) | alby N(T,x: M; a) T =+ierl (ailFg N(Ti71)),; Tier ai g+ Bng(L) |
Ix.alFy N(T; Mo o) s 'Vierai kg N(T [7ilier) ’ 'Likg N(O;TD)

g+~ Sub(ga, g5)
P=T.+T+z:[pl, fix y¢dom(T) U {x}
n e [0,52(p)], MII-S(p, [©1,---,0n]) alrg, HET (I, y: Mio) blbg, HEPI(T,; M)

a[y\b] g HX1F1(T;0)

g+ Sub(9a, 95)
I=T,+T; fix y¢dom(I)U {x}
n € [Lsz(D)], [pilieping I S(z.[O1,-., 0n])

jelLn] olkS(p;0) alrg, H¥ P (T y s [pi)iepuagy30) b Ihg, HEIT (003 [pileping)
ES-CH

a[y\b] Iy HXFI(T;0)
g+ Sub(ga, g5)
P=T,+T+z:[r], fix y¢dom(T)
n € [0,52(z)], MIIFS(z,[O1,- .., 0nl) albg, N(Ta,y: M) blkg, H=IF1(Ty; M)
a[y\b] IFy N(T;0)

5L

The Full Algorithm and its Implementation

g+~ Der(g')
g Var | [o] IF S(z,0)
VAR
x kg H*e1(0;0)

g+ App(9a. gp)
T=T,+T;

o st
-

r

)

=

Wi ©

aatie”
e
oo

o O

e
jon
e
oS T
oo

P

HETN (0 [piieqing)

github/ArrialVictor/InhabitationLambdaBang

Properties of the Inhabitation Algorithm

Properties of the Inhabitation Algorithm

Non-deterministic algorithm
\
—

-

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

\
P
e | L4
<= 0 mmpy
- 9

pa—

Theorem

The inhabitation algorithm terminates.

Properties of the Inhabitation Algorithm

Non-deterministic algorithm
\
- P

< A | ==
,7/ ~

Theorem
The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes Basisg(I', 0)).

Properties of the Inhabitation Algorithm

Non-deterministic algorithm
\
My
T

-= 0 mmpy
,,—/ <

Theorem
The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes Basisg(I', 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the [BANG]| IP.

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

N\

-t

Theorem
The inhabitation algorithm terminates.

The algorithm is sound and complete (i.e. it exactly computes Basisg(I', 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the [BANG| IP.
m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG| IP.

m Using generic properties so that other encodable models of computation can use these results.

Solving [NAME Inhabitation - Standard Methology

Solving [MAME| Inhabitation - Standard Methology

Theorem ([BKR’14])

For any typing (', o), Basisy(I,0) exists, is finite, correct and complete.

Solving [NAME Inhabitation - Standard Methology

Theorem ([BKR’14])

For any typing (',0), Basisy(I,o) exists, is finite, correct and complete.

Built an algorithm computing Basisy(I', o) : [BKR’14]

alFT(C+x:4,7) x ¢ dom(T")
Ax.alk T(D,A — 7)

(Abs)

(a; IF T(Ty,09))ier tier ai
V ai - TI(+ierTs, [ovlier)
el
D=Ti+0y alb@®> =50 B 7) bIFTI(T2B) n>
ab I- Hx:[Ala...AnaBAT] (F, 7_)

(Union)

0
(Heads)

————— (Head
x - Hx’[r]((D, T) (Heado)

alF Hx:[AlH“.AnﬁT](F, 7_)

alFT(C+x:[A; = ...A, = 7],7T)

(Head)

Solving [NAME Inhabitation : through [BANG| Inhabitation

Solving MAME| Inhabitation : through [BANG| Inhabitation

The Basis is preserved by the embedding:

Theorem

t € Basisy(I', 0)

z
|
L

Solving [MAME| Inhabitation : through [BANG| Inhabitation

The Basis is preserved by the embedding:

Theorem
[NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG|

Solving [NAME Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
[NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG|

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME teBasisy(l,o) o [t eBasisg(l, o) BANG

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME teBasisy(l,o) o [t eBasisg(l, o) BANG

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy(l,o) o [t eBasisg(l, o) BANG

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy[,0) &

t N € Basisg(l,0)

[BANG|

Decoding

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy[,0) o

t N € Basisg(l,0)

[BANG|

Decoding

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy[,0) o

t N € Basisg(l,0)

[BANG|

Decoding

Embedding

Solving Inhabitation : through Inhabitation

The Basis is preserved by the embedding:

Theorem
NAME| teBasisy[,0) o

t N € Basisg(l,0)

[BANG|

Decoding

Embedding

Solving [VALUE| Inhabitation - Usual Methology

Solving VALUE| Inhabitation - Usual Methology

Theorem

For any typing (I, 0), Basis(I',o) exists, is finite, correct and complete.

VALUE|

Solving VALUE| Inhabitation - Usual Methology

Theorem

For any typing (I,), Basis(I',o) exists, is finite, correct and complete.

Built an algorithm computing Basisq/(I',0) :

Solving VALUE| Inhabitation - Usual Methology

Theorem

For any typing (I,), Basis(I',o) exists, is finite, correct and complete.

[VALUE]

Built an algorithm computing Basisq (I, o) :

I1#0
! o, r=xloilies \

< B (0,0 X N [olien) LFN@D

T=T+D; N
M=ollFSE[o=0]) | alk B (@M= 0]) ok N@:M) |
waz b H () © JxlFN@D"™

1#0
C=0"+x:[r]) T = +ierl
olkS(r,o) | alkH(10) fix x € dom() | (ailF N(Tyyx: Mizo1))ier Tier ai
alF N(T;0) " Ax. Vierai IF N(T; [Mi = 0ilie;)

T=T,+Tp+z:[p], fixy¢dom(I)U {x} i
ne[0,s2(p)], MIFS(p,[O1,....0n]) | alk HF(Tay: Mio) b HIV) (5 M)

aly\b] I+ HE (I3 0)

[=T,+T; fixy¢dom(T)U {x}
n € [Lsz(D)], [piliepm I S(7. [O1,..., On])
jen] al-S(p;0)

alt B Ty s Doiliequopyi0) b B T [pidiequn)

a[y\b] IF HY1(r;0)

T=T,+T,+z:[7], fixy¢dom(T)
ne[o,52()], MIkS(5,[01,-..,00]) | alk N(Toy: Mio) bl HZ (5 M)
aly\b] IF N(T;0)

Solving [VALUE| Inhabitation : through [BANG| Inhabitation

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
[VALUE] t € Basisy(T, o)

Solving [VALUE| Inhabitation : through [BANG| Inhabitation

The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy(l,0) & 1t eBasisgl, o) BANG

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:
Theorem

N7

VALUE] teBasisy(l,0) & 1t eBasisgl, o) BANG|

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem

[VALUE] teBasisy(l,0) & 1t eBasisgl, o) BANG|

Basisg

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:
Theorem

N7

VALUE] teBasisy(l,0) & 1t eBasisgl, o) BANG|

Basisg

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
[VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Solving [VALUE| Inhabitation : through [BANG| Inhabitation
The Basis is preserved by the embedding:

Theorem
VALUE] teBasisy([,o) & 1 eBasisgT, o) BANG

Embedding

Properties of the Indirect NAME and [VALUE| Algorithm

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem

The inhabitation algorithm terminates. @
The algorithm is sound and complete é

(i.e. it exactly computes Basisg(I', 0)).

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem
The inhabitation algorithm terminates. 6\
) . “d
The algorithm is sound and complete {V"/‘\

(i.e. it exactly computes Basisg(I', 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the | BANG| IP.

m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem
The inhabitation algorithm terminates. \ A\ N
() <\ 2
The algorithm is sound and complete (V"/‘A/ - /‘{p. . @Vv\s
(i.e. it exactly computes Basis (I, 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the | BANG| IP.

m Decidability of the [MAME| and [VALUE] IP by finding all inhabitants from those of the BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem
The inhabitation algorithm terminates. \ PN N
L ‘\6/ L, Qe \))/9/
The algorithm is sound and complete @p/ \/(‘&9. <,
(i.e. it exactly computes Basis (T, 0)). \/

More Ambitious Third Goal
Decidability by finding all inhabitants in the | BANG| IP.

Decidability of the [NAME| and [VALUE] IP by finding all inhabitants from those of the [BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem
The inhabitation algorithm terminates. \ PN N
L ‘\6/ L, Qe \))/9/
The algorithm is sound and complete @p/ \/(‘&9. <,
(i.e. it exactly computes Basis (T, 0)). \/

More Ambitious Third Goal
Decidability by finding all inhabitants in the | BANG| IP.

Decidability of the [NAME| and [VALUE] IP by finding all inhabitants from those of the [BANG]| IP.
m Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem

The inhabitation algorithm terminates. 2N\ A
©) 2 <
The algorithm is sound and complete A - ,/‘/@‘/ &
g o \%“ < & qp

(i.e. it exactly computes Basis (I, 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the [BANG]| IP.
Decidability of the [NAME| and [VALUE] IP by finding all inhabitants from those of the [BANG]| IP.

Using generic properties so that other encodable models of computation can use these results.

Properties of the Indirect NAME and [VALUE| Algorithm

Theorem

The inhabitation algorithm terminates. N A
“6 @%} \36
The algorithm is sound and complete / - ,/‘/ > 4
I P oz @ >

(i.e. it exactly computes Basis (I, 0)).

More Ambitious Third Goal
Decidability by finding all inhabitants in the [BANG]| IP.
Decidability of the [NAME| and [VALUE] IP by finding all inhabitants from those of the [BANG]| IP.

Using generic properties so that other encodable models of computation can use these results.

Conclusion

Summary:
m Solving the generalized inhabitation problem
m A several-for-one deal: [BANG| [NAME| |[VALUE]
m An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Conclusion

Summary:
m Solving the generalized inhabitation problem
m A several-for-one deal: [BANG| [NAME| |[VALUE]
m An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:
m Solvability (for Different Calculi in a Unified Framework)
m Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR’21]

Conclusion

Summary:
m Solving the generalized inhabitation problem
m A several-for-one deal: [BANG| [NAME| |[VALUE]
m An implementation: (github/ArrialVictor/InhabitationLambdaBang)

Further questions and ongoing work:
m Solvability (for Different Calculi in a Unified Framework)
m Strengthening inhabitation for lambda-calculus with pattern matching [BKRdR’21]

Thanks for your attention!

