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Symmetric functions
We consider the space of symmetric functions on an alphabet
x := x1, x2, . . . .

For k ≥ 0, the power sum function pk is defined

pk(x) :=
∑
i≥1

xk
i ,

and if λ = [λ1, λ2, . . . , λℓ] then

pλ(x) = pλ1(x)pλ2(x) · · · pλℓ
(x).

The expansion of Schur functions on the power-sum basis is given
by

sλ(x) =
∑
µ⊢n

χλ(µ)

zµ
pµ(x) where zλ :=

|λ|!
|Cλ|

.
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Jack polynomials
Jack polynomials J

(α)
λ are symmetric functions which depend on a

deformation parameter α.

They can be obtained from Macdonald polynomials J
(q,t)
λ by

taking q = tα and the limit t → 1.
When we take α = 1 we obtain Schur functions.

Main result
A combinatorial interpretation of the power-sum expansion of Jack
polynomials in terms of bipartite maps (oriented or not) .

generalizes a known interpretation of Schur functions in terms
of pairs of permutations/oriented bipartite maps.
answers a positivity conjecture of Lassalle 2008.
gives an answer in some sense to a conjecture of Hanlon 1988.
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Maps
A connected map is a connected graph embedded into a
surface, oriented or not. A map is a collection of connected
maps.

A map is oriented if its all the connected components are
embedded into orientable surfaces.
A map is bipartite if its vertices are colored in white and black,
and each white vertex has only black neighbors.

A non-oriented bipartite map on the Klein bottle.
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Maps

The face-type of a bipartite map M , denoted by ⋄(M), is the
partition given by the face degrees, divided by 2.

A non-oriented map of face-type [4, 4, 2, 2].
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Layered maps
Let k be a positive integer. A map M is k-layered if

each black vertex has a label in 1, 2, . . . , k.

each white vertex is labelled by the maximal label among the
labels of its black neighbors.

1

1

3

2

A 3-layered map on the Klein bottle

Definition (Goulden–Jackson ’96)
A statistic of non-orientability (on k-layered maps) is a statistic
which associates to each k-layered map M a non-negative integer
such that ϑ(M) = 0 if and only if M is oriented.

Maps will be counted with a weight bϑ(M), where b := α− 1 is the
shifted Jack parameter.
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Jack polynomials in the power-sum basis

Theorem (BD–Dołęga ’23)
There exists an explicit statistic of non-orientability ϑ, such that

J
(α)
λ = (−1)|λ|

∑
ℓ(λ)−layered

maps M

p⋄(M)b
ϑ(M)

2|V•(M)|−cc(M)αcc(M)

∏
1≤i≤ℓ(λ)

(−αλi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

,

p⋄(M) is the power-sum function associated to the partition ⋄(M)

|V•(M)| is the number of black vertices of M .

|V(i)
◦ (M)| is the number of white vertices of M labelled by i.

cc(M) is the number of connected components of M .
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There exists an explicit statistic of non-orientability ϑ, such that

J
(α)
λ = (−1)|λ|

∑
ℓ(λ)−layered

maps M

p⋄(M)b
ϑ(M)

2|V•(M)|−cc(M)αcc(M)

∏
1≤i≤ℓ(λ)

(−αλi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

,

p⋄(M) is the power-sum function associated to the partition ⋄(M)

|V•(M)| is the number of black vertices of M .

|V(i)
◦ (M)| is the number of white vertices of M labelled by i.
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a face-weight p⋄(M)

a non-orientability weight bϑ(M)

a weight related to layers structure (−αλi)
|V(i)

◦ (M)|
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Jack polynomials in the power-sum basis

Theorem (BD–Dołęga ’23)
There exists an explicit statistic of non-orientability ϑ, such that
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|V•(M)| is the number of black vertices of M .

|V(i)
◦ (M)| is the number of white vertices of M labelled by i.

cc(M) is the number of connected components of M .

Well known for α = 1 (Young symmetrizers) and for α = 2 (Féray–Śniady’s
2010).
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Jack characters (a dual approach)
Fix a partition µ.

θ(α)µ (λ) :=

{
0, if |λ| < |µ|.(|λ|−|µ|+m1(µ)

m1(µ)

)
[pµ,1|λ|−|µ| ]J

(α)
λ , if |λ| ≥ |µ|.

where m1(µ) is the number of parts of size 1 in µ.

Theorem (BD–Dołęga ’23)
There exists a statistic of non-orientability ϑ on layered maps, such that

θ(α)µ (λ) = (−1)|µ|
∑

layered mapsM
of face-type µ

bϑ(M)

2|V•(M)|−cc(M)αcc(M)

∏
i≥1

(−αλi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

, (1)

For α = 1: Stanley-Féray formula 2010.

For α = 2: Féray–Śniady formula for zonal characters 2010.
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Idea of the proof
Known: There exists a unique α-shifted symmetric function fµ(u1, u2, . . . )
(i.e symmetric in the variables u1 − 1/α, u2 − 2/α, . . . ) such that

θ(α)µ (λ) = fµ(λ1, λ2, . . . , λℓ, 0, . . . ) for every λ.

Theorem (Féray ’19)
Fix a partition µ. The Jack character θ

(α)
µ is the unique α-shifted symmetric

function of degree |µ| with top homogeneous part α|µ|−ℓ(µ)/zµ · pµ, such that
θ
(α)
µ (λ) = 0 for any partition |λ| < |µ|.

We introduce the generating series of k-layered maps

F (k) (t,p, s1, . . . , sk) :=∑
k−layered maps M

(−t)|⋄(M)|p⋄(M)
bϑ(M)

2|V•(M)|−cc(M)αcc(M)

∏
1≤i≤k

(−αsi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

.

We prove that this generating series satisfies the three conditions of the
chracterization theorem.
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Idea of the proof
For a well-chosen statistic of non-orientability ϑ, this generating series
can be constructed inductively using differential operators (Tutte
decomposition):

F (k) (t,p, s1, . . . , sk)

= exp

∑
n≥1

(−t)n

n
Bn(p,−αs1)

 · F (k−1) (t,p, s2, . . . , sk) ,

A key step of the proof: Two commutation relations

[Bn(p, u), Bm(p, u)] = 0, for n,m ≥ 1,∑
n≥1

tn

n
B>

n (p, u),
∑
n≥1

tn

n
B>

n (p, v)

 = 0,

where
B>

n (p, u) := Bn(p, u)−Bn(p, 0).
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where
Bn(p,−αs1) := ΘY (ΓY − αs1Y+)n

y0

1 + b

is an operator which adds a black vertex of degree n with label 1.
Y := (y0, y1, y2, . . . , ) is a catalytic variable, and

ΘY :=
∑

i≥1 pi
∂

∂yi
, Y+ =

∑
i≥0 yi+1

∂
∂yi

,

ΓY = (1 + b) ·
∑

i,j≥1 yi+j
i∂2

∂pi∂yj−1

+
∑

i,j≥1 yipj
∂

∂yi+j−1
+ b ·

∑
i≥1 yi+1

i∂
∂yi

.

Chapuy–Dołęga operators.
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Application 1: Creation operators for Jack
polynomials

Theorem
J
(α)
(λ1,λ2,...,λℓ)

= B(+)
λ1

· B(+)
λ2

· · · B(+)
λℓ

· 1,

where

B(+)
n := [tn] exp

(∑
n≥1

(−t)n

n
Bn(p,−αn)

)
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Application 2: Lassalle’s conjecture 2008
Stanley’s coordinates of a Young diagram

r4

r3

r2

r1 s1

s2

s3

s4 The Young diagram of the
partition [4, 3, 3, 3, 1], with
s = (4, 3, 3, 1) and
r = (1, 1, 2, 1) as Stanley
coordinates.

Theorem (Lassalle’s conjecture on Jack characters)
The normalized Jack character (−1)|µ|zµθ

(α)
µ is a polynomial in Stanley’s

coordinates r1, r2 . . . ,−s1,−s2 . . . , and b with non-negative integer coefficients.

Proof:
Non-negativity: the combinatorial interpretation in terms of maps.

Integrality: (a different approach) the integrable system of
Nazarov–Sklyanin.
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