Jack polynomials as generating series of non-oriented bipartite maps

Houcine Ben Dali
Université de Lorraine, IECL, France
Université de Paris, IRIF, France
joint work with
Maciej Dołęga
Institute of Mathematics,
Polish Academy of Sciences, Poland.

90th Séminaire Lotharingien de Combinatoire, Bad Boll

September 4, 2023

Symmetric functions

We consider the space of symmetric functions on an alphabet $\mathbf{x}:=x_{1}, x_{2}, \ldots$

For $k \geq 0$, the power sum function p_{k} is defined by

$$
p_{k}(\mathbf{x}):=\sum_{i \geq 1} x_{i}^{k},
$$

and if $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right]$, then

$$
p_{\lambda}(\mathbf{x})=p_{\lambda_{1}}(\mathbf{x}) p_{\lambda_{2}}(\mathbf{x}) \cdots p_{\lambda_{\ell}}(\mathbf{x}) .
$$

Symmetric functions

We consider the space of symmetric functions on an alphabet $\mathbf{x}:=x_{1}, x_{2}, \ldots$.

For $k \geq 0$, the power sum function p_{k} is defined by

$$
p_{k}(\mathbf{x}):=\sum_{i \geq 1} x_{i}^{k}
$$

and if $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right]$, then

$$
p_{\lambda}(\mathbf{x})=p_{\lambda_{1}}(\mathbf{x}) p_{\lambda_{2}}(\mathbf{x}) \cdots p_{\lambda_{\ell}}(\mathbf{x})
$$

The expansion of Schur functions on the power-sum basis is given by

$$
s_{\lambda}(\mathbf{x})=\sum_{\mu \vdash n} \frac{\chi^{\lambda}(\mu)}{z_{\mu}} p_{\mu}(\mathbf{x}) \quad \text { where } z_{\lambda}:=\frac{|\mu|!}{\left|\mathcal{C}_{\mu}\right|}
$$

Jack polynomials

Jack polynomials $J_{\lambda}^{(\alpha)}$ are symmetric functions which depend on a deformation parameter α.

- They can be obtained from Macdonald polynomials $J_{\lambda}^{(q, t)}$ by taking $q=t^{\alpha}$ and the limit $t \rightarrow 1$.
- When we take $\alpha=1$ we obtain Schur functions.

Jack polynomials

Jack polynomials $J_{\lambda}^{(\alpha)}$ are symmetric functions which depend on a deformation parameter α.

- They can be obtained from Macdonald polynomials $J_{\lambda}^{(q, t)}$ by taking $q=t^{\alpha}$ and the limit $t \rightarrow 1$.
- When we take $\alpha=1$ we obtain Schur functions.

Main result

A combinatorial interpretation of the power-sum expansion of Jack polynomials in terms of bipartite maps (oriented or not).

Jack polynomials

Jack polynomials $J_{\lambda}^{(\alpha)}$ are symmetric functions which depend on a deformation parameter α.

- They can be obtained from Macdonald polynomials $J_{\lambda}^{(q, t)}$ by taking $q=t^{\alpha}$ and the limit $t \rightarrow 1$.
- When we take $\alpha=1$ we obtain Schur functions.

Main result

A combinatorial interpretation of the power-sum expansion of Jack polynomials in terms of bipartite maps (oriented or not).

- generalizes a known interpretation of Schur functions in terms of pairs of permutations/oriented bipartite maps.

Jack polynomials

Jack polynomials $J_{\lambda}^{(\alpha)}$ are symmetric functions which depend on a deformation parameter α.

- They can be obtained from Macdonald polynomials $J_{\lambda}^{(q, t)}$ by taking $q=t^{\alpha}$ and the limit $t \rightarrow 1$.
- When we take $\alpha=1$ we obtain Schur functions.

Main result

A combinatorial interpretation of the power-sum expansion of Jack polynomials in terms of bipartite maps (oriented or not).

- generalizes a known interpretation of Schur functions in terms of pairs of permutations/oriented bipartite maps.
- answers a positivity conjecture of Lassalle 2008.

Jack polynomials

Jack polynomials $J_{\lambda}^{(\alpha)}$ are symmetric functions which depend on a deformation parameter α.

- They can be obtained from Macdonald polynomials $J_{\lambda}^{(q, t)}$ by taking $q=t^{\alpha}$ and the limit $t \rightarrow 1$.
- When we take $\alpha=1$ we obtain Schur functions.

Main result

A combinatorial interpretation of the power-sum expansion of Jack polynomials in terms of bipartite maps (oriented or not).

- generalizes a known interpretation of Schur functions in terms of pairs of permutations/oriented bipartite maps.
- answers a positivity conjecture of Lassalle 2008.
- gives an answer in some sense to a conjecture of Hanlon 1988.

Maps

- A connected map is an embedding of a connected graph into a surface, oriented or not, which cuts the surface into simply connected regions (the faces of the map).

Maps

- A connected map is an embedding of a connected graph into a surface, oriented or not, which cuts the surface into simply connected regions (the faces of the map).
- A map is a collection of connected maps.

Maps

- A connected map is an embedding of a connected graph into a surface, oriented or not, which cuts the surface into simply connected regions (the faces of the map).
- A map is a collection of connected maps.
- A map is oriented if each one of its connected components is embedded into an orientable surface.

Maps

- A connected map is an embedding of a connected graph into a surface, oriented or not, which cuts the surface into simply connected regions (the faces of the map).
- A map is a collection of connected maps.
- A map is oriented if each one of its connected components is embedded into an orientable surface.
- A map is bipartite if its vertices are colored in white and black, and each edge connects two vertices of different colors.

Maps

Example : A non oriented bipartite map on the Klein bottle.

Maps

Example : A non oriented bipartite map on the Klein bottle.

Maps

- We denote by $|M|$ the number of edges of M, called the size of M.
- The face-type of a bipartite map M, denoted by $\diamond(M)$, is the partition of $|M|$ given by the faces degrees, divided by 2 .

A non-oriented map of face-type $[7,2,2]$.

Maps

- We denote by $|M|$ the number of edges of M, called the size of M.
- The face-type of a bipartite map M, denoted by $\diamond(M)$, is the partition of $|M|$ given by the faces degrees, divided by 2 .

A non-oriented map of face-type $[7,2,2]$.

We consider generating series of bipartite maps with a weight p_{i} for each face of degree $2 i$. Hence each map M has a face-weight $p_{\diamond(M)}$.

Layered maps
 Let k be a positive integer. A map M is k-layered if

- each black vertex has a label in $1,2, \ldots, k$.

A 3-layered map on the Klein bottle

Layered maps

Let k be a positive integer. A map M is k-layered if

- each black vertex has a label in $1,2, \ldots, k$.
- each white vertex is labelled by the maximal label among the labels of its black neighbors.

A 3-layered map on the Klein bottle

Layered maps

Let k be a positive integer. A map M is k-layered if

- each black vertex has a label in $1,2, \ldots, k$.
- each white vertex is labelled by the maximal label among the labels of its black neighbors.

Definition (Goulden-Jackson '96)

A statistic of non-orientability (on k-layered maps) is a statistic which associates to each k-layered map M a non-negative integer such that $\vartheta(M)=0$ if and only if M is oriented.

Layered maps

Let k be a positive integer. A map M is k-layered if

- each black vertex has a label in $1,2, \ldots, k$.
- each white vertex is labelled by the maximal label among the labels of its black neighbors.

Definition (Goulden-Jackson '96)

A statistic of non-orientability (on k-layered maps) is a statistic which associates to each k-layered map M a non-negative integer such that $\vartheta(M)=0$ if and only if M is oriented.

Maps will be counted with a weight $b^{\vartheta(M)}$, where $b:=\alpha-1$ is the shifted Jack parameter.

Jack polynomials in the power-sum basis

Theorem (BD-Dołęga '23)

There exists an explicit statistic of non-orientability ϑ, such that

$$
J_{\lambda}^{(\alpha)}=(-1)^{|\lambda|} \sum_{\begin{array}{c}
\ell(\lambda)-\text { layered } \\
\text { maps } M \text { of size }|\lambda|
\end{array}} \frac{p_{\diamond(M)} b^{\vartheta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq \ell(\lambda)} \frac{\left(-\alpha \lambda_{i}\right)^{\left|\mathcal{V}_{\circ}^{(i)}(M)\right|}}{z_{\nu_{\bullet}(i)}(M)},
$$

- $\left|\mathcal{V}_{\bullet}(M)\right|$ is the number of black vertices of M.
- $\left|\mathcal{V}_{o}^{(i)}(M)\right|$ is the number of white vertices of M labelled by i.
- $c c(M)$ is the number of connected components of M.

Jack polynomials in the power-sum basis

Theorem (BD-Dołęga '23)

There exists an explicit statistic of non-orientability ϑ, such that

$$
J_{\lambda}^{(\alpha)}=(-1)^{|\lambda|} \sum_{\begin{array}{c}
\ell(\lambda)-\text { layered } \\
\text { maps } M \text { of size }|\lambda|
\end{array}} \frac{p_{\diamond(M)} b^{\vartheta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq \ell(\lambda)} \frac{\left(-\alpha \lambda_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}(i)}(M)}
$$

- $\left|\mathcal{V}_{\bullet}(M)\right|$ is the number of black vertices of M.
- $\left|\mathcal{V}_{o}^{(i)}(M)\right|$ is the number of white vertices of M labelled by i.
- $c c(M)$ is the number of connected components of M.
- a face-weight $p_{\diamond(M)}$
- a non-orientability weight $b^{\vartheta(M)}$
- a weight related to layers structure $\left(-\alpha \lambda_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}$

Jack polynomials in the power-sum basis

Theorem (BD-Dołęga '23)

There exists an explicit statistic of non-orientability ϑ, such that

$$
J_{\lambda}^{(\alpha)}=(-1)^{|\lambda|} \sum_{\begin{array}{c}
\ell(\lambda)-\text { layered } \\
\text { maps } M \text { of size }|\lambda|
\end{array}} \frac{p_{\diamond(M)} b^{\vartheta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq \ell(\lambda)} \frac{\left(-\alpha \lambda_{i}\right)^{\left|\mathcal{V}_{\circ}^{(i)}(M)\right|}}{z_{\nu_{\bullet}(M)}(M)},
$$

- $\left|\mathcal{V}_{\bullet}(M)\right|$ is the number of black vertices of M.
- $\left|\mathcal{V}_{o}^{(i)}(M)\right|$ is the number of white vertices of M labelled by i.
- $c c(M)$ is the number of connected components of M.

Well known for $\alpha=1$ (Young symmetrizers) and for $\alpha=2$ (Féray-Śniady's 2010).

Jack characters (a dual approach)

Fix a partition μ.

$$
\theta_{\mu}^{(\alpha)}(\lambda):= \begin{cases}0, & \text { if }|\lambda|<|\mu| . \\ \left(\underset{m_{1}(\mu)}{|\lambda|-|\mu|+m_{1}(\mu)}\right)\left[p_{\mu, 1|\lambda|-|\mu|}\right] J_{\lambda}^{(\alpha)}, & \text { if }|\lambda| \geq|\mu| .\end{cases}
$$

where $m_{1}(\mu)$ is the number of parts of size 1 in μ.

Jack characters (a dual approach)

Fix a partition μ.

$$
\theta_{\mu}^{(\alpha)}(\lambda):= \begin{cases}0, & \text { if }|\lambda|<|\mu| \\ \left(\underset{m_{1}(\mu)}{|\lambda|-|\mu|+m_{1}(\mu)}\right)\left[p_{\mu, 1|\lambda|-|\mu|}\right] J_{\lambda}^{(\alpha)}, & \text { if }|\lambda| \geq|\mu|\end{cases}
$$

where $m_{1}(\mu)$ is the number of parts of size 1 in μ.

Theorem (BD-Dołęga '23)

There exists a statistic of non-orientability ϑ on layered maps, such that

$$
\begin{equation*}
\theta_{\mu}^{(\alpha)}(\lambda)=(-1)^{|\mu|} \sum_{\substack{\text { layered mapsM} \\ \text { of face-type } \mu}} \frac{b^{\vartheta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha \lambda_{i}\right)^{\left|\mathcal{V}_{o}^{(i)}(M)\right|}}{z_{\nu_{\bullet}(i)}(M)}, \tag{1}
\end{equation*}
$$

- For $\alpha=1$: Stanley-Féray formula 2010 .
- For $\alpha=$ 2: Féray-Śniady formula for zonal characters 2010.

Idea of the proof

Known: There exists a unique α-shifted symmetric function $f_{\mu}\left(u_{1}, u_{2}, \ldots\right)$ (i.e symmetric in the variables $u_{1}-1 / \alpha, u_{2}-2 / \alpha, \ldots$) such that

$$
\theta_{\mu}^{(\alpha)}(\lambda)=f_{\mu}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}, 0, \ldots\right) \text { for every } \lambda
$$

Idea of the proof

Known: There exists a unique α-shifted symmetric function $f_{\mu}\left(u_{1}, u_{2}, \ldots\right)$ (i.e symmetric in the variables $u_{1}-1 / \alpha, u_{2}-2 / \alpha, \ldots$) such that

$$
\theta_{\mu}^{(\alpha)}(\lambda)=f_{\mu}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}, 0, \ldots\right) \text { for every } \lambda
$$

Theorem (Féray '19)

Fix a partition μ. The Jack character $\theta_{\mu}^{(\alpha)}$ is the unique α-shifted symmetric function of degree $|\mu|$ with top homogeneous part $\alpha^{|\mu|-\ell(\mu)} / z_{\mu} \cdot p_{\mu}$, such that $\theta_{\mu}^{(\alpha)}(\lambda)=0$ for any partition $|\lambda|<|\mu|$.

Idea of the proof

Known: There exists a unique α-shifted symmetric function $f_{\mu}\left(u_{1}, u_{2}, \ldots\right)$ (i.e symmetric in the variables $u_{1}-1 / \alpha, u_{2}-2 / \alpha, \ldots$) such that

$$
\theta_{\mu}^{(\alpha)}(\lambda)=f_{\mu}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}, 0, \ldots\right) \text { for every } \lambda
$$

Theorem (Féray '19)

Fix a partition μ. The Jack character $\theta_{\mu}^{(\alpha)}$ is the unique α-shifted symmetric function of degree $|\mu|$ with top homogeneous part $\alpha^{|\mu|-\ell(\mu)} / z_{\mu} \cdot p_{\mu}$, such that $\theta_{\mu}^{(\alpha)}(\lambda)=0$ for any partition $|\lambda|<|\mu|$.

- We introduce the generating series of k-layered maps

$$
\begin{aligned}
& F^{(k)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k}\right):= \\
& \quad \sum_{k \text {-layered maps } M}(-t)^{|\diamond(M)|} p_{\diamond(M)} \frac{b^{\vartheta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{L}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}(i)}(M)} .
\end{aligned}
$$

Idea of the proof

Known: There exists a unique α-shifted symmetric function $f_{\mu}\left(u_{1}, u_{2}, \ldots\right)$ (i.e symmetric in the variables $u_{1}-1 / \alpha, u_{2}-2 / \alpha, \ldots$) such that

$$
\theta_{\mu}^{(\alpha)}(\lambda)=f_{\mu}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}, 0, \ldots\right) \text { for every } \lambda
$$

Theorem (Féray '19)

Fix a partition μ. The Jack character $\theta_{\mu}^{(\alpha)}$ is the unique α-shifted symmetric function of degree $|\mu|$ with top homogeneous part $\alpha^{|\mu|-\ell(\mu)} / z_{\mu} \cdot p_{\mu}$, such that $\theta_{\mu}^{(\alpha)}(\lambda)=0$ for any partition $|\lambda|<|\mu|$.

- We introduce the generating series of k-layered maps

$$
\begin{aligned}
& F^{(k)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k}\right):= \\
& \quad \sum_{k \text {-layered maps } M}(-t)^{|\diamond(M)|} p_{\diamond(M)} \frac{b^{\vartheta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}(i)}(M)} .
\end{aligned}
$$

We prove that this generating series satisfies the three conditions of the chracterization theorem.

How to define a such statistic of

 non-orientability?General Method (La Croix '09, Dołęga-Féray-Śniady '14, Chapuy-Dołęga'22).
(1) For each edge pair (M, e) where e is an edge of M, we choose

$$
\vartheta(M, e) \in\{0,1\} .
$$

How to define a such statistic of

 non-orientability?General Method (La Croix '09, Dołęga-Féray-Śniady '14, Chapuy-Dołęga'22).
(1) For each edge pair (M, e) where e is an edge of M, we choose

$$
\vartheta(M, e) \in\{0,1\} .
$$

(2) Let M be a map of size n. We choose a decomposition algorithm, by fixing an order on the edges of $M: e_{1}, e_{2}, \ldots, e_{n}$. We denote $M_{i}:=M \backslash\left\{e_{1}, e_{2}, \ldots, e_{i-1}\right\}$. We take

$$
\vartheta(M)=\sum_{1 \leq i \leq n} \vartheta\left(M_{i}, e_{i}\right) .
$$

Idea of the proof

- For a well-chosen statistic of non-orientability ϑ, this generating series can be constructed inductively using differential operators (Tutte decomposition):

$$
\begin{aligned}
& F^{(k)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k}\right) \\
& \quad=\exp \left(\sum_{n \geq 1} \frac{(-t)^{n}}{n} B_{n}\left(\mathbf{p},-\alpha s_{1}\right)\right) \cdot F^{(k-1)}\left(t, \mathbf{p}, s_{2}, \ldots, s_{k}\right)
\end{aligned}
$$

Idea of the proof

- For a well-chosen statistic of non-orientability ϑ, this generating series can be constructed inductively using differential operators (Tutte decomposition):

$$
\begin{aligned}
& F^{(k)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k}\right) \\
& \quad=\exp \left(\sum_{n \geq 1} \frac{(-t)^{n}}{n} B_{n}\left(\mathbf{p},-\alpha s_{1}\right)\right) \cdot F^{(k-1)}\left(t, \mathbf{p}, s_{2}, \ldots, s_{k}\right)
\end{aligned}
$$

where

$$
B_{n}\left(\mathbf{p},-\alpha s_{1}\right):=\Theta_{Y}\left(\Gamma_{Y}-\alpha s_{1} Y_{+}\right)^{n} \frac{y_{0}}{1+b}
$$

is an operator which adds a black vertex of degree n with label 1 . $Y:=\left(y_{0}, y_{1}, y_{2}, \ldots,\right)$ is a catalytic variable, and

$$
\left.\begin{array}{l}
\Theta_{Y}:=\sum_{i \geq 1} p_{i} \frac{\partial}{\partial y_{i}}, \quad Y_{+}=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \\
\Gamma_{Y}=(1+b) \cdot \sum_{i, j \geq 1} y_{i+j} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}} \\
\quad+\sum_{i, j \geq 1} y_{i} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 1} y_{i+1} \frac{i \partial}{\partial y_{i}} .
\end{array}\right\} \text { Chapuy-Dołegga operators. }
$$

Idea of the proof

- For a well-chosen statistic of non-orientability ϑ, this generating series can be constructed inductively using differential operators (Tutte decomposition):

$$
\begin{aligned}
& F^{(k)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k}\right) \\
& \qquad \quad=\exp \left(\sum_{n \geq 1} \frac{(-t)^{n}}{n} B_{n}\left(\mathbf{p},-\alpha s_{1}\right)\right) \cdot F^{(k-1)}\left(t, \mathbf{p}, s_{2}, \ldots, s_{k}\right)
\end{aligned}
$$

A key step of the proof: Two commutation relations

$$
\begin{aligned}
& {\left[B_{n}(\mathbf{p}, u), B_{m}(\mathbf{p}, u)\right]=0, \text { for } n, m \geq 1,} \\
& {\left[\sum_{n \geq 1} \frac{t^{n}}{n} B_{n}^{>}(\mathbf{p}, u), \sum_{n \geq 1} \frac{t^{n}}{n} B_{n}^{>}(\mathbf{p}, v)\right]=0,}
\end{aligned}
$$

where

$$
B_{n}^{>}(\mathbf{p}, u):=B_{n}(\mathbf{p}, u)-B_{n}(\mathbf{p}, 0) .
$$

Application 1: Creation operators for Jack polynomials

Theorem

$$
J_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)}^{(\alpha)}=\mathcal{B}_{\lambda_{1}}^{(+)} \cdot \mathcal{B}_{\lambda_{2}}^{(+)} \cdots \mathcal{B}_{\lambda_{\ell}}^{(+)} \cdot 1
$$

where

$$
\mathcal{B}_{n}^{(+)}:=\left[t^{n}\right] \exp \left(\sum_{n \geq 1} \frac{(-t)^{n}}{n} B_{n}(\mathbf{p},-\alpha n)\right)
$$

Application 2: Lassalle's conjecture 2008

 Stanley's coordinates of a Young diagram

The Young diagram of the partition $[4,3,3,3,1]$, with $\mathbf{s}=(4,3,3,1)$ and $\mathbf{r}=(1,1,2,1)$ as Stanley coordinates.

Theorem (Lassalle's conjecture on Jack characters)

The normalized Jack character $(-1)^{|\mu|} z_{\mu} \theta_{\mu}^{(\alpha)}$ is a polynomial in Stanley's coordinates $r_{1}, r_{2} \ldots,-s_{1},-s_{2} \ldots$, and b with non-negative integer coefficients.

Proof:

- Non-negativity: the combinatorial interpretation in terms of maps.
- Integrality: (a different approach) the integrable system of Nazarov-Sklyanin.

