Silent vs PLS

INFORMATIQUE Sciences Université Paris Cité

MPRI

Lélia Blin

lelia.blin@irif.fr 2024

Silent property

A self-stabilizing algorithm is termed "silent" if, once a legal configuration is reached, it remains in that same legal configuration.

Proof Labeling Scheme vs Silent algorithm

Korman, Kutten, Peleg, 2007

- A proof-labeling scheme for a task is a pair such that:
- Prover assigns a certificate to every node.
- Verifier is a distributed algorithm such that

$$\mathcal{V}: \left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\} \rightarrow \left\{ yes, no \right\}$$

Certification Scheme

Given a graph property:

- A non-trustable *prover* assigns *certificates* to the nodes
- A distributed *verifier* checks these certificates at each nodes (in rounds)

Completeness: If the property is satisfies then there exists certificates such that the verifier accepts at all nodes.

Soundness: If the property is not satisfied, then, for every certificate assignment, the verifier reject in at least one node

Silent Self-Stabilization vs. Proof-Labeling Scheme

Blin, Fraigniaud, Patt-Shamir 2014

	Size of registers	Number of rounds
Lower bound	$\Omega(\ell)$	
Algorithm 1	$O(\ell + \log n)$	$O(n2^{n\ell})$
Algorithm 2	$O(n^2+nk)$	O(n)

Example: Bipartiteness

A graph G = (V, E) is bipartite if V can be partitioned into two sets V_1 and V_2 such that for every edge in E one extremity is in V_1 and the other extremity is in V_2 .

Example: Bipartiteness

PLS?

Self-stabilization MPRI

7

Proper Coloring Definition

A **proper coloring** of a graph is an assignment of colors to the vertices of the graph such that no two adjacent vertices share the same color. Formally, given a graph G = (V, E), a proper coloring is a function $f : V \to C$, where C is a set of colors, such that for any edge $(u, v) \in E$, $f(u) \neq f(v)$.

G is bipartite \leftrightarrow G is 2-colorable.

Verification is local:

- bipartite \rightarrow all nodes accept
- non bipartite \rightarrow at least one node rejects

Informative labelling scheme (Peleg 2000)

Let P be a graph property defined on pairs of vertices (can be extended to tuples), and let F be a graph family.

- A P -labeling scheme for F is a pair L, f such that: $\forall G \in F, \forall u, v \in G$:
- (labeling) L(u,G) is a binary string
- (decoder) f(L(u,G),L(v,G)) = P

Lélia Blin

NFORMATIQUE Sciences Université Paris Cité Example: Adjacency-labeling in trees

 $L_v=(ID_v,ID_{p_v})$ Given $L_v=(x,y)$ and $L_u=(x',y')$ nodes v ans u are adjacent iff x=y' or y=x'Lables are on $2\lceil \log_2 n \rceil$ bits

Nearest commun ancestor (Harel and Tarjan, 1984)

Heavy light nodes

Weight of the subtrees

Heavy and light nodes

- Heavy: label parent +1
- Light: label of the parent , (id of the node, distance 0)

nca(9,11)=(0,2)
ightarrow 6; nca(13,14)=(0,0)(2,0)
ightarrow 2

nca(9,4)=(3,1)
ightarrow9
ightarrow same subtree; $nca(9,6)=\emptyset
ightarrow$ in distinct sub-tree

Lélia Blin

Size of the labels?

Lélia Blin

Worst case

Nearest commun ancestor (Harel and Tarjan, 1984)

Size of the labels $ightarrow log^2 n$ bits

Nearest commun ancestor (Alstru, Gavoille, Kaplan, Rauhe 2002)

Observation: NCA in complete binary tree

Lélia Blin

Remark the label is a binary word

apex(w) the root of the heavy path; HP(w) Heavy path containing w

Labels

A node \boldsymbol{v} has a

- light label llabel(v)
- heavy label hlabel(v)
- $1.llable(root) = \epsilon$

 $\begin{aligned} \text{2. for } v \neq root : llabel(v) \notin \{llabel(z) | z \neq v, z \in children(parent(v))\} \\ \text{3. for } v \neq root : hlabel(v) <_{lex} \min\{hlabel(z) | z \neq v, z \in T_v \cap HP(v)\} \end{aligned}$

label(v) := label(parent(apex(v))). llabel(apex(v)). hlabel(v)

Self-stabilization MPRI

NCA computation

 $label(x) = h_0 \cdot l_1 \cdot h_1 \cdots l_i \cdot h_i$ $label(y) = h'_0 \cdot l'_1 \cdot h'_1 \cdots l'_j \cdot h'_j$

If label(x), label(y) differ at a light label l_p , then [case parent(apex(x)) = parent(apex(y))]

 $label(nca(x, y)) = h_0 \cdot l_1 \cdot h_1 \cdots l_{p-1} \cdot h_{p-1}$

If label(x), label(y) differ at a heavy label h_p , then [case HP(x) = HP(y)]

$$label(nca(x,y)) = h_0 \cdot l_1 \cdot h_1 \cdots l_p \cdot \min_{lex} \left\{ h_p, h'_p \right\}$$

- The heavy labels of the nodes in HP(x)
- based on the light sizes of these nodes which are, starting from x and going down, 2, 5, 2, 1.
- The corresponding alphabetic strings are 000, 01, 100, 1001, so for instance hlabel(x) = 000. The sequence of light sizes of the nodes of HP(r) is 13, 3, 3, 3, 1.
- alphabetic strings 00, 0111, 1000, 1010, 10110, so hlabel(r) = 00

Self-stabilization MPRI

Example

- light sizes of HP(z) is 1, 1 which gives 0, 1 for the heavy labels.
- The light labels of the children x , y of r are based on their respective sizes, which are 10, 2.
- The alphabetic strings then imply that llabel(x) = 0 and llabel(y) = 101.

$$l(v) = l(parent(apex(v))) \cdot llabel(apex(v)) \cdot hlabel(v)$$

For example, we obtain:

•
$$l(r) = 00, l(x) = l(r) \cdot llabel(x) \cdot hlabel(x) = 00 \cdot 0 \cdot 000,$$

• $l(w) = l(r) \cdot llabel(x) \cdot hlabel(w) = 00 \cdot 0 \cdot 01$
• $l(z) = l(w) \cdot llabel(z) \cdot hlabel(z) = 00 \cdot 0 \cdot 01 \cdot 0 \cdot 0,$ and
• $l(u) = l(r) \cdot llabel(x) \cdot hlabel(u) = 00 \cdot 0 \cdot 1001$

Size of the label?

Size of the label

- $|llabel(w)| \leq \log lsize(parent(w)) logsize(w) + O(1)$, and
- $|hlabel(w)| \leq \log lsize(v) loglsize(w) + O(1).$

Lemma. For any node $v \in T$, |label(v)| = O(logn).