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Spanning Tree Problem Specification
Let  a connected undirected graph. An acyclic subgraph that connects all the

nodes of  is called a spanning tree of , denoted by .
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Pointer notion
In a spanning tree, the acyclic property ensures that there are no loops or cycles, while the
requirement for each node to have a unique pointer to a neighbor guarantees a distinct and

unambiguous path between nodes
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Self-stabilizing Spanning Tree
construction

Main difficulties
Breaking cycle

Empty Node pointer (False root)
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Spanning Tree under constraint
BFS Spanning Tree

DFS Spanning Tree

Minimum spanning Tree

Minimum Degree Spanning Tree

Minimum Diameter Spanning Tree
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A self-stabilizing algorithm for
constructing a spanning trees

1991 Chen Yu Huang IPL
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Model
Semi-uniform → root node denoted by 

Anonymous

Knowledge: 

Scheduler : central (Only one node activate at each step)
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Local variables
Level : 

Parent : 

Remark:  has no parent and its level is zero

These variables uses  bits of memory by node
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Algorithm
 (parent agreement)

 (error)

 (new parent)

The rules are exclusive
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Example
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Example
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Legal Configuration
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Definitions
A parent pointer is called Well-Formed (WF) pointer if

 to denote the WF set rooted at  (tree structure)
Ex Fig1 initial , ,  .
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Lemma 1: Before  is true, the algorithm does not terminate.

Proof: Before  is true, there must exist some WF set , with . Two possible

cases need to be considered

1. We consider  if , the node  is activatable by  or  because either

 or 

 is actavatable by  (error)

 is actavatable by  (parent agreement)
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Lemma 1: Before  is true, the algorithm does not terminate.

Proof: Before  is true, there must exist some WF set , with . Two possible

cases need to be considered

1. We consider  if  is activatable by  or  because either  or

2.  for every WF set , . Since  is connected, there exists at least one

edge between a node  in  and somme node ,  and .
Because  and , we have . Hence, node  can apply 

to make a move. 
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Definition of function 
Let  be a configuration and let :  be the the number of WF set  such

that .

 with 

The comparaison of F is lexicographic.

 is bounded function with
the maximum value  and

minimum .
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Rule 
Lemma 2:  monotonically decreases each time when rule  is applied.
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Example of execution

 :

→
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Proof of lemma 2 (rule )
Let us consider a node , with  such that  in 
so  is not null in ;

Let  be the parent of  in configuration , if  can execute :
.

If the node  executes  in configuration , it becomes element of , so 
disappears in  and .
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Proof of lemma 2 (rule )
Let denoted by  the children of  in configuration  such that , all

the children was in  but in  the child .

As a consequence,

because  and .
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Rule 
Lemma 3:  monotonically decreases each time when rule  is applied.
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Example of execution

: 

→
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Proof of lemma 3 (rule )
Let us consider a node , with ,  and 

So in  we have  and  as a consequence  and  are not nul;

If the node  executes  in configuration , it becomes in  element of , and 
disappears so  and .

Like  we obtain .
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Rule 
Lemma 4: F monotonically decreases each time when rule  is applied.
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Example of Execution of 

 :

 :

→ 
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Proof of lemma 4 (rule )
Proof: Let us consider a node  such that  in  so  is not null in ;

After execution of rule  by the node  in  disappears and , now
 is in  and  because  reaches a parent with the good level.

By definition of  so we obtain .
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Theorem
Theorem Eventually, the system reaches a legitimate configuration.

Proof: Since the initial value for  is finite, and the smallest possible value for F is

, by Lemmas 2,3 and 4 the rules can only be applied a finite number of times.
Hence, by Lemma 1, eventually  is true.
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Conclusion
Silent self-stabilizing algorithm

Centralized Scheduler

Knowledge: 

 bits of memory per node

Time complexity not provided

Questions:

Is it space optimal?

Self-stabilization MPRI 30



Silent property
A self-stabilizing algorithm is termed "silent" if, once a legal configuration is reached,

it remains in that same legal configuration.
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A self-stabilizing algorithm for
constructing breadth-first trees

Chen Huang 1992
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Model
Semi-uniform → root node denoted by 

Anonymous

Knowledge: 

Scheduler : Distributed fair scheduler
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Local variables
Level : 

Parent : 

Remark:  has no parent and is level is zero

These variables uses  bits of memory by node
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Algorithm
 (parent agreement)

 (new parent)
- with 
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Configuration legale

Remark: 
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No Deadlock
Lemma 1: before  is true the system never causes a deadlock

Proof

if  the proof is trivial. Let us consider for .

Proof by contradiction, so assuming  is false and no node can apply a rule.

1.  and  → 

2.  and  contradiction
→ (1) all the node  have ,  so the neighbors of  can applied .
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Modifications of the rules for the
Correctness

- with 
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Potential Function

 where  is a number of nodes  such that  and

 the node  is called an .
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Examples
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Examples
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Examples
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Remark:
To compute  and  only the tuple node parent of the node is considered.
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Lemma 2:  decreases each time when rule  is applied.

Remember:

 where  is a number of nodes  such that  and
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Proof of lemma 2:
Let  be a  node where , so  can execute  in configuration 
by definition of  and , after execution of node  ,  does not stay a  node.

Let now consider a node  child of node  such that

, so in  is not a  node but becomes
 after activation of , but  so in we obtain
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Lemma 3:  decreases each time when rule  or  is applied.

Remember:

with 
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Proof of Lemma 3
If a node  applied  or  then  decrease, the only way to increase  is the use

of  but in this case thanks to lemma 2  decreases so  decreases.
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Lemma 4:  does not increase each time when rule  or  is applied.

Remember:

with 
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Theorem: Eventually, the system reaches a legitimate state.

Proof: Direct by lemmas 2,3,4.
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Conclusion
Silent self-stabilizing algorithm

Distributed fair Scheduler

Knowledge: 

 bits of memory per node

Time complexity not provided

Questions:

Is it space optimal?

Is it silent ?
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Self-stabilizing Spanning Tree
construction

Main difficulties
Breaking cycle

Empty Node pointer (False root)
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Main technique to
break cycles

Distance to the root
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Freeze : Technic to destroy cycle
Blin Tixeuil 2017
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Freeze : Technic to
destroy cycle
(exemple)
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Other techniques
Number of children
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Other techniques
ID based algorithm: Unicity of the

identity
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Other technique: Non Silent, Semi-Uniform
Constant wave from the root
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Fake subtree destruction
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Space Optimality

Silent Self-Stabilizing Algorithm for Tree Construction
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Proof Labeling Scheme vs Silent algorithm

Korman, Kutten, Peleg, 2007
A proof-labeling scheme for a task is a pair such that:

Prover assigns a certificate to every node.

Verifier is a distributed algorithm such that
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Configurations
Legal

 legal for  assign certificates such that  accepts at all nodes.

Illegal
 illegal for  for every certificates,  must reject in at least one node.
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PLS : Spanning Tree
,  is the parent of .
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Acyclicity
Theorem [Korman,Kutten,Peleg 2007]: Any PL for acyclicity requires certificate on

 bits in -node graph.
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Proof
Certificate  bits with 

 edges

edges ← → :  bits

different pair 

 that correspond to the same pair
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Silent Self-Stabilization vs. Proof-Labeling Scheme
Blin, Fraigniaud, Patt-Shamir 2014

n-node networks,k-bit outputs, PLS of size at most  bits

Question: Is there, for every task, a silent self-stabilizing algorithm for solving that
task, that is simultaneously space-efficient and time-efficient?
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Silent lower born
Dolev, Gouda and Schneider 1999 :
Building spanning tree or elect a leader in silent self-stabilisation costs Ω(log n) bits

of memory per node.
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Without the silent property?
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