Spanning Tree Construction

INFORMATIQUE Sciences Université Paris Cité

Lália Dli

MPRI

Lélia Blin

lelia.blin@irif.fr

2024

Spanning Tree Problem Specification

Let G(V, E) a connected undirected graph. An acyclic subgraph that connects all the nodes of G is called a **spanning tree** of G, denoted by ST(G).

Pointer notion

In a spanning tree, the acyclic property ensures that there are no loops or cycles, while the requirement for each node to have a unique pointer to a neighbor guarantees a distinct and unambiguous path between nodes

Self-stabilizing Spanning Tree construction

Main difficulties

- Breaking cycle
- Empty Node pointer (False root)

Spanning Tree under constraint

- BFS Spanning Tree
- DFS Spanning Tree
- Minimum spanning Tree
- Minimum Degree Spanning Tree
- Minimum Diameter Spanning Tree

A self-stabilizing algorithm for constructing a spanning trees

1991 Chen Yu Huang IPL

Self-stabilization MPRI

Model

- Semi-uniform \rightarrow root node denoted by r
- Anonymous
- Knowledge: *n*
- Scheduler : central (Only one node activate at each step)

Local variables

- Level : $L_v \in \{1, \dots, n\}$ Parent : $p_v \in \{1, \dots, n\}$
- Remark: r has no parent and its level is zero
- These variables uses $O(\log)$ bits of memory by node

Algorithm

$$egin{aligned} R_0: L_v
eq n \wedge L_v
eq L_{p_v} + 1 \wedge L_{p_v}
eq n \longrightarrow L_v = L_{p_v} + 1 ext{ (parent agreement)} \ R_1: L_v
eq n \wedge L_{p_v} = n \longrightarrow L_v = n ext{ (error)} \ R_2: L_v = n \wedge \exists u \in N(v) | L_u < n - 1 \longrightarrow L_v = L_u + 1; p_v = u ext{ (new parent)} \end{aligned}$$

The rules are exclusive

Example

Example

Legal Configuration

$GST \equiv (orall v \in V \setminus \{r\} | L_v = Lp_v + 1)$

- A parent pointer is called Well-Formed (WF) pointer if $L_v
 eq n \wedge L_{p_v}
 eq n \wedge L_v = L_{p_v} + 1$
- $S_v^{L_v}$ to denote the WF set rooted at v (tree structure)
 - $\circ\;$ Ex Fig1 initial $S_c^0=\{c\}$, $S_a^1=\{a,b,e\}$, $S_d^5=\{d\}$.

Lemma 1: Before GST is true, the algorithm does not terminate.

Proof: Before GST is true, there must exist some WF set $S_v^{L_v}$, with $v \neq r$. Two possible cases need to be considered

1. We consider v
eq r if $L_v
eq n$, the node v is activatable by R_0 or R_1 because either

- a is actavatable by R_1 (error)
- d is actavatable by R_0 (parent agreement)

Lemma 1: Before GST is true, the algorithm does not terminate.

Proof: Before GST is true, there must exist some WF set $S_v^{L_v}$, with $v \neq r$. Two possible cases need to be considered

- 1. We consider v
 eq r if $L_v
 eq n\,v$ is activatable by R_0 or R_1 because either $L_{p_v}
 eq n$ or $L_{p_v}=n$
- 2. $L_v = n$ for every WF set $S_v^{L_v}$, $v \neq r$. Since G is connected, there exists at least one edge between a node u in S_r^0 and somme node v, $v \neq r$ and $S_v^{L_v} = S_v^n = \{v\}$. Because $L_r = 0$ and $|S_r^0| < n$, we have $L_u < n - 1$. Hence, node v can apply R_2 to make a move. \Box

Definition of function ${\cal F}$

- Let γ be a configuration and let $t_k: 0 \le k \le n$ be the the number of WF set $S_v^{L_v}$ such that $L_v = k$.
- $F(\gamma) = (t_0, t_1, \dots, t_n)$ with $0 \leq i < n$
- The comparaison of F is lexicographic.
- F is bounded function with
 - $\circ\,$ the maximum value $(1,n-1,0,\ldots,0)$ and
 - \circ minimum $(1, 0, \ldots, 0)$.

Step 0:	$S_c^0 = \{c\}, S_a^1 = \{a, b, e\}, S_d^5 = \{d\}$	F = (1, 1, 0, 0, 0, 1)
Step 1:	$S_{c}^{0} = \{c\}, S_{b}^{2} = \{b, e\}, S_{a}^{5} = \{a\}, S_{d}^{5} = \{d\}$	F = (1, 0, 1, 0, 0, 2)
Step 2:	$S_{c}^{0} = \{c\}, S_{e}^{3} = \{e\}, S_{a}^{5} = \{a\}, S_{b}^{5} = \{b\}, S_{d}^{5} = \{d\}$	F = (1, 0, 0, 1, 0, 3)
Step 3:	$S_c^0 = \{c, b\}, S_e^3 = \{e\}, S_a^5 = \{a\}, S_d^5 = \{d\}$	F = (1, 0, 0, 1, 0, 2)
Step 4:	$S_c^0 = \{c, b, d\}, S_e^3 = \{e\}, S_a^5 = \{a\}$	F = (1, 0, 0, 1, 0, 1)
Step 5:	$S_c^0 = \{c, b, d, e\}, S_a^5 = \{a\}$	F = (1, 0, 0, 0, 0, 1)
Step 6:	$S_{c}^{0} = \{c, b, d, e, a\}$	F = (1, 0, 0, 0, 0, 0)

Lélia Blin

Step 0:	$S_c^0 = \{c\}, S_a^1 = \{a, b, e\}, S_d^5 = \{d\}$	F = (1, 1, 0, 0, 0, 1)
Step 1:	$S_{c}^{0} = \{c\}, S_{b}^{2} = \{b, e\}, S_{a}^{5} = \{a\}, S_{d}^{5} = \{d\}$	F = (1, 0, 1, 0, 0, 2)
Step 2:	$S_c^0 = \{c\}, S_e^3 = \{e\}, S_a^5 = \{a\}, S_b^5 = \{b\}, S_d^5 = \{d\}$	F = (1, 0, 0, 1, 0, 3)
Step 3:	$S_c^0 = \{c, b\}, S_e^3 = \{e\}, S_a^5 = \{a\}, S_d^5 = \{d\}$	F = (1, 0, 0, 1, 0, 2)
Step 4:	$S_c^0 = \{c, b, d\}, S_e^3 = \{e\}, S_a^5 = \{a\}$	F = (1, 0, 0, 1, 0, 1)
Step 5:	$S_c^0 = \{c, b, d, e\}, S_a^5 = \{a\}$	F = (1, 0, 0, 0, 0, 1)
Step 6:	$S_{c}^{0} = \{c, b, d, e, a\}$	F = (1, 0, 0, 0, 0, 0)

Rule R_0

Lemma 2: F monotonically decreases each time when rule R_0 is applied.

Example of execution

 $R_0: L_v
eq n \wedge L_v
eq L_{p_v} + 1 \wedge L_{p_v}
eq n \longrightarrow L_v = L_{p_v} + 1$

 $egin{aligned} &\gamma: S^0_r = \{r\}, S^2_{p_v} = \{p_v\}, S^3_x = \{x\}, S^4_v = \{v, u, w\} o F(\gamma) = (1, 0, 1, 1, 1, 0, 0) \ &\gamma': S^0_r = \{r\}, S^2_{p_v} = \{p_v, v\}, S^3_x = \{x\}, S^5_u = \{u, w\} o F(\gamma') = (1, 0, 1, 1, 0, 1, 0) \ & o F(\gamma) > F(\gamma') \end{aligned}$

Proof of lemma 2 (rule R_0)

- Let us consider a node v, with $k=L_v(\gamma)$ such that $v\in S_v^k$ in γ
 - $\circ~$ so t_k is not null in γ ;
- Let p_v be the parent of v in configuration γ , if v can execute R_0 : $k_p = L_{p_v}(\gamma)
 eq k-1.$
- If the node v executes R_0 in configuration γ , it becomes element of $S_{p_v}^{k_p}$, so S_v^k disappears in γ' and $t_k(\gamma') < t_k(\gamma)$.

Proof of lemma 2 (rule R_0)

- Let denoted by u_i the children of v in configuration γ such that $L_{u_i}=k_i=k+1$, all the children was in $S_v^k(\gamma)$ but in γ' the child $u_i\in S_{u_i}^{k_i}$.
- As a consequence,

 $egin{aligned} F(\gamma) &= (1, \ldots, t_k(\gamma), t_{k_i}(\gamma), \ldots) > F(\gamma') = (1, \ldots, t_k(\gamma'), t_{k_i}(\gamma'), \ldots) \\ ext{because } t_k(\gamma) > t_k(\gamma') ext{ and } t_{k_i}(\gamma) \leq t_{k_i}(\gamma'). \end{aligned}$

Rule R_1

Lemma 3: F monotonically decreases each time when rule R_1 is applied.

Example of execution

$$R_1: L_v
eq n \wedge L_{p_v} = n \longrightarrow L_v = n$$

$$\begin{split} &\gamma: S^0_r = \{r\}, S^3_x = \{x\}, S^4_v = \{v, u, w\}, S^6 = \{p_v\} \to F(\gamma) = (1, 0, 0, 1, 1, 0, 1) \\ &\gamma': S^0_r = \{r\}, S^3_x = \{x\}, S^5_u = \{u, w\}, S^6_{p_v} = \{p_v\}, S^6_v = \{v\} \to F(\gamma') = (1, 0, 0, 1, 0, 1) \\ &\to F(\gamma) > F(\gamma') \end{split}$$

Proof of lemma 3 (rule R_1)

- Let us consider a node v, with $L_v(\gamma) = k$, k < n and $L_{p_v} = n$
- So in γ we have $v\in S_v^k$ and $p_v\in S_{p_v}^n$ as a consequence $t_k(\gamma)$ and $t_n(\gamma)$ are not nul;
- If the node v executes R_1 in configuration γ , it becomes in γ' element of S_v^n , and S_v^k disappears so $t_k(\gamma') < t_k(\gamma)$ and $t_n(\gamma') > t_n(\gamma)$.
- Like k < n we obtain $F(\gamma) > F(\gamma').$

Rule R_2

Lemma 4: F monotonically decreases each time when rule R_2 is applied.

Example of Execution of R_2

$$R_2: L_v = n \wedge \exists u \in N(v) | L_u < n-1 \longrightarrow L_v = L_u + 1; p_v = u$$
 .

$$\begin{split} &\gamma \colon \\ &S_r^0 = \{r\}, S_x^3 = \{x\}, S_u^5 = \{u, w\}, S_{p_v}^6 = \{p_v\}, S_v^6 = \{v\} \longrightarrow F(\gamma') = (1, 0, 0, 1, 0, 1, 2) \\ &\gamma \colon \\ &S_r^0 = \{r\}, S_x^3 = \{x, p_v\}, S_u^5 = \{u, w\}, S_v^6 = \{v\} \longrightarrow F(\gamma') = (1, 0, 0, 1, 0, 1, 1) \\ &\Rightarrow F(\gamma) < F(\gamma') \end{split}$$

Proof of lemma 4 (rule R_2)

Proof: Let us consider a node v such that $v \in S_v^n$ in γ so $t_n(\gamma)$ is not null in γ ; After execution of rule R_2 by the node v in γS_v^n disappears and $t_n(\gamma') = t_n(\gamma) - 1$, now v is in S_u^k and $t_k(\gamma') = t_k(\gamma')$ because v reaches a parent with the good level. By definition of $R_2 k < n - 1$ so we obtain $F(\gamma') < F(\gamma)$.

Theorem

Theorem Eventually, the system reaches a legitimate configuration.

Proof: Since the initial value for F is finite, and the smallest possible value for F is $(1, 0, \ldots, 0)$, by Lemmas 2,3 and 4 the rules can only be applied a finite number of times. Hence, by Lemma 1, eventually GST is true.

Conclusion

- Silent self-stabilizing algorithm
- Centralized Scheduler
- Knowledge: n
- $O(\log_2 n)$ bits of memory per node
- Time complexity not provided

Questions:

• Is it space optimal?

Silent property

A self-stabilizing algorithm is termed "silent" if, once a legal configuration is reached, it remains in that same legal configuration.

A self-stabilizing algorithm for constructing breadth-first trees

Chen Huang 1992

Model

- Semi-uniform \rightarrow root node denoted by r
- Anonymous
- Knowledge: n
- Scheduler : Distributed fair scheduler

Local variables

- Level : $L_v \in \{1, \dots, n\}$ Parent : $p_v \in \{1, \dots, n\}$
- Remark: r has no parent and is level is zero
- These variables uses $O(\log)$ bits of memory by node

Algorithm

• $R_0: L_v
eq L_{p_v} + 1 \land L_{p_v}
eq n \longrightarrow L_v = L_{p_v} + 1$ (parent agreement) • $R_1: L_v > k \longrightarrow L_v = k + 1; p_v = k_{id}$; (new parent) - with $k = \min\{L_u | u \in N(v)\} + 1$ $k_{id} = \min\{id_u | u \in N(v) \land L_u = k\}$

Configuration legale

$$egin{aligned} BFT \equiv (orall v \in V \setminus \{r\} | L_v = Lp_v + 1 \wedge L_{p_v} = \min\{L_u | u \in N(v)\}) \ \end{array}$$

Remark: $BTF(v)\equiv L_v=Lp_v+1\wedge L_{p_v}=\min\{L_u|u\in N(v)\}$

No Deadlock

Lemma 1: before BFT is true the system never causes a deadlock

Proof

- if $n\leq 2$ the proof is trivial. Let us consider for n>2.
- Proof by contradiction, so assuming BFT is false and no node can apply a rule.

$$\bullet \ \forall v \in V \setminus \{r\}: \neg R_0(v) \wedge \neg R_1(v) = true$$

•
$$BTF(v) \equiv L_v = Lp_v + 1 \land L_{p_v} = \min\{L_u | u \in N(v)\} = false$$

1. $L_v \neq L_{p_v} + 1$ and $\neg R_0(v) \rightarrow L_{p_v} = n$
2. $L_{p_v} > \min\{L_u | u \in N(v)\}$ and $\neg R_1(v)$ contradiction
 \rightarrow (1) all the node v have $L_v = n$, $L_r = 0$ so the neighbors of r can applied R_1 .

Modifications of the rules for the Correctness

- $\bullet \ M_0: L_v \leq L_{p_v} < n \longrightarrow L_v = L_{p_v} + 1$
- $\bullet \ M_1: L_v > L_{p_v} + 1 \longrightarrow L_v = L_{p_v} + 1$

Potential Function

- $F\equiv (F_1,F_2)$
- $F_1=(t_2,t_3,\ldots,t_n)$ where t_i is a number of nodes $v\in V$ such that $L_v=i$ and $L_v\leq L_{p_v}$ the node v is called an i-turn.
- $F_2 = \sum_{v \in V \setminus r} (L_v + L_{p_v})$

Examples

 $F_1 = (0, 2, 0, F_2 = 25)$

Examples

 $F_1 = (0, 2, 0, 0)$ $F_2 = 20$

 $F_1 = (0, 1, 0, 0)$ $F_2 = 21$ $F_1 = (0, 1, 0, 0)$ $F_2 = 19$

Examples

 $F_1 = (0, 0, 0, 0)$ $F_2 = 16$

Remark:

To compute F_1 and F_2 only the tuple node parent of the node is considered.

Lemma 2: F_1 decreases each time when rule M_0 is applied.

Remember:

- $M_0: L_v \leq L_{p_v} < n \longrightarrow L_v = L_{p_v} + 1$
- $F_1=(t_2,t_3,\ldots,t_n)$ where t_i is a number of nodes $v\in V$ such that $L_v=i$ and $L_v\leq L_{p_v}$

Proof of lemma 2:

- Let v be a k turn node where $k = L_v(\gamma)$, so v can execute M_0 in configuration γ by definition of M_0 and t, after execution of node v, v does not stay a k turn node.
- Let now consider a node u child of node v such that
 - $\circ \ L_u(\gamma) = L_v(\gamma) + 1$, so in $\gamma \, u$ is not a (k+1) turn node but becomes (k+1) turn after activation of v, but k+1 > k so in we obtain $F_1(\gamma) < F_1(\gamma')$ $\circ \ L_u(\gamma) \le L_v(\gamma)$
 - $\circ \; L_u(\gamma) > L_v + 1$

Lemma 3: F_2 decreases each time when rule M_1 or M_2 is applied.

Remember:

- $\bullet \ M_1: L_v > L_{p_v} + 1 \longrightarrow L_v = L_{p_v} + 1$
- $M_2: L_v
 eq k \longrightarrow p_v = k_{id};$ \circ with $k = \min\{L_u | u \in N(v)\} \ k_{id} = \min\{id_u | u \in N(v) \land L_u = k\}$
- $F_2 = \sum_{v \in V \setminus r} (L_v + L_{p_v})$

Proof of Lemma 3

If a node v applied M_1 or M_2 then L(v) decrease, the only way to increase F_2 is the use of M_0 but in this case thanks to lemma 2 F_1 decreases so F decreases.

Lemma 4: F_1 does not increase each time when rule M_1 or M_2 is applied.

Remember:

- $M_1: L_v > L_{p_v} + 1 \longrightarrow L_v = L_{p_v} + 1$
- $M_2: L_v
 eq k \longrightarrow p_v = k_{id};$ \circ with $k = \min\{L_u | u \in N(v)\} \ k_{id} = \min\{id_u | u \in N(v) \land L_u = k\}$
- $F_2 = \sum_{v \in V \setminus r} (L_v + L_{p_v})$

Theorem: Eventually, the system reaches a legitimate state.

Proof: Direct by lemmas 2,3,4.

Conclusion

- Silent self-stabilizing algorithm
- Distributed fair Scheduler
- Knowledge: *n*
- $O(\log_2 n)$ bits of memory per node
- Time complexity not provided

Questions:

- Is it space optimal?
- Is it silent?

Self-stabilizing Spanning Tree construction

Main difficulties

- Breaking cycle
- Empty Node pointer (False root)

Main technique to break cycles

Distance to the root

NFORMATIQUE Sciences Université Paris Cité Freeze : Technic to destroy cycle

Blin Tixeuil 2017

Algorithm 4: Algorithm Freeze

$\mathbb{R}_{\texttt{Error}}$:	$\operatorname{ErCycle}(v) \lor \operatorname{ErST}(v)$	\longrightarrow froz $_{v} := 1, p_{v} := \emptyset;$
$\mathbb{R}_{ extsf{Froze}}$:	$\neg \operatorname{ErCycle}(v) \land \neg \operatorname{ErST}(v) \land (frozp_v = 1) \land (froz_v = 0)$	\longrightarrow froz $_v := 1;$
$\mathbb{R}_{\texttt{Prun}}$:	$\neg \operatorname{ErCycle}(v) \land \neg \operatorname{ErST}(v) \land (froz_{p_v} = 1) \land (froz_v = 1) \land (Ch(v) = \emptyset)$	$\longrightarrow Reset(v);$

▶ **Theorem 14.** Algorithm **Freeze** deletes a cycle or an impostor-rooted sub spanning tree in n-nodes graph in a silent self-stabilizing manner, assuming the state model, and a distributed unfair scheduler. Moreover, Algorithm **Freeze** uses O(1) bits of memory per node.

• Lemma 15. Algorithm Freeze converges in O(n) steps.

Freeze : Technic to destroy cycle (exemple)

Other techniques

Number of children

Other techniques

ID based algorithm: Unicity of the identity

Other technique: Non Silent, Semi-Uniform

Constant wave from the root

Fake subtree destruction

Space Optimality

Silent Self-Stabilizing Algorithm for Tree Construction

Proof Labeling Scheme vs Silent algorithm

Korman, Kutten, Peleg, 2007

- A proof-labeling scheme for a task is a pair such that:
- Prover assigns a certificate to every node.
- Verifier is a distributed algorithm such that

Configurations

Legal

(G,x) legal for $\mathcal{T} \Rightarrow \mathcal{P}$ assign certificates such that \mathcal{V} accepts at all nodes.

lllegal

(G,x) illegal for $\mathcal{T} \Rightarrow$ for every certificates, \mathcal{V} must reject in at least one node.

PLS : Spanning Tree

- $\mathcal{T} = \{(v, x(v)), v \in V\}$, x(v) is the parent of v.
- $\mathcal{P}(v) = (Root, dis)$
- $\bullet \ \mathcal{V}(v): \big(\forall u \in N(v): (Root_u = Root_v) \big) \land (dis_v = dis_{p_v} + 1)$

Acyclicity

Theorem [Korman,Kutten,Peleg 2007]: Any PL for acyclicity requires certificate on $\Omega(\log_2 n)$ bits in n-node graph.

Proof

- Certificate k bits with $k \leq \frac{1}{2} {\log_2 n} 1$
- $\bullet \ m=n-1 \, {\rm edges}$
- edges $\leftarrow \rightarrow (a,b): 2k$ bits
- different pair $2^{2k} = 2^{\log_2 n 2} = \frac{1}{4} 2^{\log_2 n} = \frac{n}{4}$
- $\exists e
 eq e' | e \in E, e' \in E$ that correspond to the same pair

Silent Self-Stabilization vs. Proof-Labeling Scheme

Blin, Fraigniaud, Patt-Shamir 2014

	Size of registers	Number of rounds
Lower bound	$\Omega(\ell)$	
Algorithm 1	$O(\ell + \log n)$	$O(n2^{n\ell})$
Algorithm 2	$O(n^2+nk)$	O(n)

• n-node networks,k-bit outputs, PLS of size at most ℓ bits

Question: Is there, for every task, a silent self-stabilizing algorithm for solving that task, that is simultaneously space-efficient and time-efficient?

	Articles	Semi-unif.	Anonyme	Knowledge	Communications	Scheduler	Équité	Atomicité	Silent	Espace mémoire	Temps de convergence	Propriété
ST	ChenYuHuang91	\checkmark		n	R	Central		\oplus	\checkmark	$O(\log n)$	non fourni	
	AggarwalK93	Х	Х	Х	R	С	f	\oplus	\checkmark	$O(\log n)$	O(D)	dyn
DFS	HuangC93	\checkmark	\checkmark	n	R&D					$O(\log \Delta n)$		
	CollinD94	\checkmark	\checkmark		R	С	f	\oplus		$O(n \log \Delta)$	$O(Dn\Delta)$	
	HuangW97		\checkmark	n	R	С	f			$O(\log n)$		
	DattaJPV00	\checkmark	\checkmark		R&D		f			$O(\log \Delta)$	$O(Dn\Delta)$	
BFS	DolevIM90	\checkmark	\checkmark		R	Central	f	\oplus		$O(\Delta \log n)$	O(D)	dyn
	AroraG90			n	R	С				$O(\log n)$	$O(n^2)$	dyn
	AfekKY91				R&D		f	\oplus		$O(\log n)$	$O(n^2)$	dyn
	HuangC92	\checkmark	√	n	R&D	Inéquitable		\oplus	√	$O(\log n)$	non fourni	
	Dolev93				R	С	f	\oplus		$O(\Delta n \log n)$	$\Theta(D)$	dyn
	Johnen97	\checkmark	√		R			f	Х	$O(\log \Delta)$	O(n)	
	AfekB98				M&D				\checkmark	$O(\log n)$		O(n)
	HuangL02	\checkmark	√		R	С	Ι			$O(\log n)$		
	DattaLV08				R&D		f	\oplus		$O(\log n)$	O(n)	
	CournierRV19											
	DattaDJL23	\checkmark	√		R		U	\oplus	Х	$O(\log \Delta)$	$O(D.n^2)$	

Silent lower born

Dolev, Gouda and Schneider 1999 :

Building spanning tree or elect a leader in silent self-stabilisation costs $\Omega(\log n)$ bits of memory per node.

Without the silent property?