

INFORMATIQUE Sciences Université Paris Cité

MPRI

Lélia Blin

lelia.blin@irif.fr 2024

Lélia Blin

Unisson Problem

Properties:

- Safety: For every two neighbors u and v the output clock values satisfy
 - \circ Synchronous: $clock_u = clock_v$
 - \circ Asynchronous: $clock_v = k$ and $clock_u \in \{k-1,k,k+1\}$.
- Liveness: Each node updates its clock value infinitely often

Outline

- Synchronous Unisson
 - Arora, Dolev, Gouda 1991
- Asynchronous Unisson
 - Boulinier 2007
 - Emek, Keren 2021

Synchronous Unisson

Anish Arora, Shlomi Dolev, Mohamed G.Gouda

Maintaining digital clocks in step.

IPL 1991

Book: Introduction to Distributed Self-Stabilizing Algorithms, Altisen at all 2019

Model

- Anonymous undirected graph $G=\left(V,E
 ight)$
- State model
- Synchronous scheduler
- Knowledge:
 - \circ periode m

 $\circ \ m \geq \max\{2, 2D-1\}$ where D is the diameter

Unisson

An execution e satisfies the synchronous unison if the predicate SU(e) holds, where SU(e) is defined by the conjunction of the following three properties:

- in every configuration of e, all the processes have the same clock value,
- *e* is infinite, and
- in each step of e, each clock is incremented modulo m.

Algorithme

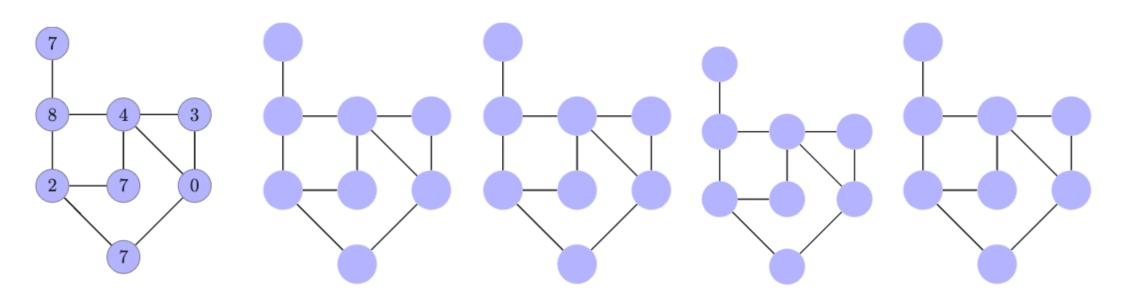
Local variable

$$clock_v \in \{0,\ldots,m-1\}$$

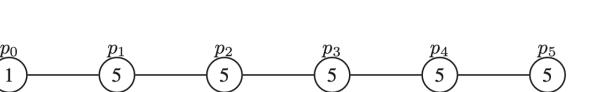
Rule

 $R: \longrightarrow clock_v = \min\{clock_u | u \in N(v) \cup \{v\}\} + 1 \mod m$

Example



D = 5, m = 2D - 1 = 9,



	p_0	p_1	p_2	p_3	p_4	p_5
γ_0	1	5	5	5	5	5
γ_1	2	2	6	6	6	6
γ_2	3	3	3	7	7	7
γ_3	4	4	4	4	8	8
γ_4	5	5	5	5	5	0
γ_5	6	6	6	6	1	1
γ_6	7	7 7		2	2	2
γ_7	8	8	3	3	3	3
γ_8	0	4	4	4	4	4
γ_9	1	1	5	5	5	5
γ_{10}	2	2	2	6	6	6
γ_{11}	3	3	3	3	7	7
γ_{12}	4	4	4	4	4	8
γ_{13}	5	5	5	5	5	5

Revisited Correctness

Legal configuration

 $Legal_U(\gamma) \equiv orall u, v \in V imes V | clock_v(\gamma) = clock_u(\gamma)$

- $ullet m^+(\gamma) = \max\{clock_v(\gamma)| orall v \in V\}$
- $\bullet \ m^-(\gamma) = \min\{clock_v(\gamma) | \forall v \in V\}$
- Let us consider a configuration γ such that $Legal_u(\gamma)=false$
 - $\circ\,$ we have $m^+
 eq m^-$
 - $\circ\,$ Let denoted by $d^+(\gamma)$ For all v in V the maximum distance between a node v with $clock_v=m^+$ and the closest node u with $clock_v=m^-$
 - $\circ\,$ Remark that $d^+(\gamma) \leq D-1$ when the graph is a chain
 - $\circ\,$ Let denote by $m^s(\gamma)=m-m^+(\gamma)$.
 - $\circ\,$ Let denote by $m^e(\gamma)=n-m_\gamma^+-m_\gamma^-$

Reset clock

Lemma 1: if $d^+(\gamma) > m^s(\gamma)$ then at least one node v turn is clock to 0 in configuration $\gamma_{(m^s(\gamma)+\gamma_0)}$.

Potential function

Let $\psi: \Gamma imes V o \mathbb{N}$ be the function defined by:

$$\psi(\gamma,v) = egin{cases} 0 & ext{if } clock_v(\gamma) = m^-(\gamma) \ n^{m^e} & ext{if } d^+(\gamma) > m^s(\gamma) \wedge clock_v(\gamma)
eq m^-(\gamma) \ 1 & ext{if } d^+(\gamma) \leq m^s(\gamma) \wedge clock_v(\gamma)
eq m^-(\gamma) \end{cases}$$

Let $\Psi:\Gamma o\mathbb{N}$ be the potential function defined by: $\Psi(\gamma)=\sum_{v\in V}eta(\gamma)$

Let denoted by Γ_C the set of legal configurations such that $\Gamma_C = \{\gamma \in \Gamma | \Psi(\gamma) = 0\}$

Closure and Correctness

Theorem 1: $true \triangleright \Gamma_C$ and Γ_c is closed **Theorem 2**: The system converges in at most 3D - 2 steps

Example of Worst Case execution in a chain

D = 5, m = 2D - 1 = 9, 3D - 2 = 13 steps

	p_0	p_1	p_2	p_3	p_4	p_5
γ_0	1	5	5	5	5	5
γ_1	2	2	6	6	6	6
γ_2	3	3	3	7	7	7
γ_3	4	4	4	4	8	8
γ_4	5	5	5	5	5	0
γ_5	6	6	6	6	1	1
γ_6	7	7	7	2	2	2
γ_7	8	8	3	3	3	3
γ_8	0	4	4	4	4	4
γ_9	1	1	5	5	5	5
γ_{10}	2	2	2	6	6	6
γ_{11}	3	3	3	3	7	7
γ_{12}	4	4	4	4	4	8 5
γ_{13}	5	5	5	5	5	5

γ	p_0	p_1	p_2	p_3	p_4	p_5	m^+	m^-	m^e	m^s	d^+	$m^s < d^+$	$\Psi(\gamma)$
γ_0	1	5	5	5	5	5	5	1	2	4	5	oui	$5 imes 6^2 = 180$
γ_1	2	2	6	6	6	6	6	2	2	3	4	oui	$4 imes 6^2 = 144$
γ_2	3	3	3	7	7	7	7	3	2	2	3	oui	$3 imes 6^2 = 108$
γ_3	4	4	4	4	8	8	8	4	2	1	2	oui	$2 imes 6^2 = 72$
γ_4	5	5	5	5	5	0	5	0	1	4	5	oui	5 imes 6=30
γ_5	6	6	6	6	1	1	6	1	1	3	4	oui	4 imes 6=24
γ_6	7	7	7	2	2	2	7	2	1	2	3	oui	3 imes 6=18
γ_7	8	8	3	3	3	3	8	3	1	1	2	oui	2 imes 6=12
γ_8	0	4	4	4	4	4	4	0		5	5	non	5
γ_9	1	1	5	5	5	5	5	1		4	4	non	4
γ_{10}	2	2	2	6	6	6	6	2		3	3	non	3
γ_{11}	3	3	3	3	7	7	7	3		2	2	non	2
γ_{11}	4	4	4	4	4	8	8	4		1	1	non	1
γ_{11}	5	5	5	5	5	5	5	5		0	0	non	0

Asynchronous Unisson

Naive algorithm

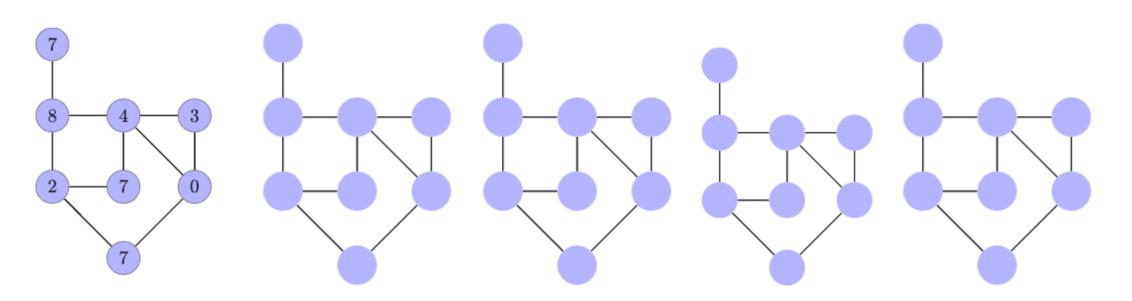
Unbounded clock defined over \mathbb{Z}

Naive

 $R: orall u \in N(v) | clock_v \leq clock_u \longrightarrow clock_v = clock_v + 1$

Theorem 3: Naive algorithm resolves the asynchronous unisson problem [Boulinier 2007]

Example



Unbounded vs bounded

Asynchronous Unisson

A Thin Self-Stabilizing Asynchronous Unison Algorithm with Applications to Fault Tolerant Biological Networks

Yuval Emek Eyal Keren

Result

Deterministic asynchronous self-stabilizing unisson

- Stabilization time ${\cal O}(D^3)$ rounds
- State Space: O(D) States $\rightarrow O(\log_2 D)$ bits per nodes.

Model

- Undirected graph G = (V, E)
- State model
- Scheduler Distributed fair

Local variables:

- Each node $v \in V$ has a clock from a cyclic group $k \in K, |K| \geq 3.$

State of the node

• We denote by $S_v(t)$ the state of the node v at time t

Able state

• A node v maintains an **able** state if v detects no fault

$$egin{array}{l} \circ \ S_v(t) \in \overline{T} \ \circ \ \overline{T} = \{\ell | \ell \in \mathbb{Z}, 1 \leq |\ell| \leq d\} \ \circ \ d = \Theta(D) \end{array}$$

Faulty state

• A node v moves to a **faulty** state if v detects at least one fault

$$egin{array}{l} \circ \ S_v(t) \in \widehat{T} \ \ \circ \ \widehat{T} = \{ \widehat{\ell} | \ell \in \mathbb{Z}, 2 \leq |\ell| \leq d \} \ \ \circ \ d = \Theta(D) \end{array}$$

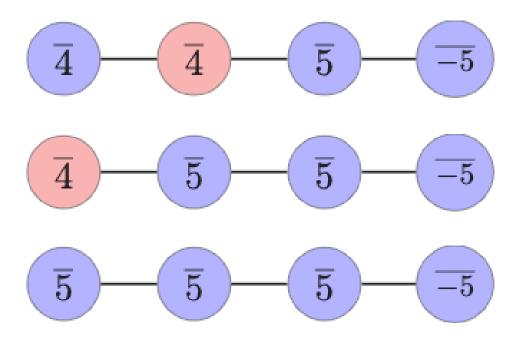
Remark: A node in $\overline{\ell}$ or $\hat{\ell}$ has a level ℓ

Definitions

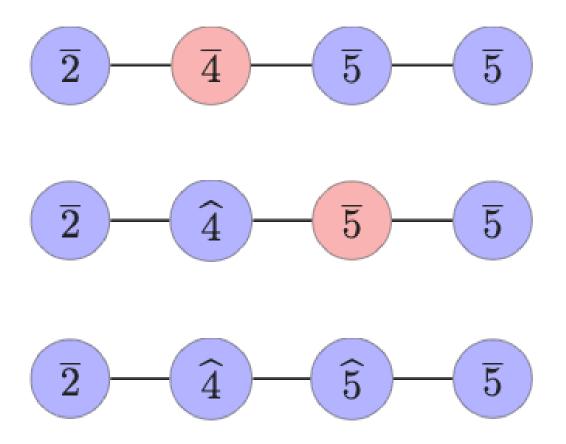
- Edge e = (u, v) is **protected** if u and v have adjacent levels.
- Node v is **protected** if all its incident edges are protected.
- Node v is **good** if it is protected and does not observe any faulty states.

Able Able transition (AA)

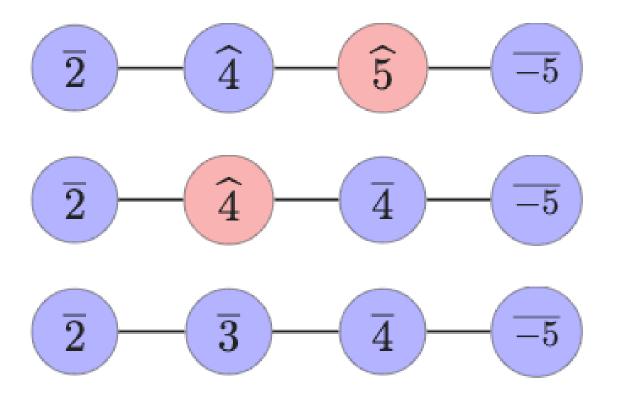
 $R_{AA}: Good(v) \land orall u \in N(v): clock_u \in \{\overline{\ell}, \overline{\ell+1}\} \longrightarrow clock_v = \overline{\ell+1}$



 $R_{AF}:
egrev{Protected}(v) \land orall u \in N(v): clock_u \in \{\overline{\ell}, \overline{\ell+1}\} \longrightarrow clock_v = \hat{\ell}$



 $R_{AF}: orall u \in N(v): clock_u < \ell \wedge clock_v = \hat{\ell} \longrightarrow clock_v = \overline{\ell-1}$



Transition Diagram

