Spanning Tree Construction

MPRI

Lélia Blin

lelia.blin@irif.fr

2023
Spanning Tree Problem Specification

Let $G(V, E)$ a connected undirected graph. An acyclic subgraph that connects all the nodes of G is called a spanning tree of G, denoted by $ST(G)$.
Pointer notion

In a spanning tree, the acyclic property ensures that there are no loops or cycles, while the requirement for each node to have a unique pointer to a neighbor guarantees a distinct and unambiguous path between nodes.
Self-stabilizing Spanning Tree construction

Main difficulties

- Breaking cycle
- Empty Node pointer
Spanning Tree under constraint

- BFS Spanning Tree
- DFS Spanning Tree
- Minimum spanning Tree
- Minimum Degree Spanning Tree
- Minimum Diameter Spanning Tree
A self-stabilizing algorithm for constructing a spanning trees

1991 Chen Yu Huang IPL
Model

- Semi-uniform \rightarrow root node denoted by r
- Anonymous
- Knowledge: n
- Scheduler : central (Only one node activate at each step)
Local variables

- Level: $L_v \in \{1, \text{dots}, n\}$
- Parent: $p_v \in \{0, \ldots, n\}$

- Remark: r has no parent and is level is zero
- These variables uses $O(\log)$ bits of memory by node
Algorithm

\[R_0 : L_v \neq n \land L_v \neq L_{p_v} + 1 \land L_{p_v} \neq n \rightarrow L_v = L_{p_v} + 1 \]
\[R_1 : L_v \neq n \land L_{p_v} = n \rightarrow L_v = n \]
\[R_2 : L_v = n \land \exists u \in N(v) \mid L_u < n - 1 \rightarrow L_v = L_u + 1; p_v = u \]
Example

\[\text{Init. Config.:} \quad \begin{array}{c}
\circlearrowleft R1 \\
3 \quad e \\
\circlearrowright R2 \\
2 \quad b \\
\circlearrowright R2 \\
0 \quad c
\end{array}
\]
Example
Legal Configuration

\[GST \equiv (\forall v \in V \setminus \{r\} | L_v = L_{p_v} + 1) \]
Definitions

- A parent pointer is called **Well-Formed** (WF) pointer if
 \[L_v \neq n \land L_{p_v} \neq n \land L_v = L_{p_v} + 1 \]
- \(S_v^{L_v} \) to denote the WF set rooted at \(v \) (tree structure)
 - Ex Fig1 initial \(S_c^0 = \{ c \}, S_a^1 = \{ a, b, e \}, S_d^5 = \{ d \} \).
Lemma 1: Before GST is true, the algorithm does not terminate.

Proof: Before GST is true, there must exist some WF set S^L_v, with $v \neq r$. Two possible cases need to be considered:

1. We consider $v \neq r$ if $L_v \neq n$; v is activatable by R_0 or R_1 because either $L_{p_v} \neq n$ or $L_{p_v} = n$.

2. $L_v = n$ for every WF set S^L_v, $v \neq r$. Since G is connected, there exists at least one edge between a node u in S^0_r and some node v, $v \neq r$ and $S^L_v = S^n_v = \{v\}$. Because $L_r = 0$ and $|S^0_r| < n$, we have $L_u < n - 1$. Hence, node v can apply R_2 to make a move. □
Definitions of function F

- Let γ be a configuration and let t_k: $0 \leq k \leq n$ be the the number of WF set $S_{L_v}^v$ such that $L_v = k$.
- $F(\gamma) = (t_0, t_1, \ldots, t_n)$ with $0 \leq i < n$
- The comparison of F is lexicographic.
- F is bounded function with the maximum value $(1, n_1, 0, \ldots, 0)$ and minimum $(1, 0, \ldots, 0)$.
Init. Config.

Step 0: $S_0^0 = \{c\}, S_0^1 = \{a, b, e\}, S_0^2 = \{d\}$ \hspace{1cm} $F = (1, 1, 0, 0, 0, 1)$

Step 1: $S_1^0 = \{c\}, S_1^1 = \{b, e\}, S_1^2 = \{a\}, S_1^3 = \{d\}$ \hspace{1cm} $F = (1, 0, 1, 0, 0, 2)$

Step 2: $S_2^0 = \{c\}, S_2^1 = \{e\}, S_2^2 = \{a\}, S_2^3 = \{b\}, S_2^4 = \{d\}$ \hspace{1cm} $F = (1, 0, 0, 1, 0, 3)$

Step 3: $S_3^0 = \{c, b\}, S_3^1 = \{e\}, S_3^2 = \{a\}, S_3^3 = \{d\}$ \hspace{1cm} $F = (1, 0, 0, 1, 0, 2)$

Step 4: $S_4^0 = \{c, b, d\}, S_4^1 = \{e\}, S_4^2 = \{a\}$ \hspace{1cm} $F = (1, 0, 0, 1, 0, 1)$

Step 5: $S_5^0 = \{c, b, d, e\}, S_5^1 = \{a\}$ \hspace{1cm} $F = (1, 0, 0, 0, 0, 1)$

Step 6: $S_6^0 = \{c, b, d, e, a\}$ \hspace{1cm} $F = (1, 0, 0, 0, 0, 0)$
Step 0: $S_0^0 = \{ c \}, S_0^1 = \{ a, b, e \}, S_0^2 = \{ d \}$

$F = (1, 1, 0, 0, 0, 1)$

Step 1: $S_1^0 = \{ c \}, S_1^1 = \{ b, e \}, S_1^2 = \{ a \}, S_1^3 = \{ d \}$

$F = (1, 0, 1, 0, 0, 2)$

Step 2: $S_2^0 = \{ c \}, S_2^1 = \{ e \}, S_2^2 = \{ a \}, S_2^3 = \{ b \}, S_2^4 = \{ d \}$

$F = (1, 0, 0, 1, 0, 3)$

Step 3: $S_3^0 = \{ c, b \}, S_3^1 = \{ e \}, S_3^2 = \{ a \}, S_3^3 = \{ d \}$

$F = (1, 0, 0, 1, 0, 2)$

Step 4: $S_4^0 = \{ c, b, d \}, S_4^1 = \{ e \}, S_4^2 = \{ a \}$

$F = (1, 0, 0, 1, 0, 1)$

Step 5: $S_5^0 = \{ c, b, d, e \}, S_5^1 = \{ a \}$

$F = (1, 0, 0, 0, 0, 1)$

Step 6: $S_6^0 = \{ c, b, d, e, a \}$

$F = (1, 0, 0, 0, 0, 0)$
Rule R_0

Lemma 2: F monotonically decreases each time when rule R_0 is applied.
Example of execution

\[R_0 : L_v \neq n \land L_v \neq L_{p_v} + 1 \land L_{p_v} \neq n \rightarrow L_v = L_{p_v} + 1 \]

\[\gamma : S^0_r = \{r\}, S^2_{p_v} = \{p_v\}, S^3_x = \{x\}, S^4_v = \{v, u, w\} \rightarrow F(\gamma) = (1, 0, 1, 1, 1, 0, 0) \]

\[\gamma' : S^0_r = \{r\}, S^2_{p_v} = \{p_v, v\}, S^3_x = \{x\}, S^5_u = \{u, w\} \rightarrow F(\gamma') = (1, 0, 1, 1, 0, 1, 0) \]

\[F(\gamma) < F(\gamma') \]
Proof of lemma 2

- Let us consider a node \(v \), with \(k = L_v(\gamma) \) such that \(v \in S^k_v \) in \(\gamma \) so \(t_k \) is not null in \(\gamma \);
- Let \(p_v \) be the parent of \(v \) in configuration \(\gamma \), if \(v \) can execute \(R_0 \):
 \[
 k_p = L_{p_v}(\gamma) \neq k - 1.
 \]
- If the node \(v \) executes \(R_0 \) in configuration \(\gamma \), it becomes element of \(S^{k_p}_{p_v} \), so \(S^k_v \) disappears in \(\gamma' \) and \(t_k(\gamma') < t_k(\gamma) \).
Proof of lemma 2

- Let denoted by \(u_i \) the children of \(v \) in configuration \(\gamma \) such that \(L_{u_i} = k_i = k + 1 \), all the children was in \(S^k_v(\gamma) \) but in \(\gamma' \) the child \(u_i \in S^{k_i}_{u_i} \), so \(t_{k_i}(\gamma') > t_k(\gamma) \), remember that \(k_i = k + 1 \).

- As a consequence,
 \[
 F(\gamma) = (1, \ldots, t_k(\gamma), t_{k_i}(\gamma), \ldots) < F(\gamma') = (1, \ldots, t_k(\gamma'), t_{k_i}(\gamma'), \ldots)
 \]
 because \(t_k(\gamma) < t_k(\gamma') \) and \(t_{k_i}(\gamma) > t_{k_i}(\gamma') \).

\[\square\]
Rule R_1

Lemma 3: F monotonically decreases each time when rule R_1 is applied.
Example of execution

\[R_1 : L_v \neq n \land L_{p_v} = n \rightarrow L_v = n \]

\(\gamma \)

\[\begin{array}{cccccc}
\gamma & 0 & 3 & 6 & 4 & 5 & 6 \\
 \ \\
 r & x & p_v & v & u & w \\
 \end{array} \]

\(\gamma' \)

\[\begin{array}{cccccc}
\gamma' & 0 & 3 & 6 & 6 & 5 & 6 \\
 \ \\
 r & x & p_v & v & u & w \\
 \end{array} \]

\(\gamma : S_r^0 = \{r\}, S_x^3 = \{x\}, S_v^4 = \{v, u, w\}, S^6 = \{p_v\} \rightarrow F(\gamma) = (1, 0, 0, 1, 1, 0, 1) \)

\(\gamma' : S_r^0 = \{r\}, S_x^3 = \{x\}, S_u^5 = \{u, w\}, S_{p_v}^6 = \{p_v\}, S_v^6 = \{v\} \rightarrow F(\gamma') = (1, 0, 0, 1, 0, 1, 2) \)

\[F(\gamma) < F(\gamma') \]
Proof of lemma 3

- Let us consider a node v, with $L_v(\gamma) = k, k < n$ and $L_{p_v} = n$
- So in γ we have $v \in S^v_k$ and $p_v \in S^n_{p_v}$ as a consequence $t_k(\gamma)$ and $t_n(\gamma)$ are not nul;
- If the node v executes R_1 in configuration γ, it becomes in γ' element of S^n_v, and S^k_v disappears so $t_k(\gamma') < t_k(\gamma)$ and $t_n(\gamma') > t_n(\gamma)$.
- Like $k < n$ we obtain $F(\gamma') < F(\gamma)$.

\Box
Rule R_2

Lemma 4: F monotonically decreases each time when rule R_2 is applied.
Example of Execution of R_2

$R_2 : L_v = n \land \exists u \in N(v) \mid L_u < n - 1 \implies L_v = L_u + 1; p_v = u$

γ: $S_r^0 = \{r\}, S_x^3 = \{x\}, S_u^5 = \{u, w\}, S_{p_v}^6 = \{p_v\}, S_v^6 = \{v\} \implies F(\gamma') = (1, 0, 0, 1, 0, 1, 2)$

γ: $S_r^0 = \{r\}, S_x^3 = \{x, p_v\}, S_u^5 = \{u, w\}, S_v^6 = \{v\} \implies F(\gamma') = (1, 0, 0, 1, 0, 1, 1)$

→ $F(\gamma) < F(\gamma')$
Proof of lemma 4

Proof: Let us consider a node v such that $v \in S_v^n$ in γ so $t_n(\gamma)$ is not null in γ; after execution of rule R_2 by the node v in γ S_v^n disappears and $t_n(\gamma') = t_n(\gamma) - 1$, now v is in S_u^k and $t_k(\gamma') = t_k(\gamma')$ because v reaches a parent with the good level. By definition of R_2 $k < n - 1$ so we obtain $F(\gamma') < F(\gamma)$. □
Theorem Eventually, the system reaches a legitimate configuration.

Proof: Since the initial value for F is finite, and the smallest possible value for F is $(1, 0, \ldots, 0)$, by Lemmas 2, 3 and 4 the rules can only be applied a finite number of times. Hence, by Lemma 1, eventually GST is true. □
Conclusion

- Silent self-stabilizing algorithm
- Centralized Scheduler
- Knowledge: n
- $O(\log_2 n)$ bits of memory per node
- Time complexity not provided

Question: Is it space optimal?
A self-stabilizing algorithm for constructing breadth-first trees

Chen Huang 1992
Model

- Semi-uniform \rightarrow root node denoted by r
- Anonymous
- Knowledge: n
- Scheduler: Distributed fair scheduler
Local variables

- Level: $L_v \in \{1, \text{dots}, n\}$
- Parent: $p_v \in \{0, \ldots, n\}$

- Remark: r has no parent and is level is zero
- These variables uses $O(\log)$ bits of memory by node
Algorithm

- $R_0 : L_v \neq L_{p_v} + 1 \land L_{p_v} \neq n \rightarrow L_v = L_{p_v} + 1$
- $R_1 : L_v > k \rightarrow L_v = k + 1; p_v = k_{id}$
 - with $k = \min\{L_u | u \in N(v)\}$
 - $k_{id} = \min\{id_u | u \in N(v) \land L_u = k\}$
Configuration légale

\[
BFT \equiv (\forall v \in V \setminus \{r\}| L_v = Lp_v + 1 \land L_{p_v} = \min\{L_u | u \in N(v)\})
\]

Remarque: \(BTF(v) \equiv L_v = Lp_v + 1 \land L_{p_v} = \min\{L_u | u \in N(v)\}\)
No Deadlock

Lemma 1: before BFT is true the system never causes a deadlock

Proof

- if $n \geq 2$ the proof is trivial. Let us consider for $n > 2$.
- Proof by contradiction, so assuming BFT is false and no node can apply a rule.
- $\forall v \in V \setminus \{r\} : \neg R_0(v) \land \neg R_1(v) = true$
- $BTF(v) \equiv L_v = L_{p_v} + 1 \land L_{p_v} = \min\{L_u | u \in N(v)\} = false$
 1. $L_v \neq L_{p_v} + 1$ and $\neg R_0(v) \rightarrow L_{p_v} = n$
 2. $L_{p_v} > \min\{L_u | u \in N(v)\}$ and $\neg R_1(v)$ contradiction

\rightarrow (1) all the node v have $L_v = n, L_r = 0$ so the neighbors of r can applied R_1.

Self-stabilization MPRI
Modifications of the rules for the Correctness

- $M_0 : L_v \leq L_{p_v} < n \rightarrow L_v = L_{p_v} + 1$
- $M_1 : L_v > L_{p_v} + 1 \rightarrow L_v = L_{p_v} + 1$
- $M_2 : L_v \neq k \rightarrow p_v = k_{id};$
 - with $k = \min\{L_u | u \in N(v)\}$ $k_{id} = \min\{id_u | u \in N(v) \land L_u = k\}$
Potential Function

- $F \equiv (F_1, F_2)$
- $F_1 = (t_2, t_3, \ldots, t_n)$ where t_i is a number of nodes $v \in V$ such that $L_v = i$ and $L_v \leq L_{p_v}$ the node v is called an $i -$ turn.
- $F_2 = \sum_{v \in V \setminus r}(L_v + L_{p_v})$
Examples

Init. Config.

F_1 = (1, 1, 0, 0)
F_2 = 23

F_1 = (0, 2, 0, 0)
F_2 = 27

F_1 = (0, 2, 0, 0)
F_2 = 25

F_1 = (0, 2, 0, 0)
F_2 = 23
Examples

\[F_1 = (0, 2, 0, 0) \]
\[F_2 = 22 \]

\[F_1 = (0, 2, 0, 0) \]
\[F_2 = 20 \]

\[F_1 = (0, 1, 0, 0) \]
\[F_2 = 21 \]

\[F_1 = (0, 1, 0, 0) \]
\[F_2 = 19 \]
Examples

\[F_1 = (0, 1, 0, 0) \]
\[F_2 = 17 \]

\[F_1 = (0, 0, 0, 0) \]
\[F_2 = 18 \]
Remark: To compute F_1 and F_2 only the tuple node parent of the node is considered.
Lemma 2: F_1 decreases each time when rule M_0 is applied.

Remember:

- $M_0 : L_v \leq L_{p_v} < n \rightarrow L_v = L_{p_v} + 1$
- $F_1 = (t_2, t_3, \ldots, t_n)$ where t_i is a number of nodes $v \in V$ such that $L_v = i$ and $L_v \leq L_{p_v}$
Proof of lemma 2:

• Let v be a k–*turn* node where $k = L_v(\gamma)$, so v can execute M_0 in configuration γ by definition of M_0 and t, after execution of node v, v does not stay a k–*turn* node.

• Let now consider a node u child of node v such that

 ○ $L_u(\gamma) = L_v(\gamma) + 1$, so in γu is not a $(k + 1)$–*turn* node but becomes $(k + 1)$–*turn* after activation of v, but $k + 1 > k$ so in we obtain

 \[F_1(\gamma) < F_1(\gamma') \]

 ○ $L_u(\gamma) \leq L_v(\gamma)$

 ○ $L_u(\gamma) > L_v + 1$
Lemma 3: F_2 decreases each time when rule M_1 or M_2 is applied.

Remember:

- $M_1 : L_v > L_{p_v} + 1 \rightarrow L_v = L_{p_v} + 1$
- $M_2 : L_v \neq k \rightarrow p_v = k_{id}$;
 - with $k = \min\{L_u | u \in N(v)\}$
 - $k_{id} = \min\{id_u | u \in N(v) \land L_u = k\}$
- $F_2 = \sum_{v \in V \setminus r} (L_v + L_{p_v})$
Proof of Lemma 3

If a node v applied M_1 or M_2 then $L(v)$ decrease, the only way to increase F_2 is the use of M_0 but in this case thanks to lemma 2 F_1 decreases so F decreases.
Lemma 4: F_1 does not increase each time when rule M_1 or M_2 is applied.

Remember:

- $M_1 : L_v > L_{p_v} + 1 \rightarrow L_v = L_{p_v} + 1$
- $M_2 : L_v \neq k \rightarrow p_v = k_{id}$
 - with $k = \min\{L_u \mid u \in N(v)\}$
 - $k_{id} = \min\{id_u \mid u \in N(v) \land L_u = k\}$
- $F_2 = \sum_{v \in V \setminus r} (L_v + L_{p_v})$
Theorem: Eventually, the system reaches a legitimate state.

Proof: Direct by lemmas 2, 3, 4.
Conclusion

- Silent self-stabilizing algorithm
- Distributed fair Scheduler
- Knowledge: n
- $O(\log_2 n)$ bits of memory per node
- Time complexity not provided

Question: Is it space optimal?
Main technique to break cycles

Distance to the root
Freeze: Technic to destroy cycle

Blin Tixeuil 2017

Algorithm 4: Algorithm Freeze

\[
\begin{align*}
\mathbb{R}_{\text{Error}} & : \quad \text{ErCycle}(v) \lor \text{ErST}(v) \\
\mathbb{R}_{\text{Froze}} & : \quad \neg\text{ErCycle}(v) \land \neg\text{ErST}(v) \land (\text{froz}_p = 1) \land (\text{froz}_v = 0) \\
\mathbb{R}_{\text{Prun}} & : \quad \neg\text{ErCycle}(v) \land \neg\text{ErST}(v) \land (\text{froz}_p = 1) \land (\text{froz}_v = 1) \land (\text{Ch}(v) = \emptyset)
\end{align*}
\]

\[\rightarrow \text{froz}_v := 1, \ p_v := \emptyset;\]
\[\rightarrow \text{froz}_v := 1;\]
\[\rightarrow \text{Reset}(v);\]

Theorem 14. Algorithm Freeze deletes a cycle or an impostor-rooted sub spanning tree in \(n\)-nodes graph in a silent self-stabilizing manner, assuming the state model, and a distributed unfair scheduler. Moreover, Algorithm Freeze uses \(O(1)\) bits of memory per node.

Lemma 15. Algorithm Freeze converges in \(O(n)\) steps.
Freeze : Technic to destroy cycle
Other techniques

Number of children
Other techniques

ID based algorithm: Unicity of the identity
Other technique: Non Silent, Semi-Uniform

Constant wave from the root
Fake subtree destruction
Space Optimality

Silent Self-Stabilizing Algorithm for Tree Construction
Proof Labeling Scheme vs Silent algorithm

Korman, Kutten, Peleg, 2007

- A proof-labeling scheme for a task is a pair such that:
- **Prover** assigns a certificate to every node.
- **Verifier** is a distributed algorithm such that

\[V : \{ v \} \rightarrow \{ yes, no \} \]
Configurations

Legal

\((G, x)\) legal for \(T \Rightarrow P\) assign certificates such that \(V\) accepts at all nodes.

Illegal

\((G, x)\) illegal for \(T \Rightarrow P\) for every certificates, \(V\) must reject in at least one node.
PLS : Spanning Tree

- $T = \{(v, x(v)), v \in V\}$, $x(v)$ is the parent of v.
- $P(v) = (Root, dis)$
- $V(v) : (\forall u \in N(v) : (Root_u = Root_v)) \land (dis_v = dis_{p_v} + 1)$
Acyclicity

Theorem [Korman, Kutten, Peleg 2007]: Any PL for acyclicity requires certificate on $\Omega(\log_2 n)$ bits in n-node graph.
Proof

- Certificate k bits with $k \leq \frac{1}{2} \log_2 n - 1$
- $m = n - 1$ edges
- edges $\leftrightarrow (a, b)$: $2k$ bits
- different pair $2^{2k} = 2^{\log_2 n - 2} = \frac{1}{4} 2^{\log_2 n} = \frac{n}{4}$
- $\exists e \neq e' \mid e \in E, e' \in E$ that correspond to the same pair
Silent Self-Stabilization vs. Proof-Labeling Scheme

Blin, Fraigniaud, Patt-Shamir 2014

<table>
<thead>
<tr>
<th></th>
<th>Size of registers</th>
<th>Number of rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower bound</td>
<td>$\Omega(\ell)$</td>
<td></td>
</tr>
<tr>
<td>Algorithm 1</td>
<td>$O(\ell + \log n)$</td>
<td>$O(n2^{n\ell})$</td>
</tr>
<tr>
<td>Algorithm 2</td>
<td>$O(n^2 + nk)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

- n-node networks, k-bit outputs, PLS of size at most ℓ bits

Question: Is there, for every task, a silent self-stabilizing algorithm for solving that task, that is simultaneously space-efficient and time-efficient?