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Résumé

Cette thèse s’intéresse aux cartes combinatoires, qui sont définies comme des
plongements de graphes sur des surfaces, ou de manière équivalente comme
des recollements de polygones. Le genre g de la carte est défini comme le
nombre d’anses que possède la surface sur laquelle elle est plongée.

En plus d’être des objets combinatoires, les cartes peuvent être représen-
tées comme des factorisations de permutations, ce qui en fait également des
objets algébriques, qu’on peut notamment étudier grâce à la théorie des repré-
sentations du groupe symétrique. En particulier, ces propriétés algébriques
des cartes font que leur série génératrice satisfait la hiérarchie KP (et sa gé-
néralisation, la hiérarchie 2-Toda). La hiérarchie KP est un ensemble infini
d’équations aux dérivées partielles en une infinité de variables. Les équations
aux dérivées partielles de la hiérarchie KP se traduisent ensuite en formules
de récurrence qui permettent d’énumérer les cartes en tout genre.

D’autre part, il est intéressant d’étudier les propriétés géométriques des
cartes, et en particulier des très grandes cartes aléatoires. De nombreux tra-
vaux ont permis d’étudier les propriétés géométriques des cartes planaires,
c’est à dire de genre 0. Dans cette thèse, on étudie les cartes de grand genre,
c’est à dire dont le genre tend vers l’infini en même temps que la taille de la
carte. Ce qui nous intéressera particulièrement est la notion de limite locale,
qui décrit la loi du voisinage d’un point particulier (la racine) des grandes
cartes aléatoires uniformes.

La première partie de cette thèse (Chapitres 1 à 3) est une introduction
à toutes les notions nécessaires : les cartes, bien entendu, mais également la
hiérarchie KP et les limites locales. Dans un deuxième temps (Chapitres 4
et 5), on cherchera à approfondir la relation entre cartes et hiérarchie KP, soit
en expliquant des formules existantes par des constructions combinatoires,
soit en découvrant de nouvelles formules. La troisième partie (Chapitres 6
et 7) se concentre sur l’étude des limites locales des cartes de grand genre,
en s’aidant notamment de résultats obtenus grâce à la hiérarchie KP. Enfin
le manuscrit se conclut par quelques problèmes ouverts (Chapitre 8).

Plus précisément, on trouvera dans le chapitre 1 des définitions détaillées
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des cartes sous tous les angles, ainsi qu’un aperçu historique de l’étude des
cartes. Le chapitre se termine par un exposé des résultats obtenus ainsi qu’un
plan du manuscrit.

Le chapitre 2 est une boîte à outils permettant de construire les hiérar-
chies KP et 2-Toda de manière algébrique, à partir d’objets simples comme
les partitions d’entiers et les fonctions symétriques, grâce à des résultats de
théorie des représentations. On y trouve la preuve que la série génératrice
des cartes est une solution de ces hiérarchies.

Le chapitre 3 est également une boîte à outils : il approfondit la notion de
limite locale présentée dans l’introduction. On y présente des cartes infinies
du plan qui ont des propriétés hyperboliques et qui sont les limites locales
des cartes de grand genre, ainsi qu’une méthode d’exploration pas-à-pas des
cartes infinies : le processus de peeling.

Dans le chapitre 4, on donne une explication bijective de certaines for-
mules issues de la hiérarchie KP, comme la formule de Goulden–Jackson,
dans le cas des cartes planaires. Ces formules avaient été obtenues dans un
premier temps par des méthodes algébriques, on en donne ici une preuve
bijective, c’est à dire une correspondance explicite et combinatoire entre les
cartes elles-mêmes. Cela nous permet d’obtenir des formules plus précises, et
on termine par un premier petit pas vers une bijection unifiée pour les cartes
en tout genre.

Dans le chapitre 5, on découvre de nouvelles formules pour les cartes,
grâce à la hiérarchie 2-Toda. Ces formules, valables en tout genre, concernent
un vaste ensemble de cartes, notamment les cartes biparties à degrés prescrits.

Dans le chapitre 6, on résout la conjecture de Benjamini–Curien, qui pos-
tule que les triangulations uniformes de grand genre convergent localement
vers des triangulation infinies du plan. La preuve utilise à la fois des argu-
ments combinatoires et des arguments probabilistes, en particulier elle s’ap-
puie sur la formule de récurrence de Goulden–Jackson. La convergence locale
a pour corollaire un résultat d’énumération asymptotique des triangulations
de grand genre.

Dans le chapitre 7, on étend les résultats du chapitre précédent aux cartes
biparties à degré prescrits.qui forment une famille de cartes à une infinité de
paramètres. Nous obtenons ainsi un résultat d’universalité : de nombreux
modèles de cartes présentent un comportement analogue. La preuve est simi-
laire à celle du chapitre 6, quoique plus complexe puisque le modèle étudié est
beaucoup plus général. On utilise en particulier les résultats du chapitre 5.

Pour conclure, le chapitre 8 présente quelques problèmes ouverts moti-
vés par le travail de cette thèse. On y trouvera des problèmes bijectifs, des
questions plus générales sur la hiérarchie KP et les cartes, et des questions
variées sur la géométrie des cartes de grand genre.



Short summary

This thesis focuses on combinatorial maps, which are defined as embeddings
of graphs on surfaces, or equivalently as gluing of polygons. The genus g
of the map is defined as the number of handles of the surface on which it
is embedded. In addition to being combinatorial objects, the maps can be
represented as factorizations of permutations, which also makes them alge-
braic objects, which one can study in particular thanks to the representation
theory of the symmetric group. In particular, these algebraic properties of
maps mean that their generating series satisfies the KP hierarchy (and its
generalization, the 2-Toda hierarchy). The KP hierarchy is an infinite set
of partial differential equations in an infinity of variables. The partial dif-
ferential equations of the KP hierarchy are then translated into recurrence
formulas which make it possible to enumerate maps of any genus. On the
other hand, it is interesting to study the geometric properties of maps, and
in particular very large random maps. Many works have focused on the ge-
ometrical properties of planar maps, i.e. of genus 0. In this thesis, we study
maps of large genus, that is to say whose genus tends towards infinity at
the same time as the size of the map. What will particularly interest us is
the notion of local limit, which describes the law of the neighborhood of a
particular point (the root) of large uniform random maps. The first part of
this thesis (Chapters 1 to 3) is an introduction to all the necessary concepts:
maps, of course, but also the KP hierarchy and local limits. In a second part
(Chapters 4 and 5), we will seek to deepen the relationship between maps
and the KP hierarchy, either by explaining existing formulas by combinato-
rial constructions, or by discovering new formulas. The third part (Chapters
6 and 7) focuses on the study of the local limits of large maps, using in par-
ticular the results obtained from the KP hierarchy. Finally the manuscript
ends with some open problems (Chapter 8).
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Chapitre 1

Introduction

La géométrie — que l’on peut définir très vaguement comme « l’étude des
formes et des longueurs » — est un domaine qui occupe une place centrale
dans l’histoire des sciences, que ce soit en mathématiques, en physique, ou
en informatique. Motivée au départ par des considérations d’ordre pratique
(géométrie du plan et des volumes), elle s’est progressivement diversifiée et
a étendu son influence à de très nombreux domaines.

Au milieu de ces vastes territoires, cette thèse a pour ambition d’être
une minuscule contribution à la géométrie, plus précisément à la géométrie
discrète. Elle s’inscrit en premier lieu dans le domaine de la combinatoire,
mais elle emprunte aussi aux probabilités, à l’algèbre et même à la physique
mathématique. Notre attention se portera plus spécifiquement (et quasi ex-
clusivement) sur les structures discrètes que sont les cartes combinatoires.
Il s’agit d’objets formidables, aux multiples définitions (dessin de graphes,
patchwork de polygones, factorisation de permutations), mais surtout que
l’on rencontre dans des endroits très variés. On les retrouve évidemment
dans les domaines mentionnés ci-dessus, ceux que l’on abordera dans cette
thèse, mais leur champ d’action est beaucoup plus vaste et on fait usage des
cartes jusqu’en géométrie algébrique et en informatique graphique.

On va maintenant présenter les cartes d’un peu plus près, et s’y intéresser
en particulier du point de vue de la combinatoire bijective, algébrique et
probabiliste.
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CHAPITRE 1. INTRODUCTION 11

Figure 1.1 – Une carte de genre 1.

1.1 Les cartes combinatoires

1.1.1 Comme graphes plongés
Une carte est le plongement d’un graphe sur une surface (voir Figure 1.1).
Bien évidemment cette définition est vague — voire carrément fausse — à
moins d’adopter des définitions assez précises des mots graphe, plongement,
et surface.

Un graphe est la donnée d’un ensemble de sommets, et d’un ensemble
d’arêtes, chaque arête reliant deux sommets. On s’autorise ici à ce qu’une
arête relie un sommet à lui-même (on parlera de boucle), ou bien que plusieurs
arêtes relient la même paire de sommets (on parlera parfois d’arêtes multiples)
— pour désigner ce genre de graphes on parle parfois de multigraphe. Par la
suite, sauf mention contraire, nous nous restreindrons aux graphes connexes
(c’est à dire qu’entre toute paire de points il existe un chemin d’arêtes dans
le graphe) ayant un nombre fini d’arêtes.

Une surface sera ici une surface1 compacte connexe et orientée2. D’après
le théorème de classification des surfaces (voir par exemple [MT01]), à ho-
méomorphisme près, chaque surface est décrite par un unique entier g > 0,
qu’on appellera son genre. La surface de genre 0 est la sphère, la surface de
genre 1 est le tore, et la surface de genre g est la somme connexe (en quelque
sorte, le recollement) de g tores.

Un plongement est le dessin sans croisement d’un graphe sur une surface,
et sera toujours compris à homéomorphisme préservant l’orientation près. De
plus, on impose la condition que pour que le plongement d’un graphe G sur
une surface S soit valide, il faut que S \ G soit homéomorphe à une union
disjointe de disques ouverts — on parle de plongement cellulaire.

Les arêtes et sommets de G constituent les arêtes et sommets de la carte,
et les faces de la carte sont les composantes connexes de S\G. Un coin est un

1c’est à dire une variété différentielle de dimension 2.
2il existe des travaux sur les « cartes non orientables », mais on n’en parlera pas dans

cette thèse.



CHAPITRE 1. INTRODUCTION 12

Figure 1.2 – Passer d’une arête orientée à un coin marqué, et vice-versa.

secteur angulaire entre deux demi-arêtes consécutives autour d’un sommet.
Pour des raisons de symétrie, on considèrera toujours des cartes enracinées,
c’est à dire munies d’une arête distinguée et orientée qu’on appellera la racine.
Le fait d’enraciner une carte brise toutes les symétries possibles : pour chaque
partie de la carte (sommet, arête, face, coin), on peut donner un « itinéraire »
vers cet endroit depuis la racine. Le sommet au départ de la racine est appelé
sommet racine, et la face à gauche de la racine est appelée face racine. De
manière équivalente, on peut décider d’enraciner une carte non pas sur une
arête mais sur un coin (il existe une bijection entre les arêtes orientées et
les coins de la carte, voir Figure 1.2). Dans ce cas il sera souvent commode
de considérer que la racine sépare le coin d’origine en deux nouveaux coins
distincts, l’un à gauche de la racine, l’autre à sa droite.

Le genre de la carte est le genre de S. Une carte de genre 0 est aussi
appelée carte planaire. En effet, on peut décider de passer de la sphère au
plan par projection stéréographique à partir d’un point quelconque de la face
racine, qu’on appelle alors également face externe ou face infinie.

Le genre g, le nombre d’arêtes n, de sommets v et de faces f sont reliés
par la formule d’Euler :

v − n+ f = 2− 2g.

Le degré d’un sommet (resp. d’une face) est égal aux nombres de coins
qui lui sont incidents.

Le dual d’une carte est obtenu par l’opération suivante (voir Figure 1.3) :
on place un sommet sur chaque face, et pour chaque arête e adjacente à deux
faces f1 et f2, on trace une arête e∗ entre les sommets f ∗1 et f ∗2 correspondants
à f1 et f2. La racine de la carte duale est l’arête qui croise la racine de la
carte de départ (on parle aussi de carte primale), orientée de telle sorte que
le sommet racine de la carte duale soit sur la face racine de la carte primale.
L’opération de dualité est une involution (à retournement de la racine près).

1.1.2 Comme recollements de polygones
De manière totalement équivalente, on peut voir les cartes comme des recolle-
ments de polygones. On se référera à [MT01] pour une exposition détaillée de
l’équivalence entre les présentations combinatoire et topologique des cartes.

Dans ce qui suit un polygone sera une surface à bord orientée, homéo-
morphe à un disque, ayant sur son bord un certain nombre de sommets,
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Figure 1.3 – Une carte (en noir, gras) et sa carte duale (en bleu, fin).

deux sommets consécutifs étant reliés par une arête (de manière équivalente,
le bord d’un polygone est l’union disjointe de sommets et d’arêtes). L’inté-
rieur du polygone est appelé une face.

Remarque 1.1.1. Les polygones définis ici sont des objets abstraits, ils n’ont
qu’une face, il n’y a rien de l’autre côté.

On s’autorise à recoller deux polygones selon leurs arêtes en préservant
l’orientation (voir Figure 1.4). Les arêtes respectives sont alors fusionnées, et
il en va de même pour les sommets aux extrémités de l’arête.

On peut alors donner une définition alternative (et équivalente) d’une
carte combinatoire comme la donnée d’un ensemble de polygones qu’on a re-
collés pour former une surface (connexe). Dans cette construction, il est na-
turel de considérer également des cartes sur des surfaces non-nécessairement
connexes, c’est-à-dire composées de plusieurs composantes connexes.

1.1.3 Cartes étiquetées et factorisations de permuta-
tions

On va maintenant définir des objets proches, les cartes étiquetées, avant de
les relier aux cartes enracinées. Il est plus pratique cette fois de les définir
sans la contrainte de connexité.

Une carte étiquetée (voir Figure 1.5) est une carte (non enracinée, non-
nécessairement connexe) telle que chaque coin porte une étiquette distincte.
Plus précisément, soit M une carte à n arêtes, elle possède 2n coins qui
portent chacun une étiquette distincte entre 1 et 2n. On peut définir trois
permutations σ, φ et α de la manière suivante :

• chaque cycle de σ correspond à un sommet, il encode l’ordre des coins
autour de ce sommet dans le sens horaire,
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Figure 1.4 – Une carte comme recollement de polygones.

1

3

6

9

7

2

5
4

10

8

σ = (1, 3, 6)(2, 9, 7)(4, 8, 5)(10)

φ = (1, 8, 7)(2, 4)(3, 9, 5, 6, 10)

α = (1, 9)(2, 5)(3, 10)(4, 7)(6, 8)

Figure 1.5 – Une carte étiquetée et ses permutations associées, représentées
sous forme de produit de cycles.

• chaque cycle de φ correspond à une face, il encode l’ordre des coins
autour de cette face dans le sens horaire,

• α est une involution sans point fixe, chaque 2-cycle correspond à une
arête. Plus précisément, l’arête correspondant au 2-cycle (i, j) est « ad-
jacente à gauche » aux coins étiquetés i et j (voir Figure 1.6 gauche).

On a alors (voir Figure 1.6 droite) :

φσ = α.

i

j

i

jk

l
σ

φ

α

Figure 1.6 – Gauche : le 2-cycle associé à cette arête est (i, j). Droite : les
permutations σ, φ et α et leur action.
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On rappelle que le type cyclique d’une permutation est le multiensemble
des tailles de ses cycles.

Proposition 1. Il y a une bijection entre les cartes étiquetées à n arêtes
et les triplets de permutations (σ, φ, α) de S2n tels que α est une involution
sans points fixes et φσ = α.

Le type cyclique de σ (resp. φ) correspond dans cette bijection à la distri-
bution des degrés des sommets (resp. faces) de la carte associée.

La carte étiquetée est connexe ssi 〈σ, φ〉, le groupe engendré par σ et φ,
agit transitivement sur {1, 2, . . . , 2n}, c’est à dire que pour toute paire (i, j),
il existe γ ∈ 〈σ, φ〉 telle que γ(i) = j.

Si on se restreint aux objets connexes, il existe une correspondance claire
entre cartes enracinées et cartes étiquetées.

Lemme 1. SoitMn l’ensemble des cartes enracinées (connexes) à n arêtes,
et M∗

n l’ensemble des cartes étiquetées connexes à n arêtes. Il existe une
opération « (2n− 1)!-to-1 » deM∗

n versMn.

Démonstration. Soit une carte deM∗
n. On transforme le coin numéro 2n en

coin racine, et on efface les autres étiquettes. Comme l’enracinement brise
toutes les symétries possibles, la donnée des autres étiquettes est simplement
une permutation de S2n−1.

L’introduction des cartes étiquetées permet d’étudier des objets en appa-
rence purement combinatoires et géométriques d’un point de vue algébrique,
et plus précisément grâce à la théorie des représentations qui nous fournit
des outils très puissants (voir Section 1.2.3).

1.1.4 Modèles particuliers de cartes
Maintenant que l’on a défini (et redéfini) les cartes en général, on peut in-
troduire ici des modèles particuliers de cartes qui nous intéresseront particu-
lièrement dans cette thèse. En particulier, on définira les constellations qui
sont le modèle de cartes le plus général et que nous utiliserons dans la suite.

Une triangulation est une carte dont toutes les faces ont degré 3. De
même, une quadrangulation est une carte dont toutes les faces ont degré 4.

Une carte à bord(s) est une carte dont certaines faces sont distinguées,
qu’on appelle des bords. Un bord est dit simple s’il est incident à autant
de sommets que de coins. Selon les contextes, une carte à bord sera soit
enracinée sur une arête quelconque, soit multi-enracinée, avec une racine sur
chaque bord.



CHAPITRE 1. INTRODUCTION 16

Figure 1.7 – Une triangulation et une quadrangulation.

Une carte bipartie est une carte avec la condition supplémentaire que
chaque sommet est soit blanc soit noir, et que chaque arête relie un sommet
blanc à un sommet noir. Par convention, le sommet racine est blanc.

Une r-constellation (pour r > 2, voir Figure 1.8 gauche) est une carte
vérifiant les contraintes suivantes :

• il existe deux types de sommets : des sommets étoiles, et des sommets
coloriés,

• chaque sommet colorié porte une couleur qui est un entier de [1, r],

• les sommets étoiles ont tous degré r, et sont adjacents à un sommet de
couleur 1, puis un sommet de couleur 2, . . . , puis un sommet de couleur
r (dans cet ordre cyclique antihoraire),

• une constellation est dite enracinée si elle possède un sommet étoile
distingué.

Les 2-constellations sont exactement les cartes biparties : partant d’une
carte bipartie, il suffit de rajouter un sommet étoile au milieu de chaque arête
pour obtenir une 2-constellation.

Une constellation étiquetée à n sommets étoiles est une constellation (non
enracinée, non-nécessairement connexe) dont chaque sommet étoile porte une
étiquette distincte dans [1, n].

Proposition 2. Il existe une bijection entre les r-constellations étiquetées C
et les (r + 1)-uplets de permutations (σ1, σ2, . . . , σr, φ) vérifiant

σ1 · σ2 · . . . · σr = φ.

Pour tout i, la permutation σi encode les sommets de couleur i, et la distri-
bution des degrés des sommets de couleur i de C correspond au type cyclique
de σi. La permutation φ encode les faces. Toutes les faces de C ont un de-
gré multiple de r, le pseudo-degré d’une face est égal au nombre de coins
incidents à cette face qui sont incidents à un sommet de couleur 1. Alors
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31

*

*
1

3

σ1 = (1, 2, 3, 4)
σ2 = (1, 4)(2)(3)
σ3 = (1, 3, 2, 4)
φ = (1, 4)(2)(3)

2

1

2

*
*

*

3 *

1

σ1

σ2

σ3

φ
*

2

2

2

*
4

Figure 1.8 – Gauche : une 3-constellation et ses permutations associées.
Droite : la permutation φ qui décrit les faces.

la distribution des pseudo-degrés des faces de C correspond au type cyclique
de φ (voir Figure 1.8).

De plus, il existe une correspondance (n − 1)!-to-1 entre les constella-
tions étiquetées connexes à n sommets étoiles et les constellations enracinées
(connexes) à n sommets étoiles.

Il est classique de voir les cartes générales comme des cas particuliers de
cartes biparties (et donc de 2-constellations) où tous les sommets blancs ont
degré 2, on donne ici une version un peu différente de cette correspondance :

Proposition 3. Les cartes à n arêtes sont en bijection avec les quadrangu-
lations biparties à n faces.

Démonstration. Cela se voit facilement sur les cartes étiquetées : partant de
la présentation en factorisations de la Proposition 2, il suffit de prendre r = 2
et contraindre φ à être une permutation sans points fixes, ce qui, sur la carte
bipartie, revient à n’avoir que des faces de pseudo-degré 2, donc de degré 4.

Cette bijection peut également se décrire directement sur les cartes (voir
Figure 1.9 pour un exemple). Partant d’une carte M , dans chaque face f de
M , dessiner un sommet blanc f ∗. Pour chaque coin deM , relier par une arête
le sommet (noir) auquel il est incident au sommet blanc correspondant à la
face à laquelle il appartient. Oublier les arêtes de la carte de départ. Cette
construction est due à Tutte [Tut63].

Dans le cas planaire, les quadrangulations et les quadrangulations bipar-
ties sont en bijection. Dans un sens, on peut oublier les couleurs des sommets,
dans l’autre, tout cycle simple borde un ensemble de faces3 et est donc de
longueur paire, donc une quadrangulation planaire est forcément bipartie.

3cela est dû au fait que sur la sphère, tous les cycles sont contractibles.
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Figure 1.9 – La bijection entre cartes (en noir, fin) et quadrangulations
biparties (bleu, gras).

1.1.5 Cartes infinies du plan
Comme dit précédemment, la plupart des cartes étudiées dans cette thèse
sont finies, à une exception (notable) près : les cartes infinies du plan. Une
carte infinie du plan est le plongement (sans point d’accumulation) d’un
graphe infini dans le plan, de telle sorte que chaque sommet et chaque face
aient degré fini4 (par exemple : la grille Z2). Ces cartes sont ici encore enra-
cinées. Ces objets vont nous permettre par la suite d’étudier des limites de
cartes.

La boule de rayon r d’une carte m (finie ou infinie du plan) est la carte à
bord formée des faces de m adjacentes à un sommet à distance au plus r− 1
de la racine, ainsi que toutes leurs arêtes et tous leurs sommets. On notera
cette boule Br(m). Par convention, B0(m) contient uniquement le sommet
racine.

Remarque 1.1.2. Cette définition est un peu différente de celle des boules
sur les graphes, mais elle est plus pratique pour l’étude des limites locales
(voir Section 1.2.4).

La distance locale (voir Figure 1.10) entre deux cartes m et m′ est :

dloc(m,m′) = (1 + max{r > 0|Br(m) = Br(m′)})−1
.

On peut vérifier qu’il s’agit bien d’une distance sur l’espace des cartes finies
(et son complété, qui contient notamment les cartes infinies du plan). Cela
nous permet de comparer les cartes entre elles, et même de comparer des
cartes finies aux cartes infinies du plan : une très grande carte finie peut en
ce sens « ressembler » à une carte infinie. C’est ce qui va nous permettre de
voir les cartes infinies du plan comme des limites de cartes finies (par exemple,
la grille [−N,N ]2 enracinée en (0, 0) tend vers Z2 pour cette topologie).

4si on veut autoriser les sommets à avoir degré infini, il est possible de définir une carte
infinie du plan comme recollement de polygones.
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t t′

Figure 1.10 – Dans les deux triangulations, les boules de rayon 1 coincident
mais pas celles de rayon 2, on a donc dloc(t, t′) = 1/2.

+ À partir de maintenant, toutes les cartes que l’on considérera se-
ront connexes et enracinées, sauf mention contraire (en particulier
lorsqu’on parlera de cartes étiquetées).

1.2 Un bref historique de l’étude des cartes

1.2.1 L’énumération des cartes
Un des axes principaux de la combinatoire est l’énumération, et les cartes,
en tant que structures combinatoires, se prêtent bien à l’exercice. On va
donc commencer notre tour d’horizon des cartes par de l’énumération, en se
concentrant surtout sur l’énumération par séries génératrices, les méthodes
bijective et algébrique auront leur section dédiée. Avant de commencer, il nous
faut mentionner que bon nombre des résulats de cette section s’appuient sur
la méthode symbolique et sur de l’analyse de singularités, on trouvera une
bonne introduction à ces techniques dans [FS09].

On peut par exemple se poser la question suivante : « Combien y-a-t-il de
cartes planaires à n arêtes ? » . C’est Tutte qui y a répondu en 1963 [Tut63] :
il y en a exactement

2 · 3n(2n)!
n!(n+ 2)! . (1.2.1)

Il a obtenu ce résultat alors qu’il cherchait à démontrer le théorème des 4
couleurs. Sa méthode repose sur une idée assez simple : prenons une carte,
supprimons son arête racine et regardons ce qui se passe.

Plus précisément, cela nous donne une équation sur la série génératrice
des cartes. Soit an le nombre de cartes planaires à n arêtes, on définit la
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série génératrice (formelle) des cartes planaires A(x) = ∑
n > 0 anx

n. On peut
également définir une série à deux variables : soit an,p le nombre de cartes
planaires à n arêtes telles que la face racine est de degré p, et alors A(x, y) =∑
n,p > 0 an,px

nyp. On peut retrouver la série univariée à partir de la série
bivariée puisque A(x) = A(x, 1).

En analysant l’effet de la suppression de l’arête racine, Tutte obtient
l’équation suivante :

A(x, y) = 1 + xy2A(x, y)2 + xy
A(x, y)− A(x, 1)

y − 1 ,

qu’il résout astucieusement pour trouver an = 2·3n(2n)!
n!(n+2)! . L’utilisation de la

série bivariée est ici cruciale pour pour pouvoir écrire une équation, même
si le but est de déterminer la série univariée A(x) : la variable y est donc
appelée variable catalytique.

La force de la méthode de Tutte — c’est à dire suppression de la racine
et série à une variable catalytique — est qu’elle est universelle : elle peut
être appliquée à de nombreux modèles de cartes : par exemple les triangu-
lations [Tut62], et de nombreux autres modèles à degrés contraints [Gao93],
mais aussi les cartes non séparables [Bro63]. On peut également généraliser
l’équation de Tutte aux cartes de genre > 0 [BC86], ou aux constellations
(voir [Fan16], Chapitre 4).

Pour le genre supérieur, Bender et Canfield [BC86] ont pu démontrer des
résultats asymptotiques grâce à des méthodes d’analyse de singularités : si
ag,n compte le nombre de cartes de genre g à n arêtes, alors

ag,n ∼ tgn
5(g−1)/212n

quand g est fixé et n tend vers l’infini, où tg est une constante5 (la même
question se pose quand g et n tendent en même temps vers l’infini, on y
répond dans les chapitres 6 et 7, voir aussi Section 1.3.3).

Remarque 1.2.1. Il n’existe pas de « formule exacte » pour ag,n, c’est-à-
dire de formule qui soit close et simple6 comme (1.2.1). Dans cette thèse, on
se concentrera sur l’énumération exacte, asymptotique, ou par formules de
récurrence. Les questions de la régularité de la série génératrice à genre fixé
(pour les cartes, voir par exemple [BC91]) ne seront pas traitées.

5les coefficients tg peuvent se calculer grâce à une récurrence quadratique [BGR08,
LZ04].

6la définition varie selon les personnes — quoiqu’il en soit, il n’en existe pas pour le
moment selon la définition de la plupart des gens.
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Plus récemment, il a été découvert que les cartes et la méthode de Tutte
s’inscrivent dans un contexte plus large, celui de la récurrence topologique.
La récurrence topologique [Eyn16], appliquée aux cartes, permet de calcu-
ler les séries génératrices des cartes à genre et nombre de bords fixé. Plus
précisément, soit ωg,n la série génératrice des cartes de genre g à n bords,
alors, après changement de variable, les ωg,n satisfont une récurrence qua-
dratique qui les détermine tous si on connait ω0,1 et ω0,2 : on appelle cette
donnée initiale la courbe spectrale. La force de la récurrence topologique est
qu’elle est universelle (ou presque) : pour un grand nombre de modèles topo-
logiques (comme les volumes de Weil–Petersson ou les nombres d’intersection
de Witten–Konstevich, voir [Eyn14]), les séries génératrices à genre et nombre
de bords fixés vérifient la même formule, seule la courbe spectrale change.

L’énumération des cartes par méthodes analytiques sur les séries géné-
ratrices est encore aujourd’hui un outil très prolifique. Les problèmes à une
variable catalytiques sont désormais très bien compris grâce aux travaux de
Bousquet-Mélou et Jehanne [BMJ06]. Des travaux récents s’intéressent au
cas de deux variables catalytiques, par exemple [BBM17, AMS18], quand
d’autres couplent bijections et méthode symbolique [BMEP20].

1.2.2 L’approche bijective
Les cartes, en tant que structures combinatoires, se prêtent particulièrement
bien à une étude bijective : il s’agit de trouver des correspondances explicites
entre plusieurs modèles de cartes, ou bien entre des cartes et des objets plus
simples. Il est souvent plus difficile de faire de l’énumération bijective, en
comparaison avec l’aspect systématique de la méthode symbolique, cepen-
dant l’intérêt de l’étude bijective est de fournir des informations fines sur
la structure des objets étudiés, ce qui peut avoir des applications assez pro-
fondes, notamment dans l’étude des objets aléatoires. De plus, bien souvent
l’approche bijective permet d’obtenir des formules plus précises qu’aupara-
vant (on pourra le constater par exemple dans le chapitre 4). Enfin — c’est
une opinion très personnelle, mais je sais qu’elle est partagée par d’autres —
une preuve bijective d’une formule déjà établie répond de manière satisfai-
sante à la question vague suivante : « pourquoi cette formule est-elle vraie ? »
.

Dans le monde des cartes, la bijection la plus utilisée à ce jour est la bijec-
tion de Cori–Vauquelin–Schaeffer [CV81, Sch98], qui met en correspondance
les cartes planaires avec un modèle d’arbres étiquetés (voir Figure 1.11). Plus
précisément, soit Mn l’ensemble des cartes planaires à n arêtes, soit Q•n l’en-
semble des quadrangulations planaires à n faces avec un sommet distingué,
et soit Tn l’ensemble des arbres planaires à n arêtes dont les arêtes sont éti-
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Figure 1.11 – La bijection de Cori–Vauquelin–Schaeffer, sur un exemple.
Partant d’une quadrangulation planaire, on étiquette chaque sommet par sa
distance au sommet marqué. On trace ensuite des arêtes dans chaque face
suivant les règles dans l’encadré. On oublie alors les arêtes de la quadran-
gulation de départ. Le résultat est un arbre étiqueté sur ses sommets, qu’on
peut réétiqueter sur ses arêtes par l’incrément de l’étiquette dans la direction
de la racine. Pour chaque arbre, il y a deux manières de revenir en arrière.

quetés par 0, 1, ou −1. La bijection de Cori–Vauquelin–Schaeffer fournit une
correspondance entre Q•n et 2×Tn, et cela permet entre autres de redémontrer
la formule de Tutte, puisqu’une quadrangulation planaire à n faces possède
n + 2 sommets, et que la proposition 3 fournit une bijection entre cartes
planaires et quadrangulations planaires. Cette bijection a été généralisée et
adaptée à d’autres modèles de cartes [BDFG04], et adaptée au genre supé-
rieur [CMS09], ainsi qu’aux cartes avec plusieurs sommets marqués [Mie09].

Une autre famille de bijections, entre des cartes et des arbres bourgeon-
nants a été initiée par Schaeffer [Sch98], et là encore, généralisée [AP15,
Lep19]. D’autre part, les cartes unicellulaires7 de genre supérieur sont en bi-
jection avec des arbres décorés par des permutations [CFF13]. Enfin, il existe
une bijection pour les cartes munies d’un arbre couvrant [Ber07], qui a été
généralisée en genre supérieur [BC11] ainsi qu’aux cartes à degrés et maille
prescrits [BF12].

Bijections arboricoles mises à part, des bijections ont été découvertes entre
7c-à-d n’ayant qu’une seule face.
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des cartes et d’autres objets combinatoires classiques8 comme les intervalles
de Tamari [BB09] ou permutations de Baxter [BBMF11].

Enfin, pour finir ce petit tour d’horizon des bijections sur les cartes, il
convient de mentionner les bijections entre cartes elles-mêmes : que ce soit
entre différents modèles de cartes [ArB13] ou pour démontrer des formules
de récurrence [Bet14].

Pour les combinatoristes, ces liens bijectifs placent les cartes au centre
d’une combinatoire riche, ce qui en fait des objets fascinants et pertinents.
Du point de vue probabiliste, les bijections sont à la base de nombreuses
approches des cartes aléatoires, comme on le verra dans la section 1.2.4.

1.2.3 L’approche par caractères et la hiérarchie KP
Comme mentionné précédemment, les cartes ne sont pas seulement des ob-
jets géométriques : elles peuvent être interprétées comme des factorisations
de permutations, et il s’avère qu’en théorie des représentations il existe jus-
tement une formule « universelle » qui permet de compter les factorisations
dans un groupe en fonction de ses caractères — et ce de manière assez fine.
On donnera un exposé « autocontenu » de cette formule (appelée suivant
les auteurs « formule de Burnside » ou « formule de Frobenius ») dans le
chapitre 2.

Dans certains cas, cette formule se simplifie suffisamment pour donner
des formules explicites : le premier exemple connu est une formule pour cer-
tains nombres de Hurwitz [Jac88], qui comptent des cartes étiquetées à une
face, ou, de manière équivalente, certains revêtements ramifiés de la sphère à
homéomorphisme près. On peut également citer la récurrence des quadran-
gulations [JV90], généralisée par la suite aux constellations [Fan14] ainsi que
la formule de Goupil–Schaeffer comptant les cartes biparties à une face à
degrés prescrits [GS98] (pour les constellations, voir [PS02]).

L’approche par caractères ne donne pas toujours de résultats explicites
directement, mais elle permet de montrer un résultat très général : la sé-
rie génératrice des cartes vérifie les hiérarchies KP et 2-Toda. Ce résultat a
été démontré notamment par Goulden et Jackson en 2008 [GJ08]. Il était
« connu » en physique depuis les années 1990 par diverses méthodes au dé-
part non rigoureuses (voir [LZ04] et les références qui y sont donnéees). Les
méthodes d’Okounkov sur les objets proches que sont les nombres de Hurwitz
[Oko00] conduisent également à ce résultat.

Il s’agit de familles d’équations qui ont été étudiées en premier lieu en
physique mathématique. A l’origine, l’équation de Kadomtsev–Petviashvili

8on ne prétend pas ici en faire une liste exhaustive.
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Figure 1.12 – Le phare des Baleines à l’Ile de Ré. c©Michel Griffon

[KP70] est une équation aux dérivées partielles décrivant des phénomènes
non linéaires de mouvement des vagues, comme par exemple l’apparition de
vagues « orthogonales » que l’on peut voir sur la figure 1.12.

Afin d’étudier les symétries de cette équation, on peut construire une fa-
mille infinie d’équations en une infinité de variables (p1, p2, . . .) : la hiérarchie
KP. La première équation de la hiérarchie KP (qui correspond à l’équation
originelle) s’écrit

F3,1 = F2,2 + 1
2F

2
1,1 + 1

12F1,1,1,1,

où les indices correspondent à des dérivées partielles, par exemple on a F3,1 =
∂2

∂p1∂p3
F . Cette hiérarchie admet une généralisation incluant une deuxième

suite infinie de variables : la hiérarchie 2-Toda.
Ce sont des hiérarchies intégrables, ce qui signifie qu’on peut décrire ex-

plicitement l’espace des solutions. Elles possèdent des propriétés algébriques
fortes et s’appliquent à un grand nombre de modèles, dont les cartes. L’avan-
tage de ces hiérarchies est qu’elles impliquent des équations aux dérivées
partielles sur les séries génératrices, ce qui permet par la suite de dériver des
formules de récurrence sur les cartes [GJ08, CC15, KZ15]. On trouvera une
introduction à ce sujet dans le chapitre 2 et une application dans le cha-
pitre 5. On termine cette section en donnant la formule de Goulden–Jackson
[GJ08] qui est la première formule de récurrence « issue de KP ». Soit τ(n, g)
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le nombre de triangulations de genre g à 2n faces, alors

(n+ 1)τ(n, g) =4n(3n− 2)(3n− 4)τ(n− 2, g − 1) + 4(3n− 1)τ(n− 1, g)
+ 4

∑
i+j=n−2
i,j > 0

∑
g1+g2=g
g1,g2 > 0

(3i+ 2)(3j + 2)τ(i, g1)τ(j, g2) + 21n=g=1.

(1.2.2)

Cette formule permet de calculer les nombres τ(n, g) beaucoup plus efficace-
ment que toute autre méthode connue.

1.2.4 L’étude asymptotique des cartes aléatoires
Comme les graphes, les cartes, en tant structures discrètes, se prêtent bien
à une étude probabiliste et asymptotique. La question fondamentale est « à
quoi ressemble une grande carte prise au hasard ? ». Le principe sera le sui-
vant : on se fixe un modèle de cartes, une distribution de probabilité sur ces
cartes, et on cherche à connaître le comportement asymptotique d’une cer-
taine observable ou bien une limite probabiliste (selon une topologie donnée)
quand la taille des cartes tend vers l’infini. La plupart des travaux sur les
cartes aléatoires (incluant ceux dont on va parler dans les chapitres suivants)
établissent des résultats en loi9. On rappelle qu’une suite (Xn)n > 0 à valeurs
dans un espace métrique X converge en loi vers une variable X si pour toute
fonction φ continue bornée à valeurs réelles, on a :

E(φ(Xn)) −−−→
n→∞

E(φ(X)).

Cette définition dépend de la notion de continuité, et donc du choix d’une
topologie sur l’espace X . L’un des premiers résultats significatifs dans l’étude
asymptotique des cartes aléatoires est la mesure du diamètre par Chassaing
et Schaeffer : ils établissent qu’une carte à n arêtes tirée uniformément aura,
avec probabilité tendant vers 1, un diamètre d’ordre n1/4 quand n → ∞10.
Ce résultat fut le premier d’un ensemble de travaux de divers auteurs s’éten-
dant sur une décennie et aboutissant à la convergence d’échelle des cartes
planaires uniformes vers la carte brownienne. Il s’agit sûrement du résultat
le plus célèbre dans le domaine des cartes aléatoires, et il a été démontré en
2011 indépendamment par Le Gall et Miermont [LG13, Mie13]. Plus précisé-
ment, les cartes munies de la distance de graphe sont des espaces métriques
qu’on munit de la mesure uniforme sur leur sommets. D’après le résultat

9Il existe également des articles qui établissent des convergences plus fortes sur les
cartes, voir par exemple [AB14].

10l’article montre même la convergence du profil.
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de Chassaing–Schaeffer, si on « met à l’échelle » la distance de graphe en la
divisant par n1/4, une carte typique aura un diamètre borné, ce qui en fait
un espace métrique compact. En considérant les cartes uniformes de taille11

n pour tout n on obtient une suite d’espaces métriques aléatoires compacts.
Ces objets ont une limite (en loi) dite de Gromov–Hausdorff–(Prokoroff) qui
est la carte Brownienne. C’est un objet fractal (de dimension de Hausdorff 4
[LG07]) qui est néanmoins homéomorphe à la sphère de dimension 2 [LGP08].
Les travaux sur la convergence d’échelle des cartes sont une parfaite illustra-
tion de la notion d’universalité (qui nous intéressera dans le chapitre 7) : quel
que soit le modèle de cartes, on observe des phénomènes similaires (asymp-
totiquement). En l’occurrence, il a été démontré que la plupart des modèles
de cartes planaires « raisonnables » (triangulations, quadrangulations, . . . )
convergent vers la carte Brownienne12 [BJM14, ABA17, Mar18]. Des travaux
similaires à genre quelconque fixé existent également [Bet10, Bet12].

Il existe une autre façon d’étudier les limites de grandes cartes : la limite
locale, c’est à dire, la convergence par rapport à la distance locale dloc que
l’on a définie en Section 1.1.5. Schématiquement, il s’agit de décrire la loi
limite du voisinage de la racine. Cette notion est très proche de la limite de
Benjamini–Schramm pour les graphes, introduite dans [BS01].

La question est la même que pour la limite d’échelle : étant donné une
suite de cartes aléatoires uniformes, y a-t-il convergence (locale), et peut-on
décrire l’objet limite ? Le premier travail du genre date de 2002 : Angel et
Schramm [AS03] ont étudié les triangulations planaires aléatoires uniformes,
et ont démontré qu’il y avait convergence locale vers une triangulation infinie
du plan qu’ils ont nommé l’UIPT (voir Figure 1.13), pour Uniform Infinite
Planar Triangulation (qui sera définie dans le Chapitre 3). Par la suite, plu-
sieurs recherches ont été consacrées à l’UIPT en elle même, et de nombreuses
propriétés ont été étudiées, par exemple la croissance et la percolation [Ang03]
ou la récurrence de la marche aléatoire [GGN13].

Pour la convergence locale, il n’existe pas d’objet limite universel (comme
la carte brownienne l’est pour les limites d’échelle de cartes). En effet, une
suite de quadrangulations ne peut pas converger localement vers une trian-
gulation infinie. En revanche, on peut toujours parler d’universalité puisque,
pour de nombreux modèles, on a une convergence locale vers des cartes infi-
nies du plan qui ont de nombreuses propriétés en commun. Les quadrangula-
tions ont été étudiées (et sans suprise, l’objet limite s’appelle l’UIPQ), ainsi
que quelques autres modèles, et Budd a fourni une étude assez exhaustive
des limites de cartes biparties de Boltzmann [Bud15] (la convergence locale

11la taille est définie différemment selon les modèles : le nombre d’arêtes, de faces, . . .
12à une constante près.
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Figure 1.13 – Une vue de dessus de l’UIPT, par Igor Kortchemski.

a été démontrée dans [Ste18]). Par la suite, on a découvert que l’objet limite,
l’IBPM13, a des propriétés très similaires à l’UIPT [BC17], ce qui constitue
un résultat d’universalité satisfaisant car une vaste famille de cartes a été
couverte.

La question du genre supérieur se pose naturellement. Pour g > 0 fixé,
les triangulations uniformes de genre g et de taille n convergent vers l’UIPT
quand n → ∞ : on ne « voit » pas le genre localement (c’est un fait qui
était bien connu, bien qu’écrit nulle part). Quand le genre tend vers l’infini,
la question de la convergence a fait l’objet d’une conjecture de Benjamini et
Curien à laquelle nous répondons dans le chapitre 6 pour les triangulations,
et la question de l’universalité est couverte dans le chapitre 7.

1.2.5 D’autres approches des cartes
Jusqu’ici cette présentation des travaux antérieurs sur les cartes s’est limi-
tée aux domaines qui sont directement liés aux travaux présentés dans cette
thèse. Afin de rendre justice à la fois à la puissance des cartes ainsi qu’aux
autres domaines de recherche dans lesquelles elle interviennent, on va pré-
senter rapidement d’autres approches des cartes14.

Dans le domaine de l’informatique, les cartes sont très utilisées en géomé-
trie algorithmique : de nombreux problèmes algorithmiques sur les graphes
possèdent des solutions plus efficaces propres aux graphes plongeables sur

13pour Infinite Boltzmann Planar Map.
14sans avoir la prétention d’en faire un traitement exhaustif.
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une surface donnée (c’est à dire quand on borne le genre de la carte corres-
pondante), à l’inverse, étant donné un graphe on peut vouloir savoir quel est
le genre minimal de la surface sur laquelle on peut le plonger, ou bien « sim-
plifier sa topologie » (le modifier un peu pour le rendre planaire par exemple).
Les cartes interviennent également en informatique graphique (dans l’étude
des maillages 3D par exemple), ou bien en analyse topologique des données.
Le chapitre 3 de [CdV12] fait un tour d’horizon très complet de l’usage des
cartes dans ces domaines.

Les cartes sont également omniprésentes en physique mathématique. Un
exemple célèbre est la preuve de la conjecture de Witten [Wit91] par Kontse-
vich [Kon92]. La conjecture porte sur l’espace de modules des courbes com-
plexes, il s’agit de montrer qu’une certaine fonction de partition (c’est à dire
série génératrice) des intersections sur cet espace vérifie la hiérarchie KdV
(dont la hiérarchie KP est une généralisation !). La preuve utilise une corres-
pondance entre cet espace et l’espace de modules des graphes rubans (c’est
à dire des cartes). Cette preuve, ainsi que les techniques développées pour
y parvenir, ont ouvert la voie à un grand nombre de travaux en théorie de
l’intersection et en géométrie énumérative. On en trouvera un exemple récent
à la fin de cette section. La conjecture de Witten est motivée par des considé-
rations de gravité quantique (ou plutôt des tentatives d’en établir une théorie
robuste en deux dimensions). On retrouve les cartes dans une autre approche
de la gravité quantique : il a été démontré que la carte brownienne était en
quelque sorte équivalente à la gravité quantique de Liouville en 2D pour le
paramètre γ =

√
8/315, et les recherches dans ce domaine sont toujours très

actives (aussi bien à partir des cartes que directement dans le continu). Pour
une bonne introduction à ces questions, on pourra lire [Mil18, Gwy19].

Enfin, dans le domaine des mathématiques, les cartes se retrouvent éga-
lement en géométrie algébrique, avec les dessins d’enfant de Grothendieck
[Gro97] qui ne sont rien d’autre que des cartes biparties. Il existe une corres-
pondance entre les dessins d’enfant et certaines courbes algébriques définies
sur Q, qui permet d’étudier de manière combinatoire l’action du groupe de
Galois absolu des rationnels sur ces courbes (pour une introduction à ces
objets, voir [LZ04], chapitre 2). On peut également citer l’étude des billards
polygonaux rationnels, qui nécessite en particulier de calculer des volumes
d’espaces de modules des surfaces de translations (voir par exemple [Zor06]).
Ce calcul est possible via l’énumération de surfaces à petits carreaux qui
jouent le rôle de points entiers dans ces espaces (voir par exemple [Mat18]).
Une méthode d’énumération consiste à compter les métriques entières sur
des cartes, grâce aux méthodes développées par Kontsevich [AEZ14].

15plus précisément, la carte détermine la structure conforme et réciproquement.
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1.3 Contributions et organisation du manus-
crit

Le travail de ma thèse est à l’intersection des différents domaines de l’étude
des cartes présentés dans l’introduction : énumération, approche bijective,
méthodes algébriques (et hiérarchies KP/2-Toda) et étude asymptotique des
cartes aléatoires. A plusieurs occasions il s’agira de combiner ces différentes
approches pour démontrer les résultats voulus.

De plus, comme on peut le voir dans l’historique, une majorité des travaux
sur les cartes se focalisent sur les cartes planaires, tandis que mon travail
porte principalement sur les cartes « en tout genre »16, voire même dont le
genre tend vers l’infini.

A partir du chapitre suivant, cette thèse sera rédigée en anglais. La suite
du manuscrit s’articule ainsi :

• Chapitre 2 : introduction aux hiérarchies KP et 2-Toda,

• Chapitre 3 : introduction aux limites locales et cartes infinies du plan,

• Chapitre 4 : preuves bijectives de formules de récurrences issues de la
hiérarchie KP,

• Chapitre 5 : formules de récurrence pour les cartes biparties à degrés
prescrits et constellations,

• Chapitre 6 : limites locales de triangulations de grand genre,

• Chapitre 7 : limites locales de cartes biparties à degrés prescrits en
grand genre,

• Chapitre 8 : quelques problèmes ouverts.

Les chapitres 4 à 7 sont chacun adaptés d’un article (la structure de
chaque article reste globalement la même, seules l’introduction et les défini-
tions sont modifiées et allégées). Pour terminer cette introduction, on fait un
bref résumé du contenus de chacun de ces chapitres.

16même dans le Chapitre 4, dont l’objet principal est les cartes planaires, la motivation
principale est la démonstration bijective de la formule de Goulden–Jackson (1.2.2) qui est
valable en tout genre, on trouvera d’ailleurs une ébauche de bijection pour des cartes en
genre supérieur.
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1.3.1 Chapitre 4 : des bijections
Ce chapitre est basé sur l’article A new family of bijections for planar maps,
paru dans Journal of Combinatorial Theory, Series A [Lou19a].

Ce travail s’inscrit dans un objectif plus large de fournir une bijection uni-
fiée expliquant les formules de récurrence issues de la hiérarchie KP, comme
par exemple les formules de Goulden–Jackson (1.2.2) et Carrell–Chapuy
[CC15]. Ces formules permettent d’énumérer les cartes en tout genre. On
donne ici des bijections pour le cas planaire, qui capture la quadraticité des
formules générales.

Soit Q(n, f) le nombre de cartes planaires à n arêtes et f faces. On dé-
montre le théorème suivant :

Théorème 1. Il existe deux bijections, basées sur une opération dite de cut-
and-slide, qui consiste à couper des arêtes puis les décaler selon un chemin
« en profondeur » dans la carte, qui démontrent les formules suivantes :

(f − 1)Q(n, f) =
∑

i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

v1Q(i, f1)(2j + 1)Q(j, f2), (1.3.1)

où v1 = 2 + i− f1 (v1 compte des sommets d’après la formule d’Euler), et

vQ(n, f) = 2(2n−1)Q(n−1, f)+
∑

i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

v1Q(i, f1)v2Q(j, f2), (1.3.2)

où v = 2 + n− f , v1 = 2 + i− f1 et v2 = 2 + j − f2.

Ces deux formules impliquent la formule de Carrell–Chapuy dans le cas
planaire, qui s’écrit :

(n+ 1)Q(n, f) =2(2n− 1)Q(n− 1, f) + 2(2n− 1)Q(n− 1, f − 1)
+ 3

∑
i+j=n−2
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)(2j + 1)Q(i, f1)Q(j, f2). (1.3.3)

La bijection impliquant (1.3.2) est une généralisation de la bijection de
Rémy sur les arbres planaires [Rém85] à toutes les cartes planaires.

La bijection étant très explicite, et ne modifiant que peu les degrés des
sommets, on trouve également une version de (1.3.1) qui permet de compter
les cartes planaires quand on fixe le nombre de sommets de chaque degré. La
formule de Goulden–Jackson (1.2.2) en est une conséquence directe.

Un autre cas particulier a été traité auparavant, celui des cartes à une
face [CFF13], qui correspond à la célèbre formule de Harer–Zagier [HZ86].
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On notera que les formules dans ce cas ne sont plus quadratiques mais de-
viennent linéaires. Le cas général, les cartes de genre quelconque avec un
nombre quelconque de faces reste largement ouvert, cependant on fournit
également une ébauche de bijection pour un cas très particulier : les cartes
dites « précubiques » (sommets de degrés 1 ou 3) à deux faces, de genre
quelconque.

1.3.2 Chapitre 5 : des formules
Ce chapitre est basé sur l’article Simple formulas for constellations and bi-
partite maps with prescribed degrees à paraître dans Canadian Journal of
Mathematics [Lou19b].

Dans la lignée des formules de Goulden–Jackson et Carrell–Chapuy, on
démontre une formule de récurrence pour un modèle de cartes assez vaste :
les cartes biparties à degré prescrits :

Théorème 2. Soit βg(f) le nombre de cartes biparties de genre g avec fi
faces de degré 2i (pour f = (f1, f2, . . .)). Alors, on a(
n+ 1

2

)
βg(f) =

∑
s+t=f

g1+g2+g∗=g

(1 + n1)
(

v2

2g∗ + 2

)
βg1(s)βg2(t) +

∑
g∗ > 0

(
v + 2g∗
2g∗ + 2

)
βg−g∗(f)

(1.3.4)

où n = ∑
i ifi, n1 = ∑

i isi, v = 2−2g+n−∑i fi, v2 = 2−2g2 +n2−
∑
i ti et

n2 = ∑
i iti (les « n’s » comptent des arêtes, les « v’s » comptent des sommets,

en accord avec la formule d’Euler), en adoptant la convention βg(0) = 0.

Cette formule est, comme les précédentes formules pour les cartes, qua-
dratique, et permet de calculer tous les nombres de cartes biparties à degré
prescrits quel que soit le genre, c’est même la manière la plus rapide de le
faire que l’on connaisse à ce jour. On démontre également des formules si-
milaires pour les constellations et les nombres de Hurwitz monotones (voir
Chapitre 5 pour une définition).

La formule (1.3.4) est un outil crucial dans l’étude des limites locales des
cartes de grand genre faite en Chapitre 7.

La démonstration diffère un peu des formules précédentes pour les cartes
[GJ08, CC15, KZ15] car elle s’appuie sur la hiérarchie 2-Toda, et non la
hiérarchie KP (la première étant une généralisation de la seconde). Il s’agit
d’une preuve assez technique sur une série génératrice bien choisie, elle com-
mence par des manipulations algébriques inspirées par les travaux d’Okoun-
kov [Oko00] et Dubrovin–Yang–Zagier [DYZ17] sur les nombres de Hurwitz,
puis des considérations combinatoires propres au modèle des cartes biparties.
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Figure 1.14 – Une simulation de la PSHT plongée dans le plan hyperbolique,
par Nicolas Curien.

1.3.3 Chapitre 6 : des triangulations de grand genre
Ce chapitre est basé sur l’article Local limits of high genus triangulations avec
Thomas Budzinski (soumis) [BL19].

Il s’agit d’une preuve de la conjecture de Benjamini et Curien [Cur16] qui
concerne la limite locale des triangulations de grand genre. Curien a introduit
une famille de triangulations infinies du plan à un paramètre λ, les PSHT Tλ
(voir Figure 1.14, et Chapitre 3 pour une définition). Pour tout λ ∈ (0, λc],
soit h ∈

(
0, 1

4

]
tel que λ = h

(1+8h)3/2 , on définit

d(λ) =
h log 1+

√
1−4h

1−
√

1−4h

(1 + 8h)
√

1− 4h
.

Soit (gn) une suite d’entiers telle que gn
n
→ θ, avec θ ∈ [0, 1

2 [. Soit Tn une
triangulation uniforme de genre gn à 2n faces, alors :

Théorème 3.
Tn → Tλ

en loi pour la topologie locale, où λ est l’unique solution de

d(λ) = 1− 2θ
6 .

L’idée de la conjecture est la suivante : dans une triangulation dont le
genre est linéaire en la taille, le degré moyen d’un sommet est asymptotique-
ment strictement supérieur à 6, qui est la valeur moyenne dans le cas des
triangulations planaires. D’un autre côté, Curien a introduit les PSHT, une
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famille de triangulations infinies du plan qui sont en quelque sorte des « dé-
formations hyperboliques » de l’UIPT d’Angel et Schramm (ce qui implique,
entre autres, que le « degré moyen » y est là aussi strictement supérieur à 6).
Il est alors naturel de se demander si l’un est la limite de l’autre.

La preuve est très différente de celle d’Angel et Schramm [AS03] pour
les triangulations planaires, qui repose fortement sur l’existence de résultats
d’asymptotique précis sur l’énumération. Dans le cas des cartes de grand
genre, il nous faudrait de l’asymptotique sur une suite bivariée dont les deux
paramètres tendent vers l’infini en même temps, et il n’existe pas (encore)
d’approche directe. Le seul outil d’énumération à notre disposition est la
formule de Goulden–Jackson (1.2.2).

La première partie de la preuve consiste en un résultat de tension, c’est
à dire que toute sous-suite de Tn possède une sous-sous-suite convergente.
Par des arguments classiques, la preuve est équivalente à montrer que le
degré de la racine est presque sûrement fini asymptotiquement, ce qui est
fait grâce à un argument combinatoire de chirurgie locale, le Bounded Ratio
Lemma. On démontre également, grâce à la formule de Goulden–Jackson
(1.2.2), que toute limite potentielle est forcément planaire et « one-ended »
(voir Chapitre 3 pour une définition).

Dans la deuxième partie, on démontre que les limites potentielles sont
d’une forme très particulière : ce sont des mélanges de PSHT, c’est à dire
qu’il existe une variable aléatoire réelle Λ telle que la limite a la loi de TΛ
(c’est donc une carte aléatoire dont le paramètre lui même est aléatoire).

La dernière partie de la preuve consiste à démontrer que ce fameux para-
mètre Λ est en fait déterministe et dépend uniquement de θ, le ratio asymp-
totique entre le genre et la taille. Pour ce faire, on démontre par un argu-
ment mélangeant combinatoire et probabilités, l’argument des deux trous, que
« l’hyperbolicité est répartie uniformément dans la carte » , puis on termine
en montrant qu’on peut « lire » le paramètre Λ directement sur la PSHT
grâce à l’inverse du degré de la racine.

En guise de corollaire, la démonstration de la conjecture nous offre des
estimées asymptotiques sur le nombre de cartes de grand genre. On rappelle
que τ(n, g) compte le nombre de triangulations de genre g à 2n triangles,
alors :

Théorème 4. Soit (gn) une suite telle que 0 6 gn 6 n+1
2 pour tout n et

gn
n
→ θ ∈

[
0, 1

2

]
. Alors

τ(n, gn) = n2gn exp (f(θ)n+ o(n))
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quand n→ +∞, avec f(0) = log 12
√

3, et f(1/2) = log 6
e
et

f(θ) = 2θ log 12θ
e

+ θ
∫ 1

2θ
log 1

λ(θ/t)dt

pour 0 < θ < 1
2 .

1.3.4 Chapitre 7 : de l’universalité
Ce chapitre est basé sur l’article Universality for local limits of high genus
maps avec Thomas Budzinski (en cours d’écriture) [BL20].

On y généralise le travail précédent : une fois la conjecture de Benjamini
et Curien démontrée, la question de l’universalité se pose naturellement, et
les objets naturels sont les cartes biparties à degrés prescrits, dont la conver-
gence locale a déjà été étudiée dans le cas planaire [Ste18, Bud15]. Dans
le cas général, le potentiel objet limite est l’Infinite Boltzmann Planar Map
(IBPM) Mq, qui est une carte infinie du plan à une infinité de paramètres
q = (q1, q2, . . .) (voir Chapitre 3 pour une définition). Selon certaines condi-
tions sur q, on se trouve soit dans le cas dit critique — Mq correspond alors
à une limite locale de cartes planaires — ou dans le cas dit sous-critique, et
Mq possède des propriétés hyperboliques.

Il restait alors à démontrer le théorème suivant :

Théorème 5. Soit (gn) une suite vérifiant gn
n
→ θ avec θ ∈

[
0, 1

2

)
, et f (n) =

(f (n)
1 , f

(n)
2 , . . .) telle que ∑i > 1 if

(n)
i = n. On suppose que, pour tout i, il existe

αi tel que f
(n)
i

n
→ αi, et qu’on a ∑i iαi = 1 et ∑i i

2αi <∞.
Soit Mn uniforme parmi les cartes biparties de genre gn dont les degrés

des faces sont donnés par f (n). Alors

Mn
(d)−−−−→

n→+∞
Mq

pour la topologie locale, où la suite q est une fonction déterministe et injective
de θ et des αi.

La preuve suit le même schéma global que pour les triangulations, cepen-
dant les preuves sont beaucoup plus techniques que dans le chapitre précé-
dent. La difficulté par rapport aux triangulations tient à deux raisons princi-
pales : on doit désormais gérer un nombre infini de paramètres au lieu d’un
seul, et les faces sont de taille non bornée. Chaque argument demande de
nouvelles idées pour être adapté depuis les triangulations. La fin de la preuve
est même totalement différente puisqu’il devient impossible de calculer l’in-
verse du degré de la racine. Cependant, le fait que la structure globale de la
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preuve soit la même montre la robustesse de l’approche développée dans le
travail précédent.

Une fois encore, on obtient des résultats d’énumération asymptotique :

Théorème 6. Soit (gn) et f (n) définis comme dans le théorème 5. Soit βg(f)
le nombre de cartes biparties de genre g dont les degrés des faces sont donnés
par f . Alors

βgn(f (n)) = n2gn exp (f(θ, (αi)i∈N)n+ o(n))

où f est une fonction explicite.

Il faut également noter que ce résultat repose sur le théorème 2 (là où
on avait utilisé la formule de Goulden–Jackson (1.2.2) pour démontrer le
théorème 3). Ce chapitre illustre bien l’apport mutuel entre combinatoire
et probabilités. D’un côté, une formule énumérative, obtenue par des tech-
niques de combinatoire algébrique, sert à démontrer un résultat sur des cartes
aléatoires. De l’autre, un travail probabiliste a pour corollaire un résultat
d’énumération asymptotique des cartes.



Chapter 2

The KP and 2-Toda hierarchies

2.1 A quick introduction to representation
theory and symmetric functions

Here we introduce some results about representation theory of the symmetric
group Sn and symmetric functions. We refer to [Sta99] for a clear exposition
of all these results. For results of representation theory of finite groups, we
refer to [Ser77].

2.1.1 Representation theory
Basics of representation theory. Let G be a finite group. A (complex)
representation of G is a complex, finite dimensional vector space Vρ along
with a linear morphism ρ : G → GL(Vρ). A representation Vρ is said to
be irreducible if there does not exist two representations Vρ′ and Vρ′′ (of
dimensions > 0) such that Vρ = Vρ′ ⊕ Vρ′′ . The group algebra C[G] is a
natural representation of G (G acts on it by multiplication on the left). It
decomposes this way:

C[G] =
⊕

Vρ ⊗ Vρ,

where the sum spans over all irreducible representations ρ ofG. The character
of a representation ρ applied to an element g ∈ G is

χρ(g) = trVρ(ρ(g)).

We have χρ(1) = dim Vρ. If g and g′ are in the same conjugacy class, then
χρ(g) = χρ(g′). Characters can be extended by linearity to all elements of
C[G], and if x ∈ C[G] is central, that is, it commutes with all y ∈ C[G], then

36
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Figure 2.1 – The Ferrers diagram of the partition (4, 3, 1, 1) in French, English
and Russian convention. In the third diagram, the content of each box is
given.

for all y ∈ C[G]:

χρ(xy) = χρ(x)
dim Vρ

· χρ(y). (2.1.1)

Representations of Sn. From now on, we will only consider G = Sn.
First, we need to define integer partitions.

Definition 1. A partition is a finite nonincreasing sequence of strictly pos-
itive integers. If λ = (λ1, λ2, . . . , λ`) is a partition, then we say that the λi’s
are the parts of λ, we say that the length of λ is l(λ) := ` (the number of
parts), and n = λ1 + λ2 + . . . + λ` is the size of λ. We also say that λ is a
partition of n, and we write |λ| = n or λ ` n. The empty partition is written
∅.

The Ferrers diagram (see Figure 2.1) of a partition λ is made of rows of
boxes, the k-th row having λk boxes, such that the first boxes of the rows are
aligned on the left. In the French convention, the rows go from bottom to
top, whereas in the American convention, they go from top to bottom. There
exists a third way of drawing these diagrams, the Russian convention, that is
the French convention, rotated by 45 degrees counter-clockwise.

The content c(�) of a box � ∈ λ is the abscissa of the the center of � in
the Ferrers diagram of λ in Russian convention (see Figure 2.1 right).

The conjugacy classes of Sn are indexed by partitions: Cµ is the class of
permutations that have cycle-type µ. Since the characters are constant inside
conjugacy classes, for σ ∈ Cµ, and a character χ, we write χ(µ) = χ(σ).

Proposition 4 (Classical, see [Sta99]). The irreducible representations of Sn

are indexed by partitions of n. We will write Vλ the representation associated
to λ, χλ is the character of Vλ, and dim λ = dim(Vλ).
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Figure 2.2 – A border strip tableau of shape (4, 3, 1, 1) and type (4, 4, 1).

There is a combinatorial way to calculate the characters of Sn: the
Murnaghan–Nakayama rule. We first need some definitions.

Definition 2. A skew partition µ \ λ is defined by two partitions µ and λ
such that µi > λi for all i. The diagram associated to µ \ λ is constructed by
removing the diagram of λ to the diagram of µ. A skew partition is connected
if the interior of its diagram (seen as a union of solid squares) is a connected
open set. A border strip is a connected skew partition whose diagram does
not contain a 2 by 2 square. The height ht(S) of a border strip S is its
number of rows minus one.

A border strip tableau (see Figure 2.2) T of shape λ and type µ is a
diagram of shape λ filled with integers from 1 to l(µ), such that the rows
and columns are increasing and that the number i appears exactly µi times.
Moreover, for all i, the diagram Ti consisting of all boxes with number i must
be a border strip. Finally, we set ht(T ) = ht(T1) + ht(T2) + . . .+ ht(Tl(µ)).

Theorem 1 (Murnaghan–Nakayama). The irreducible characters of Sn can
be calculated by the following formula:

χλ(µ) =
∑
T

(−1)ht(T ),

where the sum spans over all border strip tableaux T of shape λ and type µ.

Now we can present the Frobenius formula, that counts factorizations of
permutations, but first we need to introduce the Jucys–Murphy elements.

Definition 3. The Jucys–Murphy elements are elements of C[Sn] defined in
the following way:

Ji =
∑
k<i

(k, i) ∀1 6 i 6 n.

Proposition 5 ([Mur81]). Let f be a symmetric polynomial in n variables.
Then for all λ ` n, the action of f((Ji)1 6 i 6 n) in Vλ is dim λ·f((c(�))�∈λ)Id.



CHAPTER 2. THE KP AND 2-TODA HIERARCHIES 39

Theorem 2 (Frobenius formula). Let Cov(l1, l2, . . . , lr;λ1, λ2, . . . , λ`) be the
number of r + `-uples of permutations (σ1, σ2, . . . , σr, φ1, φ2, . . . , φ`) of Sn

such that for all i, σi has li cycles and φi has cycle type λi, verifying the
equation

σ1 · σ2 · . . . · σr · φ1 · φ2 · . . . · φ` = 1,
then ∑

l1,l2,...,lr > 1
Cov(l1, l2, . . . , lr, λ1, λ2, . . . , λ`)

r∏
i=1

un−lii

=
∑
ν`n

(dim ν)2
r∏
i=1

∏
�∈ν

(1 + uic(�))
∏̀
j=1

|Cλi |χν(λi)
dim ν

.

(2.1.2)

Before getting to the proof, we introduce some more notations, and a
lemma. For all λ, let Kλ = ∑

σ∈Cλ σ. It is a central element of C[Sn] since it
is invariant under conjugation. Set also

Pn(u) =
∑
σ∈Sn

un−l(σ)σ,

where l(σ) is the number of cycles of σ.

Lemma 1. We have the following equality:

Pn(u) =
n∏
k=1

(1 + uJk). (2.1.3)

Also, Pn(u) is a central element of C[Sn].

Proof. The second point is true because we have

Pn(u) =
∑
λ`n

Kλu
n−l(λ).

We will prove (2.1.3) by induction on n. It is easily verified for n = 1, now
suppose it is for a given n.

We give a bijection between elements of Sn+1 on the one hand, and
elements of Sn along with an integer k in {1, 2, . . . , n+1} on the other hand.
Starting from σ ∈ Sn+1, we set k = σ(n + 1). If k = n + 1, then σ′ is σ
restricted to {1, 2, . . . , n}. Otherwise, let σ′ be the restriction of (k, n + 1)σ
to {1, 2, . . . , n}. In the first case, l(σ′) = l(σ)− 1, in the second l(σ′) = l(σ).

Therefore we have

Pn+1(u) =
∑
σ∈Sn

un−l(σ)σ(1 + uJn+1),

and we conclude by induction.
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We can now prove the Frobenius formula.

Proof of Theorem 2. The LHS of (2.1.2) is equal to:

[1]
r∏
i=1

n∏
k=1

P (ui)
∏̀
j=1

Kλj

where [1] means taking the coefficient of the identity permutation in the sum.
We can see X = ∏r

i=1
∏n
k=1 P (ui)

∏`
j=1Kλj as an operator on C[Sn] that

acts by multiplication. Obviously, for all σ ∈ Sn, [1]X = [σ]Xσ. Thus, if
we see X as a matrix, it has a constant diagonal and therefore

[1]X = 1
n!trC[Sn](X)1.

Using the decomposition of C[Sn] in irreducible representations, we get that
the LHS of (2.1.2) is equal to

1
n!
∑
ν`n

(dim ν)χν(X).

Using centrality, and by (2.1.1), the LHS of (2.1.2) is

1
n!
∑
ν`n

dim ν · χν(1) ·
r∏
i=1

χν (∏n
k=1 P (ui))
dim ν

∏̀
j=1

χν(Kλj)
dim ν

.

By Proposition 5, we know that

χν (∏n
k=1(1 + uiJk))

dim ν
=
∏
�∈ν

(1 + uic(�)),

and since χν(1) = dim ν, it finishes the proof.

Remark 2.1.1. The number of factorisations is named Cov, because factori-
sations of permutations also represent ramified coverings of the sphere (see
[LZ04]).

1this will be helpful since the trace is invariant by change of basis !
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2.1.2 Symmetric functions
The theory of symmetric functions is a rich and active field of research, how-
ever we will only include here a brief presentation of the symmetric functions
we need for our work.

Fix a countably infinite set of indeterminates (x1, x2, . . .). A symmetric
function f is a formal sum of monomials in the xi’s with coefficients in C,
such that:

• f is invariant by exchanging any two of the variables,

• there exists M > 0 such that the total degree of every monomial in f
is bounded by M .

We will describe two particular bases of the space of symmetric functions that
we will make use of. Other classical bases include elementary, monomial, and
complete homogeneous symmetric functions, we will not deal with them here,
we refer to [Sta99] for a more complete exposition.

We start with the powersums, that are defined this way: for all j,

pj =
∑
i

xji ,

and for all λ, pλ = ∏l(λ)
j=1 pλj .

Definition 4. A semi-standard Young tableau (SSYT) of shape λ is con-
structed from the diagram of λ by placing a positive integer in each box such
that the rows of the tableau are weakly increasing and the columns are strictly
increasing (see Figure 2.3).

Let T be an SSYT containing exactly αi entries equal to i for all i. Then
we set xT = ∏

i x
αi
i . Then the Schur functions are defined as

sλ =
∑

xT ,

where the sum spans over all SSYT’s of shape λ.

It is not obvious, but not hard to see, that Schur functions are symmetric
functions. In fact, they are even a basis, and their change-of-basis coefficients
to the powersums involve the characters of the symmetric group.

Theorem 3 (Classical, see [Sta99]). The pλ’s (resp. the sλ’s) are a basis for
the ring of symmetric functions2, and, for all ν ` n,

sν = 1
n!
∑
λ`n

χν(λ)|Cλ|pλ.

2this is including p∅ = s∅ = 1.
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Figure 2.3 – An SSYT and its associated monomial.

Theorem 3 ensures that the Schur functions are uniquely determined by
the values of the pλ’s, which in turn are uniquely determined by the sequence
p = (p1, p2, . . .). Therefore, in what follows, we will consider the powersums
as the "initial" variables, and parametrize the Schur functions by the power-
sums, thus writing sν(p) for the Schur function indexed by ν, expressed as a
polynomial in the powersums.

2.2 The KP and 2-Toda hierarchies
In this section, we introduce the KP and 2-Toda hierarchies. We insist on
one way of constructing them, but as it is mentioned, there are many more
approaches. What’s more, we mainly focus on the concepts and objects that
we need in the context of maps, but there is much more to this story. We
refer to three very good introductions to the topic: [MJD00] to understand
how the KP hierarchy is built out of the original KP equation, [KR87] to see
things through the lens of infinite dimensional Lie algebras, and [AZ13] for
the fermionic approach. Finally, the appendix of [Oko01] sets the basics in a
very compact way.

2.2.1 The semi infinite wedge space
Before getting to the hierarchies themselves, we need some more algebraic
setup. This subsection is devoted to explaining the semi infinite wedge space
and the operators that act on it.

Everything will be defined over the field of complex numbers C, but all
the results can be extended to complex formal series in a (possibly countably
infinite) number of variables. In the rest this section we will use the words
"operators" and "vectors" in the sense of formal series, for a set of underlying
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variables. Everything is understood in the formal sense, what is important
is that the coefficient of each monomial (in the underlying variables) in all
vector or operator elements is well defined, and that no infinite coefficient
appears in computations.

Definition 5. A Maya diagram (see Figure 2.4) is a decoration of Z+ 1
2 with

a particle or an antiparticle at each position, such that there exists M > 0
such that there are only particles at positions < −M and only antiparticles
at positions > M . The semi infinite wedge space Λ∞2 is the vector space
generated by the Maya diagrams. It is equipped with an inner product by
making the Maya diagrams orthogonal to each other and of norm 1.

We have some elementary operators on Λ∞2 :

Definition 6. For any k ∈ Z + 1
2 , we define the fermion operators ψk and

ψ∗k (see Figure 2.4). For each Maya diagram m, we set:

ψkm =

0 if m has a particle in position k,
(−1)nkm̃ otherwise,

ψ∗km =

0 if m has an antiparticle in position k,
(−1)nkm otherwise.

where nk is the number of particles of m in positions > k (it is finite by
definition of a Maya diagram). Also, m̃ is the same as m except there is a
particle in position k, and m is the same as m except there is an antiparticle
in position k. Note that ψk and ψ∗k are adjoint operators.

The boson operators are defined this way: for all n ∈ Z∗, let

αn =
∑

k∈Z+ 1
2

ψk−nψ
∗
k.

Finally, the two vertex operators are

Γ±(p) = exp
( ∞∑
n=1

pn
n
α±n

)
.

For all n, αn and α−n are adjoint, and thus so are Γ+(p) and Γ−(p).

We will now define diagonal operators over Λ∞2 and relate Maya diagrams
to partitions.



CHAPTER 2. THE KP AND 2-TODA HIERARCHIES 44
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Figure 2.4 – A Maya diagram and the action of a fermion on it.

Definition 7. We define the normally ordered products

: ψkψ∗k :=

ψkψ∗k if k > 0
−ψ∗kψk if k < 0.

Note that, for a Maya diagram m

: ψkψ∗k : m =


m if k > 0 and m has a particle in position k
−m if k < 0 and m has an antiparticle in position k
0 otherwise.

The charge operator is:

C =
∑

k∈Z+ 1
2

: ψkψ∗k : .

The Maya diagrams are eigenvectors of C. The eigenvalue of a Maya di-
agram m is the number of particles in positive position minus the number
of antiparticles in negative position. We call this number the charge of m.
We introduce the translation operator R: for any m, Rm has a particle in
position k + 1 if and only if m has a particle in position k. Note that if the
charge of m is c, the charge of Rm is c+1, and that the adjoint of R is R−1.

There is a bijection between Maya diagrams of charge 0 and partitions:
given the diagram of a partition in Russian convention, its contour can be
interpreted as a walk with up- and down-steps. One obtains a Maya diagram
by associating a particle to each down-step and an antiparticle to each up-step
(see Figure 2.5).

We will use the braket notation, and denote the Maya diagram of charge
0 corresponding to the empty partition by |∅〉, and set |∅n〉 = Rn |∅〉. We will
also set |λ〉 to be the Maya diagram of charge 0 corresponding to the partition
λ.

Finally, we define the energy operator

H =
∑

k∈Z+ 1
2

k : ψkψ∗k : .

In particular, H |λ〉 = |λ| |λ〉, where |λ| is the number of boxes in λ.
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0

Z

Figure 2.5 – A Maya diagram of charge 0 and its associated partition. The
contour of the partition is in blue and fat.

We will need the following property later:

Proposition 6.

Γ−(q) |∅〉 =
∑
ν

sν(q) |ν〉 and 〈∅|Γ+(p) =
∑
ν

sν(p) 〈ν| .

Proof. We will only include a sketch of proof, leaving the details to initiated
or motivated readers.

First, note that the action of ψk+nψ
∗
k is to make a particle "jump" n slots

to the right. On the associated partition, it is not hard to see that this is
equivalent to adding a border strip. Therefore we can describe the action of
the bosons on partitions : we have

α−n |λ〉 =
∑
µ

(−1)ht(µ\λ) |µ〉

where the sum spans over all µ such that µ \ λ is a border strip. Therefore,
expanding Γ−(q) |∅〉 in the qλ’s for all partitions λ, one notices that it is
possible to apply the Murnaghan–Nakayama rule (Theorem 1) to write it as
a sum over the qλ’s weighted by characters.

Applying Theorem 3 (change of basis between powersums and Schur func-
tions) finishes the proof.

We end this section by stating the boson-fermion correspondence (a proof
can be found in [KR87]): the boson operators are defined in terms of the
fermions, but we can go the other way and express the fermions in terms of
the bosons. More precisely, let
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ψ(z) =
∑

i∈Z+ 1
2

ziψi, ψ∗(z) =
∑

i∈Z+ 1
2

z−iψ∗i (2.2.1)

be the "generating Laurent series of the fermions", then

ψ(z) = zCRΓ−({z})Γ+
(
−
{
z−1

})
,

ψ∗(z) = R−1z−CΓ−(−{z})Γ+
({
z−1

})
,

(2.2.2)

where {z} = (z, z2, z3, . . .).

2.2.2 The space of solutions
There are several definitions of the hierarchies in the literature. Here, we
will give the most general definition, in which, to any operator satisfying a
certain bilinear identity, one associates a formal power series which satisfies
certain bilinear equations.

Remark 2.2.1. Here, we construct the space of solutions, and then derive
the equations they satisfy. It might be suprising to see things defined this way,
but it greatly simplifies the exposition, and it is coherent with the proofs (see
Proposition 7). In [MJD00], things are presented in a more "natural" way:
an ordered set of equations (a hierarchy) is constructed out of the original
KP equation, and the space of solutions is determined afterwards.

We need yet another operator, let:

Ω =
∑
k

ψk ⊗ ψ∗k.

A tau-function of the KP hierarchy is a function of the form

τ(p) = 〈∅|Γ+(p)A|∅〉 , (2.2.3)

where A is an operator satisfying

[A⊗ A,Ω] = 0, (2.2.4)

where [, ] is the ring commutator.
After some algebraic manipulations on (2.2.3) and (2.2.4) (using in par-

ticular the boson-fermion correspondence (2.2.2)), we have that, for every τ
that is a tau-function of the KP hierarchy, the following equation holds:
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[t−1] exp
∑
k > 1

tk

k
(pk − qk)

 exp
− ∑

k > 1
t−k( ∂

∂pk
− ∂

∂qk
)
 τ(p)τ(q) = 0.

(2.2.5)
If τ is a tau-function of the KP hierarchy, then F = log τ is said to be

a solution of the KP hierarchy. Each coefficient in the Taylor expansion of
(2.2.5) with respect to the qi’s, corresponds to a PDE satisfied by F (in the
variables p). For instance the "original KP equation" reads:

F3,1 = F2,2 + 1
2F

2
1,1 + 1

12F1,1,1,1 (2.2.6)

where indices indicate partial derivatives, for instance F3,1 = ∂2

∂p1∂p3
F .

A family of functions (τn) is said to be a family of tau-functions of the
2-Toda hierarchy if they can be written as

τn(p,q) = 〈∅n|Γ+(p)AΓ−(q)|∅n〉 ,

with A satisfying (2.2.4).
In that case, τ := τ0 is also a tau-function of the KP hierarchy, if we treat

the qi’s as mute variables (one can check that if A satisfies (2.2.4), then so
does AΓ−(q)). It is in that sense that the 2-Toda hierarchy is a generalization
of the KP hierarchy.

Again, algebraic computations lead to equations. Any family (τn) of
tau-functions of the 2-Toda hierarchy satisfies the following equation for all
n,m ∈ Z:

[
tn−m

]
γ
(1
t
,−2s′

)
τm+1 (p + s,q + s′ + {t}) τn (p− s,q − s′ − {t}) =[

tm−n
]
γ
(1
t
, 2s

)
τm (p + s− {t},q + s′) τn+1 (p− s + {t},q − s′)

(2.2.7)
with γ (t, s) = exp

(∑
n > 1

sn
n
tn
)
.

And once again, with the help of Taylor expansion, we can derive dif-
ferential equations between the τn’s. The simplest one (and the one we will
make use of) is

∂2

∂p1∂q1
log τ0 = τ1τ−1

τ 2
0
. (2.2.8)
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As stated in [GJ08]3, a large family of operators acting diagonally on
partitions gives rise to tau functions.
Proposition 7 (Content product solutions). Let f be a function with positive
values. Then

A = exp

 ∑
k∈Z+ 1

2

sgn(k)
1

2 log f(0) +
|k|−1/2∑
i=1

log f(sgn(k) · i)
 : ψkψ∗k :


is well defined and satisfies (2.2.4). The associated tau-function τ is called a
content product solution because then

τ =
∑
ν

(∏
�∈ν

f(c(�))
)
sν(p)sν(q).

Proof. The second point comes from the fact that

A |λ〉 =
∏
�∈λ

f(c(�))
 |λ〉 ,

which can be observed by the correspondence between Maya diagrams and
partitions. For the first, let

F =
∑

k∈Z+ 1
2

sgn(k)
1

2 log f(0) +
|k|−1/2∑
i=1

log f(sgn(k) · i)
 : ψkψ∗k :

so that A = eF . One can check by hand that for all k and all complex numbers
c, 1 ⊗ c : ψkψ∗k : satisfies (2.2.4). It is a general fact that if [X, Y ] = 0 then
[X, eY ] = 0, therefore exp(1⊗ c : ψkψ∗k) satisfies (2.2.4) as well.

By taking the product (and carefully choosing c each time), we find that
exp (1⊗ F ) satisfies (2.2.4), and we conclude by noticing that

A⊗ A = exp (1⊗ F ) · exp (F ⊗ 1) .

2.2.3 Other definitions
Now we give two other ways of defining the KP hierarchy4. They are a little
more restrictive than the one we gave in the previous section (the space of
solutions is smaller), but they are still very important. Indeed, they describe
a wide space of solutions, and even all the solutions under natural, well-
chosen, restrictions. The proofs can be found in [MJD00] and [AZ13].

3it can also easily be deduced from [Oko00].
4things would be similar for the 2-Toda hierarchy.
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The Sato Grassmanian. First, one can define the solutions of the KP
hierarchy as points in a certain orbit under the action of a Lie algebra. In
1981, Sato [Sat81] introduced an infinite dimensional Grassmanian.
Definition 8 (The Sato Grassmanian). We consider infinite dimensional
matrices (with shifted indices) M = (mi,j)i,j∈Z+ 1

2
satisfying

∃N such that |i− j| > N ⇒ ai,j = 0. (2.2.9)

To such a matrix M , we can associate an element of Λ∞2

XM =
∑
i,j

mi,j : ψ−iψ∗j .

Then the Sato Grassmanian is defined as

gl(∞) = {XM |A satisfies (2.2.9)} ⊕ C

The Sato Grassmanian gl(∞) is obviously an additive group, but one can
check that it is also a Lie algebra. Note that Γ±(p) ∈ gl(∞) (in the sense of
formal series). It is proved that all the matrices A of the form

A = eX1eX2 . . . eXk with Xi ∈ gl(∞)

for finite k satisfy the commutation relation (2.2.4). Therefore, one way to
see things is that the (interesting) solutions of the KP hierarchy are the orbit
of 1 under the action of gl(∞).

The Plücker relations. Since matrices are involved, it will not be so sur-
prising to see that the KP hierarchy can be defined in a determinantal way.
Consider a big matrix, and now calculate the determinants of all its subma-
trices of a given small size. Obviously, since the submatrices overlap, the
determinants are not independent. The Plücker relations give the algebraic
relations between these determinants. Here we will consider the simplest
version of it, and write the Plücker relations in the language of partitions.

We first need to introduce the Frobenius coordinates of a partition (which
have lots in common with the Maya diagram presentation). Let λ be a
partition, and let ` = max{i|λi − i > 0} = max{i|λ′i − i > 0} (it is not hard
to check that the last two quantities are the same). Then we write λ = (~α|~β)
where ~α = (α1, α2, . . . , α`), ~β = (β1, β2, . . . , β`) and

αi = λi − i and βi = λ′i − i.

The Frobenius coordinates determine the partition uniquely (see Figure 2.6
for an example), and conversely, for all ` and all pairs of strictly decreas-
ing `-uples of nonnegative integers ~α and ~β, there exists a partition whose
Frobenius coordinates are (~α|~β).
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~α = (3, 1)

~β = (3, 0)

3

0

13

Figure 2.6 – A partition and its Frobenius coordinates.

Definition 9 (Plücker relations (see [AZ13], eq. 3.36)). We say that a family
cλ indexed by partitions satisfies the Plücker relations if for all λ = (~α|~β),
we have, for all r, s:

c(~α|~β)c(~α 6r 6s|~β 6r 6s) = c(~α 6r|~β 6r))c(~α 6s|~β 6s)) − c(~α 6r|~β 6s))c(~α 6s|~β 6r)) (2.2.10)

with (
~α 6j|~β 6k

)
=
(
α1, . . . ,��αj, . . . , α`|β1, . . . ,��βk, . . . , β`

)
,(

~α 6r, 6s|~β6r, 6s
)

= (α1, . . . ,��αr, . . . ,��αs, . . . , α`|β1, . . . ,��βr, . . . ,��βs, . . . , β`) .

Proposition 8. A function τ(p) that can be expanded as

τ(p) =
∑
λ

aλsλ(p)

such that the aλ satisfy the Plücker relations is a tau-function of the KP
hierarchy.

Remark 2.2.2. The quadratic nature of (2.2.10) is coherent with the fact
that the KP hierarchy gives quadratic equations on τ (see (2.2.5)).

2.3 Maps and 2-Toda hierarchy
In all generality, let us introduce a generating function of constellations, that
will be shown to satisfy the 2-Toda hierarchy (and therefore the KP hierarchy
as well). Since maps are a particular instance of constellations, we will also
be able to derive formulas for maps by specializing the generating function
of constellations to maps.
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Fix an integer r. We introduce the following generating function of
(labelled, non-necessarily connected) constellations, in accordance with the
representation of constellations as factorisations of permutations (see Sec-
tion 1.1.4):

τ(z,p,q, (uj)) =
∑
n > 0

|µ|=|λ|=n
li > 1 ∀i

zn

n!

r∏
i=1

un−lii pλqµCov(l1, l2, . . . , lr;λ, µ). (2.3.1)

Remark 2.3.1. These (r + 2)-uples represent (r + 1)-constellations, where
we control the degree distributions of faces and vertices of color r + 1, while
controlling the number of vertices of each other color. However, in most cases
we will apply the specialization µ = 1n (and sometimes even λ = 1n as well),
and thus they will either represent r- or (r−1)-constellations. Indeed setting
µ = 1n forces one of the permutations to be the identity, and we truly have
only an (r + 1)-uple.

It is a classical result (under different forms and variants, see for instance
[GJ08, Oko00]) that the function τ can be expressed in terms of elements
and operators of Λ∞2 :

Lemma 2.
τ(z,p,q, (uj)) = 〈∅|Γ+(p)zHΛΓ−(q)|∅〉 (2.3.2)

with

F (u) =
∑
k>0

k−1/2∑
i=0

log(1 + ui)ψkψ∗k +
∑
k<0

−k−1/2∑
i=0

log(1− ui)ψ∗kψk

and Λ = ∏r
j=1 exp(F (uj)).

Proof. By the Frobenius formula (Theorem 2), we have

τ(z,p,q, (uj)) =∑
|λ|=|µ|=n>0

l>0

zn

(n!)2pλqµ
∑
|ν|=n

1
n!

r∏
j=1

(∏
�∈ν

(1 + ujc(�))
)
|Cλ|χν(λ)|Cµ|χν(µ).

Next, thanks to Theorem 3, we can express τ in terms of Schur functions.

τ(z,p,q, (uj)) =
∑

|ν|=n>0
l>0

znsν(p)sν(p)
r∏
j=1

(∏
�∈ν

(1 + ujc(�))
)
.

One concludes the proof by using Proposition 6.
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Lemma 2 together with Proposition 7 show that τ , the generating func-
tions of constellations that we introduced is a tau-function of the 2-Toda hi-
erarchy, if we introduce the τn as τn(z,p,q, (uj)) = 〈∅n|Γ+(p)zHΛΓ−(q)|∅n〉
and we set τ = τ0.

The equations for the series of constellations obtained from the hierarchies
are still not fully understood combinatorially (hence the search for bijections,
to which Chapter 4 is a contribution). However, they are very powerful: they
gave us several efficient counting formulas (the latest ones can be found in
Chapter 5), which proved to be useful even for probabilistic considerations
(see Chapters 6 and 7).



Chapter 3

Peeling, local limits and infinite
planar maps

This chapter is devoted to introducing the objects that we will show to be the
local limits of high genus random maps. In order to keep things light, we will
mostly focus on the concepts and results that will be used in Chapters 6 and 7.
For an introduction to hyperbolic triangulations of the plane (without loops),
one can read [Cur16], for general triangulations and hyperbolic bipartite
maps there is [Bud18a]. Many geometric properties of infinite maps are not
dealt with here, for a detailed exposition (in the case of bipartite maps), read
[Cur19]. Also, the proofs of the results exposed in this chapter can be found
there.

3.1 Triangulations

3.1.1 An alternative definition of local limits
In the introduction, we defined the local convergence as the convergence (in
distribution) with respect to a certain topology on the space of (finite and
infinite) maps. Here we give a second definition, based on the convergence of
the law of the neighbourhood of the root, that is equivalent but also easier
to get, and that is the one that is used in practice.

Before that, we need to define the notion of map inclusion. Here we will
stick with triangulations, but the definitions are more or less the same in the
general case.
Definition 10. Let t be a finite planar triangulation with a simple boundary
of size p, and let T be a triangulation (not necessarily finite). We say that

t ⊂ T

53
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⊂

t
T

Figure 3.1 – A small triangulation t is included in a bigger one T . Only the
neighbourhood of the root of T is represented here.

if there exists a triangulation T̃ with a simple hole of size p, such that one
can fill the hole of T̃ with t and obtain T .

In other words, it means that by carving a finite neighbourhood of T , one
can obtain t. Alternatively, it is possible to superimpose t on T such that
both roots coincide.

We can now give a definition of local convergence in terms of map in-
clusion. To make things easier, we will only consider convergence towards
infinite maps of the plane.

Definition 11. If (Tn) is a sequence of random triangulations, and T is a
random infinite triangulation of the plane, we say that (Tn) converges locally
in distribution towards T if for all finite planar triangulations t with a simple
boundary

P (t ⊂ Tn)→ P (t ⊂ T)

as n→∞.

It is not hard to see that this definition is equivalent to the one given in
Chapter 1.

3.1.2 The UIPT
Let Tn be a uniform triangulation of the sphere with 2n triangles. In 2002,
Angel and Schramm [AS03] showed the following result:

Theorem 4. The sequence (Tn) converges locally (in distribution) to a ran-
dom infinite triangulation of the plane T∞.

The triangulation T∞ is called the Uniform Infinite Planar Triangulation
(UIPT). It is uniquely determined by the law of the neighbourhood of the
root, given by the following proposition:
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Proposition 9. Let t be a finite planar triangulation with a simple boundary
of size p (its perimeter). Then

P(t ⊂ T∞) = Cpλ
|t|
c

where Cp are constants that do not depend on t, |t| is the volume of t (i.e.
its number of vertices) and λc = 1

12
√

3 is the radius of convergence of the
generating function of planar triangulations.

The UIPT has many more properties. First, it is one-ended, namely if
one removes a finite part of T∞, then the remaining map has only one infinite
connected component. It is also reversible (its distribution is invariant under
reversing the orientation of the root edge) and stationary (invariant under
rerooting at the first step of the simple random walk). These properties follow
from general rerooting invariance properties of uniform finite triangulations.

3.1.3 Hyperbolic triangulations of the plane
Seeing Proposition 9, one might ask if, more generally, for λ ∈ R+, there
exists a random triangulation of the plane Tλ such that

P(t ⊂ Tλ) = Cpλ
|t| (3.1.1)

for all finite triangulations with a simple boundary of size p. In other words,
can we replace λc with something else (provided that we change the value of
the constants Cp) ? Property (3.1.1) is called the spatial Markov property,
because if t is a neighbourhood of the root of Tλ, then the law of Tλ \ t (the
"future") depends only on the perimeter of t (the "present").

Curien answered this question in [Cur16] : for all 0 < λ 6 λc, there exists
a unique set of constants (Cp) and a unique (in distribution) random infinite
triangulation Tλ satisfying the spatial Markov property. This family of maps
is called the Planar Stochastic Hyperbolic Infinite Triangulations (PSHT), it
is parametrized by a single real λ, and for λ = λc, we recover the UIPT. This
follows a similar work on infinite triangulations of the half plane [AR15].
The work of Curien originally focused on triangulations without loops, it has
been adapted to general triangulations by Budzinski in [Bud18a].

Peeling the PSHT. The PSHT can be "explored" by a random process
named the peeling process. The principle is to discover the map step by step,
triangle by triangle. In fact, there are many peeling processes, but they all
share some key features. Given an instance Tλ of the PSHT, we can describe
a sequence of random finite planar triangulations with a simple boundary
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(x2)or λ

Figure 3.2 – A peeling step. The unexplored part is on the outside. When
the new triangle cuts the unexplored part in two, the finite part is distributed
as a Boltzmann triangulation of parameter λ.

that is strictly increasing (with respect to map inclusion), all of them being
included in Tλ.

A peeling algorithm A takes as input a finite triangulation t with a simple
boundary, and outputs an edge A(t) on the boundary of t. Given a peeling
algorithm A, we can define an increasing sequence

(
EAλ (k)

)
k > 0

of triangu-
lations with a simple boundary such that EAλ (k) ⊂ Tλ for every k in the
following way:

• the map EAλ (0) is the trivial map consisting of the root edge only,

• for every k > 1, the triangulation EAλ (k + 1) is obtained from EAλ (k)
by adding the triangle incident to A

(
EAλ (k)

)
outside of EAλ (k) and,

if this triangle creates a finite hole, all the triangles in this hole (see
Figure 3.2).

Such an exploration is called filled-in, because all the finite holes are filled
at each step. Peeling processes can also be defined for all infinite planar
triangulations, and even for finite triangulations (with some precautions).

For the PSHT, we denote by P λ(k) and V λ(k) the perimeter and volume
of EAλ (k). The one-endedness of the PSHT guarantees that EAλ (k) only has
one boundary. The spatial Markov property ensures that

(
P λ(k), V λ(k)

)
k > 0

is a Markov chain on N2 and that its transitions do not depend on the algo-
rithm A. The transition probabilities for P λ(k) determine the probabilities
of each case of Figure 3.2, and they can be calculated thanks to the spatial
Markov property. In case the peeling step creates a finite hole of size p, the
finite triangulation that fills this hole is sampled according to a Boltzmann
distribution of parameter λ.

We know the asymptotic behaviour of the perimeter and volume pro-
cesses. In particular, we have [Cur16]:

P λ(k)
V λ(k)

a.s.−−−−→
k→+∞

1− 4h, (3.1.2)
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where h is uniquely determined by the following equation:

λ = h

(1 + 8h)3/2 .

Remark 3.1.1. For λ < λc, this means that the perimeter grows linearly
in the volume, which is a typical hyperbolic behaviour. For λ = λc, we have
h = 1/4, and the perimeter grows way more slowly than the volume.

3.2 Bipartite maps

3.2.1 Peeling and inclusion in bipartite maps
All the concepts and objects defined in Section 3.1 can be transposed, and in
some sense, generalized, to bipartite maps. To make things easier, we need
to define slightly more different notions of map inclusion and peeling.

Map inclusion for bipartite maps. Given a bipartite map M , let M∗

be its dual map. Let e be a connected subset of edges of M∗ such that the
root vertex of M∗ is adjacent to e. To e, we associate the map m that is
obtained by gluing the faces of M corresponding to the vertices adjacent to
e along the (dual) edges of e (see Figure 3.3). Note that m is a map with
simple boundaries.

Now, if m is a finite bipartite map with simple holes, and M a (finite or
infinite) map, we say that

m ⊂M

if m can be obtained from M by the procedure described above, or if m is
the map with only one edge, or if m is the map with a simple boundary of
size 2p and one face of degree 2p, where 2p is the degree of the root face in
M .

With this definition of inclusion, we can adapt the alternative definition
of local convergence (Definition 11) to bipartite maps almost verbatim.

The lazy peeling process of bipartite planar maps. A peeling algo-
rithm is a function A that takes as input a finite planar bipartite map m
with boundaries, and that outputs an edge A(m) on the boundary of m.

Given an infinite planar bipartite map M and a peeling algorithm A, we
can define an increasing sequence

(
EAM(k)

)
k > 0

of bipartite maps with holes
such that EAM(k) ⊂M for every k in the following way. First, the map EAM(0)
is the trivial map consisting of the root edge only. For every k > 1, let Fk be
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⊂

Figure 3.3 – Inclusion of bipartite maps, on an example.

(x2)or

Figure 3.4 – The lazy peeling on an example. The chosen edge is in red.
Either a new face is discovered (center), or the chosen edge is glued to another
edge of the boundary (right, in blue).

the face (of M) on the other side of A(EAM(k)). There are two possible cases
(see Figure3.4):

• either Fk doesn’t belong to EAM(k), and EAM(k + 1) is the map obtained
from EAM(k) by gluing a simple face of size degFk to A(EAM(k)),

• or Fk belongs to EAM(k). In that case, it means that there exists an edge
ek on the same boundary as A(EAM(k)) such that those two edges are
actually identified in M . The map EAM(k + 1) is obtained from EAM(k)
by gluing EAM(k) and ek together, and if this creates a finite hole, by
filling it (such that the resulting map is included in M , there is only
one possible way of doing so).

Such an exploration is called filled-in, because all the finite holes are filled
at each step.
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3.2.2 Hyperbolic bipartite maps of the plane
We can construct a class of infinite bipartite maps of the plane in a similar
fashion as with triangulations.
Definition 12. For q = (qi)i > 1 a collection of nonnegative real numbers,
we say than a random, bipartite, planar, infinite bipartite map M is q-
Markovian, if there exists constants Cp such that for all m planar bipartite
with a simple boundary of size 2p, we have

P(m ⊂M) = Cp
∏
f∈m

qdeg f/2

where the product spans over all inner faces of m

Of course, not all sequences q give a valid map, but we know that if the
map exists, it is unique (in law). We call this family of maps the IBPMs, for
Infinite Boltzmann Planar Maps. There is a necessary condition about the
sequence q for such a map to exist. If, for

fq(x) =
∑
k > 1

qk

(
2k − 1
k − 1

)
xk−1,

the equation
fq(x) = 1− 1

x
(3.2.1)

has a positive solution, then q is said to be admissible. If q is not admissible,
then a q-Markovian map does not exist. Furthermore, let W (q) be the
generating function of finite bipartite planar maps (a proper definition can
be found in Chapter 7), then W (q) converges if and only if q is admissibls.

The sequence q also contains information about the hyperbolicity of the
infinite map it parametrizes. Let Zq be the smallest solution of (3.2.1). If
f ′q (Zq) = 1

Z2
q
, then q is said to be critical. If q is both admissible and

critical, then the q-Markovian map exists and is the local limit of a model of
planar bipartite maps. Otherwise, if f ′q (Zq) < 1

Z2
q
, then q is subcritical. In

this case, it is possible to "measure the hyperbolicity" of the corresponding
map. Set gq = 4Zq, let Wp(q) be the generating function of planar bipartite
maps with a boundary of size 2p for all p, and

ν(i) =
{
qi+1g

i
q if i > 0,

2W−1−i(q)giq if i 6 − 1.

For a sequence q that is admissible and subcritical, a q-Markovian exists if
and only if the equation ∑

i∈Z

ν(i)ωi = 1
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has a solution ω > 1. In that case, ω is in some sense the hyperbolicity
parameter of the map.

Remark 3.2.1. It is not clear if every subcritical admissible sequence q
parameterizes an existing infinite map1, in Chapter 7 (Proposition 21) we
make some progress on this question.

Peeling the IBPM. As with the PSHT, the peeling process on the IBPM
has a lot of nice properties. In particular, it allows us to "read" the parameters
of the IBPM. Given an instance Mq of the IBPM, and a peeling algorithm
A, let Pn and Vn denote respectively the half-perimeter and total number of
edges of EAMq(n).

Proposition 10. We have the following almost sure convergences:

1
n

n−1∑
i=0

1Pi+1−Pi=j−1
a.s.−−−−→

n→+∞
(gqω)j−1 qj =: rj(q) (3.2.2)

for every j > 1, and

Vn − 2Pn
n

a.s.−−−−→
n→+∞

(√
ω −
√
ω − 1

)2

2
√
ω(ω − 1)

=: r∞(q). (3.2.3)

Moreover, the weight sequence q is a measurable function of the numbers
rj(q) for j ∈ N∗ ∪ {∞}.

We will give a proof of this property in Chapter 7. Note that rj(q)
measures the proportion of faces of size 2j encountered during a peeling
exploration, while r∞(q) measures the relative perimeter and volume growth,
and thus the hyperbolicity.

1in [Bud18a], there is numerical evidence supporting a negative answer to this question.



Chapter 4

Bijections for KP-based
formulas

Abstract. This chapter is adapted from the article A new family of bijec-
tions for planar maps, published in Journal of Combinatorial Theory, Se-
ries A [Lou19a]. We present bijections for the planar cases of two counting
formulas on maps that arise from the KP hierarchy (Goulden–Jackson and
Carrell–Chapuy formulas), relying on a "cut-and-slide" operation. This is
the first time a bijective proof is given for quadratic map-counting formulas
derived from the KP hierarchy. Up to now, only the linear one-faced case was
known (Harer–Zagier recurrence and Chapuy–Féray–Fusy bijection). As far
as we know, this bijection is new and not equivalent to any of the well-known
bijections between planar maps and tree-like objects.

This work is a step towards a unified bijective explanation of recurrence
formulas on maps arising from the KP hierarchy. We state here the two
formulas that motivate this work. Recall that τ(n, g) is the number of trian-
gulations of genus g with 2n triangles. The Goulden–Jackson formula [GJ08]
allows to compute the coefficients τ(n, g) recursively:

(n+ 1)τ(n, g) =4n(3n− 2)(3n− 4)τ(n− 2, g − 1) + 4(3n− 1)τ(n− 1, g)
+ 4

∑
i+j=n−2
i,j > 0

∑
g1+g2=g
g1,g2 > 0

(3i+ 2)(3j + 2)τ(i, g1)τ(j, g2) + 21n=g=1.

(4.0.1)

By duality of maps, τ(n, g) is also the number of rooted cubic maps (maps
with only vertices of degree 3) of genus g with 2n vertices. The number
Qg(n, f) of maps of genus g with n edges and f faces can be computed via
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the Carrell–Chapuy formula [CC15]:

(n+ 1)Qg(n, f) =2(2n− 1)Qg(n− 1, f) + 2(2n− 1)Qg(n− 1, f − 1)
+ (2n− 3)(n− 1)(2n− 1)Qg−1(n− 2, f)
+3

∑
i+j=n−2
i,j > 0

∑
f1+f2=f
f1,f2 > 1

∑
g1+g2=g
g1,g2 > 0

(2i+ 1)(2j + 1)Qg1(i, f1)Qg2(j, f2),

(4.0.2)

Taking f = 1 in (4.0.2), one recovers the famous Harer–Zagier recurrence
[HZ86]. This formula was proven bijectively in [CFF13], and it was the first
bijective work on a formula linked to the KP hierarchy (and the only one
before our work, as far as we know). Here, we present bijective proofs for the
planar case (g = 0) of the Goulden–Jackson and Carrell–Chapuy formulas
(4.0.1) and (4.0.2). Note that contrary to the one-faced case, which is linear,
the planar formulas are, as in the general case, quadratic.

The Carrell–Chapuy formula (4.0.2) comes from two separate (but some-
how related by their bijective proofs) formulas that were not predicted by
the KP hierarchy, one of them being a generalization of the famous Rémy
bijection on plane trees [Rém85] to all planar maps (see formulas (4.1.1) and
(4.1.3)). The first bijection can be refined to control the distribution of ver-
tex degrees. As a consequence, we derive a general formula on precubic maps
(see Section 4.1 for a definition) which implies the Goulden–Jackson formula
(4.0.1).

Our bijections rely on a particular exploration of the map and on a "cut-
and-slide" operation. Although non-local, this operation allows us to keep
track of the degrees of the vertices (see Section 4.4, Theorem 7). We also take
a first step towards the higher genus case by proving the Goulden–Jackson
formula for two-faced maps in any genus (see Section 4.6 for a sketched proof).

Discussion and related works. The bijective study of planar maps is a
well understood topic, especially thanks to bijections with tree-like objects.
However, as far as we know, our bijection is not equivalent to those bijections
(although certain similarities can be observed, such as a search of the dual
map, DFS in our case, BFS in the bijections above). A related cut-and-slide
operation appeared in [Bet14], but it is different from ours (see Remark 4.2.3
for more details).

It is a natural question to try to unify bijections presented in this chapter
(that apply to planar maps with arbitrary number of faces) and bijections
in [CFF13] (that apply to unicellular maps with arbitrary genus) in order
to prove (4.0.1) and (4.0.2) in full generality. These two approaches seem
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different at first sight, but they both consist of taking a map with a marked
special half-edge, and "cutting" at this special half-edge in order to obtain
one or two maps with less edges, faces, or lower genus. In our case, those
special half-edges are called discoveries, and there are f−1 of them in a map
with f faces; in [CFF13], they are called trisections, and there are 2g of them
in a map of genus g. In (4.0.1), by the Euler formula, the factor (n + 1) in
the RHS is equal to 2g + f − 1 if there are f faces, this suggests that in the
general case these special half-edges still exist and there would be 2g+ f − 1
of them. They would thus be a common generalization of trisections and
discoveries. We already found a bijective proof of the precubic recurrence
formula for two faced maps (a sketch of proof is included in Section 4.6),
but it is already quite complicated and involves several cases. That is why
putting it all together seems to be a challenge of its own. In another direction,
we can also look at the second KP equation (which is also quadratic), which
yields a recurrence formula (very similar to (4.1.2)) for planar maps with
vertices of degrees 1 or 4, and this formula is also proven by our bijection
(it is a specialization of the more general formula obtained in Section 4.4).
This suggests that this exploration+cut-and-slide scheme is maybe somehow
underlying in the whole KP hierarchy for maps. Finally, the same bijective
question applies to the other formulas for maps arising from the KP and
2-Toda hierarchies, namely the formulas of [KZ15] and Chapter 5.

Structure of the chapter. In Section 4.1, we will give some definitions
on maps and state the main results. The bijections will be described in
Section 4.2 (including the proof of the Goulden–Jackson formula), with some
proofs postponed to Section 4.3. Section 4.4 will present refined formulas
with control over the degrees of the vertices. In Section 4.5, we prove the
Carrell–Chapuy formula using formulas (4.1.1) and (4.1.3). In Section 4.6,
we give a sketch of proof of the precubic recurrences for two-faced maps in
any genus.

4.1 Definitions and main results
We briefly recall some definitions on maps:

Definition 13. A map M is the data of a connected multigraph (multiple
edges and loops are allowed) G (called the underlying graph) embedded in a
compact connected oriented surface S, such that S \G is homeomorphic to a
collection of disks. The connected components of S \ G are called the faces.
M is defined up to homeomorphism. Equivalently, M is the data of G and



CHAPTER 4. BIJECTIONS FOR KP-BASED FORMULAS 64

Figure 4.1 – A planar map.

a rotation system which describes the clockwise cyclic order of the half-edges
around each vertex. The genus g of M is the genus of S (the number of
"handles" in S). A corner of M is an angular sector between two consecutive
half-edges around a vertex. A rooted map is a map with a distinguished
corner. A small arrow is placed in the distinguished corner, thus splitting the
corner in two separate corners (left and right of the arrow). If a rooted map
M of genus g has n edges, v vertices and f faces, the Euler formula links
those quantities: v − n+ f = 2− 2g. The map M has 2n+ 1 corners.

A planar map (see Figure 4.1) is a rooted map of genus 0. It can be drawn
on the plane with the root lying on the outer face. A precubic map is a map
with vertices of degree 1 or 3 only, rooted on a vertex of degree 1. A leaf is
a vertex of degree 1 that is not the root.

From now on, all the maps we consider will be rooted, and planar unless
stated otherwise.

In Section 4.2, we will introduce the concept of discovery, which are spe-
cial edges obtained by an exploration of the map. An important feature is
that a map with f faces has f − 1 discoveries.

Theorem 5. There is a bijection between planar maps M with a marked
discovery and pairs of planar maps (M1,M2) such that M1 has a marked
vertex and M2 has a marked leaf. This bijection preserves the total number
of edges and faces. This gives the following formula on planar maps

(f − 1)Q(n, f) =
∑

i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

v1Q(i, f1)(2j + 1)Q(j, f2), (4.1.1)

where Q(n, f) is the number of planar maps with n edges and f faces, and
v1 counts the number of vertices in the first map (i.e. v1 = 2 + i− f1).

This bijection adapts to precubic maps, and the marked vertex of M1 is
now a marked leaf (see Remark 4.2.2). This yields

(f − 1)α(n, f) =
∑
i+j=n

∑
f1+f2=f

α(1)(i, f1)α(1)(j, f2), (4.1.2)
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where α(n, f) counts the number of (planar) precubic maps with n edges and
f faces, and α(1)(n, f) counts the number of precubic maps with n edges and
f faces and a marked leaf.

Retracting a leaf into a corner (see Figure 4.3 left) is a classical operation
that gives a bijection between planar maps M with a marked leaf and planar
mapsM ′ with a marked corner, such thatM ′ has as many faces and one edge
less thanM . This operation, along with a more subtle retraction operation on
internal nodes, is at the core of the Rémy bijection on plane trees [Rém85].
We generalize the operation on internal nodes to all planar maps in the
following:

Theorem 6 (Generalized Rémy bijection). There is a bijection between pla-
nar maps M with a marked node (i.e. a vertex that is not a leaf) on the one
hand, and the union of planar maps M ′ with a marked corner and pairs of
planar maps (M1,M2) such that they both have a marked vertex on the other
hand. The total number of faces is preserved, and the total number of edges
decreases by one.

By this bijection, there are

(2n− 1)Q(n− 1, f) +
∑

i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

v1Q(i, f1)v2Q(j, f2)

planar maps with n edges, f faces and a marked node. The retraction oper-
ation (of Figure 4.3) implies that there are (2n− 1)Q(n− 1, f) planar maps
with n edges, f faces and a marked leaf. This yields the following equation:

vQ(n, f) = 2(2n−1)Q(n−1, f)+
∑

i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

v1Q(i, f1)v2Q(j, f2), (4.1.3)

where the "v-variables" count the number of vertices (i.e. v = 2 + n − f ,
v1 = 2 + i− f1 and v2 = 2 + j − f2). This holds for n > 0.

Taking n = 3m+ 2 and f = m+ 2 in (4.1.2), one recovers:

Corollary 1 (Goulden–Jackson (4.0.1) planar case).

(n+ 1)T (n) = 4(3n− 1)T (n− 1) + 4
∑

i+j=n−2
i,j > 0

(3i+ 2)(3j + 2)T (i)T (j),

where T (n) counts the number of planar cubic maps with 3n edges.

Remark 4.1.1. The term 4(3n− 1)T (n− 1) corresponds to i = f1 = 1 and
j = f2 = 1 in the summation of (4.1.2) (because α(1)(1, 1) = 1).
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Combining (4.1.1) and (4.1.3) and doing some manipulations, one recovers

Corollary 2 (Carrell–Chapuy (4.0.2) planar case).

(n+ 1)Q(n, f) =2(2n− 1)Q(n− 1, f) + 2(2n− 1)Q(n− 1, f − 1)
+ 3

∑
i+j=n−2
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)(2j + 1)Q(i, f1)Q(j, f2). (4.1.4)

In Section 4.2, we will give the definition of the exploration and the dis-
coveries, justify (4.1.1) and (4.1.2) and Corollary 1, then we will describe the
bijections behind Theorems 5 and 6. The proof that these are indeed bijec-
tions can be found in Section 4.3. Formula (4.1.4) is not straightforwardly
derived from (4.1.1) and (4.1.3). The calculations to recover (4.1.4) from
there are displayed in Section 4.5.

4.2 The bijections
In this section, we will define the exploration of a planar map and the notion
of discoveries that result from it, then we will explain our bijections.

4.2.1 The exploration
Definition 14. The exploration of a planar map (see Figure 4.2) is defined
iteratively in the following way: starting from the root, go along the edges,
keeping the edges on the right (progress in clockwise order). When an edge
that is at the interface of the current face and a face not yet discovered is
found, open this edge into a bud (an outgoing half-edge) and a stem (an
ingoing half-edge). The rule is that the bud has to appear before the stem in
the exploration (see Figure 4.2). Continue the process, thus entering the new
face. Continue until the root is reached again.

Each edge that has been opened during the process is called a discovery,
and the vertex attached to the bud is called a discovery vertex. If there are
f faces , there are f − 1 discoveries (note that several discoveries can share
the same discovery vertex).

The exploration is actually equivalent to a DFS of the dual, with a "right
first" priority. Thus for each face but the outer face we can define its previous
face as the face that is its parent in the spanning tree of the dual found by the
exploration. The notion of previous discovery can be similarly defined. This
also defines an order on the corners (resp. half-edges) incident to each vertex,
according to the order in which they were visited during the exploration (see
Figure 4.2).
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Let e be a discovery, incident to faces f1 and f2, such that f1 is the
previous face of f2. We say e leaves f1 and enters f2.

Remark 4.2.1. The exploration is a dynamic process that modifies the map
along the way, but in the end, once the exploration is over and the discoveries
have been found, we will deal with the original, unmodified map, with its
original edges and faces. It is as if we did the exploration then closed the
map back. Alternatively, one can think of an exploration that does not open
the discoveries but just crosses them.
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Figure 4.2 – The exploration of a planar map. The buds are the outgoing
arrows, the stems are the ingoing arrows. Left: the original map. Center:
the opened map. Right: The original map, with its discoveries and discovery
vertices in fat brown. The red tree describes the partial order among the
faces. The corners are labelled in the order they were found during the
discovery.

Lemma 3. Around each vertex, the order of the corners as defined by the
exploration agrees with the clockwise order.

Proof. The order between the corners of the map is exactly the same as the
order of the corners of the blossoming tree (i.e. a tree with some buds and
stems attached) obtained by opening the discoveries. The exploration of a
tree is just a tour of the unique face, and it is clear that the corners of each
vertex are in clockwise order, and we are done.

We can now relate the bijections and the formulas. In a map with f
faces, there are f − 1 discoveries, so there are (f − 1)Q(n, f) maps with n
edges, f faces and a marked discovery. A marked leaf can be retracted into
a marked corner (see Figure 4.3 left), such that there are (2j + 1)Q(j, f2)
maps with j+1 edges, f2 faces and a marked leaf. There are v1Q(i, f2) maps
with i edges, f1 faces and a marked vertex. This explains why, in Theorems 5
and 6, Formulas (4.1.1) and (4.1.3) are indeed consequences of the bijections.
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In a precubic map, one can retract a leaf into a marked side-edge losing two
edges: after retracting the leaf into a corner, merge the two edges adjacent
to it (see Figure 4.3 right). The same operation can be performed on the
root of a precubic map, thus a precubic map with 3n+ 2 edges and no leaves
is equivalent to a cubic map with 3n edges. This explains how to derive
Corollary 1 from (4.1.2).

=
=

Figure 4.3 – Retracting a leaf: in a general map (left), in a precubic map
(right, the vertex adjacent to the leaf is also removed).

4.2.2 Cut-and-slide bijection
We will describe the bijection of Theorem 5 between maps M with a marked
discovery and pairs of planar maps (M1,M2) such that M1 has a marked
vertex and M2 has a marked leaf. It will then be straightforward to see that
restricting the bijection to precubic maps gives (4.1.2).

We first need to introduce the notion of disconnecting discovery, and the
splitting operation.

Definition 15. A discovery is said to be disconnecting if the corner preceding
the discovery and the last corner (in the order defined by the exploration)
around the discovery vertex lie in the same face.

Splitting operation. Any map with a marked disconnecting discovery can
be split into two maps, one with a marked vertex, the other with a marked leaf
in the outer face (see Figure 4.4): split the discovery vertex in two between
c and c∗. This divides the map in two, one containing the original root
and a marked vertex, the other one rooted on the "splitting corner". Detach
the discovery from the root to obtain a marked leaf in the outer face. This
operation is bijective: to go back, reattach the marked leaf to the root of the
second map, and then glue its root to the last corner around the marked vertex
in the first map.

The splitting operation of a disconnecting discovery describes our bijec-
tion in the case where the marked discovery is disconnecting, and the reverse
bijection in the case where the marked leaf lies in the outer face.

In general, discoveries are not disconnecting. In order to still split the
map in two, given a discovery e, we will need to find a disconnecting discovery
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c
c∗

Figure 4.4 – Splitting a map at a disconnecting discovery. Here we only see
what happens locally around the disconnecting discovery. On the left, the
discovery and its discovery vertex are in fat brown, c is the corner preceding
the discovery, and c∗ is the last corner around the discovery vertex.

e′ that is "canonically" related to e. Conversely, the marked leaf in M2 is not
always in the outer face, we will need to "propagate" the leaf all the way up
to the outer face. The notion of previous discovery will help us with that.
This will be the general construction of the bijection that is detailed below.
First we need to ensure that there will always be a disconnecting discovery.
That is the purpose of Lemma 4.

Lemma 4. If a discovery leaves1 the outer face, then it is disconnecting.

Proof. We will show the following stronger result, which directly implies
Lemma 4: if a vertex has a corner in the outer face, then its last corner lies
in the outer face. Indeed, if a discovery leaves the outer face, then the corner
preceding the discovery must be on the outer face. In particular, if v denotes
the discovery vertex, then v has a corner on the outer face, so by this result
the last corner of v must be on the outer face. Thus, v is a disconnecting
discovery.

In a map M , let v be a vertex with one of its corners lying in the outer
face. If v is the root vertex, then it is obvious that its last corner lies in the
outer face. Else, let e be the first edge around v, as defined by the exploration
(i.e. the edge we see in the exploration just before we see v for the first time).
Let c be a corner around v that lies in the outer face. Suppose it is not the
last corner around v (if it is, we have nothing to prove). Let c0 (resp. c∗) be
the first (resp. the last) corner around v, and let F0 (resp. F ∗) be the face
in which c0 (resp. c∗) lies (see Figure 4.5).

If a face F ′ is deeper (in terms of the partial order defined by the explo-
ration) than a face F (and F 6= F ′), then during the exploration (ignoring
all other faces), we first see a part of F , then all of F ′, then the rest of F .

1as defined in Definition 4.2.1.
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c0c∗

c

e

Figure 4.5

This implies that, if F ∗ is not the root face, during the exploration of M ,
at the time we see c, F ∗ has not been discovered yet. But that would mean
that at the time we see e (which comes before c in the exploration), F ∗ has
not been discovered yet. But then e would be a discovery, and thus c∗ would
be seen before c0, that is a contradiction. The lemma is proved.
Bijection 1. The general process is iterative (see Figure 4.6 for an example).

M M1

M2

M1

M2

M

e
e1

e2

b0
b1

b0

s0s1

b1

s0s1

Figure 4.6 – The bijection (above) and its inverse (below).

Cut process: Start from a map M with a marked discovery e, let v be
its discovery vertex. If the discovery is disconnecting, then split M at v as
described in the splitting operation.
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Otherwise, open e into a bud b0 and a stem s0, and consider its previous
discovery e1 (in the order defined above). If it is disconnecting, then split
it, otherwise open it (into b1 and s1) and consider the previous discovery e2,
and so on until a splitting operation is made. Note that a discovery that
leaves the outer face is always disconnecting (because of Lemma 4), so the
algorithm terminates. One ends up with two maps M1 and M ′

2, such that M1
has a marked vertex and M ′

2 has a marked leaf l and (possibly) some buds
and stems, all lying in the outer face.

Slide process: We will not modify M1. If there are no buds and stems
in M ′

2, we are done. Else, consider s0, and make it a marked leaf. Then
consider l, and make it a stem. Finally, glue back the buds and stems together
canonically: starting from the root of M ′

2, taking a clockwise tour of the outer
face, one encounters a certain number of buds, then the same number of
stems. There is only one way to match each bud with each stem such that the
map remains planar. Equivalently, if there are k + 1 buds and k + 1 stems,
match b0 with s1, and so on, until bk is matched with l. We obtain a map
M2 with a marked leaf, together with the map M1 with a marked vertex.

We can now describe the inverse bijection:

Bijection 2. Starting from M2 with a marked leaf l and M1 with a marked
vertex, consider M2. The leaf l lies in a certain face F , and if F is not
the outer face, there is a certain discovery e0 that enters F . Open it into
a bud b0 and a stem s0, then open the previous discovery e1, and repeat the
process until a discovery that leaves the outer face has been opened (in that
case there is no previous discovery to open). One ends up with a map M ′

2
with a marked leaf l and possibly some buds and stems, all lying in the outer
face. If there are some buds and stems, let s be the stem that was created last
in the process. Make s a marked leaf l∗, and make l a marked stem s∗, then
close the map canonically. One now has a map M∗

2 with a marked leaf on the
outer face and (possibly) a marked edge e (that comes from the closure of s∗).
This marked edge is actually a discovery in M∗

2 (and will be a discovery in
the final map). If e does not exist, let l∗ = l, and mark the edge adjacent to
l∗ (and call it e). Now do the inverse of the splitting operation: glue l∗ to the
root vertex of M∗

2 at its first corner, and then glue the root of the resulting
map at the last corner of the marked vertex of M1 to obtain a map M with
a marked discovery e.

Remark 4.2.2. This operation restricts to precubic maps, and in this case
discovery vertices are always of degree 3, so that when split, the marked vertex
of M1 and the root of M2 are both of degree 1. This justifies (4.1.2).
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Those two operations are inverse of each other because of the following
property (that will be proved in Section 4.3):

Lemma 5. In the bijection and its inverse, the closure of the buds and stems
are discoveries in the resulting map. Moreover, in the bijection, if e1,. . . ek
are the discoveries created by closing buds and stems, ek leaves the outer face,
and for all i < k, ei+1 is the previous discovery of ei. In the inverse bijection,
if e1,. . . ek+1 are the discoveries created by closing buds and stems, ek+1 is
disconnecting, and for all i < k, ei+1 is the previous discovery of ei.

Remark 4.2.3. A similar but different cut-and-slide operation also appeared
in [Bet14] (and in some sense also in [AFP14]). However there are signif-
icant differences: in [Bet14] the cut path is geodesic (leftmost BFS), and
both endpoints of the path need to be specified. Whereas here, the cut path
is defined by a leftmost DFS, and only one endpoint of the path (the marked
discovery) needs to be specified, the other endpoint (the disconnecting dis-
covery) is uniquely determined. Furthermore, the bijections in [Bet14] imply
linear formulas, contrary to our quadratic formulas.

4.2.3 Generalized Rémy bijection
We will now describe a generalized Rémy bijection on planar maps, that also
relies on the cut-and-slide operation.

We recall Rémy’s bijection for plane trees that proves the formula

(n+ 1)Cat(n) = 2(2n− 1)Cat(n− 1)

where Cat(n) counts the number of rooted plane trees with n edges (see
Figure 4.7 for an example). Start from a tree T with n edges and a marked
vertex v. If v is a leaf, retract it (as in Figure 4.3) to obtain a tree T ′ with
n − 1 edges, with a marked corner. Otherwise, v has a last child v′, that is
its child that is found last during a clockwise tour of the unique face. We
can then contract the edge between v and v′, and mark a corner around the
merging vertex to remember where to grow the edge back (as in Figure 4.7).
The reverse bijection is then straightforward.

Remark 4.2.4. Leaves are defined as vertices of degree 1 that are not the
root vertex. Thus, if the root vertex has degree 1, one should apply the
second operation to it.

In a general planar map, let us define precisely the operations of edge
contraction and edge growing (See Figure 4.8):
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Figure 4.7 – Rémy’s bijection for plane trees. The left tree can be obtained
by applying the bijection to each of the two trees on the right. The rightmost
tree corresponds to the case where v is a leaf, and the middle tree corresponds
to the case where v is not a leaf.

Let v be a non-leaf vertex. It has a last corner c2 (as defined by the
exploration). Let e be the edge that comes just before c2 in clockwise order
around v. We call e the last edge around v. Let v′ be the other end of e (note
that it is possible that v = v′). It is called the last child of v. We will define
the contraction operation only in the case where v is seen strictly before v′ in
the exploration. The edge e is adjacent to two corners of v: c2 and another
corner c1. It is also adjacent to two corners of v′, c′ and c′′. Since v appears
strictly before v′, c′ is the first corner around v′, and c′′ is the last corner
around v′.

The contraction operation consists in contracting e, merging v and v′ into
a vertex v∗, merging c1 and c′ into c∗ and c2 and c′′ into c, such that c is the
last corner around v∗, and c∗ is the marked corner.

Conversely, starting with a marked corner c∗ adjacent to a vertex v∗ whose
last corner is c, one can grow an edge e, splitting v∗ into v and v′, c∗ into
c1 and c′, and c into c∗ and c2. The corner c2 is the last corner around v
and c′′ the last corner around v′. The marked vertex is v, and v′ is its last
child. This defines the growing operation. Lemma 6 will ensure these two
operations are inverse of each other.

v∗

c = c∗

v

v′c′′ = c′

c1c2

v∗
c∗c

v

v′
c′c′′

c1c2

Figure 4.8 – The contraction and growing operations (right: the special case
where the marked corner is the last corner).
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Lemma 6. Let M be a map with a marked corner c∗, and let M ′ be the map
obtained after a growing operation is performed at c∗. Let v be the marked
vertex and v′ its last child. Then v appears before v′ in the exploration.

Proof. The growing operation is local, so both explorations of M and M ′

look exactly the same before c∗ (resp. c1) is found. Let p be the first corner
around v∗ in M . After the growing operation it is adjacent to v, and it is
reached before any other corner around v or v′, thus v appears before v′ in
the exploration (the special case p = c∗ works the same).

We also need to cover the remaining case, namely when the the marked
vertex is seen after its last child in the exploration.

Lemma 7. Let v be a non-leaf vertex, e its last edge, and v′ its last child. If
v′ is found before v in the exploration (including the case v = v′), then e is
a discovery.

Proof. If v = v′, then e is a loop, thus a discovery (since a loop separates a
planar map in two, it has to be opened during the exploration).

Otherwise, let c1, c2 (resp. c′, c′′) be the corners of v (resp. v′) that are
adjacent to e. Note that c2 is the last corner of v, and assume e is not a
discovery. Thus, it is not opened during the exploration, such that c′′ comes
before c2, and c1 before c′ (see Figure 4.9). The corner c′ cannot be the first
corner of v′, otherwise v would be seen before v′ in the exploration. Thus,
Lemma 3 implies that c′ comes after c′′. But that would mean the order
among the four corners in the exploration is c′′, then c2, then c1, then c′,
which is impossible since c2 is the last corner of v. Thus, e is a discovery.

v

v′
c′c′′

c1c2

Figure 4.9 – The exploration locally around e, if it is not a discovery.

Now we are ready to explain the generalized Rémy bijection (see Fig-
ure 4.10):

Bijection 3. Take a planar map M and mark a vertex v. If it is a leaf,
contract it to mark a corner. Else, let v′ be its last child, and e be its last



CHAPTER 4. BIJECTIONS FOR KP-BASED FORMULAS 75

edge. If v′ is seen after v in the exploration, then contract e and mark the
corresponding corner. The inverse operation is the growing operation as de-
scribed above. This gives the first term of the RHS of (4.1.3). Otherwise,
e is a discovery, apply the cut-and-slide operation at e. One ends up with
two maps (M1,M2). M1 has a marked vertex, and M2 has a marked leaf l
that is the last child of its neighbour w. Contract l to mark w. To go back-
wards, grow l out of the last corner around w, then apply the inverse of the
cut-and-slide operation. This gives the second term of the RHS of (4.1.3).

or

Figure 4.10 – The generalized Rémy bijection. The case similar to trees
(above), and the cut-and-slide case (below).

4.3 Proofs
In this section we will present a proof that Bijections 1 and 2 are inverse
to each other, thus implying that the cut-and-slide operation is a bijection.
Then, together with the lemmas presented in Section 4.2.3, it will be enough
to prove that the generalized Rémy bijection (Bijection 3) is indeed a bijec-
tion. To do so, we will describe what happens to the different faces of the
map during the operation (see Figure 4.11).

Proof of Lemma 5. We only prove Lemma 5 for Bijection 1. The proof for
Bijection 2 is very similar and can be copied almost verbatim.

Thanks to the exploration, we can consider faces as words on the alphabet
of side-edges (each face is described by the list of the side-edges that lie inside
it, ordered as they appear during the exploration). For any side-edge e, we
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will call e its opposite side-edge (i.e the other side of this edge). By abuse
of notation we may also refer to the edge e that is the edge made of the
side-edges e and e, but we will stress the fact that we are referring to an
edge.

Fix a planar mapM . Let d0 be a discovery, d1 its previous discovery (if it
exists), and so on, di+1 being the previous discovery of di, as long as it exists.
Let (Fi) be the sequence of faces of M such that the discovery di discovers
the face Fi while leaving face Fi+1. For all i, let vi be the discovery vertex
corresponding to di, and let us tell apart both side-edges of the discovery:
di sits in Fi+1 and di sits in Fi. Let k be the smallest i such that di is a
disconnecting discovery.

Now, we will describe faces as words of side-edges, in the order they
are visited by the exploration. For all i between 1 and k, we can say that
Fi = diAidi−1Bi, i.e. Ai are the side-edges of Fi encountered before di−1 in
the exploration, and Bi are the the side-edges of Fi encountered after di−1 in
the exploration. We also set F0 = d0A0 and Fk+1 = dk+1CdkBk+1C

′ where
Bk+1 is the word of side-edges of Fk+1 that appear between dk and the last
corner around vk.

Now let us describe the cut-and-slide operation when d0 is marked. First,
for all i < k, all edges di are opened into a bud bi and a stem si. The edge
dk becomes a marked leaf sk. Then sk becomes a stem, and s0 becomes the
marked leaf. Then bi is matched with si+1 to create an edge ei. The map has
been split into two distinct maps M1 and M2, now let us see what happened
to the faces. In M1, there is only one face that has been modified, it is the
face in which lies the last corner of the marked vertex v∗, that we call G∗. It is
straightforward to see that G∗ = dk+1CC

′ where the last corner of v∗ appears
exactly between the end of C and the beginning of C ′. In M2, the modified
faces will be called Gi. We have G0 = e0A0s0s0B1, Gi = eiAiei−1Bi+1 and
Gk = Akek−1Bk+1. The outer face of M2 is Gk. We must now prove that, for
all i < k, the edge ei is a discovery that leaves Gi+1 and discovers Gi. We
already know that ei lies in Gi+1 and ei lies in Gi, we just have to prove that
the edge ei is a discovery, i.e. ei is the first side-edge e of Gi+1 such that e
lies in Gi. Assume the contrary. There must be a side-edge f in Ai+1 such
that f lies in Gi. There are two possibilities:

1. Either f belongs to Ai, but then in the original map, in Fi+1, f comes
before di and f lies in Fi, thus di could not be the discovery, in this
case there would be a contradiction.

2. Or f belongs to Bi+1, but then in the original map, in Fi+1 we see
the side-edges f , then di, then f in that order. But since we deal with
planar maps, an edge which has both sides in the same face is a cut-edge
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A0

A1

Ak
Bk

B1

Bk+1

B2
A2

A0

A1

Ak

B1

B2

Bk+1

C

C ′

C

C ′

d0

d1

dk

s0

e0

ek−1

dk−1

Figure 4.11 – What happens to the faces during the cut-and-slide operation.
Marked objects are in fat purple, other discoveries involved are in gold. Blue
contour materializes the Ai’s and red contour the Bi’s.

(removing it disconnects the map). But then in that configuration, di
must be a disconnecting discovery (see Figure 4.12). Indeed, let M∗ be
the connected component containing di that we obtain after removing
e. Then, in the map M∗, di would be a discovery that leaves the outer
face, thus disconnecting (because of Lemma 4). This is a contradiction,
because i < k.

We proved what we wanted.

Figure 4.12 – The impossibility of a cut-edge separating a non-disconnecting
discovery from the root. In red, the cut-edge, in brown the discovery.

Knowing exactly what happens to the faces and that the discoveries are
in some sense "preserved" is enough to prove that both the cut-and-slide
operation and its inverse work fine and are actually inverse operations of
each other.
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4.4 Controling the degrees of the vertices
Here we present an analogue of (4.1.1) with control over the degrees of the
vertices. This is a result of independent interest that is not used in the other
proofs of the chapter.

If v = (vi)i∈N is a sequence of integers, for any j > 0, we set δj(v) = w
where wj = vj + 1 and wi = vi for i 6= j, and δ−j(v) = w′ where w′j = vj − 1
and w′i = vi for i 6= j. Finally, we set δ(v, j1, . . . , jk) = δj1 ◦ . . . ◦ δjk(v).

Let M(r, f,v) be the number of planar maps with f faces, with root
of degree r, with v = (vi)i∈N such that there are vi vertices of degree i
(root included). The cut-and-slide operation only modifies the degrees at
the marked leaf and the splitting vertex, so we can immediately derive this
more precise formula:
Theorem 7.

(f − 1)M(r, f,v)=
∑

j,k > 1

∑
u,w

∑
f1+f2=f
f1,f2 > 1

(uj−1j=r)M(r, f1,u)(w1−1k=1)M(k, f2,w)

+
∑

j+k=r−1

∑
u,w

∑
f1+f2=f
f1,f2 > 1

M(j, f1,u)(w1−1k=1)M(k, f2,w).

where the sum of the first line is over pairs of sequences of numbers (u,w)
such that u + w = δ(v, 1, j, k,−(j + k + 1)), and the sum of the second line
over pairs of sequences of numbers (u,w) such that u + w = δ(v, 1,−r, k, j).
Proof. Notice that, in the cut-and-slide operation, very few of the vertex
degrees are modified: there is the leaf that is created in M2, and the dis-
connecting discovery vertex that is split in three. Other than that, for all
other vertices, although some of their adjacent edges might be split, they are
reattached somewhere else so their degree does not change.

Let v be the vertex that is split in three: it gives birth to v1, the marked
vertex in M1, v2, the root vertex of M2, and v3, that after some possible
transformation "becomes" the marked leaf inM2. Say v is of degree j+k+1,
with deg(v1) = j and deg(v2) = k.

The (w1 − 1k=1) term means that the marked leaf in M2 cannot be the
root. Finally, there are two possible cases, depending on whether v is the
root of M or not, each implying one term in the RHS.
Remark 4.4.1. Writing δj(v) means there is one more vertex of degree j,
and δ−j(v) means there is one less vertex of degree j. This notation is some-
how complicated but avoids dealing with special cases, for instance in δ(v, j, k)
there is no problem if j = k, contrary to saying something like v′j = vj + 1,
v′k = vk + 1 and v′i = vi for i 6= j, k.
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Note that this recurrence formula allows us to compute the number of
maps with bounded vertex degrees, i.e. it can be specialized to maps with
vertex degrees less or equal to d for some d. Restricting to vertex degrees 1
and 3, one recovers (4.1.2).

Formula (4.1.3) also has an analog where the degrees are recorded, but it
involves more complicated cases and is less useful for enumeration, we leave
it as an exercise to the reader.

4.5 The proof of the Carrell–Chapuy formula
in the planar case

We are now ready to prove the Carrell–Chapuy formula in the planar case
(4.1.4). We will prove it by induction on n, only starting with the information
that Q(0, f) = 1f=1.

Applying (4.1.1) to the dual map, we obtain the following formula, which
will be helpful for the proof:

Corollary 3.

(v − 1)Q(n, f) =
∑

i+j=n−1
i,j > 0

∑
f1+f2=f+1
f1,f2 > 1

(2i+ 1)Q(i, f1)f2Q(j, f2) (4.5.1)

Starting with (4.1.1), and applying (4.1.3), then in a second time applying
(4.1.1) backwards, we obtain

(f − 1)Q(n, f) =(2n− 1)Q(n− 1, f − 1) + 2(2n− 1)Q(n− 1, f)
+ 2

∑
i+j=n−2
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)Q(i, f1)(2j + 1)Q(j, f2)

+
∑

i+j+k=n−2
i,j,k > 0

∑
f1+f2+f3=f
f1,f2,f3 > 1

(2i+ 1)Q(i, f1)v2Q(j, f2)v3Q(k, f3)

= (2n− 1)Q(n− 1, f − 1) + 2(2n− 1)Q(n− 1, f)
+ 2

∑
i+j=n−2
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)Q(i, f1)(2j + 1)Q(j, f2)

+
∑

i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(f1 − 1)Q(i, f1)v2Q(j, f2).
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So adding (4.1.3) to this

(n+ 1)Q(n, f) =(2n− 1)Q(n− 1, f − 1) + 2(2n− 1)Q(n− 1, f)
+ 2

∑
i+j=n−2
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)Q(i, f1)(2j + 1)Q(j, f2)

+
∑

i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(i+ 1)Q(i, f1)v2Q(j, f2).

Let
S =

∑
i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(i+ 1)Q(i, f1)v2Q(j, f2).

We want to prove

S = (2n− 1)Q(n− 1, f − 1) +
∑

i+j=n−2
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)Q(i, f1)(2j + 1)Q(j, f2).

We apply the recursion hypothesis:

S =
∑

i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(2(2i− 1)Q(i− 1, f1) + 2(2i− 1)Q(i− 1, f1 − 1))v2Q(j, f2)

+ 3
∑

i+j+k=n−3
k,l > 0

∑
f1+f2+f3=f
f1,f2,f3 > 1

(2i+ 1)Q(i, f1)(2j + 1)Q(j, f2)v3Q(k, f3)

+ vQ(n− 1, f − 1).

But, according to (4.1.1),∑
i+j=n−1
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(2(2i− 1)Q(i− 1, f1− 1))v2Q(j, f2) = 2(f − 2)Q(n− 1, f − 1),

and ∑
i+j+k=n−3

k,l > 0

∑
f1+f2+f3=f
f1,f2,f3 > 1

(2i+ 1)Q(i, f1)(2j + 1)Q(j, f2)v3Q(k, f3)

=
∑

i+j=n−2
i,j > 0

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)Q(i, f1)(f2 − 1)Q(j, f2).
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So

S =(2(f − 2) + v)Q(n− 1, f − 1)
+

∑
i+j=n−2

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)Q(i, f1)(2j + 1)Q(j, f2)

+
∑

i+j=n−2

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)Q(i, f1)f2Q(j, f2).

But using (4.5.1), we have∑
i+j=n−2

∑
f1+f2=f
f1,f2 > 1

(2i+ 1)Q(i, f1)f2Q(j, f2) = (v − 1)Q(n− 1, f − 1),

which finishes the proof.

Remark 4.5.1. The proof above is not straightforward, and since it uses
duality, our method cannot be applied to finding an extended Carrell–Chapuy
formula with control over the degrees (if it even exists).

4.6 A bijection for precubic maps with two
faces

In this section, we will give a sketch of the proof of a first step towards uniting
higher genus and multiple faces: the case of two-faced precubic maps.

Similarly as (4.1.2), we have a recurrence formula for higher genus pre-
cubic maps with two faces:

(2g + 1)αg(n, 2) = α
(3)
g−1(n, 2) +

∑
g1+g2=g

∑
i+j=n

α(1)
g1 (i, 1)α(1)

g2 (j, 1) (4.6.1)

where αg(n, f) counts the number of precubic maps with n edges and f faces,
of genus g, and α(k)

g (n, f) counts the number of those maps with k marked
leaves.

We can define the exploration of a precubic map with two faces in the
following way:

Definition 16. We will describe an exploration of the map as a canonical
labelling of all its corners (see Figure 4.13).

As in Definition 4.2.1, we can define the discovery as the first edge ad-
jacent to both faces that is encountered in a clockwise tour of the root face
starting from the root, and the discovery vertex as the vertex that appears
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right before the discovery in this tour (there is only one discovery since there
are 2 faces). Opening the discovery into a bud and a stem creates a blossom-
ing (i.e. with a bud and a stem) unicellular map. In this map, it is possible to
label all the corners in their order during the tour of the unique face. Thus,
there is a labelling of all the corners of the map, and a discovery vertex (we
will not need the discovery itself in what follows).

The discovery vertex is obviously of degree 3 (because a leaf is adjacent
to only one face). We can now introduce special vertices and trisections.

Definition 17. A trisection is a vertex whose corner labels are in counter-
clockwise order around this vertex. A vertex is said to be special if it is a
trisection or if it is the discovery vertex.

A trisection of the map is exactly a trisection of the unicellular (blos-
soming) map. In [Cha10, Cha11], it is proven that in a unicellular map of
genus g, there are 2g trisections. Furthermore, we can easily verify that the
discovery vertex is not a trisection, thus the following lemma holds:

Lemma 8. There are 2g + 1 special vertices in a two-faced precubic map of
genus g (see Figure 4.13 right).
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Figure 4.13 – A precubic map (left), its exploration (center), and its special
points in fat (right, discovery vertex in red, trisections in brown).

The operation we will consider is fairly simple: take a map of genus g
with a marked special vertex, and split it. There are two possible cases:

1. the map is disconnected into two maps with a marked leaf each, such
that the genuses, number of edges and faces add up,

2. the resulting map is of genus g−1 and has 3 marked leaves, along with
information on how to glue back the leaves together (given 3 leaves,
there are 2 possible ways of gluing them together).
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Remark 4.6.1. The first case can only appear if the special vertex is the
discovery vertex. In the second case, the special vertex can be either the
discovery vertex or a trisection.

There is a bijection between maps in case 1 and pairs of maps with a
marked leaf each, the inverse operation being the same as the case of dis-
connecting discoveries in the planar case: given two maps with a marked
leaf each, it is possible to glue them back together as in Figure 4.4, and one
obtains a map with a marked discovery vertex.

Case 2 is more complicated: given a map of genus g − 1 with 3 marked
leaves, that we will call a tripod, there are two ways to glue back the leaves.
A gluing is said to be valid if the resulting map has genus g and the gluing
vertex is a special vertex. Tripods can have 0, 1 or 2 valid gluings, and we
will provide a classification of tripods with respect to their number of gluings.
In the following, we will refer to "marked leaves" as just "leaves" as there is
no risk of ambiguity. In order to prove (4.6.1), we will then have to prove
there is a bijection between tripods with respectively 0 and 2 valid gluings.

Definition 18. In a given map, let v be the discovery vertex. It has two
corners in the root face, and is thus seen twice in the tour of the root face.
We can decompose the root face F as a word on side-edges as in Section 4.3,
starting from the root, as F = TvOvT (see Figure 4.14 left).

Take a given tripod M , with exactly two leaves in the root face, both in
T . Glue those two leaves to split the root face in two. Let F ′ be the face thus
obtained that is not the root face. We say that M is in the special case if no
side-edge of F ′ has its opposite side-edge in T (see Figure 4.14 right).

T

O

T

Figure 4.14 – The schematic decomposition of the root face (left), and the
special case (right, with the leaves in fat brown).

Lemma 9. The following classification holds:

• A tripod with all leaves in the same face or in the special case or with
two leaves in O has 1 valid gluing.



CHAPTER 4. BIJECTIONS FOR KP-BASED FORMULAS 84

• A tripod having exactly one leaf in the root face has 2 valid gluings.

• A tripod with exactly two leaves in the root face, at least one of which
in T or T (except for the special case), has no valid gluings.

The proof of this lemma is done by carefully considering the cases implied
(we omit it here).

To finish the proof, one needs to find a bijection between tripods with
0 valid gluings and tripods with 2 valid gluings. The bijection consists of
cleverly "unplugging" the discovery and plugging it somewhere else to "trans-
fer" leaves between the faces. The proof involves several cases and is a bit
technical, thus we prefer to omit it. This shows that on average, a tripod
has one valid gluing, implying (4.6.1).



Chapter 5

Recurrence formulas for
bipartite maps with prescribed
degrees (and other models)

Abstract. This chapter is adapted from the article Simple formulas for
constellations and bipartite maps with prescribed degrees, to appear in the
Canadian Journal of Mathematics [Lou19b]. We obtain simple quadratic
recurrence formulas counting bipartite maps on surfaces with prescribed de-
grees (in particular, 2k-angulations), and constellations. These formulas are
the fastest known way of computing these numbers. Our work is a natural ex-
tension of previous works on integrable hierarchies (2-Toda and KP), namely
the Pandharipande recursion for Hurwitz numbers (proven by Okounkov and
simplified by Dubrovin–Yang–Zagier), as well as formulas for several models
of maps (Goulden–Jackson, Carrell–Chapuy, Kazarian–Zograf). As for those
formulas, a bijective interpretation is still to be found. We also include a
formula for monotone simple Hurwitz numbers derived in the same fashion.
These formulas also play a key role in establishing the hyperbolic local limit
of random bipartite maps of large genus (joint work with T. Budzinski, see
Chapter 7).

In Chapter 2, we recalled the proof that the generating function of con-
stellations (and therefore, its specialization to maps) is a tau-function of the
KP hierarchy. Using this fact, recurrence formulas for maps were found,
starting with Goulden and Jackson for triangulations [GJ08]. They were fol-
lowed by Carrell and Chapuy for general maps [CC15], and Kazarian and
Zograf for bipartite maps [KZ15]. All these works start with the first KP
equation, and then use ad-hoc techniques to obtain explicit recurrence for-

85
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mulas. The generality of this second step is not well understood. Before these
works on maps, the Hurwitz numbers, that enumerate ramified coverings of
the sphere, were also studied from the point of view of integrable hierarchies.
Pandharipande conjectured a recurrence formula for those numbers [Pan00],
which was proven by Okounkov [Oko00] and later simplified by Dubrovin,
Yang and Zagier [DYZ17].

The approach developed in [GJ08, CC15, KZ15] does not generalize to
constellations, nor to controlling face degrees (except for the particular min-
imal case of triangulations [GJ08]). On the other hand, in [Oko00, DYZ17],
formulas are derived only for Hurwitz numbers unramified at 0 and∞ (which
corresponds to maps without control over the degrees of the faces and/or ver-
tices).

We manage to combine these two approaches in the context of maps, and
we derive recurrence formulas for bipartite maps with prescribed degrees,
allowing us in particular to derive a formula for bipartite 2k-angulations.
We also find recurrence formulas for constellations.

These formulas are, up to our knowledge, the simplest and fastest way to
compute those numbers (in all models, it takes O(n2g3) arithmetic operations
to compute the coefficient for n edges and genus g, see Remark 5.1.1). In
addition to the computational aspect, such recurrence formulas are the only
tool we know of in the study of asymptotic properties of large genus maps:
the Goulden–Jackson formula played a key role in the proof (see Chapter 6) of
the Benjamini–Curien conjecture [Cur16] of the convergence of random high
genus triangulations towards a random hyperbolic map. Similarly, the results
of this chapter are necessary in the study of random high genus bipartite maps
with T. Budzinski (see Chapter 7).

We recall from Chapter 2 the generating function of constellations (that
depends implicitly in r):

τ(z,p,q, (uj)) =
∑
n > 0

|µ|=|λ|=n
li > 1 ∀i

zn

n!

r∏
i=1

un−lii pλqµCov(l1, l2, . . . , lr;λ, µ).

It can be written in the following form:

τ(z,p,q, (uj)) = 〈∅|Γ+(p)zHΛΓ−(q)|∅〉

with

F (u) =
∑
k>0

k−1/2∑
i=0

log(1 + ui)ψkψ∗k +
∑
k<0

−k−1/2∑
i=0

log(1− ui)ψ∗kψk,
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where the k’s belong to Z + 1/2, and Λ = ∏r
j=1 exp(F (uj)). Introducing the

family (τn)n > 0 as

τn(z,p,q, (uj)) = 〈∅n|Γ+(p)zHΛΓ−(q)|∅n〉

we have τ = τ0 and the τn’s form a family of tau-functions of the 2-Toda
hierarchy.

Structure of the chapter: In Section 5.1, we will give precise definitions
and state our main results. The rest of the chapter presents the main steps of
the proof. The first part of the proof is common to all models: in Chapter 2
we introduced τ , a certain generating function for constellations. This func-
tion, along with some auxilliary functions τn, satisfies the 2-Toda hierarchy.
Our first contribution, inspired by [Oko00], is to link τ to the τn and derive
an equation involving τ only (Proposition 5.2.1). This will be presented in
Section 5.2. From this equation, specialized to the model we wish for (bipar-
tite maps or constellations), we perform a few combinatorial operations (that
are specific to the model, similarly as in [GJ08, CC15, KZ15]) to obtain our
formulas. We present this in detail for bipartite maps in Section 5.3, and we
briefly mention the case of constellations. In Section 5.4, we will present ad-
ditional models, especially one-faced constellations, and in Section 5.5 we will
derive a similar formula for (simple, unramified) monotone Hurwitz numbers.

5.1 Definitions and main results
We briefly recall some definitions about bipartite maps and constellations:

Definition 19. A bipartite map is a map with two types of vertices (black
or white), such that each edge connects two vertices of different colours. A
bipartite map is said to be rooted if a particular edge is distinguished.

An m-constellation1 is a particular kind of map with two kinds of vertices:
coloured vertices, carrying a "colour" between 1 and m, and star vertices.
Each edge connects a star vertex to a coloured vertex. A star vertex has degree
m, and its neighbours have colour 1,2,. . . ,m in the clockwise cyclic order. A
constellation is said to be rooted if a particular star vertex is distinguished.
A constellation with n star vertices is said to be labelled if each star vertex
carries a different label between 1 and n. Since rooting kills all possible
automorphisms, there is a (n− 1)!-to-1 correspondence between labelled and

1here we use the letter m instead of r, that is used in the definition of τ , because we
will specialize some variables, resulting in r = m+ 1 or r = m+ 2.
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rooted constellations with n star vertices. From now on, we will only consider
rooted objects unless stated otherwise.

Some basic, well-known, properties of maps and constellations will be
useful later.

Proposition 11. Labelled (non-necessarily connected) m-constellations with
n star vertices are in bijection with (m + 1)-uples (σ1, σ2, . . . , σm, φ) of per-
mutations of Sn such that σ1 ·σ2 · . . . ·σm = φ. The permutation σi represents
the vertices of colour i: each vertex is a cycle of σi, and the elements of the
cycle represent the neighbouring star vertices, in that cyclic order. The per-
mutation φ encodes the faces, see Figure 5.1 for an example. Bipartite maps
are in bijection with 2-constellations, since each star vertex and its two ad-
jacent edges can be merged into a single edge connecting a black and a white
vertex.

31

*

*
1

3

σ1 = (1, 2, 3, 4)
σ2 = (1, 4)(2)(3)
σ3 = (1, 3, 2, 4)
φ = (1, 4)(2)(3)

2

1

2

*
*

*

3 *

1

σ1

σ2

σ3

φ
*

2

2

2

*
4

Figure 5.1 – Left: a (labelled) 3-constellation (of genus 0) and the corre-
sponding permutations, right: the permutation φ, whose cycles describe the
faces.

The main results of this chapter are the following theorems:

Theorem 8. The number βg(f) of bipartite maps of genus g with fi faces of
degree 2i (for f = (f1, f2, . . .)) satisfies:(
n+ 1

2

)
βg(f) =

∑
s+t=f

g1+g2+g∗=g

(1 + n1)
(

v2

2g∗ + 2

)
βg1(s)βg2(t) +

∑
g∗ > 0

(
v + 2g∗
2g∗ + 2

)
βg−g∗(f)

(5.1.1)

where n = ∑
i ifi, n1 = ∑

i isi, v = 2−2g+n−∑i fi, v2 = 2−2g2 +n2−
∑
i ti

and n2 = ∑
i iti (the n’s count edges, the v’s count vertices, in accordance

with the Euler formula), with the convention that βg(0) = 0.
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Theorem 9. The numbers C(m)
g,n of m-constellations of genus g with n star

vertices satisfy the following recurrence formula:(
n

2

)
C(m)
g,n =

∑
n1+n2=n
n1,n2 > 1

g=g1+g2+g∗

n1

(
(m− 1)n2 + 2− 2g2

2g∗ + 2

)
C(m)
g1,n1C

(m)
g2,n2 .

Theorem 8 has an immediate corollary, i.e. a recurrence formula for
bipartite 2k-angulations:

Corollary 4. The number A(k)
g,n of bipartite 2k-angulations of genus g with

n faces satisfies the following recurrence formula:(
kn+ 1

2

)
A(k)
g,n =

∑
n1+n2=n
n1,n2 > 1

g1+g2+g∗=g

(kn1 + 1)
(

(k − 1)n2 + 2− 2g2

2g∗ + 2

)
A(k)
g1,n1A

(k)
g2,n2

+
∑
g∗ > 0

(
(k − 1)n+ 2− 2(g − g∗)

2g∗ + 2

)
A

(k)
g−g∗,n.

Remark 5.1.1. Theorem 8 allows to compute the number of maps with
prescribed degrees way faster than the usual Tutte–Lehman–Walsh approach
[WL72, BC86, Gao93] or the topological recursion (see e.g. [Eyn16]), es-
pecially for large genus (because these methods require counting maps with
up to g boundaries to enumerate maps of genus g). Note that, in order to
compute the coefficients recursively, a term from the RHS has to be moved
to the LHS, and we need the initial condition β0(1n) = Cat(n).

We observe that Theorem 9 applies to bipartite maps (for m = 2). How-
ever, we have no analogue of Theorem 8 (with prescribed face degrees) for
m-constellations with m > 3. We give a brief explanation of that fact in
Remark 5.3.1.

Remark 5.1.2. The coefficients in our recurrence formulas have a combi-
natorial flavor. It is a natural question to ask for a bijective proof of these
formulas. However, the bijective interpretation of formulas derived from the
KP/2-Toda hierarchies is still a widely open question, as bijections have only
been found for certain formulas, in the particular cases of one-faced [CFF13]
and planar maps (Chapter 4). Note that there is an asymmmetry in the fac-
tors in the quadratic sums, contrary to the formulas in [GJ08, CC15], but
similarly to [KZ15].
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5.2 The master equation
In this section we derive the following general equation:

Proposition 12. The general generating function of connected constellations
H = log τ satisfies:

DH1,1 −H1,1 =H1,1 ·

DH
z · r∏

j=1
(1 + uj), (

uj
1 + uj

)


+H1,1 ·

DH
z · r∏

j=1
(1− uj), (

uj
1− uj

)
− 2DH

 (5.2.1)

with H1,1 = ∂2

∂p1∂q1
H and D = z ∂

∂z
.

Remark 5.2.1. In the formula above, we omitted some of the arguments of
H. For instance, H := H(z,p,q, (uj)), and

H

z · r∏
j=1

(1 + uj), (
uj

1 + uj
)
 := H

z · r∏
j=1

(1 + uj),p,q, (
uj

1 + uj
)
 .

This formula will be the starting point for all the particular cases we
will consider in the next section: for each model, we will apply a particular
specialization of the variables, then interpret combinatorially the operator
∂
∂p1

∂
∂q1

(depending on the model), and finally the extraction of coefficients
will give us the relevant formulas.

We first need to relate the auxiliary functions τ1 and τ−1 to the generating
function τ .

Lemma 10.

τ±1(z,p,q, (uj)) = z1/2τ

z · r∏
j=1

(1± uj),p,q, (
uj

1± uj
)


Proof. We will describe how H, C and F behave under the action of the shift
operator, then using the operator form (2.3.2) of τ we will derive the result.

It is easily verified that the operators R, C and H commute with Γ+(p)
and Γ−(q). We also have R−nHRn = H + nC + n2

2 .
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By a careful change of indices, we obtain

RFR−1 =
∑
k>0

k−1/2∑
i=1

log(1 + ui)ψk+1ψ
∗
k+1 +

∑
k<0

−k−1/2∑
i=1

log(1− ui)ψ∗k+1ψk+1

=
∑
k>0

k−1/2∑
i=0

log(1− u+ ui)ψkψ∗k +
∑
k<0

−k−1/2∑
i=0

log(1− u− ui)ψ∗kψk

= F ( u

1− u) + (H − C/2) log(1− u).

Since |∅−1〉 = R−1 |∅〉, we have

τ−1(z,p,q, (uj)) = 〈∅−1|Γ+(p)zHΛΓ−(q)|∅−1〉
= 〈∅|RΓ+(p)zHΛΓ−(q)R−1|∅〉
= 〈∅|Γ+(p)zRHR−1

RΛR−1Γ−(q)|∅〉 .

But zRHR−1 = zH−C+1/2, and

RΛR−1 =
r∏
j=1

exp
(
F ( uj

1− uj
) + (H − C/2) log(1− ui)

)
,

therefore

τ−1(z,p,q, (uj)) = 〈∅|Γ+(p)zRHR−1
RΛR−1Γ−(q)|∅〉

= z1/2 〈∅|Γ+(p)(z
r∏
j=1

(1− uj))HΛ
(

( uj
1− uj

)
)

Γ−(q)|∅〉

= z1/2τ

z · r∏
j=1

(1− uj),p,q, (
uj

1− uj
)
 .

Similarly,

τ1(z,p,q, (uj)) = z1/2τ

z · r∏
j=1

(1 + uj),p,q, (
uj

1 + uj
)
 .

Remark 5.2.2. The idea of expressing τ±1 in terms of τ by calculating
R∓1ΛR±1 is inspired by the calculation performed in [Oko00], Section 2.7.

We can now prove Proposition 12.
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Proof of Proposition 12. Recall, from Chapter 2 (more precisely (2.2.8), that

∂2

∂p1∂q1
log τ0 = τ1τ−1

τ 2
0
.

Using Lemma 10, we obtain an equation involving τ only:

∂2

∂p1∂q1
log τ=z

τ
(
z·∏r

j=1(1 + uj),p,q, ( uj
1+uj )

)
τ
(
z·∏r

j=1(1− uj),p,q, ( uj
1−uj )

)
τ 2 .

Substituting H = log τ in the above equation, one obtains:

H1,1=z exp
H(z ·

r∏
j=1

(1 + uj), (
uj

1 + uj
))+H(z ·

r∏
j=1

(1− uj), (
uj

1− uj
))−2H

.
(5.2.2)

Finally, we get (5.2.1) by applying the operator D − 1 to both sides of
(5.2.2) and getting rid of the exponential part by using (5.2.2) once more.

5.3 Proof of the main formulas
In the following subsections, we will specialize some of the variables to fit
the cases we care about. To avoid tedious notations, and as there is no risk
of ambiguity, the specialization of the function H will still be called H.

5.3.1 Bipartite maps
In this section, we want to count bipartite maps while controlling the degrees
of the faces. Hence, we will consider the case r = 2, and specialize H by
setting u1 = u2 = u and qi = 1i=1.

Let βg(f) be the number of (rooted) bipartite maps of genus g with fi faces
of degree 2i, and B(z,p, u) be the ordinary generating function of connected
rooted bipartite maps, defined as

B =
∑
g,f
znu2n−v ∏

i > 1
pfii βg(f).

with n = ∑
i ifi and v − n+∑

i fi = 2− 2g (Euler formula).
Equation (5.2.1) can be rewritten in terms of B only:
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Lemma 11.

(D + 1)DB =(u−2 + (D + 1)B)
(
B(z(1 + u)2,p,

u

1 + u
)
)

+ (u−2 + (D + 1)B)
(
B(z(1− u)2,p,

u

1− u)− 2B
)
.
(5.3.1)

Proof. In this section, H is the (exponential) generating function of labelled
bipartite maps, and as mentioned in Definition 19, there is a (n−1)!− to−1
correspondence between labelled and rooted bipartite maps. Hence

B = DH.

We will now express H1,1 in terms of B. The specialization qi = 1i=1
implies that only the terms znqn1 from the original function survived, and
thus in this case

∂

∂q1
H = DH.

Finally, applying ∂
∂p1

corresponds to marking a digon. A marked digon can
be contracted into a marked edge (see Figure 5.2) except when the bipartite
map is just one edge, thus ∂

∂p1
H = z + u2zDH = z + u2zB (the u2z factor

comes from the fact that we lose an edge when we contract the digon, and
the z term is the case where we cannot contract the digon).

We are finally ready to prove Theorem 8.

Proof of Theorem 8. We look at the factor

B(z(1 + u)2,p,
u

1 + u
) +B(z(1− u)2,p,

u

1− u)− 2B

in (5.3.1). The coefficient of zn∏i > 1 p
fi
i in it is:

∑
v>0

βg(f)u2n−v((1 + u)v + (1− u)v − 2)=
∑
v>0

βg(f)u2n−v

2
∑

0<k 6 v
2

u2k
(
v

2k

).
In the sum above, we have, by Euler’s formula, g = n−

∑
fi−v+2
2 (with the

convention that βg(f) = 0 if g is not an integer). Extracting the coefficient
of znu2n−v∏

i > 1 p
fi
i in (5.3.1), one gets the result.



CHAPTER 5. RECURRENCE FORMULAS 94

Figure 5.2 – Contracting a digon.

5.3.2 Constellations
In this section, we will count constellations without controlling the degrees of
the faces. For that, we will specialize H by taking r = m+ 1, pi = qi = 1i=1,
and ui = u for all i. The variable u counts the number of coloured vertices
plus the number of faces, or equivalently, by Euler’s formula, the genus.

Proof of Theorem 9. After the specialization,H1,1 becomesD2H by the same
argument as in the proof of Theorem 8. If we take C to be the (ordinary)
generating function of connected constellations, i.e.

C =
∑
g,n

znu2n+2g−2C(m)
g,n ,

we have, as before, C = DH. Equation (5.2.1) becomes

(D2 −D)C = DC
(
C
(
z(1 + u)m+1,

u

1 + u

)
+C

(
z(1− u)m+1,

u

1− u)
)
− 2C

)
.

(5.3.2)
To finish the proof, we proceed exactly as in the proof of Theorem 8: first

compute the coefficient of zn in

C
(
z(1 + u)m+1,

u

1 + u

)
+ C

(
z(1− u)m+1,

u

1− u)
)
− 2C,

then just extract the coefficient of znu2n+2g−2 in (5.3.2) (the suitable exponent
of u is derived by the Euler formula).
Remark 5.3.1. This time, we cannot track the degrees of the faces, as in
general the combinatorial operation of contracting an m-gon might disconnect
the map, and the formula gets messy. However, if we restrict to only one face
we can perform this operation to recover a nice formula (see Section 5.4).

5.4 Additional results

5.4.1 One-faced constellations
In this section, we will derive a recurrence formula for constellations with
one face. In the case of bipartite maps, the formula is just a particular case
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of (5.1.1), but for m > 3, it cannot be derived from Theorem 9 directly.
One-faced constellations were first enumerated in [PS02]: an exact formula
given the degree distribution of each coloured vertex is provided. While the
following formula does not give control over the degrees of the vertices, it is
much quicker to compute the "global" (i.e. controlling only the genus and
the number of vertices) number of one-faced constellations for m > 3 (for
m = 2, i.e. bipartite maps, a nice formula for one-faced bipartite maps can
be found in [Adr97]).

Theorem 10. Let Um(g, n) be the number of one-faced m-constellations of
genus g with n star vertices. Also, let U (k)

m (g, n) be the number of one-faced
m-constellations of genus g with n star vertices and k distinguished (pairwise
distinct) coloured vertices, i.e. U (k)

m (g, n) =
(

(m−1)n+1−2g
k

)
Um(g, n). We have

the following recurrence formula:

n(n+ 1)m−1

2 Um(g, n) =
g∑

g∗=0
U (2+2g∗)
m (g − g∗, n). (5.4.1)

Remark 5.4.1. This formula reminds of the formula for one-faced maps
proven bijectively by Chapuy in [Cha11]. Indeed, it allows to compute the
number of one-faced maps of genus g in terms of number of maps of lower
genus with the same number of edges and some distinguished vertices. The
difference, though, is that in Chapuy’s formula there are an odd number of
distinguished vertices, whereas in (5.4.1) there are an even number of distin-
guished vertices.

Nevertheless, there might be a connection as those formulas arise in the
same algebraic context. Our formula is obtained via the 2-Toda hierarchy,
whereas Chapuy’s is an intermediate step to prove the Harer–Zagier recur-
rence formula (see [CFF13]), which is itself a special case of a formula ob-
tained via the KP hierarchy: the Carrell–Chapuy recurrence formula [CC15].

To prove (5.4.1), we will take r = m and apply the following specialization
to (5.2.1): fix an integer n, and set qi = 1i=1, ui = u for all i, as well as z = 1.
Set also pi = 0 for all i 6= n, and extract the coefficient of p1

n. Now H is
simply a polynomial in u. It counts labelled one-faced constellations. Let U
be the associated polynomial for rooted objects, the classical correspondence
between labelled and rooted objects yields U = DH. As before, there is a
"marked m-gon", and we need to interpret this combinatorially:

Lemma 12. After applying the specialization, the LHS of (5.2.1) becomes
n(n+ 1)m−1U
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(1, 2, 5, 7)(3, 8)(4, 6) → (1, 2, 5, 7)(3)(4, 6)

(1, 5)(3, 7, 4, 2, 6)(8) → (1, 5)(3, 7, 4, 2, 6)

Figure 5.3 – Deleting n+ 1, for n = 7, whether n+ 1 is a fixed point or not.

Proof. The only terms of H1,1 in (5.2.1) that survive the specialization are
the coefficients of zn+1pnp1q

n+1
1 . Therefore we have DH1,1 = (n+ 1)H1,1 and

H1,1 = (n + 1) ∂
∂p1
H. The LHS of (5.2.1) is therefore equal (after specializa-

tion) to n(n+ 1) ∂
∂p1
H. It remains to show that ∂

∂p1
H = (n+ 1)m−2 · U .

Applying ∂
∂p1

corresponds to marking an m-gon. As in the proof of The-
orem 8, it kills all symmetries, thus there is a (n + 1)!-to-1 correspondence
between labelled constellations and constellations with a marked m-gon.
Therefore, ∂

∂p1
H is the ordinary generating function of connected unlabelled

m-constellations with one face of degree mn and one face of degree m.
We will work with permutations to make things easier. Connected un-

labelled m-constellations with one face of degree mn and one face of degree
m are in bijection with (m + 1)-uples of permutations φ, σ1, . . . σm of Sn+1
satisfying the following constraints:

• φ = ∏m
i=1 σi,

• In cycle products, φ is written (1, 2, . . . , n)(n+ 1),

• The image of 1 by σ1 is n+ 1.

We can describe the operation of "contracting an m-gon" on the per-
mutations. To φ, σ1, . . . σm we will associate a (m + 1)-uple φ′, σ′1, . . . σ′m of
permutations of Sn:

• To φ, we associate φ′ = (1, 2, . . . , n),

• For 1 6 i < m, to σi we associate the permutation σ′i where in the
cycle product we just deleted the element n+ 1 (see Figure 5.3).

• To σm we associate σ′m = φ′
(∏m−1

i=1 σ′i
)−1

.

This exactly describes a rooted m-constellation with one face of degree mn.
To go back, one needs to remember, for 1 < i < m, what was the preimage of
n+ 1 in σi (including possibly n+ 1 itself). There are n+ 1 possible choices
for each i, thus after the specialization, ∂

∂p1
H = (n+ 1)m−2 · U .
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A simple calculation in the right-hand side finishes the proof:

Proof of Theorem 10. In the RHS, we have a product of two terms. Since
H has no constant coefficient in the pi’s, after specialization we get the co-
efficient of p0

n of H1,1 (which is just um−1, corresponding to the constellation
with only one star vertex) times the coefficient of p1

n in

DH
(

(1 + u)m, u

1 + u

)
+DH

(
(1− u)m, u

1− u

)
− 2DH.

Again, since DH = U , we can extract the coefficient of znumn−v (where
v = (m−1)n+ 1−2g by Euler’s formula), as in the proof of Theorem 8, and
obtain the result.

5.4.2 Controlling more parameters
In each of the previous cases, we specialized a lot of variables to obtain for-
mulas for "global" coefficients. Starting over from (5.2.1) without specializing
some of the variables, one is able to obtain (slightly more complicated) for-
mulas for more fine-grained coefficients. As an example, we can compute the
number C(m)

g,n,f of m-constellations of genus g, with n star vertices and f faces:(
n

2

)
C

(m)
g,n,f =

∑
n1

(
f2

k

)(
2g2 − f2 + (m− 1)n2

2g∗ + 2− k

)
C

(m)
g1,n1,f1C

(m)
g2,n2,f2 (5.4.2)

where the sum is over n1 + n2 = n, n1, n2 > 0, g∗ > 0, g1 + g2 + g∗ = g and
f1 + f2 − k = f .

The proof of Theorem (5.4.2) is essentially the same as the proof of The-
orem 9, except that we do not specialize ui = u for all i, but only for i 6 m.
In this case, u counts coloured vertices, and um+1 counts faces.

Remark 5.4.2. Even though the summation is complicated, (5.4.2) allows
to compute all the coefficients C(m)

g,n,f from the initial condition C
(m)
g,1,f = 1 iff

g = 0 and f = 1, and 0 otherwise.
However, it does not restrict to a formula for one-faced constellations.

We can also find formulas for other models, with other specializations.
Relevant models include bipartite maps (with prescribed face degrees), one-
faced constellations, or (general) constellations, with control over the number
of vertices of each colour. We can also obtain a formula for triangulations
(by specializing r = 1, pi = 1i=2, qi = 1i=3), but it is more complicated (and
less "combinatorial") than the Goulden–Jackson formula [GJ08]. The reader
is encouraged to play with (5.2.1) to find other nice formulas.
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5.4.3 Univariate generating series
A relevant corollary of our results is that the formulas we obtain allow to
compute the univariate generating series of some given models of maps (2k-
angulations counted by faces, constellations counted by star vertices, etc.).
To illustrate this fact, fix an integer k and let Fg(z) be the generating series
of genus g bipartite 2k-angulations:

Fg(z) =
∑
n>0

A(k)
g,nz

n

with the coefficients A(k)
g,n as defined in Corollary 4. Our formula gives an

algorithm to compute every Fg for g > 1, given F0. Indeed, take g > 1,
Corollary 4 rewrites

∆Fg = φ(z, F0, F1, . . . , Fg−1) (5.4.3)

with

∆ =
(
kD + 1

2

)
−
((

(k − 1)D + 2
2

)
F0

)
(kD + 1)

− ((kD + 1)F0)
(

(k − 1)D + 2
2

)
−
(

(k − 1)D + 2
2

)
,

where D = z ∂
∂z
, and φ is a polynomial in its variables and their (first and

second) derivatives. It is well known (see for instance [BDFG04])) that

F0 = t− z
(

2k − 1
k + 1

)
tk+1 − 1

with the change of variable

t = 1 + z

(
2k − 1
k

)
tk.

Note that we have a "−1" in the expression of F0 because we do not count
the "empty map".

Assuming we know Fh for h < g, this gives a linear, second order ODE
in Fg (with respect to the variable t). Since all the Fg’s are rational in t
(see for instance [CF16]), all the coefficients of the equation are themselves
rational, and the solutions can be computed explicitly. The initial conditions
are given by the two following facts: [z0]Fg = 0 and [z1]Fg is the number of
unicellular bipartite maps of genus g with k edges, that can for instance be
computed using Theorem 10.
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5.5 Monotone Hurwitz numbers
In this section, we derive a recurrence formula for monotone Hurwitz num-
bers, in a similar fashion as in previous sections. These numbers, which
appear in the calculation of the HCIZ integral, were introduced in [GGPN14].

Definition 20. For two transpositions of Sn, we say that (i, j) � (k, l) if
max(i, j) 6 max(k, l). The double monotone Hurwitz number ~Hλ,µ

g,n is 1
n!

times the number of tuples (t1, t2, . . . , tr, σλ, σµ) of permutations of Sn such
that:

• r = l(λ) + l(µ) + 2g − 2 where l(λ) is the number of parts of λ,

• t1, t2, . . . , tr is an increasing sequence of transpositions,

• σλ (resp. σµ) has cycle type λ (resp. µ),

• t1 · t2 · . . . · tr = σλσµ,

• the permutations t1, t2, . . . , tr, σλ act transitively on 1, 2, . . . , n.

The simple monotone Hurwitz numbers ~Hλ
g,n are defined as ~Hλ

g,n = ~Hλ,1n
g,n .

We will set W λ,µ
g,n to be the same numbers without the transitivity condi-

tion, and introduce

τ(z,p,q, u) =
∑
n > 0

|λ|=|µ|=n
r > 0

zn

n! pλqµu
rW λ,µ

g,n

with g such that r = l(λ) + l(µ) + 2g − 2. Let H = log τ be the generating
function of the ~Hλ,µ

g,n .
As before, it can be shown (see for instance [GPH15]) that

τ(z,p,q, u) = 〈∅|Γ+(p)zHΛΓ−(q)|∅〉

with Λ = exp(−F (−u)), where F is the function defined in Lemma 2. A
general equation similar to (5.2.1) can be derived:

DH1,1 −H1,1 = H1,1

(
DH

(
z

1 + u
,

u

1 + u

)
+DH

(
z

1− u,
u

1− u

)
− 2DH

)
(5.5.1)

with H1,1 = ∂2

∂p1∂q1
H and D = z ∂

∂z
.

Similarly as with constellations, in general we cannot even track the cycle
type of σλ, although, from the specialization pi = qi = 1i=1 for all i, we can
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obtain a recurrence formula for the unramified monotone Hurwitz numbers
~Hg,n = ~H1n

g,n:

n

(
n

2

)
~Hg,n =

∑
n1+n2=n
g∗ > 0

g1+g2+g∗=g

n2
1n2

(
3n2 + 2g2 + 2g∗ − 1

2g∗ + 2

)
~Hg1,n1

~Hg2,n2 . (5.5.2)

Remark 5.5.1. Here, the number ~Hλ,µ
g,n are defined with a scaling factor of 1

n!
to make the formula simpler; this is a different convention as in [GGPN14].
Formula (5.5.2) allows to compute all the ~Hg,n only knowing that ~H0,1 = 1.



Chapter 6

Local limits of high genus
triangulations

Abstract. This chapter is adapted from the article Local limits of high
genus triangulations, with Thomas Budzinski (submitted) [BL19]. We prove
a conjecture of Benjamini and Curien stating that the local limits of uniform
random triangulations whose genus is proportional to the number of faces are
the Planar Stochastic Hyperbolic Triangulations (PSHT) defined in [Cur16].
The proof relies on a combinatorial argument and the Goulden–Jackson re-
currence relation to obtain tightness, and probabilistic arguments showing
the uniqueness of the limit. As a consequence, we obtain asymptotics up to
subexponential factors on the number of triangulations when both the size
and the genus go to infinity.

As a part of our proof, we also obtain the following result of independent
interest: if a random triangulation of the plane T is weakly Markovian in
the sense that the probability to observe a finite triangulation t around the
root only depends on the perimeter and volume of t, then T is a mixture of
PSHT.

The goal of this chapter is to prove the conjecture of Benjamini and
Curien concerning the local limit of high genus triangulations. The only
previous results on high genus maps are the identification of the local limit
of uniform unicellular maps (i.e. maps with one face) [ACCR13], which is a
supercritical random tree, and the calculation of their diameter [Ray15].

Let us first explain how the local limit is affected by the genus. By the
Euler formula, a triangulation with 2n faces and genus g has 3n edges and
n + 2 − 2g vertices. Hence, if g

n
→ θ ∈

[
0, 1

2

]
, then the average degree of

the vertices goes to 6
1−2θ . In particular, if 0 < θ < 1

2 , this mean degree lies

101
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strictly between 6 and +∞. Therefore, it is natural to expect limit objects
to be hyperbolic triangulations of the plane1.

We recall the basic properties of the PSHT constructed by Curien2 in
[Cur16]: there is a one-parameter family (Tλ)0<λ 6 λc of random triangulations
of the plane, where λc = 1

12
√

3 , that are the only random triangulations
of the plane exhibiting a natural spatial Markov property. For any finite
triangulation t with a hole of perimeter p and v vertices in total, we have

P (t ⊂ Tλ) = Cp(λ)λv,

where Cp(λ) are explicit functions of λ. Moreover, Tλc is the UIPT, whereas
for λ < λc, the map Tλ has hyperbolicity properties such as exponential
volume growth [Ray14, Cur16], positive speed of the simple random walk
[Cur16, ANR16] or the existence of a lot of infinite geodesics quickly escaping
away from each other [Bud18c].

For any g > 0 and n > 2g − 1, we denote by T (n, g) the set of rooted
triangulations of genus g with 2n faces. By rooted, we mean that the triangu-
lation is equipped with a distinguished oriented edge called the root. Let also
Tn,g be a uniform triangulation of T (n, g). We also recall that a sequence
of rooted triangulations (tn) converges locally to a triangulation T if for any
r > 0, the ball of radius r around the root in tn, seen as a map, converges to
the ball of radius r in T . We refer to Section 6.1 for more precise definitions.
For any λ ∈ (0, λc], let h ∈

(
0, 1

4

]
be such that λ = h

(1+8h)3/2 , and let

d(λ) =
h log 1+

√
1−4h

1−
√

1−4h

(1 + 8h)
√

1− 4h
. (6.0.1)

It can be checked that the function d(λ) is increasing with d(λc) = 1
6 and

limλ→0 d(λ) = 0 (see the end of Section 6.4.3 for a quick proof). Then our
main result is the following.

Theorem 11. Let (gn) be a sequence such that gn
n
→ θ with θ ∈

[
0, 1

2

)
. Then

we have
Tn,gn

(d)−−−−→
n→+∞

Tλ

for the local topology, where λ is the unique solution of the equation

d(λ) = 1− 2θ
6 . (6.0.2)

1As a deterministic example, the d-regular triangulations of the plane for d > 6 are
hyperbolic.

2To be exact, the triangulations defined in [Cur16] are type-II triangulations, i.e. tri-
angulations with no loop joining a vertex to itself. The type-I (with loops) analog, which
will be the one considered in this work, was defined in [Bud18b].
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This result was conjectured by Benjamini and Curien [Cur16] without an
explicit formula for d(λ), and the formula for d(λ) was first conjectured in
[Bud18a, Appendix B]. The reason why this formula appears is that d(λ)
is the expected inverse of the root degree in Tλ, while the corresponding
quantity in Tn,gn is asymptotically 1−2θ

6 by the Euler formula. While it may
seem counter-intuitive that high genus objects yield planar maps in the local
limit, this has already been proved for other models such as random regular
graphs or unicellular maps [ACCR13]. Note that the case θ = 0 corresponds
to λ = λc, which proves that if gn = o(n), then Tn,gn converges to the UIPT,
which also seems to be a new result. On the other hand, when θ → 1

2 , we
have λ → 0, so all the range (0, λc] is covered. Since the object T0 is not
well-defined (it corresponds to a "triangulation" where the vertex degrees are
infinite), we expect that if θ = 1

2 , the sequence (Tn,gn) is not tight for the
local topology.

Strategy of the proof. The most natural idea to prove Theorem 11 would
be to obtain precise asymptotics for the numbers τ(n, g) = |T (n, g)| and to
adapt the ideas of [AS03]. In theory, these numbers are entirely characterized
by the Goulden–Jackson recurrence equation [GJ08]. However, this seems
very difficult without any a priori estimate on the τ(n, g) and all our efforts
to extract asymptotics when g

n
→ θ > 0 from these relations have failed.

Therefore, our proof relies on more probabilistic considerations. It is however
interesting to note that our probabilistic arguments allow in the end to obtain
combinatorial asymptotics (Theorem 13).

The first part of the proof consists of a tightness result: we prove that
(Tn,gn) is tight for the local topology as long as gn

n
stays bounded away from

1
2 . A key tool in the proof is the bounded ratio lemma (Lemma 15), which
states that the ratio τ(n+1,g)

τ(n,g) is bounded as long as gn
n

stays bounded away
from 1

2 . This is essentially enough to adapt the argument of Angel and
Schramm [AS03] for the tightness of Tn,0. Along the way, we also show that
any subsequential limit is a.s. planar and one-ended. The Goulden–Jackson
formula also plays an important role in the proof.

The next step is to notice that any subsequential limit T satisfies a weak
Markov property: if t is a finite triangulation with a hole of perimeter p and
v vertices in total, then P (t ⊂ T ) only depends on p and v. From here, we
deduce that T must be a mixture of PSHT, i.e. a PSHT with a random
parameter Λ.

Finally, what is left to prove is that Λ is deterministic, i.e. it does not
depend on Tn,gn . By a surgery argument on finite triangulations that we call
the two holes argument, we first show that if Tn,gn is fixed, then Λ does not
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depend on the choice of the root. We conclude by using the fact that the
average inverse degree of the root in Tn,gn is asymptotically 1−2θ

6 .

Weakly Markovian triangulations. Since one of the steps of the proof
is a result of independent interest, let us highlight it right now. We call a
random triangulation of the plane T weakly Markovian if for any finite trian-
gulation t with a hole of perimeter p and v vertices in total, the probability
P (t ⊂ T ) only depends on p and v. This is strictly weaker than the spa-
tial Markov property considered in [Cur16] to define the PSHT, since any
mixture of PSHT is weakly Markovian. The result we prove is the following.

Theorem 12. Any weakly Markovian triangulation of the plane is a mixture
of PSHT.

Combinatorial asymptotics. Finally, while we were unable to directly
obtain asymptotics on τ(n, g) when both n and g go to +∞, Theorem 11
allows us to obtain such estimates up to sub-exponential factors. For any
θ ∈

[
0, 1

2

)
, we denote by λ(θ) the value of λ given by (6.0.2).

Theorem 13. Let (gn) be a sequence such that 0 6 gn 6 n+1
2 for every n

and gn
n
→ θ ∈

[
0, 1

2

]
. Then we have

τ(n, gn) = n2gn exp (f(θ)n+ o(n))

as n→ +∞, where f(0) = log 12
√

3, also f(1/2) = log 6
e
and

f(θ) = 2θ log 12θ
e

+ θ
∫ 1/θ

2
log 1

λ(1/t)dt (6.0.3)

for 0 < θ < 1
2 .

To the best of our knowledge, these are the first asymptotic results on
the number of triangulations with both large size and high genus. Note that
the integral is well-defined since λ(θ) is a continuous function and we have
λ(θ) = O (1/2− θ) when θ → 1/2. Moreover, since λ(θ)→ 1

12
√

3 as θ → 0, it
is easy to see that the function f is continuous at 0 and at 1/2. The proof
mostly relies on the observation that Theorem 11 gives the limit values of
the ratio τ(n+1,g)

τ(n,g) .
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Structure of the chapter. In Section 6.1, we review basic definitions and
previous results that will be used throughout the chapter. In Section 6.2,
we prove that the triangulations Tn,gn are tight for the local topology, and
that any subsequential limit is a.s. planar and one-ended. In Section 6.3,
we prove Theorem 12, which implies that any subsequential limit of Tn,gn is
a PSHT with random parameter Λ. In Section 6.4, we conclude the proof
of Theorem 11 by showing that Λ is deterministic and depends only on θ.
Finally, Section 6.5 is devoted to the proof of Theorem 13.

6.1 Preliminaries

6.1.1 Definitions
The goal of this paragraph is to state basic definitions and introduce notations
on triangulations that will be used in all the chapter.

Recall that a triangulation is a rooted map where all the faces have degree
3. We will mostly be interested in type-I triangulations, i.e. triangulations
that may contain loops and multiple edges. We mention right now that a
type-II triangulation is a triangulation that may contain multiple edges, but
no loops.

For every n > 1 and g > 0, we will denote by T (n, g) the set of triangu-
lations of genus g with 2n faces (the number of faces must be even to glue
the edges two by two). By the Euler formula, a triangulation of T (n, g) has
3n edges and n+ 2− 2g vertices. In particular, the set T (n, g) is nonempty
if and only if n > 2g − 1. We will also denote by τ(n, g) the cardinality of
T (n, g) and by Tn,g a uniform random variable on T (n, g).

We will also need to consider two different notions of triangulations with
boundaries, that we call triangulations with holes and triangulations of multi-
polygons. Basically, the first ones will be used to describe a neighbourhood
of the root in a triangulation, and the second ones to describe the comple-
mentary of this neighbourhood.

For ` > 1 and p1, p2, . . . , p` > 1, we call a triangulation with holes of
perimeter p1, . . . , p` a map where all the faces have degree 3 except, for every
1 6 i 6 `, a face hi of degree pi. The faces hi are called the holes. The
boundaries of the faces hi must be simple and edge-disjoint, but may have
common vertices (see the bottom part of Figure 6.1). A triangulation with
holes will be rooted at a distinguished oriented edge, which may lie on the
boundary of a hole or not. Triangulations with holes will always be finite.

A (possibly infinite) triangulation of the (p1, . . . , p`)-gon is a map where
all the faces have degree 3 except, for every 1 6 i 6 `, a face fi of degree
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t

T\t

Figure 6.1 – A large triangulation T with genus 7 and a smaller triangulation
with holes t (in the bottom) such that t ⊂ T . The holes are filled by a tri-
angulation of the (3, 5)-gon, a triangulation of the 2-gon and a triangulation
of the 4-gon. The triangles are not drawn on the picture.

pi. The faces fi are called the external faces, and must be simple and have
vertex-disjoint boundaries. Moreover, each of the external faces comes with
a distinguished edge on its boundary, such that the external face lies on the
right of the distinguished edge.

Let Tp1,p2,...,p`(n, g) be the set of triangulations of the (p1, p2, . . . , p`)-gon of
genus g with 2n−∑`

i=1(pi−2) triangles, and by τp1,p2,...,p`(n, g) its cardinality.
The reason why we choose this convention is that by the Euler formula, a
triangulation of Tp1,p2,...,p`(n, g) has n + 2 − 2g vertices in total, just like a
triangulation of T (n, g).

If t is a triangulation with holes and T a (finite or infinite) triangulation,
we write t ⊂ T if T can be obtained from t by gluing one or several triangu-
lations of multi-polygons to the holes of t (see Figure 6.1). In particular, in
the planar case, this definition coincides with the one used e.g. in [AS03]. If
T is an infinite triangulation, we say that it is one-ended if for every finite t
with t ⊂ T , only one connected component of T\t contains infinitely many
triangles. We also say that T is planar if every finite t with t ⊂ T is planar.

We also recall that to a triangulation t, we can naturally associate its dual
map t∗. If t is a triangulation of a multi-polygon, it will be more suitable
to work with the convention that the external faces do not belong to the
dual t∗. Note that triangulations of multi-polygons have simple and disjoint
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boundaries, so their dual t∗ will always be connected.
Finally, we recall the definition of the graph distance in a map. For a pair

of vertices (v, v′), the distance dt(v, v′) is the length of the shortest path of
edges of t between v and v′. We call d∗t the graph distance in the dual3 map
t∗. We also note that there is a natural way to extend d∗t to the vertices of t.
For a pair of distinct vertices (v, v′), we set

d∗t (v, v′) = min(d∗t (f, f ′)) + 1,

where the minimum is taken over all pairs (f, f ′) of faces such that f is
adjacent to v and f ′ is adjacent to v′, and d∗t (v, v) = 0 for all v.

6.1.2 Combinatorics
The goal of this paragraph is to summarize some previously known or easy
combinatorial results about triangulations in higher genus. We start with
the Goulden–Jackson recurrence formula.

Theorem 14. [GJ08] Let f(n, g) = (3n + 2)τ(n, g), with the convention
f(−1, 0) = 1

2 and f(−1, g) = 0 for g > 1. For every n, g > 0 with g 6 n+1
2 ,

we have

f(n, g) = 4(3n+ 2)
n+ 1

n(3n− 2)f(n− 2, g − 1) +
∑

n1+n2=n−2
g1+g2=g

f(n1, g1)f(n2, g2)

 .
(6.1.1)

We also state right now a crude inequality that bounds the number of
triangulations of multi-polygons with genus g by the number of triangulations
of genus g. This will be useful later.

Lemma 13. For every n, g > 0 and p1, . . . , p` > 1, we have

τp1,...,p`(n, g) 6 (6n)`−1τ(n, g).

Proof. We describe a way to associate to each map t of Tp1,...,p`(n, g) a map
t̃ of T (n, g) with some marked oriented edges. For each external face fi of t:

• if pi > 3, we triangulate fi by joining all the vertices of ∂fi to the start
of the distinguished edge on ∂fi, and we mark this edge as ei;

3In particular, if t is a triangulation of a multi-polygon, then d∗t (f, f ′) is the length of
the smallest dual path which avoids the external faces.
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Figure 6.2 – Getting rid of a boundary of size 1. The boundary faces are in
blue

• if pi = 2, we simply glue together the two edges of ∂fi, and mark the
edge that we obtain as ei;

• if pi = 1, we use the "classical" root transformation shown on Figure 6.2,
and mark the edge obtained by the gluing as ei.

We obtain a triangulation with the same genus as the initial one, and we
root it at e1. Note that the above operation does not change the number of
vertices, so the triangulation belongs to T (n, g). It is easy to see that t→ t̃ is
injective. Indeed, if we know pi > 3 and the edge ei, then the pi− 2 triangles
created by triangulating fi are the first pi − 2 triangles on the right of ei
that are incident to its starting point. If pi ∈ {1, 2}, the reverse operation
is straightforward. Finally, t̃ is a triangulation of T (n, g) with `− 1 marked
oriented edges (plus its root edge). Since any triangulation of T (n, g) has 6n
oriented edges, we are done.

Remark 6.1.1. The bijection of Figure 6.2 is classical and implies in par-
ticular τ1(n, g) = τ(n, g).

6.1.3 The PSHT
In this subsection, we recall the definition and some basic properties of the
type-I Planar Stochastic Hyperbolic Triangulations, or PSHT. They were
introduced in [Cur16] in the type-II setting (no loops), but we will be more
interested in the type-I PSHT defined in [Bud18b]. The PSHT (Tλ)0<λ 6 λc
are a one-parameter family of random infinite triangulations of the plane,
where λc = 1

12
√

3 . Their distribution is characterized as follows. There is a
family of constants (Cp(λ))p > 1 such that for every planar triangulation with
a hole of perimeter p and v vertices in total, we have

P (t ⊂ Tλ) = Cp(λ)× λv. (6.1.2)
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Moreover, let h be the unique solution in
(
0, 1

4

]
of

λ = h

(1 + 8h)3/2 . (6.1.3)

Then we have
Cp(λ) = 1

λ

(
8 + 1

h

)p−1 p−1∑
q=0

(
2q
q

)
hq, (6.1.4)

so the distribution of Tλ is completely explicit.
A very useful consequence of (6.1.2) is the spatial Markov property of Tλ:

for any triangulation t with a hole of perimeter p, conditionally on t ⊂ Tλ,
the distribution of the complementary Tλ\t only depends on p. Therefore, it
is possible to discover it in a Markovian way by a peeling exploration.

Since this will be useful later, we recall basic definitions related to peeling
explorations. A peeling algorithm A is a way to associate to every triangu-
lation with holes an edge on the boundary of one of the holes. Given an
infinite triangulation T and a peeling algorithm A, we can define an increas-
ing sequence

(
EAT (k)

)
k > 0

of triangulations with holes such that EAT (k) ⊂ T

for every k in the following way:

• the map EAT (0) is the trivial map consisting of the root edge only,

• for every k > 1, the triangulation EAT (k+ 1) is obtained from EAT (k) by
adding the triangle incident to A

(
EAT (k)

)
outside of EAT (k) and, if this

triangle creates a finite hole, all the triangles in this hole.

Such an exploration is called filled-in, because all the finite holes are filled
at each step. In particular, for the PSHT, we denote by P λ(k) and V λ(k)
the perimeter and volume of EAT (k). The spatial Markov property ensures
that

(
P λ(k), V λ(k)

)
k > 0

is a Markov chain on N2 and that its transitions do
not depend on the algorithm A. We also recall the asymptotic behaviour of
these two processes. We have

P λ(k)
k

a.s.−−−−→
k→+∞

√
1− 4h
1 + 8h and V λ(k)

k
a.s.−−−−→

k→+∞

1√
(1 + 8h)(1− 4h)

,

(6.1.5)
where h is given by (6.1.3). These estimates are proved in [Cur16] in the
type-II setting. For the type-I PSHT, the proofs are the same and use the
combinatorial results of [Kri07]. In particular, the asymptotic ratio between
P λ(k) and V λ(k) is 1− 4h, which is a decreasing function of λ. This shows
that the PSHT for different values of λ are singular with respect to each
other, which will be useful later.
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6.1.4 Local convergence and dual local convergence
The goal of this section is to recall the definition of local convergence in a
setting that is not restricted to planar maps. We also define a weaker (at
least for triangulations) notion of local convergence that we call "dual local
convergence".

As in the planar case, to define the local convergence, we first need to
define balls of triangulations. Let t be a finite triangulation. As usual, for
every r > 1, we denote by Br(t) the map formed by all the faces of t which
are incident to at least one vertex at distance at most r − 1 from the root
vertex, along with all their vertices and edges. We denote by ∂Br(t) the set
of edges e such that exactly one side of e is adjacent to a triangle of Br(t).
The other sides of these edges form a finite number of holes, so Br(t) is a
finite triangulation with holes. Note that contrary to the planar case, there
is no bijection between the holes and the connected components of t\Br(t)
(cf. the component on the left of Figure 6.1). We also write B0(t) for the
trivial "map" consisting of only one vertex and zero edge.

For any two finite triangulations t and t′, we write

dloc(t, t′) = (1 + max{r > 0|Br(t) = Br(t′)})−1
.

This is the local distance on the set of finite triangulations. As in the planar
case, its completion T is a Polish space, which can be viewed as the set of
(finite or infinite) triangulations in which all the vertices have finite degree.
However, this space is not compact.

In some parts of this chapter, it will be more convenient to work with a
weaker notion of convergence which we call the dual local convergence. The
reason for this is that, since the degrees in the dual of a triangulation are
bounded by 3, tightness for this distance will be immediate, which will allow
us to work directly on infinite subsequential limits.

More precisely, we recall that d∗ is the graph distance on the dual of a
triangulation. For any finite triangulation t and any r > 0, we denote by
B∗r (t) the map formed by all the faces at dual distance at most r from the
root face, along with all their vertices and edges. Like Br(t), this is a finite
triangulation with holes. For any two finite triangulations t and t′, we write

d∗loc(t, t′) = (1 + max{r > 0|B∗r (t) = B∗r (t′)})
−1
.

Note that in any triangulation t, since the dual graph of t is 3-regular, there
are at most 3 × 2r−1 faces at distance r from the root face. Therefore, for
each r, the volume of B∗r (t) is bounded by a constant depending only on r,
so B∗r (t) can only take finitely many values. It follows that the completion
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for d∗loc of the set of finite triangulations is compact. We write it T ∗. This set
coincides with the set of finite or infinite triangulations, where the degrees
of the vertices may be infinite.

Roughly speaking, the main steps of our proof for tightness will be the
following. Since (T ∗, d∗loc) is compact, the sequence (Tn,gn) is tight for d∗loc.
We will prove that every subsequential limit is planar and one-ended, and
finally that its vertices must have finite degree. We state right now an easy,
deterministic lemma that will allow us to conclude at this point.

Lemma 14. Let (tn) be a sequence of triangulations of T . Assume that

tn
d∗loc−−−−→

n→+∞
t,

with t ∈ T . Then tn → t for dloc when n→ +∞.

Note that the converse is very easy: the dual ball B∗r (t) is a determin-
istic function of Br+1(t), so d∗loc 6 2dloc, and convergence for dloc implies
convergence for d∗loc.

Proof of Lemma 14. Let r > 1. Since t ∈ T , the ball Br(t) is finite, so we
can find r∗ such that Br(t) ⊂ B∗r∗(t). By definition of d∗loc, for n large enough,
we have B∗r∗(tn) = B∗r∗(t). Therefore, we have Br(t) ⊂ tn, so Br(tn) = Br(t)
for n large enough. Since this is true for any r > 1, we are done.

6.2 Tightness, planarity and one-endedness

6.2.1 The bounded ratio lemma
The goal of this section is to prove the following result, which will be our
main new input in the proof of tightness.

Lemma 15 (Bounded ratio lemma). Let ε > 0. Then there is a constant
Cε > 0 with the following property: for every n, g > 0 satisfying g

n
6 1

2 − ε
and for every p > 1, we have

τp(n, g)
τp(n− 1, g) 6 Cε.

In particular, by the usual bijection between T1(n, g) and T (n, g), we have

τ(n, g)
τ(n− 1, g) 6 Cε.
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For our future use, it will be important that the constant Cε does not
depend on p. The idea of the proof of Lemma 15 will be to find an "almost-
injective" way to obtain a triangulation of Tp(n − 1, g) from a triangulation
of Tp(n, g). This will be done by merging two vertices together. For this, it
will be useful to find two vertices that are quite close from each other and
have a reasonable degree. This is the point of the next result. We recall that
for two vertices v, v′, the distance d∗(v, v′) is the length of the smallest dual
path from v to v′ that avoids the external faces.

Lemma 16. In any triangulation of a polygon t satisfying the conditions of
Lemma 15, there are at least ε

12n pairs of vertices (v1, v2) such that

deg(v1) + deg(v2) 6 12
ε

and d∗(v1, v2) 6 24
ε
.

Proof. Fix a triangulation t ∈ Tp(n, g) with (n, g) satisfying the conditions
of Lemma 15. Pairs of vertices satisfying the conclusion will be called good
pairs. We first note that a positive proportion of the vertices have a small
degree. Indeed, by the Euler formula, t has 3n+ 3− p edges and n+ 2− 2g
vertices, so the average degree of a vertex is

2(3n+ 3− p)
n+ 2− 2g 6

6n
2εn = 3

ε
.

Therefore, at least half of the vertices have degree at most 6
ε
. There are

n+ 2− 2g > 2εn vertices in t, so at least εn of them have degree not greater
than 6

ε
.

For each of these εn vertices v, fix a triangular face fv incident to v. Since
each face is incident to only 3 vertices, the set F of the faces fv contains at
least ε

3n faces. We need to find ε
12n pairs (f, f ′) ∈ F 2 with d∗(f, f ′) 6 24

ε
.

This will follow from the fact that balls (for d∗) centered at the elements of
F must strongly overlap. More precisely, let r = 12

ε
. Since the dual map t∗

is connected, for any f ∈ F , we have4 |B∗r (f)| > r. Therefore, we have

∑
f∈F
|B∗r (f)| > 12

ε
× ε

3n = 4n,

4Unless the number of faces of t is smaller than r, in which case B∗r (f) = t∗, so any
pair of F 2 is good.
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whereas |t∗| = 2n−p+2 < 4n. Hence, there must be an intersection between
the balls B∗r (f), so there are f1, f

′
1 ∈ F such that d∗(f1, f

′
1) 6 2r = 24

ε
, and

the pair (f1, f
′
1) is good. We set F1 = F\{f1}. We now try to find a good

pair in F1 and remove an element of this pair, and so on. Assume that Fi is
the set F where i elements have been removed. If i < ε

12n, then we have

∑
f∈Fi
|B∗r (f)| > 12

ε

(
ε

3n− i
)
> 3n > |t∗|,

so Fi contains a good pair. Therefore, the process will not stop before i = ε
12n,

so we can find ε
12n good pairs in F 2, which concludes the proof.

We are now able to prove the bounded ratio lemma.

Proof of Lemma 15. Let g > 0, n > 2 be such that g
n
6 1

2 − ε. We will define
an "almost-injection" Φ from Tp(n, g) to Tp(n − 1, g). The input will be a
triangulation t ∈ T (n, g) with a marked good pair (v1, v2). By Lemma 16,
the number of inputs is at least

ε

12nτp(n, g). (6.2.1)

Given t, v1 and v2, let (f1, f2, . . . , fj) be the shortest path in t∗ between
v1 and v2. Since the pair (v1, v2) is good, we have j 6 24

ε
. For all i, let ei be

the edge separating fi and fi+1. We flip e1, then e2 and so on up to ej−1 (see
Figure 6.3). Note that these flips are always well-defined, since the faces fi
are pairwise distinct.

As we do so, we keep track of all the edges flipped and the order they
come in. All the edges that were flipped are now incident to v1, and the last
of them is also incident to v2. We then contract this edge and merge v1 and
v2 into a vertex v, which creates two digons incident to v, that we contract
into two edges. Finally, we mark the vertex v obtained by merging v1 and
v2, and we also mark the two edges obtained by contracting the digons.

These operations do not change the genus and the boundary length,
and remove exactly 1 vertex. Hence, the output of Φ is a triangulation
of Tp(n− 1, g), with a marked vertex v of degree at most 36

ε
(this is because

deg(v) < deg(v1) + deg(v2) + j), two marked edges incident to v and an or-
dered list of edges incident to v. Moreover, given the triangulation Φ(t), there
are at most n+ 2− 2g 6 n+ 2 possible values of v. Since deg(v) 6 36

ε
, once

v is fixed, there are at most
(

36
ε

)2
ways to choose the two marked edges and
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1
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1
3∗

2
4*

5
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3

4
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v1

v2 v

3

2

Figure 6.3 – The injection. On the left, a good pair and a path of triangles.
In the center, the triangulation after the flips (we flipped the edges 1, 2, 3, 4, 5
in this order). On the right, the final map, after contraction of the brown
edge. The stars indicate the contracted digons.

(
36
ε

)24/ε
to choose the ordered list of edges. Hence, the number of possible

outputs of Φ is at most

n
(36
ε

)24/ε+2
τp(n− 1, g). (6.2.2)

Finally, it is easy to see that Φ is injective: to go backwards, one just needs
to duplicate the two marked edges, split v in two between the two digons,
and flip back the edges in the prescribed order. Therefore, by (6.2.1) and
(6.2.2), we obtain

ε

12nτp(n, g) 6 n
(36
ε

)24/ε+2
τp(n− 1, g),

which concludes the proof with Cε =
(

36
ε

)24/ε+3
.

6.2.2 Planarity and one-endedness
We now fix a sequence (gn) with gn

n
→ θ ∈

[
0, 1

2

)
. As explained in Sec-

tion 6.1.4, the tightness of (Tn,gn) for d∗loc is immediate. In all this section,
we will denote by T a subsequential limit in distribution. It must be an
infinite triangulation. We will first prove that T is planar and one-ended,
and then that its vertices have finite degrees. To establish planarity, the idea
will be to bound, for any non-planar finite triangulation t, the probability
that t ⊂ Tn,gn for n large. For this, we will need the following combinatorial
estimate.
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Lemma 17. Fix k > 1 and m ∈ Z, numbers `1, . . . `k > 1 and perimeters
pji > 1 for 1 6 j 6 k and 1 6 i 6 `j. Then

∑
n1+···+nk=n+m

h1+···+hk=gn−1−
∑

j
(`j−1)

k∏
j=1

τpj1,...,p
j
`j

(nj, hj) = o (τ(n, gn)) (6.2.3)

when n→ +∞.

Proof. By Lemma 13, the left-hand side of (6.2.3) can be bounded by

C
∑

n1+···+nk=n+m
h1+···+hk=gn−1−

∑
j
(`j−1)

k∏
j=1

n
`j−1
j τ(nj, hj)

for C = 6
∑

(`j−1). We now use the crude bound τ(nj, hj) 6 f(nj, hj), where
the numbers f(n, g) = (3n+ 2)τ(n, g) are those that appear in the Goulden–
Jackson formula (6.1.1). Since `j > 1, we can bound n

`j−1
j by 2n`j−1 for n

large enough. The left-hand side of (6.2.3) is then bounded by

Cn
∑k

j=1(`j−1) ∑
n1+···+nk=n+m

h1+···+hk=gn−1−
∑

j
(`j−1)

k∏
j=1

f(nj, hj).

Moreover, the Goulden–Jackson formula implies that∑
n1+n2=n
h1+h2=g

f(n1, h1)f(n2, h2) 6 f(n+ 2, g)

for any n, g > 0. By an easy induction on k, we obtain

∑
n1+···+nk=n
h1+···+hk=g

k∏
j=1

f(nj, hj) 6 f(n+ 2k − 2, g).

Therefore, we can bound the left-hand side of (6.2.3) by

Cn
∑k

j=1(`j−1)f

n+m+ 2k − 2, gn − 1−
k∑
j=1

(`j − 1)
 . (6.2.4)

The Goulden–Jackson formula implies f(n − 2, g − 1) 6 n−2f(n, g) for
any n and g, so f(n, g − i) 6 n−2if(n + 2i, g) for any n and 1 6 i 6 g.
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Therefore, from (6.2.4), we obtain the bound

Cn
∑k

j=1(`j−1)n−2−2
∑k

j=1(`j−1)f
(
n+m+ 2k + 2

∑
(`j − 1), gn

)
6 C ′n−2−

∑
j
(`j−1)f(n, gn),

where in the end we use Lemma 15 (which results in a change in the
constant). In particular, the left-hand side of (6.2.3) is o

(
f(n,gn)

n

)
, so it is

o (τ(n, gn)).

Corollary 21. Every subsequential limit of (Tn,gn) for d∗loc is a.s. planar.

Proof. If a subsequential limit T is not planar, then we can find a finite
triangulation t with holes and with genus 1 such that t ⊂ T . Indeed, if we
explore T triangle by triangle, the genus may only increase by at most 1 at
each step, so if the genus is positive at some point, it must be 1 at some
point. Therefore, it is enough to prove that for any such triangulation t, we
have

P (t ⊂ Tn,gn) −−−−→
n→+∞

0.

If t ⊂ Tn,gn , let T 1, . . . , T k be the connected components of Tn,gn\t. These
components define a partition of the set of holes of t, where a hole h is in
the j-th class if T j is the connected component glued to h (for example, on
Figure 6.1, the three classes have sizes 2, 1 and 1). Note that the number of
possible partitions is finite and depends only on t (and not on n). Therefore,
it is enough to prove that for any partition π of the set of holes of t, we have

P (t ⊂ Tn,gn and the partition defined by Tn,gn is π) −−−−→
n→+∞

0. (6.2.5)

If this occurs, for each j, let `j be the number of holes of T glued to T j and let
pj1, . . . , p

j
`j

be the perimeters of these holes. Then the connected component
T j is a triangulation of the (pj1, . . . , pj`j)-gon (see Figure 6.1). Moreover, if Tj
has genus hj, then the total genus of Tn,gn is equal to

1 +
k∑
j=1

hj +
k∑
j=1

(`j − 1),

so this sum must be equal to gn, so
k∑
j=1

hj = gn − 1−
k∑
j=1

(`j − 1).
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Moreover, let nj be such that T j belongs to Tpj1,...,pj`j
(nj, hj). An easy com-

putation shows that
k∑
j=1

nj = n+m

with

m = 1
2

−|F (t)|+
k∑
j=1

`j∑
i=1

(pji − 2)
 ∈ Z,

where |F (t)| is the number of triangles of t.
Therefore, the number of triangulations T ∈ T (n, gn) such that t ⊂ T

and the resulting partition of the holes is equal to π is the number of ways
to choose, for each j, a triangulation of the (pj1, . . . , pj`j)-gon, such that the
total genus of these triangulations is gn − 1 −∑k

j=1(`j − 1), and their total
size is n + m. This is equal to the left-hand side of Lemma 17, so (6.2.5) is
a consequence of Lemma 17, which concludes the proof.

The proof of one-endedness will be similar, but the combinatorial estimate
that is needed is slightly different.

Lemma 18. • Fix k > 1, m ∈ Z, numbers `1, . . . `k > 1 that are not all
equal to 1, and perimeters pji > 1 for 1 6 j 6 k and 1 6 i 6 `j. Then

∑
n1+···+nk=n+m

h1+···+hk=gn−
∑

j
(`j−1)

k∏
j=1

τpj1,...,p
j
`j

(nj, hj) = o (τ(n, gn)) . (6.2.6)

• Fix k > 2, m ∈ Z and perimeters p1, . . . , pk. There is a constant C
such that, for every a and n, we have

∑
n1+···+nk=n+m
h1+···+hk=gn

n1,n2>a

k∏
j=1

τpj(nj, hj) 6
C

a
τ(n, gn). (6.2.7)

Proof. We start with the first point. The proof is very similar to the proof of
Lemma 17, with the following difference: here, the sum of the genuses differs
by one, so we will lose a factor n2 in the end of the computation. This forces
us to be more careful in the beginning and to use the assumption that the `j
are not all equal to 1.
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More precisely, by using Lemma 13 and the bound τ(n, g) 6 1
n
f(n, g), as

in the proof of Lemma 17, the left-hand side of (6.2.6) can be bounded by

C
∑

n1+···+nk=n+m
h1+···+hk=gn−

∑
j
(`j−1)

 k∏
j=1

n
`j−2
j

 k∏
j=1

f(nj, hj)
 ,

where C does not depend on n. Without loss of generality, assume that
`1 > 2. Then we have n`1−2

1 6 (n + m)`1−2. Moreover, for every j > 2, we
have n`j−2

j 6 n
`j−1
j 6 (n + m)`j−1 since `j > 1. Therefore, we obtain for n

large enough
k∏
j=1

n
`j−2
j 6 2n

∑
j
(`j−1)−1.

By using this and the Goulden–Jackson formula in the same way as in the
proof of Lemma 17, we obtain the bound

Cn−1−
∑

j
(`j−1)f (n+m+ 2k − 2, gn) 6 C ′n−1−

∑
j
(`j−1)f(n, gn),

where the last inequality follows from the bounded ratio lemma. Since `1 > 2,
we have ∑j(`j − 1) > 1, so this is o

(
f(n,gn)

n

)
and we get the result.

We now prove the second point. As in the first case (but with `j = 1 for
every j), the left-hand side can be bounded by

C
∑

n1+···+nk=n+m
h1+···+hk=gn

n1,n2>a

 k∏
j=1

1
nj

 k∏
j=1

f(nj, hj)
 .

Moreover, if n1, n2 > a, then at least one of the nj is larger than n+m
k

and
two are larger than a, so ∏k

j=1 nj >
(n+m)a

k
, so we obtain the bound (for n

large enough, with C ′ and C ′′ independent of n and a)

C ′

an

∑
n1+···+nk=n+m
h1+···+hk=gn

n1,n2>a

k∏
j=1

f(nj, hj) 6
C ′

an

∑
n1+···+nk=n+m
h1+···+hk=gn

k∏
j=1

f(nj, hj)

6
C ′

an
f(n+m+ 2k − 2, gn)

6
C ′′

an
f(n, gn)

6
C ′′

a
τ(n, gn),
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where we use the Goulden–Jackson formula to reduce the sum and finally
the bounded ratio lemma, in the same way as previously.

Corollary 22. Every subsequential limit of (Tn,gn) for d∗loc is a.s. one-ended.

Proof. The proof is quite similar to the proof of Corollary 21, but with
Lemma 18 playing the role of Lemma 17.

More precisely, if a subsequential limit T is not one-ended with positive
probability, it contains a finite triangulation t such that two of the connected
components of T\t are infinite. This means that we can find ε > 0, a
triangulation t and two holes h1, h2 of t such that, for every a > 0,

P (t ⊂ T and T\t has two connected components with at least a faces)> ε.

(6.2.8)
By Corollary 21, we can assume that t is planar. If this holds, then T

contains a finite triangulation obtained by starting from t and adding a faces
in the hole h1 and a faces in the hole h2. We denote by ta,a the set of such
triangulations. Then (6.2.8) means that for any a > 0, for n large enough,
we have

P (Tn,gn contains a triangulation of ta,a) > ε. (6.2.9)

This can occur in two different ways, which will correspond to the two items
of Lemma 18:

(i) either at least one connected component of Tn,gn\t is adjacent to at
least two holes of t,

(ii) or the k holes of t correspond to k connected components T 1, . . . , T k,
where T 1 and T 2 have size at least a.

In case (i), the connected components of Tn,gn are triangulations of multi-
polygons, at least one of which has two boundaries. The proof that the
probability of this case goes to 0 is now the same as the proof of Corollary 21,
but we use the first point of Lemma 18. Note that the assumption the `j
are not all 1 comes from the fact that one of the connected components
is adjacent to two holes. Moreover, the sum of the genuses of the T j is
g −∑j(`j − 1) and not g − 1 −∑j(`j − 1) because this time t has genus 0
and not 1.

Similarly, in case (ii), the k holes of t must be filled with k triangulations
of a single polygon, two of which have at least a faces, so they belong to
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a set of the form Tpj(nj, hj) with nj > a
2 if a is large enough compared to

the perimeters of the holes. Hence, the second point of Lemma 18 allows to
bound the number of ways to fill these holes. We obtain that, for a large
enough, we have

P (Tn,gn contains a triangulation of ta,a) 6 o(1) + 2C
a

as n → +∞, where o(1) comes from case (i) and 2C
a

from case (ii). This
contradicts (6.2.9), so T is a.s. one-ended.

6.2.3 Finiteness of the degrees
Our goal is now to prove tightness for dloc. As before, let (gn) be a sequence
with gn

n
→ θ ∈

[
0, 1

2

)
.

Proposition 13. The sequence (Tn,gn) is tight for dloc.

Let T be a subsequential limit of (Tn,gn) for d∗loc. By Lemma 14, to finish
the proof of tightness for dloc, we only need to show that almost surely, all the
vertices of T have finite degree. As in [AS03], we will first study the degree
of the root vertex, and then extend finiteness by using invariance under the
simple random walk. The main difference with [AS03] is that, while [AS03]
uses exact enumeration results, we will rely on the bounded ratio lemma.

Lemma 19. The root vertex of T has a.s. finite degree.

Proof. We follow the approach of [AS03] and perform a filled-in peeling ex-
ploration of T . Before specifying the peeling algorithm that we use, note
that we already know by Corollary 21 that the explored part will always be
planar, so no peeling step will merge two different existing holes. Moreover,
by Corollary 22, if a peeling step separates the boundary into two holes, then
one of them is finite and will be filled with a finite triangulation. Therefore,
at each step, the explored part will be a triangulation with a single hole.

The peeling algorithm A that we use is the following: if the root vertex
ρ belongs to ∂t, then A(t) is the edge on ∂t on the left of ρ. If ρ /∈ ∂t,
then the exploration is stopped. Since only finitely many edges incident to
ρ are added at each step, it is enough to prove that the exploration will a.s.
eventually stop. We recall that EAT (i) is the explored part at time i.

We will prove that at each step, conditionally on EAT (i), the probability to
swallow the root and finish the exploration at time i+ 1 or i+ 2 is bounded
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Figure 6.4 – The construction of t+ from t. In gray, the triangulation t. In
red, the root vertex. In blue, the new triangles. In the bottom, the case
|∂t| = 1.

from below by a positive constant. For every triangulation t with one hole
such that ρ ∈ ∂t, we denote by t+ the triangulation constructed from t as
follows (see Figure 6.4):

• we first glue a triangle to the edge of ∂t on the left of ρ, in such a way
that the third vertex of this triangle does not belong to t, to obtain a
triangulation with perimeter at least 2;

• we then glue a second triangle to the two edges of the boundary incident
to ρ.

Note that t+ is a planar map with the same perimeter as t but one more
vertex and two more triangles. By the choice of our peeling algorithm, if
EAT (i)+ ⊂ T , then we have EAT (i+ 2) = EAT (i)+. Moreover, if this is the case,
the exploration is stopped at time i + 2. Hence, it is enough to prove that
the quantity

P
(
t+ ⊂ T |t ⊂ T

)
is bounded from below for finite, planar triangulations t with a single hole
and ρ ∈ ∂t.

We fix such a t, with perimeter p. Let also (nk) be a sequence of indices
such that Tnk,gnk converges in distribution to T . We have

P
(
t+ ⊂ T |t ⊂ T

)
= lim

k→+∞

P
(
t+ ∈ Tnk,gnk

)
P
(
t ∈ Tnk,gnk

) = lim
k→+∞

τp (nk +m− 1, gnk)
τp(nk +m, gnk)

,
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where m = p−2−|F (t)|
2 and |F (t)| is the number of triangles of t. Moreover,

there is ε > 0 such that gn 6
(

1
2 − 2ε

)
n for n large enough, so gnk

nk+m 6
1
2 − ε

for k large enough. By the bounded ratio lemma, we obtain

P
(
t+ ⊂ T |t ⊂ T

)
>

1
Cε

for every t, which concludes the proof.

Remark 6.2.1. Our proof shows that the number of steps needed to swallow
the root has exponential tail. However, since we do not control the finite tri-
angulations filling the holes that may appear, it does not give any quantitative
bound on the root degree.

Proof of Proposition 13. Let T be a subsequential limit of (Tn,gn). Because
of Lemma 14, it is enough to prove that almost surely, all the vertices of T
have finite degrees. The argument is essentially the same as in [AS03] and
relies on Lemma 19 and invariance under the simple random walk.

More precisely, for every n, let −→e0
n be the root edge of Tn,gn and let −→e0

be the root of T . We first note that the distribution of Tn,gn is invariant
under reversing the orientation of the root, so this is also the case of T . By
Lemma 19, this implies that the endpoint of −→e0 has a.s. finite degree.

We then denote by −→e1
n the first step of the simple random walk on Tn,gn :

its starting point is the endpoint of −→e0
n and its endpoint is picked uniformly

among all the neighbours of the starting point. Since the endpoint of −→e0 has
finite degree, we can also define the first step −→e1 of the simple random walk
on T . For the same reason as in the planar case (see Theorem 3.2 of [AS03]),
the triangulations (Tn,gn ,−→e1

n) and (Tn,gn ,−→e0
n) have the same distribution, so

(T,−→e1 ) has the same distribution as (T,−→e0 ). In particular, all the neighbours
of the endpoint of −→e0 must have finite degrees. From here, an easy induction
on i shows that for every i > 0, we can define the i-th step −→ei of the simple
random walk on T , that (T,−→ei ) has the same distribution as (T,−→e0 ) and that
all vertices at distance i from the root in T are finite. This concludes the
proof.

6.3 Weakly Markovian triangulations
The goal of this section is to prove Theorem 12. We first recall the definition
of a weakly Markovian triangulation.
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Definition 23. Let T be a random infinite triangulation of the plane. We
say that T is weakly Markovian if there is a family (apv)v > p > 1 of numbers
with the following property: for every triangulation t with a hole of perimeter
p and v vertices in total, we have

P (t ⊂ T ) = apv.

By their definition, the PSHT Tλ are weakly Markovian. We denote by
apv(λ) = Cp(λ)λv the associated constants, where Cp(λ) is given by (6.1.4).
This implies that any mixture of these is also weakly Markovian. Indeed,
for any random variable Λ with values in (0, λc], we denote by TΛ the PSHT
with random parameter Λ. Let also µ be the distribution of Λ. Then for
every triangulation t with a hole of perimeter p and v vertices in total, we
have

P (t ⊂ TΛ) =
∫ λc

0
P (t ⊂ Tλ)µ(dλ) =

∫ λc

0
Cp(λ)λvµ(dλ) =: apv[µ]. (6.3.1)

Note that the last integral always converges since Cp(λ)λv is bounded by 1.
Therefore, the triangulation TΛ is weakly Markovian. Our goal here is to
prove Theorem 12, which states that the converse is true.

In all the rest of this section, we will denote by T some weakly Markovian
random triangulation, and by (apv)v > p > 1 the associated constants. Before
giving an idea of the proof, let us start with a remark that will be very
useful in all that follows. The numbers apv are linked to each other by linear
equations that we call the peeling equations. In this section, for every p > 1
and j > 0, we denote by |Tp(j)| the number of planar triangulations of a
p-gon (rooted on the boundary) with exactly j inner vertices5.

Lemma 20. For every v > p > 1, we have

apv = ap+1
v+1 + 2

p−1∑
i=0

+∞∑
j=0
|Ti+1(j)|ap−iv+j. (6.3.2)

In particular, the sum in the right-hand side must converge. Note also
that if v > p > 1, then v + j > p − i > 1 in all the terms of the sum, so all
the terms make sense.

Proof of Lemma 20. The proof just consists of making one peeling step. As-
sume that t ⊂ T for some triangulation t with a hole of perimeter p and

5In order to have nicer formulas, the convention we use here differs from the rest of
the chapter, in which the parameter n is related to the total number of vertices. We insist
that this holds only in Section 6.3.
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volume v. Fix an edge e ∈ ∂T , and consider the face f out of t that is
adjacent to e. Then we are in exactly one of the three following cases:

• the third vertex of f does not belong to ∂t,

• the third vertex of f belongs to ∂t, and f separates on its left i edges
of ∂t from infinity,

• the third vertex of f belongs to ∂t, and f separates on its right i edges
of ∂t from infinity.

In the first case, the triangulation we obtain by adding f to t has perimeter
p + 1 and v + 1 vertices in total. In the other two cases, f separates T\t in
one finite and one infinite components. The finite component has perimeter
i + 1. If it has j inner vertices, then after filling the finite component, we
obtain a triangulation with perimeter p− i and volume v + j.

Our main job will be to prove the following result: it states that the
numbers a1

v for v > 1 are compatible with some mixture of PSHT.

Proposition 14. There is a probability measure µ on (0, λc] such that, for
every v > 1, we have

a1
v = a1

v[µ].

Once Proposition 14 is proved, our main theorem follows easily. Indeed,
Lemma 20 can be rewritten

ap+1
v+1 = apv − 2

p−1∑
i=0

+∞∑
j=0
|Ti+1(j)|ap−iv+j (6.3.3)

for v + 1 > p+ 1 > 2. Hence, numbers of the form ap+1
v can be expressed in

terms of the numbers aiv with i 6 p. Therefore, by induction on p, we can
prove that for every v > p > 1, we have

apv = apv[µ].

Since the numbers apv characterize entirely the distribution of T , we are done.
Therefore, we only need to prove Proposition 14. As a particular case of

(6.3.1), for every measure µ and any v > 0, we have

a1
v+1[µ] =

∫ λc

0
C1(λ)λv+1µ(dλ) =

∫ λc

0
λvµ(dλ).
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The right-hand side can be interpreted as the v-th moment of a random
variable with distribution µ. Therefore, all we need to prove is that there is
a random variable Λ with support in (0, λc] such that, for every v > 0, we
have

a1
v+1 = E[Λv].

We first show that there exists such a variable with support in [0, 1]. Since
a1

1 = 1, this is precisely the Hausdorff moment problem, so all we need to
show is that the sequence (a1

v+1)v > 0 is completely monotonic. More precisely,
let ∆ be the discrete derivative operator:

(∆u)n = un − un+1.

Then, to prove that (a1
v+1)v > 0 is the moment sequence of a probability mea-

sure on [0, 1], it is sufficient to prove the following lemma.

Lemma 21. For every k > 0 and v > p > 1, we have(
∆kap

)
v
> 0.

Note that only the case p = 1 is necessary. However, it will be more
convenient to prove the lemma in the general case.

Proof. We prove the lemma by induction on k. The case k = 0 just means
that apv > 0 for every v > p > 1. The case k = 1 means that apv is non-
decreasing in v, which is a straightforward consequence of the peeling equa-
tion: in the right-hand side of (6.3.2), the term corresponding to i = 0 and
j = 1 is |T1(1)|apv+1, so

apv > 2apv+1 > apv+1.

Now assume that k > 1 and that the lemma is proved for k. We will use
the result for k and p + 1 to prove it for k + 1 and p. Let v > p > 1. By
using the induction hypothesis and (6.3.3) for (p, v), (p, v+ 1), . . . , (p, v+ k),
we obtain

0 6 ∆k(ap+1)v+1

=
k∑
`=0

(−1)`
(
k

`

)
ap+1
v+1+`

=
k∑
`=0

(−1)`
(
k

`

)
apv+` − 2

p−1∑
i=0

+∞∑
j=0
|Ti+1(j)|

k∑
`=0

(−1)`
(
k

`

)
ap−iv+`+j

=
(
∆kap

)
v
− 2

p−1∑
i=0

+∞∑
j=0
|Ti+1(j)|

(
∆kap−i

)
v+j

.



CHAPTER 6. LOCAL LIMITS OF HIGH GENUS TRIANGULATIONS126

By the induction hypothesis, all the terms
(
∆kap−i

)
v+j

in the sum are non-
negative. Therefore, the above sum does not decrease if we remove some
of the terms. In particular, we may remove all the terms except the one
for which i = 0 and j = 1, and we may also remove the factor 2. Since
|T1(1)| = 1, we obtain

0 6
(
∆kap

)
v
−
(
∆kap

)
v+1

=
(
∆k+1ap

)
v
,

which proves the lemma by induction.
Remark 6.3.1. Many bounds used in the last proof may seem very crude.
This is due to the fact that we prove the existence of a variable Λ with support
in [0, 1], whereas its support is actually in [0, λc]. For example, if we had not
got rid of the factors 2, we would have obtained that Λ has support in

[
0, 1

2

]
instead of [0, 1].
End of the proof of Theorem 12. By Lemma 21, there is a random variable
Λ with support in [0, 1] such that, for every v > 1, we have a1

v+1 = E[Λv].
All we need to show is that Λ ∈ (0, λc] almost surely. We first explain why
Λ 6 λc. The peeling equation for p = v = 1 shows that

+∞∑
j=0
|T1(j)|a1

j+1 6 a1
1 < +∞.

On the other hand, we know that |T1(j)| ∼ cλ−jc j−5/2 as j → +∞ for some
constant c > 0. Therefore, if P (Λ > λc + ε) > ε for some ε > 0, then
a1
v+1 > ε(λc + ε)v for every v and the series above diverge, so we get a

contradiction.
We finally prove that P (Λ = 0) = 0. As explained above, we already

know that
apv =

∫ λc

0
apv(λ)µ(dλ),

where µ is the distribution of Λ. We also have apv(0) = 1p=v. Therefore,
if we set δ = P (Λ = 0), for every p > 1, we have app > δ. Now let tp be
the triangulation with p vertices and a hole of perimeter p represented on
Figure 6.5. For every p > 1, we have P (tp ⊂ T ) = app > δ. Since the events
tp ⊂ T are nonincreasing in p, we have

P (∀p > 1, tp ⊂ T ) > δ.

On the other hand, if tp ⊂ T , then the degree of the root vertex is at least
p + 2, so we have P (deg(ρ) = +∞) > δ. Since the degrees are finite, we
must have δ = 0, so Λ is supported in (0, λc], which concludes the proof.
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Figure 6.5 – The "triangle chain" triangulation tp with p vertices (for p = 8).

6.4 Ergodicity
In all this section, we denote by (gn) a sequence such that gn

n
→ θ ∈

[
0, 1

2

)
and by T a subsequential limit of (Tn,gn) for dloc. In order to keep the notation
light, we will always implicitly restrict ourselves to values of n along which
Tn,gn converges to T in distribution.

For any n, the triangulation Tn,gn is weakly Markovian, so this is also the
case of T . Therefore, by Theorem 12, we know that T must be a mixture of
PSHT, i.e. there is a random variable Λ ∈ (0, λc] such that T has the same
distribution as the PSHT with random parameter TΛ.

We also note right now that by the discussion in the end of Section 6.1.3
(Equation (6.1.5)), the parameter Λ is a measurable function of the trian-
gulation TΛ. More precisely, if PΛ and V Λ are the perimeter and volume
processes associated to the peeling exploration of TΛ, then Λ can be defined
as f−1

(
limi→+∞

PΛ(i)
V Λ(i)

)
, where f(λ) = 1 − 4h is injective. In particular Λ is

defined without any ambiguity. Our goal is now to prove that Λ is determin-
istic, and given by (6.0.2).

6.4.1 The two holes argument
Roughly speaking, we know that Tn,gn seen from a typical point en looks like
a PSHT with random parameter Λ. We would like to show that Λ does not
depend on (Tn,gn , en). The first step is essentially to prove that Λ does not
depend on en.

More precisely, conditionally on Tn,gn , we pick two independent uniform
oriented edges e1

n, e
2
n of Tn,gn . The pairs (Tn,gn , e1

n) and (Tn,gn , e2
n) have the

same distribution, and both converge in distribution to TΛ. It follows that
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e1n

e2n

e2n

e1n

Figure 6.6 – The idea of the two-holes argument: the inner parts around e1
n

and e2
n are "swapped". The root edges e1

n and e2
n are swapped at the same

time as their neighbourhoods.

the pairs (
(Tn,gn , e1

n), (Tn,gn , e2
n)
)

for n > 1 are tight, so up to further extraction, they converge to a pair
(T1

Λ1 ,T
2
Λ2), where both marginals have the same distribution as TΛ. By the

above discussion, the variables Λ1 and Λ2 are well-defined. By the Skorokhod
representation theorem, we may assume the convergence in distribution is
almost sure. Our goal in this subsection is to prove the following lemma.

Proposition 15. We have Λ1 = Λ2 almost surely.

Proof. The idea of the proof is the following: if Λ1 6= Λ2, consider two
large neighbourhoods N1

n and N2
n (say, of size 100) with the same perimeter

around e1
n and e2

n. Then there is a natural way to "swap" N1
n and N2

n in Tn,gn
(cf. Figure 6.6), without changing its distribution. If we do this, then Tn,gn
around e1

n looks like TΛ1 in a neighbourhood of the root of size 100, and like
TΛ2 out of this neighbourhood. However, if Λ1 6= Λ2, such a configuration is
highly unlikely for a mixture of PSHT.

More precisely, in all the proof that follows, we consider a deterministic
peeling algorithm A, according to which we will explore Tn,gn around en1 and
around en2 . All the explorations we will consider will be filled-in: every time
the peeled face separates the undiscovered part in two, we discover completely
the smaller part. While the computations in the beginning of the proof hold
for any choice of A, we will need later to specify the choice of the algorithm.

We denote by E1
n(i) the explored part at time i when the exploration is

started from en1 . If at some point E1
n(i) is non-planar, then the exploration

is stopped. We write respectively P 1
n(i) and V 1

n (i) for its perimeter and its
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volume (i.e. its total number of vertices). For any p > 2, let τ 1
n(p) be the

smallest i such that P 1
n(i) = p. We denote by E2

n(i), P 2
n(i), V 2

n (i) and τ 2
n(p)

the analog quantities for the exploration started from e2
n. We also denote by

E1
∞(i), P 1

∞(i), V 1
∞(i) and τ 1

∞(p) the analog quantities for T1
Λ1 , and similarly

for T2
Λ2 .

We fix ε > 0. We recall that

P 1
∞(i)
V 1
∞(i)

a.s.−−−−→
i→+∞

f(Λ1),

where f : (0, λc]→ [0, 1) is bijective and decreasing. Note also that the times
τ 1
∞(p) are a.s. finite and τ 1

∞(p)→ +∞ when p→ +∞, so for p large enough,
we have

P

(∣∣∣∣∣ p

V 1
∞(τ 1

∞(p)) − f(Λ1)
∣∣∣∣∣ > ε

)
6 ε.

We fix such a p until the end of the proof. Moreover, we have
q

V 1
∞(τ 1

∞(q))− V 1
∞(τ 1

∞(p))
a.s.−−−−→

q→+∞
f(Λ1),

so for q large enough, we have

P

(∣∣∣∣∣ q

V 1
∞(τ 1

∞(q))− V 1
∞(τ 1

∞(p)) − f(Λ1)
∣∣∣∣∣ > ε

)
6 ε.

We fix a such a q > p until the end of the proof. Moreover, the local conver-
gence of (Tn,gn , e1

n) to T1
Λ1 implies the convergence of the peeling exploration.

Hence, the probability that τ 1
n(p) is finite goes to 1 as n→ +∞. Therefore,

for n large enough, we have

P

(∣∣∣∣∣ p

V 1
n (τ 1

n(p)) − f(Λ1)
∣∣∣∣∣ > 2ε

)
6 2ε, (6.4.1)

P

(∣∣∣∣∣ q

V 1
n (τ 1

n(q))− V 1
n (τ 1

n(p)) − f(Λ1)
∣∣∣∣∣ > 2ε

)
6 2ε. (6.4.2)

By combining (6.4.1) and (6.4.2), we also obtain

P

(∣∣∣∣∣ q

V 1
n (τ 1

n(q))− V 1
n (τ 1

n(p)) −
p

V 1
n (τ 1

n(p))

∣∣∣∣∣ > 4ε
)
6 4ε (6.4.3)

for n large enough. Moreover, the same is true if we replace the exploration
from e1

n by the exploration from e2
n (with of course Λ2 playing the role of Λ1).
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p

q

Figure 6.7 – Illustration of the choice of the peeling algorithm: in gray, the
part E(τ(p)). In cyan, the part E(i)\E(τ(p)), rooted at the red edge. The
peeled edge (in blue) may only depend on the cyan part (which is rooted at
the red edge).

We now specify the properties that we need our peeling algorithm A
to satisfy. It roughly means that the edges that we peel after time τ(p)
should not depend on what happened before time τ(p). More precisely,
before the time τ(p), the peeled edge can be any edge of the boundary. At
time τ(p), we color in red an edge of the boundary of E(τ(p)) according to
some deterministic convention. At time i > τ(p), the choice of the edge
to peel at time i + 1 must only depend on the triangulation E(i)\E(τ(p)),
which is rooted at the red edge (see Figure 6.7). It is easy to see that such an
algorithm exists: we only need to fix a peeling algorithm A′ for triangulations
of the sphere or the plane, and a peeling algorithm A′′ for triangulations of
the p-gon, and to use A′ before time τ(p) and A′′ after τ(p). Note also that
we can know, by only looking at E(i), if i 6 τ(p) or not, so at each step the
peeled edge will indeed depend only on the explored part.

We can now define precisely our surgery operation on (Tn,gn , e1
n, e

2
n). We

say that e1
n and e2

n are well separated if τ 1
n(p), τ 2

n(p) < +∞ and if the regions
E1
n(τ 1

n(p)) and E2
n(τ 2

n(p)) have no common vertex. If e1
n and e2

n are well sep-
arated, we remove the triangulations E1

n(τ 1
n(p)) and E2

n(τ 2
n(p)), which creates

two holes of perimeter p. We then glue each of the two triangulations to the
hole where the other was, in such a way that the red edges of our peeling algo-
rithm coincide (see Figure 6.6). If the two roots are not well-separated, then
(Tn,gn , e1

n, e
2
n) is left unchanged. This operation is an involution on the set of

bi-rooted triangulations with fixed size and genus. Therefore, if we denote by
T ′n,gn the new triangulation we obtain, it is still uniform, and

(
T ′n,gn , e

1
n, e

2
n

)
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has the same distribution as (Tn,gn , e1
n, e

2
n).

Lemma 22. The probability that e1
n and e2

n are well separated goes to 1 as
n→ +∞.

Proof. The local convergence of the exploration implies that the sequence
(τ 1
n(p))n > 0 is tight, and so is (V 1

n (τ 1
n(p)))n > 0. Since the diameter of a trian-

gulation is bounded by its volume, the diameters of the maps E1
n(τ 1

n(p)) are
tight (when n→ +∞), and the same is true around en2 . On the other hand,
by local convergence (for dloc), for every fixed r, the volume of the ball of
radius r around e1

n is tight. Since e2
n is uniform and independent of e1

n, we
have

P
(
dTn,gn (e1

n, e
2
n) 6 r

)
−−−−→
n→+∞

0

for every r > 0. From here, we obtain

P
(
dTn,gn (e1

n, e
2
n) 6 diam

(
E1
n(τ 1

n(p))
)

+ diam
(
E2
n(τ 2

n(p))
))
−−−−→
n→+∞

0.

If this last event does not occur, then the regions E1
n(τ 1

n(p)) and E2
n(τ 2

n(p)) do
not intersect, which proves the lemma.

Now, if we perform a peeling exploration on T ′n,gn from e1
n using algorithm

A, then the part explored at time τ(p) will be exactly the triangulation
E1
n(τ 1

n(p)). Moreover, the red edge on ∂E1
n(τ 1

n(p)) is glued at the same place
as the red edge on ∂E2

n(τ 2
n(p)) and our peeling algorithm "forgets" the interior

of E1
n(τ 1

n(p)). Hence, the part explored between τ(p) and τ(q) is exactly
E2
n(τ 2

n(q))\E2
n(τ 2

n(p)). Therefore, the part discovered between times τ(p) and
τ(q) has perimeter q and volume

V 2
n (τ 2

n(q))− V 2
n (τ 2

n(p)).

Now, since (T ′n,gn , e1
n) has the same distribution as (Tn,gn , e1

n), we can apply
(6.4.3) to the exploration of T ′n,gn from e1

n. We obtain

P

(∣∣∣∣∣ q

V 2
n (τ 2

n(q))− V 2
n (τ 2

n(p)) −
p

V 1
n (τ 1

n(p))

∣∣∣∣∣ > 4ε
)
6 4ε.

By combining this with (6.4.1) for the exploration of Tn,gn started from e1
n

and with (6.4.2) for the exploration of Tn,gn started from e2
n, we obtain

P (|f(Λ1)− f(Λ2)| > 8ε) 6 8ε.

This is true for any ε > 0, so we have f(Λ1) = f(Λ2) a.s.. Since f is strictly
decreasing on (0,Λc], we are done.
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6.4.2 Conclusion
In order to conclude the proof of Theorem 11, we will need to compute the
mean inverse root degree in the PSHT. This is the only observable that is
easy to compute in Tn,gn , so it is not surprising that such a result is needed
to link θ to λ.

Proposition 16. For λ ∈ (0, λc], let

d(λ) = E

[
1

degTλ(ρ)

]
.

Then we have

d(λ) =
h log 1+

√
1−4h

1−
√

1−4h

(1 + 8h)
√

1− 4h
,

where h is given by (6.1.3). In particular, the function d is strictly increasing
on (0, λc], with d(λc) = 1

6 and limλ→0 d(λ) = 0.

We postpone the proof of Proposition 16 until Section 6.4.3, and finish
the proof of Theorem 11. We recall that we work with a subsequential limit
of (Tn,gn), and we know that it has the same distribution as TΛ for some
random Λ. Our goal is to prove that Λ is the solution of d(Λ) = 1−2θ

6 . Note
that by Proposition 16, the solution of this equation exists and is unique.

The idea is the following: by Proposition 15, the random parameter Λ
only depends on the triangulation Tn,gn and not on its root. On the one
hand, for any triangulation, the mean inverse root degree over all possible
choices of the root is 1−2θ

6 . Therefore, the mean inverse root degree over
all triangulations corresponding to a fixed value of Λ is 1−2θ

6 . On the other
hand, the mean inverse degree conditionally on Λ is d(Λ), so we should have
d(Λ) = 1−2θ

6 .
To prove this properly, we need a way to "read" Λ on finite maps, which is

the goal of the next (easy) technical lemma. As earlier, we restrict ourselves
to a subset of values of n along which Tn,gn → TΛ.

Lemma 23. There is a function ` : ⋃n > 1 T (n, gn) −→ [0, λc] such that we
have the convergence

(Tn,gn , `(Tn,gn)) (d)−−−−→
n→+∞

(TΛ,Λ) .

Note that a priori `(t) may depend on the choice of the root of t, although
Proposition 15 will guarantee that this is asymptotically not the case.
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Proof. By the Skorokhod representation theorem, we may assume the conver-
gence Tn,gn → TΛ is almost sure. As explained in the beginning of Section 6.4,
the parameter Λ is a measurable function of TΛ, so there is a measurable func-
tion ˜̀ from the set of all (finite or infinite) triangulations such that ˜̀(TΛ) = Λ
a.s.. Therefore, for any ε > 0, we can find a continuous function (for the local
topology) `ε such that

P
(
|`ε(TΛ)− Λ| > ε

2

)
6
ε

2 .

For n larger than some Nε, we have

P (|`ε(Tn,gn)− Λ| > ε) 6 ε.

Now let εk → 0 as k → +∞. We may assume that (Nεk) is strictly increasing.
For any triangulation t ∈ T (n, gn), we set `(t) = `εk(t), where k is such that
Nεk < n 6 Nεk+1 . This ensures `(Tn,gn)→ Λ almost surely, so

(Tn,gn , `(Tn,gn)) (d)−−−−→
n→+∞

(TΛ,Λ) .

We are now ready to prove our main Theorem.

Proof of Theorem 11. Let f be a continuous, bounded function on [0, λc].
For any n, let e1

n and e2
n be two oriented edges chosen independently and

uniformly in Tn,gn , and let ρ1
n and ρ2

n be their starting points. We will estimate
in two different ways the limit of the quantity

E

[
1

deg(ρ1
n)f(`(Tn,gn , e1

n))
]
. (6.4.4)

On the one hand, the quantity in the expectation is bounded and converges
in distribution to 1

deg(ρ)f(Λ), where ρ is the root vertex of TΛ, so (6.4.4) goes
to

E

[
1

deg(ρ)f(Λ)
]

= E [d(Λ)f(Λ)]

as n→ +∞. On the other hand, by Proposition 15 and Lemma 23, we have(
`(Tn,gn , e1

n), `(Tn,gn , e2
n)
) (d)−−−−→

n→+∞
(Λ,Λ) ,
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so `(Tn,gn , e1
n)− `(Tn,gn , e2

n) goes to 0 in probability. Since f is bounded and
uniformly continuous, the difference f (`(Tn,gn , e1

n))− f (`(Tn,gn , e2
n)) goes to

0 in L1, so we have

E

[
1

deg(ρ1
n)f(`(Tn,gn , e1

n))
]

= E

[
1

deg(ρ1
n)f(`(Tn,gn , e2

n))
]

+ o(1).

Moreover, the expectation of 1
deg(ρ1

n) conditionally on (Tn,gn , e2
n) is equal to

|V (Tn,gn )|
2|E(Tn,gn )| = n+2−2gn

6n , so we can write

E

[
1

deg(ρ1
n)f(`(Tn,gn , e1

n))
]

= n+ 2− 2gn
6n E

[
f(`(Tn,gn , e2

n))
]

+ o(1)

−−−−→
n→+∞

1− 2θ
6 E [f(Λ)] .

Therefore, for any bounded, continuous f on [0, λc], we have

E [d(Λ)f(Λ)] = 1− 2θ
6 E [f(Λ)] ,

so d(Λ) = 1−2θ
6 a.s.. By injectivity of d, this fixes a deterministic value for Λ

that depends only on θ, which concludes the proof.

6.4.3 The average root degree in the type-I PSHT via
uniform spanning forests

Our goal is now to prove Proposition 16. Since we have not been able to
perform a direct computation, our strategy will be to use the similar compu-
tation for the type-II PSHIT that is done in [Bud18a, Appendix B]. To link
the mean degree in the type-I and in the type-II PSHT, we use the core de-
composition of the type-I PSHT [Bud18a, Appendix A] and an interpretation
in terms of the Wired Uniform Spanning Forest.

The type-II case. We will need to use the computation of the same quan-
tity in the type-II case, which is performed in [Bud18a, Appendix B]. We
first recall briefly the definition of the type-II PSHT [Cur16]. These are the
type-II analogs of the type-I PSHT, i.e. they may contain multiple edges but
no loop. They form a one-parameter family

(
TIIκ

)
0<κ 6 κc

of random infinite
triangulations of the plane, where κc = 2

27 . Their distribution is character-
ized as follows: for any type-II triangulation with a hole of perimeter p and
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v vertices in total, we have

P
(
t ⊂ TIIκ

)
= CII

p (κ)× κv,

where the numbers CII
p (κ) are explicitly determined by κ.

Proposition 17. [Bud18a, Appendix B] For κ ∈ (0, κc], let

dII(κ) = E

[
1

degTIIκ
(ρ)

]
.

Then we have

dII(κ) = −1− α
2 + (1− α)

√
α

2
√

3α− 2
log
√
α +
√

3α− 2√
α−
√

3α− 2
,

where α ∈
[

2
3 , 1

)
is such that κ = α2(1−α)

2 .

In [Bud18a], Proposition 17 is proved by using a peeling exploration to
obtain an equation on the generating function of the mean inverse root degree
in PSHT with boundaries. While this approach could theoretically also work
in the type-I setting, some technical details make the formulas much more
complicated. Although everything remains in theory completely solvable,
our efforts to push the computation until the end have failed, even with a
computer algebra software. Therefore, we will rely on Proposition 17 and
on the correspondence between type-I PSHT and type-II PSHT given in
[Bud18a, Appendix A].

The type-I–type-II correspondence. We now introduce the correspon-
dence between the type-I and the type-II PSHT stated in [Bud18a, Appendix
A]. We write β = 1− 1+2h√

1+8h , and κ = h
(1+2h)3 , where h is given by (6.1.3). We

also define a random triangulation Aλ of the 2-gon as follows. We start from
two vertices x and y linked by B edges, where B − 1 is a geometric variable
of parameter β. In each of the B − 1 slots between these edges, we insert a
loop (the loops are glued to x or y according to independent fair coin flips).
Finally, these B − 1 loops are filled with i.i.d. Boltzmann triangulations of
the 1-gon with parameter λ (see Figure 6.8). Copies of Aλ will be called
blocks in what follows.

Let |Aλ| be the number of inner vertices of Aλ (i.e. x and y excluded), and
let E(Aλ) be its set of edges (including the boundary edges). The Euler for-
mula implies |E(Aλ)| = 1+3|Aλ|. Let Ãλ be a random triangulation with the
same distribution as Aλ, biased by |E(Aλ)|. After elementary computations,
the correspondence shown in [Bud18a, Appendix A] can be reformulated as
follows.
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λ

λ

λ

Figure 6.8 – The random block Aλ (here we have B = 4). The green parts
are i.i.d. λ-Boltzmann triangulations of the 1-gon.

Proposition 18. The triangulation Tλ has the same distribution as TIIκ ,
where:

• the root edge has been replaced by an independent copy of Ãλ, rooted at
a uniform oriented edge of Ãλ;

• all the other edges of TIIκ have been replaced by i.i.d. copies of Aλ.

In all the rest of this section, we will consider that Tλ and TIIκ are coupled
together as described in Proposition 18. For each edge e of TIIκ , we will
denote by Aeλ the block replacing e. It will also be useful to consider the
triangulation obtained from TIIκ by replacing all the edges (including the
root) by i.i.d. copies of Aλ. We denote this triangulation by T′λ. We also
note right now that Tλ is absolutely continuous with respect to T′λ.

The wired uniform spanning forest. The last ingredient that we need to
prove Proposition 16 is the oriented wired uniform spanning forest (OWUSF)
[BLPS01], which may be defined on any transient graph. We first recall its
definition. We recall that if (γi) is a transient path, its loop-erasure is the
path (γij), where i0 = 0 and ij+1 = 1 + max{i > ij|γ(i) = γ(ij)}. If G
is an infinite transient graph, its OWUSF −→F is generated by the following
generalization of the Wilson algorithm [Wil96].

1. We list the vertices of G as (vn)n > 1.

2. We run a simple random walk (Xn) on G started from v1, and consider
its loop-erasure, which is an oriented path from v1 to ∞. We add this
path to −→F .
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3. We consider the first i such that vi does not belong to any edge of−→
F yet. We run a SRW from vi, stopped when it hits −→F , and add its
loop-erasure to −→F .

4. We repeat the step 3 infinitely many times.

It is immediate that −→F is an oriented forest such that for any vertex v of G,
there is exactly one oriented edge of −→F going out of v. It can be checked that
the distribution of −→F does not depend on the way the vertices are ordered.

Stationarity and reversibility. We recall that a random rooted graph G
is reversible if its distribution is invariant under reversing the orientation of
the root edge. It is stationary if its distribution is invariant under re-rooting
G at the first step of the simple random walk. In particular, we recall from
[Cur16] that the type-II PSHT are stationary and reversible. Moreover, the
proof of [Cur16] also works for the type-I PSHT.

If two random, rooted transient graphs (G,−→e0 ) and (G′,−→e0
′) have the same

distribution and if −→F and −→F ′ are their respective OWUSF, then (G,−→e0 ,
−→
F )

and (G′,−→e0
′,
−→
F ′) also have the same distribution. It follows that if (G,−→e0 ) is

stationary and reversible, so is the triplet (G,−→e0 ,
−→
F ). The link between the

OWUSF and the mean inverse root degree is given by the next lemma.

Lemma 24. Let (G,−→e0 ) be a stationary, reversible and transient random
rooted graph, and let ρ be the starting point of the root edge −→e0 . We denote
by −→F the OWUSF of G. Then

P
(−→e0 ∈

−→
F
)

= E

[
1

degG(ρ)

]
.

Proof. Conditionally on G, let −→e1 be a random oriented edge chosen uni-
formly (independently of −→F ) among all the edges leaving the root vertex. By
invariance and reversibility of (G,−→e0 ), we know that (G,−→e1 ,

−→
F ) has the same

distribution as (G,−→e0 ,
−→
F ). Therefore, we have

P
(−→e0 ∈

−→
F
)

= P
(−→e1 ∈

−→
F
)

= E
[
P
(−→e1 ∈

−→
F |G,−→e0 ,

−→
F
)]

= E

[
1

degG(ρ)

]
,

where in the end we use the fact that, by construction, −→F contains exactly
one oriented edge going out of the root vertex.
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Remark 6.4.1. Lemma 24 is the analog for stationary, reversible graphs of
the fact that the WUSF on any unimodular random graph has expected root
degree 2 [AL07, Theorem 7.3]. These two properties can also be deduced from
one another.

Proof of Proposition 16. By an easy argument of uniform integrability, the
function d is continuous in λ, so it is enough to prove the formula for λ < λc.
In this case, all variants of Tλ that we will consider are a.s. transient by
results from [Cur16], so the OWUSF on these graphs is well-defined. We
now fix λ ∈ (0, λc). Let β and κ be given by Proposition 18. We will denote
by −→e0 , −→e0

′ and −→e0
II the respective root edges of Tλ, T′λ and TIIκ , and by −→F ,−→

F ′ and −→F II their respective OWUSF.
By Proposition 18, conditionally on TIIκ and on the blocks (Aeλ)e∈E(TIIκ ),

the edge −→e0 is picked uniformly among the oriented edges of Ae
II
0
λ . Moreover,

this choice is also independent of −→F . Therefore, we have

P
(−→e0 ∈

−→
F
)

= E
[
P
(−→e0 ∈

−→
F |TIIκ , (Aeλ),

−→
F
)]

= E

 |E(Ãλ) ∩
−→
F |

2|E(Ãλ)|

 ,
where we recall that E(Ãλ) is the set of edges of Ãλ. Moreover, the pair
(Tλ,
−→
F ) has the same distribution as (T′λ,

−→
F ′) biased by |E(Ae0λ )|. Therefore,

we can write

P
(−→e0 ∈

−→
F
)

=
E
[
|E(Ae0λ ) ∩ −→F ′|

]
2E [|E(Aλ)|]

. (6.4.5)

Since the denominator can easily be explicitly computed by using the defi-
nition of the block Aλ, we first focus on the numerator. In a block, we call
principal edges the edges joining the two boundary vertices of the block. We
know that there is exactly one edge of −→F ′ going out of every inner vertex of
Aλ. Moreover, if a non-principal edge of Aλ belongs to −→F ′, then it goes out
of an inner vertex (it cannot go out of a boundary vertex since the edges of−→
F ′ are "directed towards infinity"). Therefore, the number of non-principal
edges of Aλ that belong to −→F ′ is exactly |Aλ|. On the other hand, since −→F ′
is a forest, it contains at most one principal edge of Aλ. Therefore, we have

E
[
|E(Ae0λ ) ∩ −→F ′|

]
= E[|Aλ|] + P

(−→
F ′ contains a principal edge of Ae0λ

)
.

To finish the computation, we claim that

P
(−→
F ′ contains a principal edge of Ae0λ

)
= 2E

[
1

degTIIκ
(ρ)

]
= 2dII(κ).

(6.4.6)
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Indeed, let ρII be the starting vertex of −→e0
II . By reversibility of TIIκ , the left-

hand side of (6.4.6) is twice the probability that −→F ′ contains a principal edge
of Ae0λ going out of ρII . Moreover, since TIIκ is stationary, the distribution of
T′λ is stable under the following operation:

• first, we resample the root edge of TIIκ uniformly among all the oriented
edges going out of ρII ;

• then, we pick the new root edge of T′λ uniformly among all the oriented
edges of the block corresponding to the new root edge of TIIκ .

Note that this operation is different from resampling the root of T′λ uniformly
among the edges going out of its root vertex, and that T′λ is not stationary.

Since T′λ is stationary for this operation, so is
(
T′λ,
−→
F ′
)
. On the other

hand, there is exactly one block incident to ρII in which a principal edge
going out of ρII belongs to −→F ′. By the same argument as in the proof of
Lemma 24, this implies (6.4.6). By combining Lemma 24 with (6.4.5) and
(6.4.6), we obtain

d(λ) = E[|Aλ|] + 2dII(κ)
2 (1 + 3E[|Aλ|])

.

By the definition of Aλ, we also have

E[|Aλ|] = β

1− β ×
λZ ′1(λ)
Z1(λ) = 2h

1 + 2h,

where Z1(λ) is the partition function of λ-Boltzmann type-I triangulations of
a 1-gon. Finally, the value of dII(κ) is given by Proposition 17. It is easy to
obtain that the α of Proposition 17 is equal to 1

1+2h , and we get the formula
for d(λ).

It remains to prove that this is an increasing function of λ (or equivalently
of h). For this, set x =

√
1− 4h. We want to prove that the function

x→ 1− x2

4x(3− 2x2) log 1 + x

1− x

is decreasing on [0, 1]. By computing the derivative with respect to x, this is
equivalent to

(2x4 − 3x2 + 3)x log 1 + x

1− x > 2x2(3− 2x2)
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Figure 6.9 – The triangulation t1 with perimeter 1 and volume 2.

for 0 < x < 1. The power series expansion of the left-hand side is

6x2 − 4x4 +
∑
k > 3

( 6
2k − 1 −

6
2k − 3 + 4

2k − 5

)
x2k > 6x2 − 4x4.

Since all the terms in the sum are positive, this proves monotonicity.

6.5 Combinatorial asymptotics
The goal of this section is to prove Theorem 13. The proof relies on the
lemma below, which is an easy consequence of Theorem 11. We recall that
τ(n, g) is the number of triangulations of genus g with 2n faces, and that
λ(θ) is the solution of (6.0.2).

Lemma 25. Let (gn) be such that gn
n
→ θ, with 0 6 θ < 1

2 . Then

τ(n− 1, gn)
τ(n, gn) → λ(θ)

Proof. This is a simple consequence of Theorem 11. Indeed, we have

(Tn,gn)→ Tλ(θ)

locally. Let t1 be the triangulation represented on Figure 6.9. We have on
the one hand

P (t1 ⊂ Tn,gn) = τ1(n− 1, gn)
τ(n, gn) = τ(n− 1, gn)

τ(n, gn)

by the usual root transformation (see Remark 6.1.1). On the other hand, we
have

P
(
t1 ⊂ Tλ(θ)

)
= C1(λ(θ))λ(θ)2 = λ(θ).

Since {t1 ⊂ T} is closed and open for dloc, the lemma follows.
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The idea of the proof of Theorem 13 is then to write

τ(n, gn) = τ(n, gn)
τ((2 + ε)gn, gn) × τ((2 + ε)gn, gn) (6.5.1)

for some small ε > 0. The first factor can be turned into a telescopic product
and estimated by Lemma 25. The trickier part will be to estimate the second.
We will prove the following bounds.

Proposition 19. There is a function h with h(ε)→ 0 as ε→ 0 such that

eo(g)
(6
e

)2g
(2g)2g 6 τ((2 + ε)g, g) 6 eh(ε)g+o(g)

(6
e

)2g
(2g)2g

as g → +∞. Moreover, if εg → 0, then

τ((2 + εg)g, g) = eo(g)
(6
e

)2g
(2g)2g.

We delay the proof of Proposition 19, and first explain how to finish the
proof of Theorem 13.

Proof of Theorem 13. We first note that f(1/2) = 6
e
, so the case θ = 1/2 is

exactly the second part of Proposition 19. We now assume 0 6 θ < 1/2. Let
ε > 0 be such that θ < 1

2+ε . We estimate the first factor of (6.5.1). We write

1
n

log
(

τ(n, gn)
τ((2 + ε)gn, gn)

)
= 1
n

n∑
i=(2+ε)gn

log
(

τ(i, gn)
τ(i− 1, gn)

)
.

By Lemma 25, when gn
i
→ 1

t
, so log τ(i,gn)

τ(i−1,gn) → log 1
λ(1/t) . Moreover, by the

bounded ratio lemma (Lemma 15), each of the terms is bounded by some
constant Cε. Hence, by dominated convergence, we have

1
gn

log
(

τ(n, gn)
τ((2 + ε)gn, gn)

)
−−−−→
n→+∞

∫ 1/θ

(2+ε)
log 1

λ(1/t)dt. (6.5.2)

On the other hand, if we replace g by gn with gn
n
→ θ, then the left-hand side

of Proposition 19 becomes n2gn exp
((

2θ log 12θ
e

)
n+ o(n)

)
, so Proposition 19

gives(
2θ log 12θ

e

)
n+o(n) 6 log τ((2 + ε)gn, gn)

n2gn
6

(
2θ log 12θ

e
+ h(ε)

)
n+o(n),

where h(ε) → 0 as ε → 0. By combining this with (6.5.1) and (6.5.2) and
finally letting ε→ 0, we get the result.
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We finally prove Proposition 19. The lower bound can be deduced easily
from the Goulden–Jackson formula. For the upper bound, we will bound
crudely the number of triangulations by the number of tree-rooted triangu-
lations, i.e. triangulations decorated with a spanning tree. These can be
counted by adapting classical operations going back to [Mul67] in the planar
case.

Proof of Proposition 19. We start with the lower bound. The Goulden–
Jackson formula (6.1.1) implies the following (crude) inequality:

τ(n, g) > (36 + o(1))n2τ(n− 2, g − 1),

where the o is uniform in g, when n→ +∞. By an easy induction, we have

τ((2 + ε)g, g) > (36 + o(1))g ((2 + ε)g)!
(εg)! τ(εg, 0) > (36 + o(1))g ((2 + ε)g)!

(εg)! ,

and the lower bound follows from the Stirling formula.
For the upper bound, we adapt a classical argument about tree-rooted

maps. We denote by T̃ ((2 + ε)g, g) the set of triangulations of genus g with
2(2 + ε)g faces and a distinguished spanning tree, and by τ̃((2 + ε)g, g) its
cardinality. We recall that such triangulations have εg + 2 vertices, so the
spanning tree has εg + 1 edges.

If t ∈ T̃ ((2 + ε)g, g), we consider the dual cubic map of t and "cut in
two" the edges that are crossed by the spanning tree, as on Figure 6.10. The
map that we obtain is unicellular (i.e. it has one face), and we denote it
by U(t). Moreover, it is precubic (i.e. its vertices have only degree 1 or 3),
has genus g and (6 + 4ε)g + 1 edges (the number of edges of the original
triangulation, plus one for each edge of the spanning tree). The number of
precubic unicellular maps with fixed genus and number of edges is computed
exactly in [Cha11, Corollary 7] and is equal to

2((6 + 4ε)g + 1)!
12gg!(2εg + 2)!((3 + 2ε)g)! = ehU (ε)g+o(g)

(6
e

)2g
(2g)2g,

where
hU(ε) = 2ε log 6

ε
+ (3 + 2ε) log

(
1 + 2ε

3

)
−−→
ε→0

0

by the Stirling formula. Finally, to go back from U(t) to t, we also need to
remember how to match the leaves two by two in the face of U(t) without
any crossing. The number of ways to do so is Catalan(εg + 1) 6 4εg, so

τ((2 + ε)g, g) 6 τ̃((2 + ε)g, g) 6 4εgehU (ε)g+o(g)
(6
e

)2g
(2g)2g,
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Figure 6.10 – An example of the cutting operation on a cubic map. The
distinguished spanning tree is in red. We picked a planar example but in the
general case the "opened" map on the right is unicellular.

which is enough to conclude. The proof for the second part of the proposition
is exactly the same, but where we replace ε by εg → 0.

Remark 6.5.1. Bounding the number of triangulations by the number of
tree-rooted triangulations may seem very crude. The reason why this is suf-
ficient is that the spanning trees have only εg + 1 edges, so the number of
spanning trees of a triangulation can be bounded by

(
3(2+ε)g
εg+1

)
, which is of the

form eh(ε)g+o(g) with h(ε)→ 0 as ε→ 0.



Chapter 7

Universality of high genus local
limits

Abstract. This chapter is adapted from the article Universality for local
limits of high genus maps with T. Budzinski, in preparation [BL20]. We
study a wide class of maps, namely bipartite maps with prescribed degrees,
and we prove that they converge locally in distribution to a family of infinite
bipartite maps of the plane who share a lot of geometric properties with
the PSHT (the local limit of high genus triangulations). This is a result of
universality, as we observe similar phenomena for different models of high
genus maps. The outline of the proof is similar to what happened with
triangulations, showing that the methods developed in the previous chapter
are robust. However, everything is more technical and each intermediate
result is harder to establish.

Note: this chapter is adapted from a paper in preparation. Therefore,
there is a higher chance of minor errors appearing. We only include a sketch
of proof for Lemma 40.

After showing that the local limits of high genus triangulations are the
PHSTs, the natural question is to know whether there is a universal phe-
nomenon underlying this convergence. It turns out that it is the case, in this
chapter, we tackle the same question as in Chapter 6, but for a much wider
class of maps: bipartite maps with prescribed degrees. Instead of having only
triangular faces, this time, for all i, we prescribe the (asymptotic) proportion
of faces of half-perimeter i. In the planar case, the local convergence was
established by Stephenson [Ste18], the peeling process was studied by Budd
[Bud15], and several geometric properties by Budd and Curien [BC17].

144
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We prove that the local limit is the Infinite Boltzmann bipartite planar
map (abbreviated as IBMP), as defined in Chapter 3 (see also [Bud18a,
Appendix C]). This time, the limiting objects are described by an infinity of
numbers (a hyperbolicity parameter, as in the PSHT, plus the proportion of
faces of each size).

Our result, which applies to a very large class of maps, is a step towards
establishing universality in the domain of high genus maps, meaning that
regardless of the precise model of maps, the same phenomena are observed.

More precisely, we prove the following theorem:

Theorem 15. Let (gn) be a sequence such that gn
n
→ θ with θ ∈

[
0, 1

2

)
, and

f (n) = (f (n)
1 , f

(n)
2 , . . .) such that ∑i > 1 if

(n)
i = n. Suppose that for all i there

exists an αi such that f
(n)
i

n
→ αi, with the condition that ∑i iαi = 1 and∑

i i
2αi < ∞. Let Mn be a uniform bipartite map of genus gn whose face

degrees are given by f (n). Then

Mn
(d)−−−−→

n→+∞
Mq

for the local topology, where the parameters of Mq are deterministic, injective
functions of θ and the αi’s.

Note that, in order to have local convergence, it is necessary to have∑
i

iαi = 1

which is equivalent to ∑
i>M

if
(n)
i → 0 (7.0.1)

as M →∞ uniformly in n, which is equivalent to saying that the root face is
asymptotically almost surely of finite degree. For technical reasons, we prove
the theorem with slightly stricter conditions (they are equivalent to saying
that the expected degree of the root face is finite). In fact, most of the proof
is valid for the most general setting (under conditions (7.0.1)), except for the
"two-holes argument" (Section 7.4.1). In the case θ = 0, where the genus is
sublinear, this argument is not needed, and therefore the local convergence
holds under conditions (7.0.1).

Thanks to Theorem 15, we can find the asymptotic number of high genus
bipartite maps.
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Theorem 16. Let (gn) and f (n) defined as in Theorem 15. Let βg(f) be the
number of bipartite maps of genus g whose face degrees are given by f . Then

βgn(f (n)) = n2gn exp (f(θ, (αi)i∈N)n+ o(n))

where f is a function defined in Section 7.5.

The methods developed in Chapter 6 are robust, and therefore the outline
of the proof is similar: first we prove the a tightness result, then establish that
every potential limit has to be an IBPM with (possibly) random parameters,
and finally we prove that these parameters have to be deterministic, therefore
establish the result.

However, the key tools of the proof are harder to establish than in Chap-
ter 6, mainly because there are now an infinite number of parameters (instead
of one), and that the faces do not have bounded degree. The end of the proof
of the local convergence is completely different compared to the case of trian-
gulations (this time, we are not able to compute exactly the inverse degree of
the root vertex in the IBPM). Also, the proofs of the bounded ratio lemma,
the two-holes argument and the asymptotics are way more technical this
time.

Structure of the chapter. In Section 7.1, we review basic definitions and
previous results that will be used in all the paper. In Section 7.2, we prove
that the maps Mn are tight for the local topology, and that any subsequential
limit is a.s. planar and one-ended. In Section 7.3, we prove Theorem 18,
which implies that any subsequential limit of Mn is an IBPM with random
parameters. In Section 7.4, we conclude the proof of Theorem 15 by showing
that the parameters are deterministic and depends only on θ and the αi’s.
Finally, Section 7.5 is devoted to the proof of Theorem 16, and Section 7.6
contains the proofs of some technical lemmas.

Index of notations
In general, we will we will use lower case letters such as m to denote de-
terministic objects or quantities, upper case letters such as M for random
objects and mathcal letters such asM for sets of objects. We will use mathbf
characters such as q for sequences, and normal characters such as qj for their
terms.

• f = (fj)j > 1: denotes a face degree sequence.
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• g: will denote the genus.

• θ: limit value of g
|f | when |f | → +∞.

• Bg(f): set of finite bipartite maps with genus g and fj faces of degree
2j for all j > 1.

• βg(f): cardinality of Bg(f).

• |f | = ∑
j > 1 jfj (i.e. the number of edges of a map in Bg(f)).

• q = (qj)j > 1: denotes a weight sequence (Q denotes a random weight
sequence).

• Mq: the infinite Boltzmann planar map with weight sequence q.

• Wp(q): partition function of finite Boltzmann bipartite maps of the
2p-gon with weights q.

• Q∗ =
{
q = (qj)j > 1 ∈ [0, 1]N∗|∃j > 2, qj > 0

}
.

• Qa: set of admissible families of Boltzmann weights q, i.e. such that
Wp(q) converges.

• Qh: set of Boltzmann weights for which Mq exists. We have

Qh ⊂ Qa ∩Q∗.

• Qf : set of Boltzmann weights for which the expectation of the root
face of Mq is finite.

• gq: for q ∈ Qa, denotes the solution of the equation

∑
j > 1

qj
1

4j−1

(
2j − 1
j − 1

)
gj−1

q = 1− 4
gq
.

• νq(i) =
{
qi+1 g

i
q if i > 0,

2W−1−i(q) giq if i 6 − 1. , i.e. νq is the step distribution

of the random walk on Z associated to the peeling process of subcritical
or critical q-Boltzmann maps.

• ωq > 1: for q ∈ Qh, denotes the solution (other than 1) of∑
i∈Z

ωiνq(i) = 1.
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• Cp(q): for q ∈ Qh and p > 1, constants such that

P (m ⊂ Mq) = Cp(q)×
∏
f∈m

qdeg(f)/2

for every finite map m with one hole of perimeter 2p.

• aj(q) = 1
j
P (the degree of the root face of Mq is 2j) (for all j > 1).

• αj: denotes a possible value of (aj(q)), or the limit of the ratio fj
|f | when

|f | → +∞. We will have ∑j > 1 jαj = 1.

• d(q) = E
[
(degree of the root vertex in Mq)−1

]
.

• rj(q) = (gqωq)j−1 qj = limn→+∞
1
n

∑n−1
i=0 1Pi+1−Pi=j−1 for q ∈ Qh and

j > 1, where P is the perimeter process associated to a peeling explo-
ration of Mq (see Proposition 20).

• r∞(q) = (√ωq−
√
ωq−1)2

2
√
ωq(ωq−1)

= limn→+∞
Vn−2Pn

n
for q ∈ Qh and j > 1, where

P and V are the perimeter and volume processes associated to a peeling
exploration of Mq (see Proposition 20).

• A: denotes a peeling algorithm.

• EAn (m): explored map after n peeling steps on the map m using algo-
rithm A. This is a finite map with holes.

7.1 Preliminaries
Here we recall some definitions and properties from Chapter 3, and introduce
some other notions that will be useful in the proof.

7.1.1 Definitions and combinatorics
For every f = (f1, f2, . . .) and g > 0, we will denote by Bg(f) the set of
bipartite maps of genus g with fi faces of degree 2i for all i. A map of Bg(f)
has ∑i > 1 ifi edges,

∑
i > 1 fi faces and 2 − 2g + ∑

i > 1(i − 1)fi vertices. We
will also denote by βg(f) the cardinality of Bg(f).
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Maps with boundaries. We will also need to consider two different no-
tions of bipartite maps with boundaries, that we call maps with holes and
maps of multi-polygons. Basically, the first ones will be used to describe a
neighbourhood of the root in a map, and the second ones to describe the
complement of this neighbourhood.

For ` > 1 and p1, p2, . . . , p` > 1, we call a map with holes of perimeter
2p1, . . . , 2p` a map with special marked faces (called holes), degree 2pi for
every 1 6 i 6 `. The faces hi are called the holes. Maps with holes will
always be finite, and the root might be anywhere in the map. Maps of the
(2p1, . . . , 2p`)-gon have a similar definition, except that they may be infinite,
and this time they have ` distinct roots, one on each of the boundaries. Note
that, contrary to triangulations, the boundaries are not necessarily simple.

Let B(p1,p2,...,p`)
g (f) (resp. B̃(p1,p2,...,p`)

g (f)) the set of bipartite maps of the
(2p1, 2p2, . . . , 2p`)-gon (resp. with holes of sizes (2p1, 2p2, . . . , 2p`)) of genus
g with interior faces given by f and β(p1,p2,...,p`)

g (f) (resp. β̃(p1,p2,...,p`)
g (f)) its

cardinality.

Map inclusion. Given a map M , let M∗ be its dual map. Let e be a
connected subset of edges of M∗ such that the root vertex of M∗ is adjacent
to e. To e, we associate the map m that is obtained by gluing the faces of M
corresponding to the vertices adjacent to e along the (dual) edges of e (see
Figure 7.1). Note that m is a map with simple holes.

Now, if m is a finite bipartite map with simple holes, and M a (finite or
infinite) map, we say that

m ⊂M

if m can be obtained from M by the procedure described above, or if m is
the map with only one edge, or if m is the map with a simple boundary of
size 2p and one face of degree 2p, where 2p is the degree of the root face in
M .

Generating functions. First, fix a sequence of variables q = (q1, q2, . . .).
To any planar bipartite map m (with or without a boundary), we associate
a weight

wq(m) =
∏
f∈m

qdeg f/2, (7.1.1)

where the product spans over all faces of m, not including the boundary. The
generating function1 of planar bipartite maps

W (q) =
∑
m

wq(m)

1also called series, or partition function.
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⊂

Figure 7.1 – Inclusion of bipartite maps, on an example.

where the sum spans over all planar bipartite maps m. We can define a
similar partition function Wp(q) for maps of the 2p-gon:

Wp(q) =
∑
m

wq(m)

where the sum spans over all planar bipartite maps m of the 2p-gon. Note
that W1(q) = W (q).

Given a sequence of positive reals q, let

fq(x) =
∑
k > 1

qk

(
2k − 1
k − 1

)
xk−1.

If the equation
fq(x) = 1− 1

x
(7.1.2)

has a positive solution Zq, then q is said to be admissible. For all p, Wp(q)
converges if and only if q is admissible [Cur19].

The Boltzmann distribution of parameter q on finite planar bipartite maps
of the 2p-gon is a measure such that

P(m) = wq(m)
Wp(q)

for all m.
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7.1.2 A counting formula
As in Chapter 6, we do not have a priori precise asymptotics, once again we
rely on a recurrence formula (proved in Chapter 5):(
n+ 1

2

)
βg(f) =

∑
s+t=f

g1+g2+g∗=g

(1 +n1)
(

v2

2g∗ + 2

)
βg1(s)βg2(t) +

∑
g∗ > 0

(
v + 2g∗
2g∗ + 2

)
βg−g∗(f)

(7.1.3)
where n = ∑

i ifi, n1 = ∑
i isi, v = 2−2g+n−∑i fi, v2 = 2−2g2 +n2−

∑
i ti

and n2 = ∑
i iti (the n’s count edges, the v’s count vertices, in accordance

with the Euler formula), with the convention that βg(0) = 0. This formula
will play the same role as the formula for triangulations [GJ08] in Chapter 6.

7.1.3 The lazy peeling process of bipartite maps
Here we recall the peeling process from Chapter 3. The peeling algorithm
is a function A that takes as input a finite planar bipartite map m with
boundaries, and that outputs an edge A(m) on the boundary of m.

Given an infinite planar bipartite map M and a peeling algorithm A, we
can define an increasing sequence

(
EAM(k)

)
k > 0

of maps with holes such that
EAM(k) ⊂ M for every k in the following way. First, the map EAM(0) is the
trivial map consisting of the root edge only. For every k > 1, let Fk be the
face (of M) on the other side of A(EAM(k)). There are two possible cases (see
Figure 7.2):

• either Fk doesn’t belong to EAM(k), and EAM(k + 1) is the map obtained
from EAM(k) by gluing a simple face of size degFk to A(EAM(k)),

• or Fk belongs to EAM(k). In that case, it means that there exists an edge
ek on the same boundary as A(EAM(k)) such that those two edges are
actually identified in M . The map EAM(k + 1) is obtained from EAM(k)
by gluing EAM(k) and ek together, and if this creates a finite hole, by
filling it (such that the resulting map is included in M , there is only
one possible way of doing so).

Such an exploration is called filled-in, because all the finite holes are filled
at each step.

7.1.4 Infinite Boltzmann bipartite planar maps
Definitions. Our goal here is to recall the definition of infinite Boltzmann
bipartite planar maps. We will recall results from [Bud15] in the critical case
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(x2)or

Figure 7.2 – The lazy peeling on an example. The chosen edge is in red.
Either a new face is discovered (center), or the chosen edge is glued to another
edge of the boundary (right, in blue).

(i.e. maps that occur as local limits when the genus is small compared to
the size), and from [Bud18a, Appendix C] and [Cur19] in the subcritical case
(i.e. maps that are expected to be the limits when the genus is proportional
to the size).

Let q = (qi)i > 1 be a sequence of nonnegative real numbers that we
will call the Boltzmann weights. A random infinite bipartite planar map M
is called q-Boltzmann if there are constants (Cp(q))p > 1 if, for every finite
bipartite map m with one hole of half-perimeter p, we have

P (m ⊂M) = Cp(q)wq(m).

We will see that given q, such a map does not always exist, but when
it does, it is unique, i.e. the constants Cp(q) are determined by q. More
precisely, as noted in [Bud18a, Appendix C], if a q-Boltzmann map exists,
then the partition function of maps of a 2-gon with Boltzmann weights q must
be finite, which is equivalent to the admissibility criterion (7.1.2). Moreover,
with the notation of Section 7.1.1, we call q critical if f ′q(Zq) = 1

Z2
q
and

subcritical if this is not the case.
Finally, we define a measure νq on Z as follows:

νq(i) =
{
qi+1 g

i
q if i > 0,

2W−1−i(q) giq if i 6 − 1. (7.1.4)

As noted in [Bud15], this is the step distribution of the random walk on Z
describing the evolution of the perimeter of a finite q-Boltzmann map with
a large perimeter (see also [Cur19, Chapter 5.1]).

Theorem 17. 1. If a q-Boltzmann infinite map exists, it is unique (in
distribution), so we can denote it by Mq if it exists.
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2. If q is not admissible, then Mq does not exist.

3. If q is admissible and critical, then Mq exists.

4. If q is admissible and sub-critical, then Mq exists if and only if the
equation ∑

i∈Z

νq(i)ωi = 1 (7.1.5)

has a solution ω > 1.

5. In this case, the solution ω is unique and, for every p > 1, we have

Cp(q) = (gqω)p−1
p−1∑
i=0

(4ω)−i
(

2i
i

)
. (7.1.6)

The third point is from [Bud15], and the others are from [Bud18a, Ap-
pendix C] 2. When it exists, we will call the map Mq the q-IBPM (for Infinite
Boltzmann Planar Map).

The random walk ν̃q. To study the q-IBPM, we define the measure ν̃q
on Z by ν̃q(i) = ωiνq(i), where ω is given by (7.1.5) if q is subcritical, and
ω = 1 if q is critical. The random walk with step distribution ν̃q plays an
important role when studying Mq. We first note that this walk has a positive
drift. Indeed, we have ∑

i∈Z

iν̃q(i) = F ′q(ω) > 0,

since Fq is convex and takes the value 1 at 1 and ω > 1. Note also that it is
possible that the drift is +∞.

Lazy peeling explorations of the q-IBPM. We now perform a few
computations related to the lazy peeling exploration of the q-IBPM. For
this, we fix a peeling algorithm A, and consider an filled-in exploration of
Mq according to A (that is, at each step, if a finite region is separated from
infinity, we discover it completely). We recall that EAn (Mq) is the explored
region at time n, and we denote by (Fn)n > 0 the filtration generated by this
exploration. We denote by Pn (resp. Vn) the half-perimeter (resp. total
number of edges) of EAn (Mq). Then it follows from the definition of Mq is

2We correct a small mistake from [Bud18a, Appendix C], where gq was omitted in the
formula for Cp(q).
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a Markov chain. More precisely, it is an h-transform of the walk with step
distribution ν̃q, i.e. it has the following transitions:

P (Pn+1 = Pn + i|Fn) = ν̃q(i)h(Pn + i)
h(Pn) , (7.1.7)

where h(p) = ∑p−1
i=0

1
(4ω)i

(
i
2i

)
. In particular, if q is critical, then we have

h(p) = 2p
4p
(

2p
p

)
∼ 2√

π

√
p. If not, then ω > 1 and h(p)→

√
ω
ω−1 as p→ +∞.

As noted in [Cur19], this shows that P is an h-transform of the random
walk with step distribution ν̃q, and more precisely that P has the distribution
of this random walk, conditioned to stay positive.

IBPM with finite expected degree of the root face. We denote byQf
the set of admissible weight sequences such that Mq exists, and the degree of
the root face of Mq has finite expectation. Note that, if Mq exists, the degree
of the root face is determined by the first peeling step, so

P (the root face has degree 2j) = h(j)
h(1) ν̃q(j − 1) = h(j)

h(1) (gqω)j−1 qj (7.1.8)

for j > 1. If q is critical, the right hand-side is equivalent to 2√
π

√
jgj−1

q qj as
j → +∞, so q ∈ Qf if and only if∑

j > 1
j3/2gjqqj < +∞. (7.1.9)

On the other hand, we recall (see e.g. [Cur19, Chapter 5.2]) that a critical
weight sequence q is called of type 5

2 , or critical generic, if∑
j > 1

(j − 1)(j − 2)
(

2j − 1
j − 1

)
qj

(
gq

4

)j−3
< +∞,

which is clearly equivalent to (7.1.9).
In the subcritical case, by (7.1.8), we have∑

j > 1
jν̃q(j) < +∞,

i.e. the drift of ν̃q is finite. To sum up:

• In the critical case, q ∈ Qf if and only if q is critical generic, which
means that the perimeter process (Pn) converges to a 3/2-stable Lévy
process with no positive jump conditioned to be positive (see [Cur19,
Theorem 10.1]). This basically means that q-Boltzmann finite maps
lie in the domain of attraction of the Brownian map [MM07].
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• In the subcritical case, q ∈ Qf if and only if the measure ν̃q has
finite expectation, which means that the perimeter P has linear growth
(instead of super-linear if the expectation of ν̃q was infinite).

7.1.5 Three ways to describe Boltzmann weights
Three parametrizations of Qh In this work, we will make use of three
different "parametrizations" on the set Qh of families q of Boltzmann weights
such that Mq exists. The first one, already described above, is to use directly
the Boltzmann weights qi. It is the simplest one to define the model Mq and
gives the simplest description of its distribution.

The second parametrization we will use is the one given by Proposition 20:
we describe q by the parameters rj(q) ∈ [0, 1) and by r∞(q) ∈ (0,+∞].
Here rj(q) describes the proportion of steps where we discover a face of
degree 2j during a peeling exploration of Mq, and r∞(q) compares volume
and perimeter growth. The advantage of these parameters is that they allow
to "read" q as an almost sure observable on a peeling exploration of the map
Mq. This will be useful in Section 7.4.1.

The third parametrization is to use on the one hand the distribution of
the root face, and on the other hand the average degree of the vertices. More
precisely, for i > 1, we write

ai(q) = 1
i
P (the root face of Mq has degree 2i) .

We also write d(q) = E
[

1
degMq (ρ)

]
, where ρ is the root vertex. The advantage

of this parametrization is that analogue of these quantities are easy to com-
pute if we replace Mq by a finite uniform map with prescribed genus and face
degrees. This will be useful in the end of the proof of Theorem 15. However,
it is not obvious at all that (ai(q))i > 1 and d(q) are sufficient to characterize
q. We will actually prove this for q ∈ Qa as a consequence of local limit
arguments (Proposition 26).

The goal of this section is to gather a few simple properties of these three
parametrizations and the relations between them.

Recovering q from explorations of Mq. We now describe more pre-
cisely our second parametrization of q. More precisely, the next result basi-
cally states that we can recover the weight sequence q by just observing the
processes P and V during a peeling exploration of Mq.
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Proposition 20. We have the following almost sure convergences:

1
n

n−1∑
i=0

1Pi+1−Pi=j−1
a.s.−−−−→

n→+∞
(gqω)j−1 qj =: rj(q) (7.1.10)

for every j > 1, and

Vn − 2Pn
n

a.s.−−−−→
n→+∞

(√
ω −
√
ω − 1

)2

2
√
ω(ω − 1)

=: r∞(q). (7.1.11)

Moreover, the weight sequence q is a measurable function of the numbers
rj(q) for j ∈ N∗ ∪ {∞}.

Proof. In the subcritical case, the second convergence is Proposition 10.12 of
[Cur19]. In the critical case, we have ω = 1 so the right-hand side of (7.1.11)
is infinite, and the result follows from Theorem 10.8 of [Cur19].

Let us now prove the first convergence. For this, we note that we have
Pn → +∞ as n → +∞. In the subcritical case, it also follows from Propo-
sition 10.12 of [Cur19] that (Pn) has a.s. linear growth. In the critical case,
this is a consequence of Lemma 10.9 of [Cur19]. On the other hand, given the
asymptotics for h right after (7.1.7), for any fixed j > 1, we have h(p+j−1)

h(p) → 1
as p→ +∞. It follows that

P (Pn+1 − Pn = j − 1|Fn) a.s.−−−−→
n→+∞

ν̃q(j − 1) = (gqω)j−1 qj,

and the first convergence follows by the law of large numbers.
Finally, the function ω → (√ω−√ω−1)2

2
√
ω(ω−1)

is a decreasing homeomorphism
from [1,+∞) to (0,+∞], so ω is a measurable function of r∞(q). Moreover,
by the definition of gq, we have

1− 4
gq

=
∑
j > 1

(
2j − 1
j − 1

)
qj

(
gq

4

)j−1
=
∑
j > 1

1
4j

(
2j − 1
j − 1

)
rj(q)
ωj−1 ,

which implies that gq is a measurable function of ω and the numbers rj(q)
for j ∈ N∗. From here, we easily recover the qj.

Weight sequences corresponding to a given distribution of the root
face. We know study some basic properties of the third parametrization.
The next result shows that the set of infinite Boltzmann maps with a given
distribution of the root face is one-parameter, and can be parametrized by ωq.
We recall that for any q ∈ Qa, the numbers ai(q) satisfy ∑i > 1 iai(q) = 1,
and we have ωq > 1.
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Proposition 21. Let (αi) be such that ∑i > 1 iαi = 1 and α1 6= 1, and let
ω > 1. Then there is a unique q ∈ Qh such that

ωq = ω and ∀j > 1, aj(q) = αj.

Proof. We start with uniqueness. We note that

aj(q) = 1
j
Cj(q)qj = 1

j
(gqωq)j−1 hωq(j)qj, (7.1.12)

so qj can be obtained as a function of aj(q) = αj, ωq and gq. Moreover, by
the definition of gq, we have

1− 4
gq

=
∑
i > 1

1
4i−1

(
2i− 1
i− 1

)
qig

i−1
q =

∑
i > 1

1
4i−1

(
2i− 1
i− 1

)
iai(q)
ωi−1

q hωq

, (7.1.13)

so gq can be deduced from ωq and (aj(q))j > 1. More precisely, if ωq = ω and
aj(q) = αj for all j > 1, then we must have

qj = jαj
ωj−1hj(ω)

1−∑i > 1
1

4i−1

(
2i−1
i−1

)
iαi

ωi−1hi(ω)

4

j−1

. (7.1.14)

To prove the existence, it is enough to check that, for all ω > 1 and (αj)j > 1

with ∑ jαj = 1 and α1 < 1, the sequence q given by (7.1.14) is indeed in
Qh, with ωq = ω and aj(q) = αj for all j. The proof is largely inspired by
similar arguments in the critical case (see e.g. [Cur19, Lemma 5.2]).

Following (7.1.13), we first write

g = 4
1−∑i > 1

1
4i−1

(
2i−1
i−1

)
iαi

ωi−1hω(i)

,

and check that q is admissible with gq = g. First ωi−1hω(i) is a polynomial
in ω with nonnegative coefficients so ωi−1hω(i) > h1(i) = 2i

4i
(

2i
i

)
. From here,

we get ∑
i > 1

1
4i−1

(
2i− 1
i− 1

)
iαi

ωi−1hω(i) 6
∑
i > 1

αi <
∑
i > 1

iαi = 1

because α1 < 1. Therefore, the numbers qj are nonnegative and g > 0, and
we can rewrite (7.1.14) as

qj = jαj
(ωg)j−1hω(j) .
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From here, we get

∑
i > 1

1
4i−1

(
2i− 1
i− 1

)
qig

i−1 = 1− 4
g

immediately by the definition of g, which proves q ∈ Qh and gq = g.
Also, we know that there is j > 2 with αj > 0, which implies qj > 0, so

q ∈ Q∗. We now prove q ∈ Qh with ωq = ω, which is equivalent to proving∑
i∈Z

νq(i)ωi = 1,

where we recall that νq is defined by (7.1.4). For this, the basic idea will be
to show that (ωihω(i))i > 1 is harmonic for νq. More precisely, the fact that∑
i > 1 iαi = 1 can be interpreted as a harmonicity relation at 1:∑
i∈Z

hω(i+1)ωiνq(i) =
∑
j > 1

ωj−1hω(j)gj−1qj =
∑
j > 1

jαj = 1 = hω(1), (7.1.15)

where in the beginning we do the change of variables j = i+ 1. On the other
hand, we know that hω(p) = ∑p−1

i=0 ω
−iu(i), where u(i) = 1

4i
(

2i
i

)
for i > 0 and

we set thee convention u(i) = 0 for i 6 − 1. But the same function u plays
an important role in the description of the law of the peeling process of finite
Boltzmann maps. In particular, we know that u is νq-harmonic on positive
integers for any admissible weight sequence q (this can be found in the proof
of Lemma 5.2 in [Cur19]). That is, for all j > 1, we have

u(j) =
∑
i∈Z

νq(i)u(i+ j).

Multiplying by ω−j and summing over 1 6 j 6 p− 1, we get, for all p > 1:

hω(p)− hω(1) =
∑
i∈Z

ωiνq(i) (hω(p+ i)− hω(i+ 1)) .

Summing this with (7.1.15) and dividing by hω(p), we obtain
∑
i∈Z

ωiνq(i)hω(p+ i)
hω(p) = 1.

for all p > 1. When p→ +∞, we have that hω(p) has a positive limit if ω < 1
and is equivalent to 2√

π
if ω = 1, so hω(p+i)

hω(p) → 1. Therefore, by dominated
convergence, we get ∑

i > 1
νq(i)ωi = 1,
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where the domination is immediate for negative values of i, and comes from
the convergence of the sum (7.1.15) for positive values of i. This proves q ∈
Qh with ωq = ω, and from here aj(q) = αj is immediate using (7.1.12).

We conclude with a result stating that we can recover q from the law of
the root face degree and a single weight qj, provided j > 2. More precisely, if
we fix (αj)j > 1 satisfying the assumptions of Proposition 21, we can denote
by q(ω) the unique weight sequence for which the law of the root face is given
by (αj)j > 1 and ωq(ω) = ω.

Lemma 26. For every j > 1, the function ω → q
(ω)
j is nonincreasing. More-

over, if j > 2, this function is decreasing.

The proof of this lemma is given in the appendix.

7.1.6 Local convergence and dual local convergence
As in the planar case, to define the local convergence, we first need to define
balls of bipartite maps. Let m be a finite map. As usual, for every r > 1,
we denote by Br(m) the submap of m spanned by all edges which have an
endpoint at distance at most r−1 of the root vertex (i.e. consisting of all the
faces adjacent to these edges, together with the vertices and edges adjacent
to these faces).

We denote by ∂Br(m) the boundary of Br(m), i.e. the set of edges e such
that exactly one side of e is adjacent to a face of Br(m). The map Br(m) is
a finite map with holes. We also write B0(m) for the trivial bipartite map
consisting of only one edge.

For any two finite maps m and m′, we write

dloc(m,m′) = (1 + max{r > 0|Br(m) = Br(m′)})−1
.

This is the local distance on the set of finite bipartite maps. As in the planar
case, its completion B is a Polish space, which can be viewed as the set of
(finite or infinite) bipartite maps in which all the vertices have finite degree.
However, this space is not compact.

We also introduce the dual local convergence: d∗ is the graph distance on
the dual of a bipartite map. For any finite map m and any r > 0, we denote
by B∗r (m) the map formed by all the faces at dual distance at most r from
the root face, along with all their vertices and edges. Like Br(m), this is a
finite map with holes. For any two finite triangulations m and m′, we write

d∗loc(t, t′) = (1 + max{r > 0|B∗r (t) = B∗r (t′)})
−1
.
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Lemma 27. Let f (n) such that ∑i>M if
(n)
i → 0 as M → ∞ uniformly in

n, then for all sequences gn and mn a uniform map in Bgn(f (n)). Then the
sequence (mn) is tight for d∗loc

Proof. Let m∗n be the dual map of (mn). Then the degree of the root of m∗n
is a.s. finite, and the law of m∗n is invariant by rerooting, by the classical
argument of [AS03, Lemma 4.4], the sequence (m∗n) is tight for the local
topology.

Roughly speaking, the main steps of our proof for tightness will be the
following. By the above Lemma, the sequence (mn) is tight for d∗loc. We will
prove that every subsequential limit is planar and one-ended, and finally that
its vertices must have finite degree. As in Chapter 6, we have the following
Lemma that allows us to conclude (the proof is the same).

Lemma 28. Let (mn) be a sequence of maps of B. Assume that

mn

d∗loc−−−−→
n→+∞

m,

with m ∈ B. Then mn → m for dloc when n→ +∞.

7.2 Tightness
The goal of this section is to prove the following result:

Proposition 22. The sequence (Mn) is tight for dloc.

Note that this results actually holds in a more general setting than The-
orem 15. Indeed, only condition (7.0.1) is required.

7.2.1 The Bounded Ratio Lemma
Fix some numbers κ, δ > 0 and a function A : (0, 1]→ N. Let g, n be integers
and (f1, f2, . . .) a sequence of numbers such that∑

i

ifi = n

and
v :=

∑
i

(i− 1)fi + 2− 2g > κn, (7.2.1)
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and that for all ε > 0 ∑
i<A(ε)

ifi > (1− ε)n. (7.2.2)

Let i such that ifi > δn . Then there exists a constant C depending only
on δ, κ and the function A such that

Lemma 29 (Bounded ratio lemma).

βg(f − 1i) > Cβg(f).

Remark 7.2.1. Note that the conditions taken in this section are less re-
strictive than those of Theorem 15, and therefore Lemma 29 holds in a more
general setting.

Before getting to the proof, we mention an immediate corollary that will
be useful later.

Lemma 30. Under the same assumptions as in the previous lemma, for all
(p, p′), there exists a constant C̃ depending only on C such that:

• β̃(p)
g (f − 1i) > C̃β̃(p)

g (f),

• β(p,p′)
g (f − 1i) > C̃β(p,p′)

g (f),

• β(p,p)
g (f) > C̃i+jβ(p+i,p+j)

g (f).

Proof. The first two points of the lemma follow directly from Lemma 29 since

β̃(p)
g (f) = (fp + 1)β(f + 1p)

and
β(p,p′)
g (f) = p(fp + 1)p′(fp′ + 1p 6=p′)

n+ p+ p′
βg(f + 1p + 1p′).

For the last point, let i such that ifi > δn. Then, by the injection
that consists in gluing a particular 2i-gon in one of the boundaries (see Fig-
ure 7.3), we have β(p,p′)

g (f) < β(p−1,p′)
g (f +1i). Therefore, by the second point,

β(p,p′)
g (f) < 1

C′
β(p−1,p′)
g (f). and we conclude by induction.

We start by stating two "face degree transfer lemmas" (proof in Sec-
tion 7.6).



CHAPTER 7. UNIVERSALITY OF HIGH GENUS LOCAL LIMITS 162

Figure 7.3 – Reducing the size of a boundary by adding a 2i-gon (here, i = 3).

Lemma 31. If p > i, then

ifiβg(f − 1p) 6 nβg(f − 1i)

Thus, if ifi > δn:

βg(f − 1p) 6
1
δ
βg(f − 1i) (7.2.3)

Lemma 32. If d1, d2, . . . , dk are such that 1 < dj < i for all j 6 k but∑
j dj > i+ k − 1, then

ifiβg(f −
k∑
j=1

1dj) 6 nβg(f − 1i)

Thus, if ifi > δn:

βg(f −
k∑
j=1

1dj) 6
1
δ
βg(f − 1i) (7.2.4)

The general idea of the proof is the same as in Chapter 6, namely giving
an injection that removes a small piece of a map (here, a face of degree 2i).
However, because this model is more general, there are some things to care
about. First, the degrees of the faces are not bounded, so we must make
sure that the operations in the injection do not involve faces of huge degrees
(this is the purpose of finding "very nice edges", see below). Also, we are not
guaranteed to be able to remove a face of degree exactly i, the face degree
transfer lemmas ((7.2.3) and (7.2.4)) are introduced for this purpose. This is
also the reason why we have two distinct bounds on faces degrees, namely A1
and A2. Finally, the operation itself is way more complicated and perturbates
the topology of the map (contrary to Chapter 6). It is broken down in four
steps for better understanding. Because of the complexity of all of this, we
are not able to give a reasonable explicit formula for C.
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The injection will take as input a map of Bg(f) with a marked good set (to
be defined below, it will be proven that each map has at least κ

16n good sets),
and output a map of Bg(f̃) with a marked vertex and finite information (a
constant depending only on δ, κ and the function A) to go backwards, with
f̃ either of the form f̃ = f − 1p and i 6 p < A1 (A1 is a constant to be
defined later), or of the form f̃ = f −∑k

j=1 1dj with d1, d2, . . . , dk such that
1 < dj < i for all j but ∑ dj > i+ k − 1, and k < A1. Since there are only a
finite number of possibilities for f̃ , by (7.2.3) and (7.2.4), the injection proves
Lemma 29.

7.2.2 Good sets
Let M ∈ Bg(f). It has n edges and v vertices. Take r a number that we will
fix later. Let A1 := 2A(min( κ32 , δ)). We say that an edge e of M is nice if it
is not adjacent to a face of degree > 2A1.

Fact. At least (1− κ
16) of the edges in M are nice.

Proof. Draw an edge e of M uniformly at random. The face f sitting to the
right of e is drawn at random with a probability proportional to its degree.
Because of Property (7.2.2), f has probability < κ

32 to be of degree > A1.
The same goes with the face sitting to the left of e.

Remark 7.2.2. For this proof, we would only need to take A1 = A( κ32), but
the actual definition will prove to be useful in the next section.

Let EG(M) be the edge-graph of M: its vertices are the edges of M, and
two edges of M are connected in EG(M) iff they share a common corner.
Each edge of M has at most 4 corners, so EG(M) only has vertices of degree
4 or less. In particular, let Br(e) be the ball of radius r around e in EG(M).
Then |Br(e)| < 4r+1. Let A2 := A( κ

32·4r+1 ). An edge e is very nice if it is nice
and no edges in Br(e) is adjacent to a face of degree > 2A2. By the same
argument as in the previous lemma and a union bound we have:

Fact. At least (1− κ
8 ) of the edges in M are very nice.

Let D = 4
κ
. By (7.2.1), D is larger than twice the average degree in

M. Since at most half of the vertices have degree at least twice the average
degree, and since there are > κn vertices, there exists a color (say white,
wlog), such that:

Fact. There are at least κ
4n white vertices of degree < D in M.
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An edge is said to be fine if it is adjacent to a white vertex of degree < D
and that the face on its right is not of degree 2. By the previous fact, and
since every vertex is adjacent to (at least) a face of degree > 2, there are at
least κ

4n fine edges in M. An edge is said to be good is it is both very nice
and fine. By what’s above:

Lemma 33. There are at least κ
8n good edges in M.

We say that an A1-uple S of edges is a good set if all the edges of S are
good and they all are at distance < 2r from each other in EG(M).

Proposition 23. For r = 16A1
κ

+ 1, there are at least κ
16n good sets in M.

Proof. Let G be the set of all good edges. We can assume that for every
e ∈ G, Br(e) does not contain all the edges of M, otherwise the proposition
is obviously true.

In that case, for all e ∈ G, |Br(e)| > r. We are going to find a collection
of distinct good sets (Si). For this we will consider a sequence of sets of good
edges (Gi), with G0 = G, such that |Gi| = |G| − i, and Gi+1 ⊂ Gi

For all i < κ
16n, we have

∑
e∈Gi

Br(e) > (|G| − i)r > κ

16nr > A1n.

Therefore there must be an "A1-overlap", i.e. there exists A1 edges whose
balls of radius r all intersect (at the same point). Thus they are all at distance
at most 2r of each other, and we just found a good set Si. Choose ei ∈ Si
arbitrarily, and Gi = Gi−1 \ {ei} (this ensures that all the Si are distinct).
And we are done.

Remark 7.2.3. Note that the good sets are not necessarily disjoint.

Remark 7.2.4. It is not easy to understand the dependencies between the
different constants involved. To help convince the reader there is no circular-
ity, we provide a "causal graph" of all the variables implied.

A(·)

δ

κ

r A2

D

A1
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7.2.3 The injection
We can immediately give the proof of Lemma 29 for i = 1: a marked digon
can be contracted into a marked edge (see Figure 7.4), and if f1 > δn, we
have

nβg(f − 1i) > δnβg(f)
which yields the result.

Figure 7.4 – Contraction of a digon.

Fix i > 1 such that ifi > δn. By the definition of A1, 2i < A1. We will
describe a injection that takes a map of Bg(f) and a marked good set, and
returns a smaller map, still of genus g and with a marked vertex, along with
some finite information describing how to reconstruct the original map.

We need to give some definitions. Take a good set S with a distinguished
edge e∗ ∈ S called the anchor. For e ∈ S\{e∗}, let pe be the leftmost shortest
path (in EG(M)) from e∗ to e. The path set P (S) is the union of all the
pe’s. With this definition, we ensure that the union of all the edges in P (S)
forms a tree. We also know that |P (S)| < 2A1r, where |P (S)| is the number
of edges of EG(M) in P (S)

Step 1: The carving operation of a good set S with anchor e∗ consists in
drawing P (S) on M (see Figure 7.5) and deleting all the edges of M that
are crossed by P (S). Each time an edge is deleted, it merges two faces. If
those faces had degree d and d′, it creates a face of degree d + d′ − 1. The
"tree structure" of P (S) ensures that in the end, one obtains a map M1 that
is still connected, and has a megaface which is the result of the consecutive
mergings of faces.

Let i1, i2, . . . , il be the degrees of the faces that were destroyed in the
carving process. Then the megaface has degree F = i1 + i2 + . . .+ il − l+ 1.
We have F < 2A1A2r. In the megaface, there are less than |P (S)| pairs of
distinguished corners (since each pair of corners is the result of the deletion
of an edge crossed by P (S)). The A1 white vertices that were adjacent to
good edges are all adjacent to the megaface, we will call them good vertices.
Therefore, the information needed to reconstruct M from M1 is finite.

Step 2: The second step of the injection is the vertex deletion. Given
a map M1 with a megaface and a number d < A1 (d is to be fixed later



CHAPTER 7. UNIVERSALITY OF HIGH GENUS LOCAL LIMITS 166

Figure 7.5 – A good set S (in in purple, anchor in red), its paths P (S) in
blue, and the carving operation. Marked corners are represented as dangling
half edges.

and depends on M1), it consists in choosing d good vertices adjacent to the
megaface, and deleting them as well as their adjacent edges, and marking
the corresponding black corners (see Figure 7.6) for each deleted edge. Let
M2 be the map obtained after vertex deletion. It might be disconnected,
and its genus might be lower than g. M2 has maybe several megafaces, with
the condition that in each megaface there is at least a marked corner, and
that each connected component of M2 has at least a megaface. If M2 has K
connected components, genus g′ and m megafaces, then, by Euler’s formula,
we must have

m 6 (g − g′) +K. (7.2.5)

To go back to M1, one only needs to recreate the white vertices and reattach
them to their black corners (for each vertex v there are < D! possibilities for
the cyclic order of edges around v, thus finite information). The vertices that
were deleted had degree < D, therefore M2 has at most A1D marked black
corners. Again, only finite information is needed to go back to M1 from M2.

1

2

4

3

Figure 7.6 – Deleting a vertex and marking black corners

Step 3: The third step is the reconstruction: Take M2 as above, create a
new white vertex v and for each mega face f of M2, draw an edge between v
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and an arbitrary marked black corner of f (see Figure 7.7 left). One obtains
a map M3 that is now connected and has a unique megaface, with marked
black corners, and a marked white vertex inside. It has genus g′′, and because
of (7.2.5), we have g′′ 6 g (indeed, the genus increase from M2 to M3 is
exactly m−K). If g′′ < g, choose an arbitrary marked black corner and an
arbitrary corner of v and attach a pair of edges as in Figure 7.7 right. Now
the resulting map still has only one megaface and is of genus g′′ + 1. Repeat
if necessary to obtain a map M4 of genus g with a megaface and d − 1 less
white vertices than M. To recover M2 from M4, one has to remember which
were the marked black corners in the megaface (finite information since it is
a bounded number of corners in a face of bounded degree), then just delete
v and its adjacent edges.

Figure 7.7 – The reconstruction. Left: reconnecting the map, right: recover-
ing the genus.

Step 4: The final step is the filling of the megaface. Say the megaface of M4
has degree F , then the face degrees of M4 are given by f ′+1F , with f ′ 6 f . If
the degrees of the faces missing are i1, i2, . . . , il (i.e. f ′ = f−1i1−1i2−. . .−1il),
then we must have F = i1 + i2 + . . .+ il − (l − 1)− (d− 1).

Suppose that there exists k < l such that

(i1 − 1) + (i2 − 1) + . . .+ (ik − 1) = d− 1

(this is not the case in general, but in what follows we will make sure that
this condition is fulfilled up to reordering the ij’s). In that case, F − 1 =
(ik+1 − 1) + (ik+2 − 2) + . . . + (il − 1), and we can "tessellate" the megaface
as in the proof of (7.2.3) (going backwards is straightforward). We end up
with a map M∗ of genus g with a marked edge, and the face degrees given
by f −∑k

j=1 1ij .

Now we can describe the injection in terms of the different operations
mentioned above: take a map M with a marked good set S. For all e ∈ S,
let de be the degree of the face sitting on the right of e. We have two cases:



CHAPTER 7. UNIVERSALITY OF HIGH GENUS LOCAL LIMITS 168

Case 1: There exists e∗ in S such that de∗ > i. Take e∗ as the anchor,
and apply step 1. In the carving operation, the face sitting to the right of
e∗ has been destroyed. Let d = de∗ , and apply the vertex deletion (step 2)
to d good vertices, including the one that was adjacent to e∗. Reconstruct
(step 3). The face degrees that are missing are i1, i2, . . . , il, with i1 = de∗ = d
(wlog). The condition for the filling of the megaface (step 4) is fulfilled. One
ends up with a map M∗ of genus g with a marked edge, and the face degrees
given by f − 1de∗ .

Case 2: de < i for all e. Take any arbitrary ordering e1, e2, . . . , eA1 of the
edges of S, and let dj = dej .

Fact. There exists a 1 < k < A1 such that (i− 1) < ∑k
j=1(dj − 1) < A1 − 1.

Proof. Indeed, ∑A1
j=1(dj − 1) > A1 > i − 1 (because dj > 2 for all j). Let

k be the smallest integer such that (i − 1) < ∑k
j=1(dj − 1). Then we have∑k−1

j=1(dj − 1) < i, so since dk 6 i− 1, we also have
k∑
j=1

(dj − 1) < 2i− 1 6 A1 − 1

.

Choose the anchor arbitrarily, and apply step 1. Let d = 1+∑k
j=1(dj−1),

and apply the vertex deletion (step 2) to d good vertices, including the ones
that were adjacent to e1, e2, . . . , ek. For all j, the faces adjacent to ej is
destroyed in this step. Reconstruct (step 3). The face degrees that are
missing are i1, i2, . . . , il, with ij = dj for all j 6 k (wlog). The condition for
the filling of the megaface (step 4) is fulfilled. One ends up with a map M∗

of genus g with a marked edge, and the face degrees given by f −∑k
j=1 1dk .

Lemma 29 is now proved.

7.2.4 Planarity and One-Endedness
In this section, we prove that all the potential subsequential limits are pla-
nar and one ended. The key tool of the proof (besides the Bounded Ratio
Lemma), is the formula (7.1.3) proven in Chapter 5. Thanks to this formula,
we have some technical estimation lemmas whose proofs will be postponed
to Section 7.6.3

Fix a sequence (g, f)n, and Mn uniform in Bg(f)3. By Lemma 28, (Mn) is
tight for d∗loc. In all this section, we will denote byM a subsequential limit in

3To make notations less cumbersome, g and f depend implicitly on n.
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distribution. It must be an infinite map. We will first prove thatM is planar
and one-ended, and then that its vertices have finite degrees. To establish
planarity, the idea will be to bound, for any non-planar finite map m, the
probability that m ⊂ Mn for n large. For this, we will need the following
combinatorial estimate.

Lemma 34. Fix u ∈ N and a sequence (h)n s.t. ∑i ihi = n−u and h 6 f for
all n. Fix also k > 2, numbers `1, `2, . . . , `k and perimeters pji for 1 6 j 6 k

and 1 6 i 6 `j. Then

∑
h(1)+h(2)+...+h(k)=h

g1+g2+...+gk=g−1−
∑

j
(`j−1)

k∏
j=1

β
(pj1,p

j
2,...,p

j
`j

)
gj (h(j)) = o (βg(f))

as n→∞.

Corollary 24. Every subsequential limit of (Mn) for d∗loc is a.s. planar.

Proof. If a subsequential limitM is not planar, then we can find a finite map
m with holes and with genus 1 such that m ⊂ M . Indeed, if we explore M
by a lazy peeling, the genus may only increase by at most 1 at each step, so
if the genus is positive at some point, it must be 1 at some point. Therefore,
it is enough to prove that for any such map m, we have

P (m ⊂Mn) −−−−→
n→+∞

0.

If m ⊂ Mn, let M1, . . . ,Mk be the connected components of Mn\m.
These components define a partition of the set of holes of m, where a hole h
is in the j-th class if M j is the connected component glued to h. Note that
the number of possible partitions is finite and depends only on m (and not
on n). Therefore, it is enough to prove that for any partition π of the set of
holes of m, we have

P (m ⊂Mn and the partition defined by Mn is π) −−−−→
n→+∞

0. (7.2.6)

If this occurs, for each j, let `j be the number of holes of M glued to M j

and let pj1, . . . , pj`j be the perimeters of these holes. Then the connected
component M j is a map with boundary (pj1, . . . , pj`j). Moreover, if Mj has
genus gj, then the total genus of Mn is equal to

1 +
k∑
j=1

gj +
k∑
j=1

(`j − 1),
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so this sum must be equal to g, so

k∑
j=1

gj = g − 1−
k∑
j=1

(`j − 1).

Moreover, let h(j) be the distribution of the faces in M j, then we have∑k
j=1 h(j) = f − s =: h, where f is the distribution of the faces in M and s is

the distribution of the faces in m.
Therefore, the number of maps M ∈ Bg(f) such that m ⊂ M and the

resulting partition of the holes is equal to π is the number of ways to choose,
for each j, a map with boundary (pj1, . . . , pj`j), such that the total genus of
these maps is g− 1−∑k

j=1(`j − 1), and their total distribution of faces is h.
This is equal to the left-hand side of Lemma 34, so (7.2.6) is a consequence
of Lemma 34, which concludes the proof.

The proof of one-endedness will be similar, but the combinatorial estimate
that is needed is slightly different.

Lemma 35. • Fix u ∈ N and a sequence (h)n s.t. ∑i ihi = n − u and
h 6 f for all n. Fix also k > 1, numbers `1, `2, . . . , `k not all equal
to 1 and perimeters pji for 1 6 j 6 k and 1 6 i 6 `j. Then

∑
h(1)+h(2)+...+h(k)=h

g1+g2+...+gk=g−1−
∑

j
(`j−1)

k∏
j=1

β
(pj1,p

j
2,...,p

j
`j

)
gj (h(j)) = o (βg(f))

as n→∞.

• Fix h 6 f , k > 1, numbers `1, `2, . . . , `k and perimeters p1, . . . , pk.
There is a constant C such that for every a and n we have

∑
h(1)+h(2)+...+h(k)=h

g1+g2+...+gk=g
n1,n2>a

k∏
j=1

βpjgj (h(j)) 6 C

a
βg(f)

as n→∞.

Corollary 25. Every subsequential limit of (Mn) for d∗loc is a.s. one-ended.

Proof. The proof is quite similar to the proof of Corollary 24, but with
Lemma 35 playing the role of Lemma 34.
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More precisely, if a subsequential limit M is not one-ended with positive
probability, it contains a finite map m such that two of the connected com-
ponents of M\m are infinite. This means that we can find ε > 0, a map m
and two holes h1, h2 of m such that, for every a > 0,

P (m ⊂M and M\m has two connected components with > a edges) > ε.

(7.2.7)
By Corollary 24, we can assume that m is planar. If this holds, then M

contains a finite map obtained by starting from m and adding a edge in the
hole h1 and a edges in the hole h2. We denote by ma,a the set of such maps.
Then (7.2.7) means that for any a > 0, for n large enough, we have

P (Mn contains a map of ma,a) > ε. (7.2.8)

This can occur in two different ways, which will correspond to the two items
of Lemma 35:

(i) either at least one connected component of Mn\m is adjacent to at
least two holes of m,

(ii) or the k holes ofm correspond to k connected componentsM1, . . . ,Mk,
where M1 and M2 have size at least a.

In case (i), the connected components of Mn are maps with boundaries, at
least one of which has two boundaries. The proof that the probability of this
case goes to 0 is now the same as the proof of Corollary 24, but we use the
first point of Lemma 35. Note that the assumption that the `j are not all
1 comes from the fact that one of the connected components is adjacent to
two holes. Moreover, the sum of the genuses of the M j is g−∑j(`j − 1) and
not g − 1−∑j(`j − 1) because this time m has genus 0 and not 1.

Similarly, in case (ii), the k holes of m must be filled with k maps with
a single boundary, two of which have at least a edges, so they belong to a
set of the form Bpjgj (h(j)) with nj > a

2 if a is large enough compared to the
perimeters of the holes. Hence, the second point of Lemma 35 allows to
bound the number of ways to fill these holes. We obtain that, for a large
enough, we have

P (Mn contains a map of ma,a) 6 o(1) + 2C
a

as n → +∞, where o(1) comes from case (i) and 2C
a

from case (ii). This
contradicts (7.2.8), so M is a.s. one-ended.
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7.2.5 Finiteness of the root degree
Let M be a subsequential limit of (Mn) for d∗loc. By Lemma 28, to finish the
proof of tightness for dloc (Proposition 22), we only need to show that almost
surely, all the vertices of M have finite degree. As in [AS03, BL19], we will
first study the degree of the root vertex, and then extend finiteness by using
invariance under the simple random walk.

Lemma 36. The root vertex of M has a.s. finite degree.

Proof. We follow the approach of [AS03] and perform a filled-in lazy peeling
exploration of M . Before specifying the peeling algorithm that we use, note
that we already know by Corollary 24 that the explored part will always be
planar, so no peeling step will merge two different existing holes. Moreover,
by Corollary 25, if a peeling step separates the boundary into two holes, then
one of them is finite and will be filled with a finite map. Therefore, at each
step, the explored part will be a map with a single hole.

The peeling algorithm A that we use is the following: if the root vertex
ρ belongs to ∂m, then A(m) is the edge on ∂m on the left of ρ. If ρ /∈ ∂m,
then the exploration is stopped. Since only finitely many edges incident to
ρ are added at each step, it is enough to prove that the exploration will a.s.
eventually stop. We recall that EAM(i) is the explored part at time i.

We will prove that at each step, conditionally on EAM(i), the probability
to swallow the root and finish the exploration in finite time is bounded from
below by a positive constant. For every map m with one hole such that
ρ ∈ ∂m, we denote by m+ the map constructed from m as follows (see
Figure 7.8):

• we first glue a "face" of degree i∗ (recall that i∗ is the smallest i > 1
such that ifi

n
> δ for n large enough) to the edge of ∂m on the left of

ρ,

• we then glue the two edges of the boundary incident to ρ together,

• during the next (i∗− 2) steps, at each step, pick two consecutive edges
of the boundary (arbitrarily), and glue them together.

Note that m+ is a planar map with the same perimeter as m but one
more face (of degree i∗). By the choice of our peeling algorithm, if we have
EAM(t)+ ⊂ M , then we have EAM(t + i∗) = EAM(t)+. Moreover, if this is the
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Figure 7.8 – The construction of m+ from m. In gray, the map m. In red,
the root vertex. In blue, the new face. Here, p = i∗ = 3.

case, the exploration is stopped at time t + i∗. Hence it is enough to prove
that the quantity

P
(
m+ ⊂M |m ⊂M

)
is bounded from below for finite, planar maps m with a single boundary and
ρ ∈ ∂m.

We fix such a m, with perimeter p, and face degrees given by s. Let also
(nk) be a sequence of indices such that Mnk converges in distribution to M .
We have

P
(
m+ ⊂M |m ⊂M

)
= lim
k→+∞

P (m+ ∈Mnk)
P (m ∈Mnk)

= lim
k→+∞

P(i∗, k)
Bp
g (f − s− 1i∗)
Bp
g (f − s) ,

where P(i∗, k) is the probability that a face of degree i∗ is chosen in the
peeling of Mnk . By definition of i∗, we have

P(i∗, k) > δ

for k large enough, while the ratio Bpg (f−s−1i∗ )
Bpg (f−s) is bounded below uniformly by

a constant because of the bounded ratio lemma, which concludes the proof.

Proof of Proposition 22. Let M be a subsequential limit of (Mn). Because
of Lemma 28, it is enough to prove that almost surely, all the vertices of M
have finite degrees. The argument is essentially the same as in [AS03] and
relies on Lemma 36 and invariance of the distribution of (Mn) under the
simple random walk.
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7.3 Weakly Markovian maps
We extend Theorem 12 of Chapter 6 to general models of infinite, bipartite
planar maps.

For a finite, bipartite map m with one hole, we denote by |∂m| the half-
length of the hole of m. For all j > 1, we also denote by vj(m) the number
of internal faces of m with degree 2j.

Definition 26. Let M be a random infinite, bipartite planar map. We say
that M is weakly Markovian if for every finite map m with one hole, the
probability P (m ⊂M) only depends on |∂m| and (vj(m))j > 1.

If M is weakly Markovian and v = (vj)j > 1 is a sequence with vj = 0 for
j large enough, we will denote by apv the probability P (m ⊂M) for a map
m with |∂m| = p and vj(m) = vj for all j. Note that this only makes sense
if there is such a map m, which is equivalent to

p 6 1 +
∑
j > 1

(j − 1)vj. (7.3.1)

Therefore, if p > 1, we will denote by Vp the set of v satisfying (7.3.1).
In particular, by definition, the q-IBPM is weakly Markovian, and the

corresponding constants apv are:

apv(q) := Cp(q)× qv,

where qv = ∏
j > 1 q

vj
j .

Theorem 18. Let M be a weakly Markovian infinite bipartite planar map.
Then there is a random weight sequence Q ∈ Qh such that M has the same
distribution as MQ. Moreover, if the degree of the root face of M has finite
expectation, then Q ∈ Qf almost surely.

We note right now that the second point of Theorem 18 is immediate
once the first point is proved. Indeed, if we write Rootface(m) for the degree
of the root face of a map m, if Rootface(M) has finite expectation, then

E [E [Rootface(MQ)|Q]] = E [Rootface(MQ)] < +∞,

so E [Rootface(MQ)|Q] < +∞ a.s., so Q ∈ Qf a.s..
The first point of Theorem 18 is the natural analogue of Theorem 12 of

Chapter 6, where triangulations are replaced by more general maps. The
proof will rely on similar ideas, and in particular on the Hausdorff moment
problem. However, two new difficulties arise:
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• the random weights q form a family of real numbers instead of just one
real number,

• in the triangular case, with the notations of Definition 26, it was obvious
that all the numbers apv are determined by the numbers a1

v. This is not
true anymore.

The first issue can be handled by using the multi-dimensional version of the
Hausdorff moment problem. The second one, on the other hand, will make
the proof a bit longer than in Chapter 6. More precisely, the Hausdorff
moment problem will now provide us, for every p > 1, a σ-finite measure
µp on the set of weight sequences, and we will use the peeling equations to
prove that all the µp are actually determined by µ1.

Because of the condition (7.3.1), we will need to find a measure with
suitable v-th moments for all v ∈ Vp, which is slightly different than the
usual Hausdorff moment problem. Therefore, we first need to state a suitable
version of the moment problem, which will follow from the usual one. This
is done in the next subsection.

7.3.1 The incomplete Hausdorff moment problem
We write V for the set of sequences (vj)j > 1 of natural integers such that
vj = 0 for j large enough. To state our version of the moment problem, we
will need to consider the space of sequences u indexed by v ∈ Vp. For j > 1,
we denote by ∆j the discrete derivation operator on the j-th coordinate on
this space. That is, if u = (uv), we write

(∆ju)v = uv − uv+δj .

It is easy to check that the operators ∆j commute with each other. For all
k = (kj)j > 1 such that kj = 0 for j large enough (say for j > j0), we can
define the operator ∆k by

∆ku = ∆k1
1 ∆k2

2 . . .∆kj0
j0 u.

In other words, we have

∆ku =
∑

i

∏
j > 1

(−1)ij
(
kj
ij

)uv+i,

where the sum is over families i = (ij)j > 1, and the terms with a nonzero
contribution are those for which 0 6 ij 6 kj for every j > 1. The usual
Hausdorff moment problem is then the following.
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Theorem 19. Let (uv)v∈V be such that, for any v ∈ V and any k, we have

∆kuv > 0.

Then there is a unique measure on [0, 1]N∗ (equipped the product σ-algebra)
such that, for all v ∈ V, we have

uv =
∫

qvµ(dq).

In particular µ is finite, with total mass u0.

More precisely, this is the infinite-dimensional Hausdorff moment prob-
lem, which can be deduced immediately from the finite-dimensional one by
the Kolmogorov extension theorem.

For p > 1, we recall that Vp ⊂ V is the set of v ∈ V that satisfy ∑j > 1(j−
1)vj > p− 1. We also denote by V∗p the set of v ∈ Vp for which there is j > 2
such that vj > 0 and v − δj ∈ Vp. In other words V∗p can be thought of as
the "interior" of Vp. Finally, we write

Q∗ = {q ∈ [0, 1]N∗|∃j > 2, qj > 0}.

Proposition 24. We fix p > 1. Let (uv)v∈Vp be a family of real numbers.
We assume that for all v ∈ Vp and all k, we have

∆kuv > 0.

Then there is a σ-finite measure µ on Q∗ such that, for all v ∈ V∗p , we have

uv =
∫

qvµ(dq).

Moreover, if p = 1, then µ is finite and µ(Q∗) 6 u0.

Note that this version is "weaker" than Theorem 19 in the sense that it
is not always possible to have uv =

∫
qvµ(dq) for v ∈ Vp\V∗p . A simple

example of this phenomenon in dimension one is that the sequence (1i=1)i > 1
has all its discrete derivatives nonnegative. However, there is no measure on
[0, 1] with first moment 1 and all higher moments 0. On the other hand, we
obtain a stronger result on µ, since it is supported by Q∗.

Proof. We start with the case p = 1. Then V1 = V , so by Theorem 19, there
is a measure µ̃ on [0, 1]N∗ such that, for all v ∈ V1, we have

uv =
∫

[0,1]N∗
qvµ̃(dq).
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Let µ be the restriction of µ̃ to Q∗. If v ∈ V∗1 and q ∈ [0, 1]N∗\Q∗, then there
is j > 2 such that vj > 0 but qj = 0, so qv = 0 by definition. It follows that,
for all v ∈ V∗1 , we have∫

Q∗
qvµ(dq) =

∫
[0,1]N∗

qvµ̃(dq) = uv.

Moreover, the total mass of µ is not larger than the total mass of µ̃, so it is
at most u0.

We now assume p > 2. Let v ∈ Vp. Then v + w ∈ Vp for all w > 0, so
by Theorem 19, there is a finite measure µv on [0, 1]N∗ such that

uv+w =
∫

qwµv(dq)

for all w > 0. Now let v,v′ ∈ Vp. For all w, we have∫
qv′qwµv(dq) = uv+v′+w =

∫
qvqwµv′(dq).

In other words, the measures qv′µv(dq) and qvµv′(dq) have the same mo-
ments, so by uniqueness in Theorem 19

qv′µv(dq) = qvµv′(dq). (7.3.2)

In particular, for all v ∈ Vp, we can consider the σ-finite measure

µ̃v(dq) = µv(dq)
qv

defined on {qv > 0}. Then (7.3.2) implies that, for any v and v′, the
measures µ̃v and µ̃v′ coincide on {qv > 0} ∩ {qv′ > 0}. Therefore, there is a
measure µ on ⋃v∈Vp{qv > 0} = Q∗ such that, for all v ∈ Vp, we have

µv(dq) = qvµ(dq) on {qv > 0}. (7.3.3)

Since µ is finite on {qj > ε} for all ε > 0 and j > 2, it is σ-finite. We would
now like to extend (7.3.3) to all Q∗ for v ∈ V∗p .

For this, let v ∈ V∗p , and let j > 2 be such that vj > 0 and v − δj ∈ Vp.
We have pδj ∈ Vp, so we can apply (7.3.2) to v and pδj. We obtain, on
{qj > 0}:

µv(dq) = qvµpδj(dq)
qpj

= qvµ(dq),
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using also (7.3.3) for pδj. In other words, (7.3.3) holds on {qj > 0}.
On the other hand, for v and v− δp, we can obtain a stronger version of

(7.3.2). More precisely, for all w, we have∫
qjqwµv−δj(dq) = uv+w =

∫
qwµv(dq),

so the measures qjµv−δj(dq) and µv(dq) have the same moments, so they
coincide. But the first one is 0 on {qj = 0}, so it is also the case for the
second. Therefore, (7.3.3) holds on {qj = 0}, with both sides equal to 0.

Finally, we have proved that (7.3.3) holds on [0, 1]N∗ . By integrating over
[0, 1]N∗ and using that the total mass of µv is uv, we get the result.

7.3.2 Proof of Theorem 18
As in Chapter 6, we start by writing down the peeling equations linking the
numbers apv together. For every p > 1 and v ∈ Vp, we have

apv =
∑
j > 1

ap+j−1
v+δj + 2

p−1∑
i=1

∑
w∈V

#Mi−1,wa
p−i
v+w, (7.3.4)

whereMp,w is the set of bipartite maps of the 2p-gon with exactly wj internal
faces of degree 2j for all j > 1. These equations, together with the facts that
a1

0 = 1 and apv > 0, characterize the families (apv) of numbers that may arise
from a weakly Markovian map. In order to be able to use the Hausdorff
moment problem like in Chapter 6, we now need to check that the discrete
derivatives of (apv) are nonnegative.

Lemma 37. Let M be a weakly Markovian bipartite map, and let apv be the
associated constants. For every k > 0, p > 1 and v ∈ Vp, we have(

∆kap
)

v
> 0.

Proof. The proof is very similar to the proof of Lemma 16 in Chapter 6,
with the following modification: in Chapter 6, it was useful that in the
same peeling equation, we had apv appearing on the left and apv+1 on the
right. However, in (7.3.4) apv+δj does not appear in the right-hand side (this
is because we are using the lazy peeling process of [Bud15] instead of the
simple peeling of [Ang03]). Therefore, instead of using directly the peeling
equation, we will need to use the double peeling equation, which corresponds
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Step 1 Step 2

Figure 7.9 – In two peeling steps, the perimeter stays constant and one face
with degree 2j is added (here j = 3).

to performing two peeling steps (instead of one in (7.3.4), because now it is
lazy peeling).

More precisely, the peeling equation (7.3.4) gives an expansion of apv. The
double peeling equation is obtained from (7.3.4) by replacing all the terms in
the right-hand side by their expansion given by (7.3.4). Note that this indeed
makes sense because if (p,v) satisfies 7.3.1, then (p + j − 1,v + δj) satisfies
(7.3.1) as well for all j > 1, and so does (p− i,v + w) for i > 1 and w ∈ V .

The equation we obtain is of the form

apv =
∑

i∈Z,w∈V
cp,iv,wa

p+i
v+w, (7.3.5)

where the coefficients cp,iv,w are nonnegative integers. An explicit formula for
these could easily be computed in terms of the |Mi,w|, but this will not be
needed. Here are the facts that will be useful:

(i) the coefficients cp,iv,w actually do not depend on v, so we can write them
cp,iw ,

(ii) we have cp,2j−2
2δj = 1 for every j > 1,

(iii) we have cp,0δj > 1 for every j > 2.

The second item expresses the fact that, for a given peeling algorithm, there
is a unique way to obtain a map with perimeter p+ 2j− 2 with faces v + 2δj
in two peeling steps. This way is to discover a unique face of degree 2j at
both steps. The third item means that it is possible to obtain in two peeling
steps a map with the same perimeter but one more face of degree 2j. For
this, we can discover a new face of degree 2j at the first step, and glue all
but two sides of this face two by two at the second step (see Figure 7.9).
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We now prove the lemma by induction on |k| = ∑
j > 1 kj. First, the

case |k| = 0 just means that apv > 0 for all (p,v) satisfying (7.3.1), which
is immediate. Let us now assume that the lemma is true for k and prove it
for k + δj, where j > 1. We will first treat the case where j > 2. Using the
double peeling equation (7.3.5) for (p,v + i) for different values of i, we have(

∆kap
)

v
=

∑
i∈Z,winV

cp,iw

(
∆kap+i

)
v+w

.

Therefore, using the induction hypothesis and Item (ii) above, we can write

0 6
(
∆kap+2j−2

)
v+2δj

= cp,2j−2
2δj

(
∆kap+2j−2

)
v+2δj

=
(
∆kap

)
v
−

∑
(i,w)6=(2j−2,2δj)

cp,iw

(
∆kap+i

)
v+w

.

Using the induction hypothesis again, we can remove all the terms in the last
sum except the one where (i,w) = (0, δj). Using Item (iii) above, we obtain

0 6
(
∆kap

)
v
−
(
∆kap

)
v+δj

=
(
∆k+δjap

)
v
,

which proves the induction step for j > 2. If j = 1, Item (iii) is not true
anymore (it is not possible to add only one face of degree 2 in 2 steps without
changing the perimeter). Therefore, instead of (7.3.5), we use the simple
peeling equation (7.3.4) like in Chapter 6. More precisely, in the induction
step, we fix j′ > 2 and write, using (7.3.4):

0 6
(
∆kap+j

′−1
)

v+δj′

=
(
∆kap

)
v
−
∑
j′′ 6=j′

(
∆kap+j

′′−1
)

v+δj′′
− 2

p−1∑
i=0

∑
w
|Mi−1,w|

(
∆kap−i

)
v+w

.

each term in the two sums is nonnegative by the induction hypothesis, so we
can remove the second sum and keep only the term j′′ = 1 in the first one to
obtain

0 6
(
∆kap

)
v
−
(
∆kap

)
v+δ1

=
(
∆k+δ1ap

)
v
.

This concludes the proof of the lemma.

By Lemma 37 and Proposition 24, for all p > 1, there is a σ-finite measure
µp on Q∗ such that, for all v ∈ V∗p ,

apv =
∫
Q∗

qvµp(dq) (7.3.6)
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and furthermore µ1(Q∗) 6 a1
0 = 1. We now replace apv by this expression

in the peeling equation (7.3.4). It is easy to check that, if v ∈ V∗p , then for
all the terms ap

′

v′ appearing in the right-hand side of the peeling equation for
(p,v), we also have v′ ∈ V∗p′ , so we can replace all the terms of the peeling
equation using (7.3.6). We obtain∫

qv µp(dq)=
∑
j > 1

∫
qv+δj µp+j−1(dq) + 2

p−1∑
i=1

∑
w > 0

|Mi−1,w|
∫

qv+w µp−i(dq)

=
∫

qv

∑
j > 1

qj µp+j−1(dq) + 2
p−1∑
i=1

Wi−1(q)µp−i(dq)
 ,

where we recall that Wi−1(q) is the partition function of Boltzmann maps of
the 2(i−1)-gon with Boltzmann weights q. In particular, the right-hand side
for i = 2 must be finite, which means that µp(Q∗\Qa) = 0, where Qa is the
set of admissible weight sequences. In other words, µp is actually a measure
on the set of admissible weight sequences. Moreover, the last display means
that the two measures

µp(dq) and νp(dq) =
∑
j > 1

qj µp+j−1(dq) + 2
p−1∑
i=1

Wi−1(q)µp−i(dq)

have the same v-th moment for all v ∈ V∗p . In particular, if we fix j > 2, this
is true as soon as vj > p, so the measures qpjµp(dq) and qpj νp(dq) have the
same moments so they are equal, so µp and νp coincide on {qj > 0}. Since
this is true for all j > 2 and µp, νp are defined on Q∗ = ⋃

j > 2{qj > 0}, the
measures µp and νp are the same, that is,

µp(dq) =
∑
j > 1

qj µp+j−1(dq) + 2
p−1∑
i=1

Wi−1(q)µp−i(dq). (7.3.7)

We now note that this equation is very similar to the one satisfied by the
constants Cp(q) used to define the q-IBPM. More precisely, we fix a measure
µ such that all the µp are absolutely continuous with respect to µ (take e.g.
µ(dq) = ∑

p > 1
gp(q)µp(dq)

2p , where gp(q) > 0 is such that the total mass of
gp(q)µp(dq) is at most 1). We denote by fp(q) the density of µp with respect
to µ. Then (7.3.7) becomes

fp(q) =
∑
j > 1

qjfp+j−1(q) + 2
p−1∑
i=1

Wi−1(q)fp−i(q)

for µ-almost every q ∈ Q∗. In other words, (fp(q))p > 1 satisfies the exact
same equation as (Cp(q))p > 1 in [Bud18a, Appendix C]. These equations have
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a nonzero solution if and only if q ∈ Qh, so the measures µp are actually
on Qh. Moreover, by uniqueness of the solution (up to a multiplicative
constant), we have

fp(q) = Cp(q)
C1(q)f1(q) = Cp(q)f1(q)

for µ-almost every q, so µp(dq) = Cp(q)µ1(dq). Now let α 6 1 be the total
mass of the measure µ1, and let Q be a random variable with distribution
α−1µ. We then have, for all p > 1 and v ∈ V∗p , is m is a map with perimeter
p and face degrees v:

P (m ⊂M) = apv =
∫

qvµp(dq) = αE [Cp(Q)Qv] = αP (m ⊂ MQ) . (7.3.8)

Note that Q is not well-defined if α = 0, but in this case µp = 0 for all p so
(7.3.8) remains true for any choice of Q. To conclude that M has the law of
MQ, all we have left to prove is that α = 1 and that (7.3.8) can be extended
to any v ∈ Vp. For this, we will use the fact that, when we explore M via
a peeling exploration, the perimeter and volumes of the explored region at
time n satisfy v ∈ V∗p for n large enough.

More precisely, if A is a peeling algorithm, we denote by EAn (M) the
explored part of M after n steps of a peeling exploration according to A.
We denote by Pn the half-perimeter of the hole of EAn (M) and by Vn the
sequence of degrees of its internal faces (that is, Vn,j is the number of internal
faces of EAn (M) with degree 2j). Since M is weakly Markovian, the process
(Pn,Vn)n > 0 is a Markov chain whose law does not depend on the peeling
algorithm A.

Lemma 38. We have

P
(
Vn ∈ V∗Pn

)
−−−−→
n→+∞

1.

Proof. Since the probability in the lemma does not depend on A, it is suf-
ficient to prove the result for a particular peeling algorithm. Therefore, we
can assume that A has the following property: if the root face of m and its
hole have a common vertex m, then the peeled edge A(m) is incident to such
a vertex. We will prove that for this algorithm, we have a.s. Vn ∈ V∗Pn for n
large enough.

More precisely, since the vertex degrees ofM are a.s. finite and by defini-
tion of A, all the vertices incident to the root face will eventually disappear
from the boundary of the explored part. Therefore, for n large enough, no
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vertex incident to the root face is on ∂EAn (M). We now fix n with this
property. If we denote by Inn(m) the number of internal vertices of a map
with a hole m and by 2J the degree of the root face of M , this implies
Inn

(
EAn (M)

)
> 2J for n large enough.

On the other hand, the total number of edges of EAn (M) is p+∑j > 1 jVn,j,
so by the Euler formula, we have

Inn
(
EAn (M)

)
= 2 +

Pn +
∑
j > 1

jVn,j

−
∑
j > 1

Vn,j + 1
− 2Pn

= 1− Pn +
∑
j > 1

(j − 1)Vn,j.

Taking n large enough to have Inn
(
EAn (M)

)
> 2J , we obtain

∑
j > 1

(j − 1)Vn,j

− (J − 1) > (2J + Pn − 1)− (J − 1) = Pn + J > Pn − 1,

so Vn,J > 0 and V−δJ ∈ VPn . This proves Vn,J ∈ V∗Pn for n large enough.

We now conclude the proof of Theorem 18 from (7.3.8). We consider a
finite map with a hole m0 and a peeling algorithm A that is consistent with
m0 in the sense that m0 is a possible value of EAn0 for some n0 > 0. We note
that EAn0(M) = m0 if and only if m0 ⊂ M . Indeed, the direct implication
is immediate. The indirect one comes from the fact that, if m0 ⊂ M , then
all the peeling steps until time n0 must be consistent with m0, so m0 ⊂ M
determines the first n0 peeling steps. We now take n > n0. We sum (7.3.8)
over all possible values m of EAn (M) such that m0 ⊂ m and the perimeter p
and internal face degrees v of m satisfy v ∈ V∗p . We get

P
(
m0 ⊂M and Vn ∈ V∗Pn

)
= αP

(
m0 ⊂ MQ and VQ

n ∈ V∗PQ
n

)
,

where PQ
n and VQ

n are the analogues of Pn and Vn for MQ instead of M .
Since MQ is weakly Markovian, we can apply Lemma 38 to both M and MQ.
Therefore, letting n→ +∞ in the last display, we get

P (m0 ⊂M) = αP (m0 ⊂ MQ)

for all m0. In particular, if m0 is the trivial map consisting only of the root
edge, we get α = 1, so M and MQ have the same law.
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7.4 The parameters are deterministic

7.4.1 The two holes argument
Recall the context: we fix (αi)i > 1 satisfying ∑i iαi = 1 and ∑ i2αi < +∞,
and 0 6 θ < 1

2 (1−∑i αi). We also fix (gn) with gn
n
→ θ and numbers fni

such that ∑
i

ifni = n and fni
2n −−−−→n→+∞

αi. (7.4.1)

We denote by Mn a uniform variable on Bgn(f (n)). By the results of the
previous sections, we have:

Theorem 20. The sequence (Mn) is tight for the local topology. Moreover,
any subsequential limit of (Mn) is a mixture of infinite Boltzmann planar
maps, i.e. it is of the form MQ, where Q is a random variable with values in
Q{.

Remark 7.4.1. The previous theorem also holds if we remove the condition∑
i2αi < +∞. In this case, Q has values in Qh.

Let (Mn, e
1
n, e

2
n) be a uniform, birooted map (i.e. e1

n and e2
n are picked

uniformly and independently among the edges of Mn). We will consider that
n lies in a subsequence along which (Mn, e

2
n) converges in distribution to

M1
Q1 . Then up to further extraction, we can assume the joint convergence

(
(Mn, e

1
n), (Mn, e

2
n)
) (d)−−−−→

n→+∞

(
M1

Q1 ,M2
Q2

)
for the local topology, where Q1 and Q2 have the same distribution. More-
over, by the Skorokhod representation theorem, we can assume this joint
convergence is almost sure. The goal of this section is to prove the next
result.

Theorem 21. We have Q1 = Q2 almost surely.

Corollary 27. Under the assumptions (7.4.1), let MQ be a subsequential
limit of (Mn). Then almost surely, we have

d(Q) = 1
2

(
1− 2θ −

∑
i

αi

)
and, for all i > 1, ai(Q) = αi.
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7.4.2 Finding two pieces with the same perimeter
We now fix a deterministic peeling algorithm A , and let p, t1 > 0. Given
(Mn, e

1
n, e

2
n), we:

• explore the mapm around e1
n according to A until either we have made

t1 peeling steps, or the perimeter of the explored region is exactly equal
to p, and denote by τ 1

n the time at which we stop;

• do the same thing around e2 (and denote by τ 2
n the stopping time).

We write En,p,v0 for the event where both τ 1
n and τ 2

n are smaller than v0, and
where the two regions explored around e1

n and e2
n are disjoint.

Our first goal will be to prove the next result. It roughly means that,
provided t1 is large enough, the probability of En,p,t1 is not too small, even if
we condition on Q1 and Q2. More precisely, we recall that the functions rj
of q for j ∈ N∗ ∪ {∞} are defined in Proposition 20.

Proposition 25. We fix j ∈ N∗ ∪{∞}, and ε > 0. Then there is δ > 0 with
the following property. For every p > 0 large enough, there is v0 such that,
for n large enough:

if P
(
|rj(Q1)− rj(Q2)| > ε

)
> ε,

then P
(
|rj(Q1)− rj(Q2)| > ε

2 and (Mn, e
1
n, e

2
n) ∈ En,p,t1

)
> δ.

Note that δ depends on the numbers αi. Note also that we used the
Skorokhod theorem to couple the finite and infinite maps together, so the
last event makes sense.

Here is why Proposition 25 seems reasonable: conditionally on (Q1,Q2),
the perimeters of the explored region along a peeling exploration of M1

Q1 and
M2

Q2 are random walks conditioned to stay positive. Moreover, since Q ∈ Qf ,
these random walks do not have a too heavy tail, so they have a reasonable
choice of hitting exactly p. However, an important issue is that there is no
reason a priori why M1 and M2 should be independent conditionally on Q1

and Q2. Therefore, the sketch of the proof will be the following:

• we fix a large constant C > 0 (keep in mind C << p),

• we prove that both walks have a large probability to hit the interval
[p, p+ C] in time t0(p) (this is roughly the content of Lemma 39),
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• once both explorations around e1
n and e2

n in Mn have hit [p, p+C], we
use the bounded ratio lemma to show that, with probability bounded
from below by roughly e−C , both perimeters fall to exactly p in at
most C steps. This will prove the proposition with δ ≈ εe−C and
t1 = t0(p) + C.

The point of replacing p by [p, p + C] is to deal with events of large prob-
ability, so that we don’t need any independence to make sure two events
simultaneously happen.

For this, consider our exploration around e1
n according to A. We denote

by σ1,n
[p,p+C] the first time at which the perimeter is in [p, p+C] (this stopping

time might be infinite). We define σ1,n
[p,p+C] (resp. σ1,∞

[p,p+C], σ
2,∞
[p,p+C]) as the

analogue quantity for the exploration in Mn around e2
n (resp. in M1

Q1 , in
M2

Q2).

Lemma 39. We have

lim
C→+∞

lim inf
p→+∞

P
(
σ1,∞

[p,p+C] < +∞
)

= 1.

Proof. Note that we know that Q1 almost surely satisfies ∑i i
3/2Q1

i < +∞,
so it is enough to prove that, for any weight sequence q = (qi) satisfying∑
i i

3/2qi < +∞, we have

lim
C→+∞

lim inf
p→+∞

P
(
σ1,∞

[p,p+C] < +∞
∣∣∣Q = q

)
= 1. (7.4.2)

The lemma then follows by taking the expectation and using Fatou’s lemma.
Note that conditionally on Q1 = q, the law of M1

Q1 is the law of Mq. In
particular, the process P describing the perimeter of the explored region is
a random walk X conditioned to stay positive.

To prove (7.4.2), we distinguish two cases: the case where q is subcritical,
and the case where it is critical. We start with the first one. Then by the
results of Section 7.1, the walk X satisfies E [|X1|] < +∞ and E [X1] > 0, so
the conditioning to stay positive is non degenerate. Therefore, it is enough
to prove

lim
C→+∞

lim inf
p→+∞

P (X hits [p, p+ C]) = 1. (7.4.3)

This follows from standard renewal arguments: if we denote by (Hi)i > 0

the ascending ladder heights of P , then (Hi) is a renewal set with density
E[H1] = 1

E[X1] . Let Ip be such that HIp < p 6 HIp+1 . Then the law of
HIp+1 −HIp converges as p→ +∞ to the law of H1 biased by its size, so
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P (P does not hit [p, p+ C]) 6 P
(
HIp+1 /∈ [p, p+ C]

)
6 P

(
HIp+1 −HIp > C

)
−−−−→
p→+∞

E [H11H1>C ]
E[H1] ,

and this last quantity goes to 0 as C → +∞.
We now tackle the case where q is critical. This is more complicated

since renewal arguments are not available anymore, and the conditioning is
now degenerate, so absolute continuity arguments become more elaborate.
On the other hand, the growth is now slower and X is recurrent, so it seems
more difficult to jump over a large interval. And indeed, we will prove

lim
p→+∞

P (P hits p) = 1,

which is a much stronger version of (7.4.3).
For this, our strategy will be the following: let τp be the first time at

which P is at least p,

• The scaling limit of P is a process with no positive jump, therefore
Pτp = p+ o(p) as p→ +∞.

• Between time τp and τp + o(p2/3), the process P looks a lot like a
nonconditioned random walk X started from Pτp .

• If X is started from p+ o(p), the time it takes to first hit P is o(p2/3).
This is a stronger version of the recurrence of X, and will follow from
a local limit theorem for random walks.

Let us now be more precise. By Theorem 3 of [Bud15] (see also [Cur19,
Chapter 10]), we have the convergence(

Pnt
n2/3

)
t > 0

(d)−−−−→
n→+∞

(
cqS

+
t

)
t > 0

for the Skorokhod topology, where S+ is a 3/2-Lévy process with no positive
jump conditioned to stay positive, and cq is a constant depending on q
that will not be important here. In particular, this process has no positive
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jump, which implies that Pτp − p = o(p) in probability. Hence, there is a
deterministic function f(p) with f(p)

p
→ 0 such that, for any ε > 0,

P
(
Pτp − p > εf(p)

)
−−−−→
p→+∞

0.

We now fix ε > 0, and condition on Pτp = p′ for some p 6 p′ 6 p+εf(p). We
claim that then

(
Pτp+i − p′

)
0 6 i 6 f(p)3/2

can be coupled with (Xi)0 6 i 6 f(p)3/2

in such a way that both processes are the same with probability 1 − o(1).
For this, recall that P can be described as an h-transform of X, where h is
given by (7.1.7). Hence, the Radon–Nikodym derivative of the first process
with respect to the second is

h1(p′ +Xf(p)3/2)
h1(p′) . (7.4.4)

Since
X
f(p)3/2

f(p) converges in distribution, we have
X
f(p)3/2

p
→ 0 in probability.

By using the fact that p′

p
→ 0 uniformly in p′ and that h1(x) ∼ c

√
x for some

c > 0 (see Section 7.1). , we conclude that (7.4.4) goes to 1 as p → +∞,
uniformly in p′ ∈ [p, p+ εf(p)]. This proves our coupling claim. Note that
under this coupling, the time where P hits exactly p is τp plus the time where
X hits p− p′.

We will now show that, if p is large enough, for any k ∈ [−εf(p), 0], we
have

P
(
X hits k before time f(p)3/2

)
> 1− δ(ε)− o(1), (7.4.5)

where δ(ε) → 0 as ε → 0. Together with our coupling result, this will
imply that the probability for P to hit p before time τp + f(p)3/2 is at least
1− g(ε)− o(1). Since this is true for any ε > 0, this will conclude the proof
of Lemma 39 in the critical case.

The proof of (7.4.5) relies on the Local Limit Theorem (this is e.g. The-
orem 4.2.1 of [IL71]). This theorem (in the case α = 3/2) states that

sup
k∈Z

∣∣∣∣∣n2/3P(Xn = k)− g
(

k

n2/3

)∣∣∣∣∣ −−−−→n→+∞
0,

where g is a continuous function (the density of a 3/2-stable variable). On
the other hand, let us denote t = f(p)3/2. By the strong Markov property,
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we have

E0

[
t∑
i=0

1Xi=k

]
6 P0 (X hits k before time t) Ek

[
t∑
i=0

1Xi=k

]

= P0 (X hits k before time t) E0

[
t∑
i=0

1Xi=0

]
.

Therefore, using the local limit theorem, we can write, for −εf(p) 6 k 6 0
and p large (the o terms are all uniform in k):

P0 (X hits p before t) >
∑t
i=0 P0 (Xi = k)∑t
i=0 P0 (Xi = 0)

=
∑t
i=1

(
1
i2/3

g
(

k
i2/3

)
+ o

(
1
i2/3

))
1 +∑t

i=1

(
1
i2/3

g(0) + o
(

1
i2/3

))
>
−εt1/3 +∑t

i=εt

(
1
i2/3

min[−ε1/3,0] g + o
(

1
i2/3

))
3t1/3g(0) + εt1/3

>
−2εt1/3 +

(
3t1/3 − 3ε1/3t1/3

)
min[−ε1/3,0] g

(3g(0) + ε) t1/3

=
−2ε+ 3(1− ε1/3) min[−ε1/3,0] g

3g(0) + ε
,

where the third line uses that, for any index i > εt, we have

0 > k

i2/3
> − εf(p)

(εt)2/3 = ε1/3.

We obtain a lower bound that goes to 1 as ε→ 0, so this proves (7.4.5), and
Lemma 39.

Proof of Proposition 25. The slight subtlety in the proof is that in the finite
world (i.e. on the finite map Mn), we cannot condition on the values of Q1

and Q2. However, we can condition on the maps explored at the time where
the perimeter of the explored part hits [p, p + C] for the first time. Then
Proposition 20 tells us that this conditioning gives us a good approximation
of Q1 and Q2.

For i ∈ {1, 2}, we will denote by En,it the explored map at time t when we
perform a peeling exploration of the map Mn until time t around the root
ein. We will also denote by E∞,it the explored part in the limit infinite map
Mi

Qi .
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We fix a function f among those appearing in the statement of Proposi-
tion 25, and some ε > 0. By Lemma 39, let C be a constant such that

lim inf
p→+∞

P
(
σ1,∞

[p,p+C] < +∞
)
> 1− ε

20 ,

and note that C depends only on ε. For p large enough (where "large enough"
may depend on ε), there is v0(p) such that

P
(
σ∞,1[p,p+C] 6 v0 and

∣∣∣∣E∞,1σ∞,1[p,p+C]

∣∣∣∣ 6 v0

)
> 1− ε

20 . (7.4.6)

On the other hand, Proposition 20 provides a function f̃j on the set of finite
maps with a hole such that f̃j(E∞,1t ) → rj(Q1) almost surely as t → +∞.
Let η < 1 be a small constant, which will be fixed later and will only depend
on ε. For p large enough, we have

P
(
σ∞,1[p,p+C] 6 v0 but

∣∣∣∣f̃j (E∞,1σ∞,1[p,p+C]

)
− rj(Q1)

∣∣∣∣ > ε

8

)
< η

ε

20 . (7.4.7)

From now on, we take p large enough so that both (7.4.6) and (7.4.7) hold.
By local convergence and (7.4.6), for n large enough (where "large enough"
may depend on ε and p), we have

P
(
σn,1[p,p+C], σ

n,2
[p,p+C] 6 v0 and

∣∣∣∣En,1σn,1[p,p+C]

∣∣∣∣ , ∣∣∣∣En,2σn,2[p,p+C]

∣∣∣∣ 6 v0

)
> 1− ε

10 .

By the assumption that |rj(Q1)− rj(Q2)| > ε with probability at least ε and
by (7.4.7), we deduce that

P

 σn,1[p,p+C], σ
n,2
[p,p+C] 6 v0 and

∣∣∣∣En,1σn,1[p,p+C]

∣∣∣∣ , ∣∣∣∣En,2σn,2[p,p+C]

∣∣∣∣ 6 v0

and
∣∣∣∣f̃j (E∞,1σ∞,1[p,p+C]

)
− f̃j

(
E∞,2
σ∞,2[p,p+C]

)∣∣∣∣ > 3
4ε

 >
4
5ε.

Note that if this last event occurs but the two regions En,1
σn,1[p,p+C]

and En,2
σn,2[p,p+C]

have a common face, then the dual graph distance between the two roots is
bounded by 2v0. However, by Proposition 22, the volume of the ball of radius
2v0 around e1

n is tight as n→ +∞, so the probability that this happens goes
to 0 as n→ +∞. Hence, for n large enough:

P

 E
n,1
σn,1[p,p+C]

, En,2
σn,2[p,p+C]

are well-defined, face-disjoint, have volume

at most v0 and
∣∣∣∣f̃j (E∞,1σ∞,1[p,p+C]

)
− f̃j

(
E∞,2
σ∞,2[p,p+C]

)∣∣∣∣ > 3
4ε

 > 1− ε

10 .

(7.4.8)
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Now assume that this last event occurs and condition on the σ-algebra
Fσ generated by the pair

(
En,1
σn,1[p,p+C]

, En,2
σn,2[p,p+C]

)
of explored regions. Then, let

I1, I2 ∈ [0, C] be such that the perimeters of the two explored regions are 2p+
2I1 and 2p+2I2. Then the complementary map is a uniform map with genus
gn, two boundaries of length

∣∣∣∣∂En,1σn,1[p,p+C]

∣∣∣∣ and ∣∣∣∣∂En,2σn,2[p,p+C]

∣∣∣∣, and face degrees f̃i
corresponding to the faces of Mn minus the faces of the two explored regions.
More precisely, let Fi be the number of faces of degree 2i in En,1

σn,1[p,p+C]
∪En,2

σn,2[p,p+C]
.

Then f̃i = fi−Fi. We now perform I1 peeling steps around En,1
σn,1[p,p+C]

, followed

by I2 peeling steps around En,2
σn,2[p,p+C]

. We call a peeling step nice if it consists
of gluing together two boundary edges, which decreases the perimeter by 2.
The number of possible values of the map Mn\

(
En,1
σn,1[p,p+C]

∪ En,2
σn,2[p,p+C]

)
is

β(p+I1,p+I2)
g (f̃).

We count doubly rooted maps since we need to specify how we glue En,2
σn,2[p,p+C]

.
On the other hand, if the I1 + I2 additional peeling steps are all good and
the regions around e1

n and e2
n are still disjoint after these steps, the number

of possible complementary maps is

β(p,p)
g (f̃).

It follows that

P (the I1 + I2 peeling steps are all nice|Fσ) =
β(p,p)
g (f̃)

β
(p+I1,p+I2)
g (f̃)

.

By the bounded ratio lemma (more precisely, by Lemma 30), this is always
larger than a constant η depending on f and on ε. More precisely η may
depend on I1 and I2, but 0 6 I1, I2 6 C(ε), so (I1, I2) can take finitely many
values given ε, so η only depends on ε. This is the value of η that we choose
for (7.4.7). For i ∈ {1, 2}, we write τn,ip = σn,i[p,p+C] + Ii. It follows from this
last computation and from (7.4.8) that, for n large enough, we have

P

 E1,n
τn,ip

and E2,n
τn,2p

are both face-disjoint, have perimeter p

and volume 6 v0, and
∣∣∣∣f̃j (E∞,1σ∞,1[p,p+C]

)
− f̃j

(
E∞,2
σ∞,2[p,p+C]

)∣∣∣∣ > 3
4ε

 > 4
5εη.
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Finally, we can use (7.4.7) to replace back the approximations f̃j
(
E∞,i
σ∞,i[p,p+C]

)
by rj(Qi). We obtain

P

 E1,n
τn,ip

and E2,n
τn,2p

are both face-disjoint, have perimeter p
and volume 6 v0, and |rj(Q1)− rj(Q2)| > 1

2ε

 > 3
5εη.

On this event, we have (Mn, e
1
n, e

2
n) ∈ En,p,v0 . Therefore, this concludes the

proof of the proposition, with δ = 3
5ηε.

7.4.3 Proof of Theorem 21
The proof of Theorem 21 is now basically the same as the two-holes argument
of Chapter 6. Therefore, we will not write the argument in full details. We
stress right now two differences:

• The first one is that the involution obtained by (possibly) swapping
the two explored parts is now non-identity on a relatively small set of
maps4. The only consequence is that in the end, instead of contra-
dicting the almost sure convergence of Proposition 20 on an event of
probability ε, we will contradict it on an event of probability δ < ε.

• The other difference is that in Chapter 6, the only observable we were
using to approximate the Boltzmann weights was the ratio between
perimeter and volume, which corresponds to our function r∞ here. To
deal with the functions rj for j ∈ N∗, we simply need the observation
that, if q >> p, the proportion of peeling steps where we discover a
new face of perimeter 2j only depends on the part of the exploration
after τp.

Sketch of proof of Theorem 21. Let ε > 0, and assume

P
(
|f(Q1)− f(Q2)| > ε

)
> ε.

Let δ > 0 be given by Proposition 25. Consider p >> 1 (depending on ε),
and define an involution Φ on the set of maps of size n with prescribed genus
and face degrees: if m ∈ En,p,v0 , then Φ(m) is obtained from m by swapping
the two regions E1,n

τ1,n
p

and E2,n
τ2,n
p

. If m /∈ En,p,v0 , then Φ(m) = m. Note that
Φ(Mn, e

1
n, e

2
n) is still uniform on bi-rooted maps with prescribed genus and

face degrees. This map rooted at en1 converges to a map M̂, which has to
4i.e., for many maps, there is no swapping.
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be a mixture of Boltzmann infinite planar maps. On the other hand, by its
construction, M̂ can be described as follows. If we explore M̂ by the same
peeling algorithm as usual and denote by Êt the explored part at time t, then
either

M̂ = M1
Q1

or
Êτ1

p
= E1

τ1
p
and M̂\Êτ1

p
= M2

Q2\E2
τ2
p
.

Moreover, by Proposition 25, if p has been chosen large enough, then with
probability at least δ, we are in the second case and |rj(Q1) − rj(Q2)| > ε

2 .
Now assume q >> p >> 1 and assume this event occurs. Then we have

f̃j
(
Êτ1

p

)
≈ f(Q1) but f̃j

(
Êτ̂q
)
≈ f(Q2), (7.4.9)

where τ̂q is the first step where the perimeter of the explored part of M̂ is
at least q. The approximations of (7.4.9) can be made arbitrarily precise if
p and q were chosen large enough, so for p large enough and q large enough
(depending on p), we have

P
(∣∣∣f̃j (Êτ1

p

)
− f̃j

(
Êτ̂q
)∣∣∣ > ε

4

)
> δ,

which contradicts the almost sure convergence of Proposition 20.

7.4.4 Proof of Corollary 27
The proof is basically the same as the proof of the main theorem in Chapter 6.
The only difference is that we could not prove directly that d(q) and aj(q)
for j > 1 are sufficient to characterize the weight sequence q, so we do not
get immediately the uniqueness of the subsequential limit.

More precisely, by the Euler formula, any map with genus gn and fni faces
of degree 2j for each j has exactly n edges and n−∑j > 1 f

n
j +2−2gn vertices,

so, by invariance of Mn under uniform rerooting, we have

E

[
1

degMn
(ρ)

]
=
n−∑j > 1 f

n
j + 2− 2gn

2n −−−−→
n→+∞

1
2

1− 2θ −
∑
j

αj

 .
By the exact same argument as in Chapter 6, we deduce from Theorem 21
that d(Q) = 1

2

(
1− 2θ −∑j αj

)
a.s.. Similarly, by invariance under reroot-

ing, for all j > 1, we have
1
j

P (the root face of Mn has degree 2j) = 1
j
×

2jfnj
2n −−−−→

n→+∞
αj.

By the same argument as above, we obtain aj(Q) = αj a.s..
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7.4.5 Finishing the proof
To conclude the proof of the main theorem, it is enough to show that the
weight sequence q is completely determined by (aj(q))j > 1 and d(q). We fix
a sequence (αj)j > 1 such that ∑j jαj = 1. We recall from Section 7.1 that
the weight sequences q such that aj(q) = αj for all j form a one-parameter
family

(
q(ω)

)
ω > 1

given by

q
(ω)
j = jαj

ωj−1hj(ω)

1−∑i > 1
1

4i−1

(
2i−1
i−1

)
iαi

ωi−1hi(ω)

4

j−1

.

Therefore, to show our main theorem, it is sufficient to prove the following.

Proposition 26. The function ω → d(q(ω)) is strictly decreasing.

Since we were not able to obtain a direct proof of this result, we will
deduce it from Corollary 27. We start with some more basic properties of
the function ω → d(q(ω)).

Lemma 40. • The function ω → d(q(ω)) is continuous on [1,+∞) and
analytic on (1,+∞).

• We have d(q(ω)) > 0 for all ω and limω→+∞ d(q(ω)) = 0.

• We have d(q(ω)) 6 1−∑j > 1 αj for all ω > 1, with equality if and only
if ω = 1.

Proof. We start with the continuity statement in the first item. The analyt-
icity is more difficult and proved in the appendix. In particular, it implies
continuity on (1,+∞) so it is sufficient to prove the continuity at ω = 1. By
the monotone convergence theorem, the function ω → gq(ω) is continuous at
ω = 1, so q(ω)

j is continuous at ω = 1 for all j. Therefore, for every finite
map m with one hole, we have

P
(
m ⊂ Mq(ω)

)
−−→
ω→1

P
(
m ⊂ Mq(1)

)
,

so Mq(ω) → Mq(1) in distribution for the local topology. Since the inverse
degree of the root vertex is bounded and continuous for the local topology,
the function ω → d(q(ω)) is continuous at 1.
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We now prove the second item: d(q(ω)) > 0 is immediate and d(q(ω))→ 0
is equivalent to proving degMq(ω)

(ρ) → +∞ in probability when ω → +∞.
For this, we notice that when ω → +∞, we have hω(i)→ 1 for all i and

ν̃q(ω)(i) −−−−→
ω→+∞

0 if i 6 − 1,
(i+ 1)αi+1 if i > 0.

In other words, the probability of any peeling step swallowing at least one
vertex goes to 0 when ω → +∞. Therefore, if we perform a peeling explo-
ration where we peel the edge on the right of ρ whenever it is possible, the
probability to complete the exploration of the root in less than k steps goes
to 0 for all k, so the root degree goes to +∞ in probability.

Finally, let us move on to the third item. Since Mq is stationary, if we
denote by Muni

q a map with the law Mq biased by the inverse of the root
vertex degree, then Mq is unimodular. A simple computation shows that
d(q(ω)) 6 1−∑j > 1 αj is equivalent to E[κMuni

q (ρ)] > 0, where, if v is a vertex
of a map m:

κm(v) = 2π −
∑
f

deg(f)− 2
deg(f) π,

and the sum is over all faces that are incident to v, counted with multiplicity.
Moreover, we have equality if and only if E[κMuni

q (ρ)] = 0. The fact that
E[κMuni

q (ρ)] > 0 is then a consequence of [AHNR18, Theorem 1]. Moreover,
[AHNR18] shows the equivalence between 17 definition of hyperbolicity. In
particular, we have E[κMuni

q (ρ)] > 0 (definition 1 in [AHNR18]) if and only if
pc < pu for bond percolation on Muni

q . This is equivalent to P (pc < pu) > 0
for bond percolation on Mq, which is equivalent to ω > 1 by [Cur19, Theorem
12.9]5.

Roughly speaking, the idea behind the end of the proof is the following
observation. We fix j > 2. Let Mf ,g be a uniform map of Bg(f). If f is a face
degree sequence with fj > 1, we write f− = f − 1. Then we can describe the

5More precisely [Cur19, Theorem 12.9] is about half-plane maps. Here is a way to
extend it to full-plane maps: there is a percolation regime on the half-plane version of
Mq such that with positive probability, there are infinitely many infinite clusters. For
topological reasons, at most two of them intersect the boundary infinitely many times.
Hence, with positive probability, there are two infinite clusters that do not touch the
boundary. Since there is a coupling in which the half-plane version of Mq is included in
the full-plane version, we have with positive probability two disjoint infinite clusters in Mq
in a certain bond percolation regime, so pc < pu with positive probability.
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i− 1 vertices

Figure 7.10 – The map mj
0.

law of Mf−,g in terms of that of Mf ,g. Indeed Mf−,g has the law of Mf ,g\m0
j

conditioned on m0
j ⊂ Mf ,g, where m0

j is a deterministic map with a hole of
perimeter 2 and only one internal face, which has degree 2j (see Figure 7.10).

Therefore, if we know for some suitable face sequences fk that Mfk,gk
converges to an infinite map MQ, we can deduce that Mfk,−,gk converges to
a map MQ̃ and express Q̃ in terms of Q. A simple computation (see 7.4.12)
shows that Q̃ has the law of Q biased by Qj. By Lemma 26, this means that
if Q is not deterministic, then Q̃ is "strictly less hyperbolic" than Q (in the
sense that ωQ̃ < ωQ). On the other hand, the maps Mfk,gn and Mfk,−,gn have
the same genus but the second is smaller, so it would be natural to expect
it to be "more hyperbolic". We will derive a contradiction from this paradox
by considering, for a fixed genus, the largest k such that the expected ω
corresponding to Mfk,gk is smaller than a certain threshold.

Finally, since we want our face degree sequences to respect the proportions
(αj), it makes sense to build the face degree sequences fk by adding at each
step a face of degree 2j with probability proportional to αj. This is equivalent
to taking j random in the above discussion.

More precisely, we build, for every k > 0, a random face-degree sequence
Fk as follows: let (Jk)k > 1 be i.i.d. random variables on N∗ with

P (Jk = j) = αj∑
i > 1 αi

.

We write F k
j = ∑k

i=1 1Ji=j, so that Fk is a face-degree sequence with k faces.

Lemma 41. There are variables Ωk,g such that, whenever MFki ,gi converges
in distribution to a mixture of infinite Boltzmann maps MQ, we also have

Ωki,gi

(d)−−−−→
k→+∞

ωQ.

Proof. Easy: take tk → +∞ very slowly, and Ωk,g is a function of the ratio
between the perimeter and volume after tk peeling steps around the root in
MFk,g.
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Note that the map MFk,g is not always well-defined. More precisely, by
the Euler formula, this makes sense if and only if (Fk, g) is acceptable, that
is ∑

j > 1
(j − 1)F k

j > 2g. (7.4.10)

Proof of Proposition 26. We fix 1 < ω0 < +∞. For every g > 0, let

k0(g) = max
{
k > 0

∣∣∣∣E [Ω−1
k,g

]
6 ω−1

0

}
.

The only reason why we take the inverse of Ωk,g in this definition is to ensure
that the expectation is always well-defined. We first claim that, with prob-
ability 1− o(1) as g → +∞, the number k0(g) is well-defined and the maps
MFk0(g),g and MFk0(g)−1,g both exist.

Now fix g > 0. When k → +∞, the probability that (Fk, g) is acceptable
goes to 1. Moreover, by Corollary 27 and Lemma 40 (more precisely the fact
that d(q) = 1−∑j > 1 αj if and only if q is critical), the local limit of MFk,g

as k → +∞ is the infinite critical Boltzmann map Mq(1) . By Lemma 41, this
implies Ωk,g → 1 in probability, so E[Ω−1

k,g] → 1 as g → +∞. In particular
this is larger than ω−1

0 for k large enough, so k0(g) is well-defined and finite.
We now prove that, with probability 1 − o(1) as g → +∞, the pair

(Fk0(g), g) is acceptable. We first note that by the law of large numbers, we
have

1
k

∑
j > 1

(j − 1)F k
j

a.s.−−−−→
k→+∞

∑
j > 1(j − 1)αj∑

j > 1 αj
> 0.

Let us fix ε > 0 (we will specify its value later), and let

kε(g) = (1 + ε)
2∑j > 1 αj∑
j > 1(j − 1)αj

g.

Then, with probability 1 − o(1) as g → +∞, the pair
(
Fk, g

)
is acceptable

for all k > kε(g), so it is enough to prove k0(g) > kε(g) with probability
1− o(1). In other words, it is sufficient to prove that, if ε > 0 is well-chosen,

E
[
Ω−1
kε(g),g

]
6 ω−1

0 .

For this, up to extracting a subsequence, we can assume MFkε(g),g → MQ for
some random Q. By Corollary 27 and the fact that Fkj

|Fk| → αj in probability,
the weight sequence Q is such that aj(Q) = αj for all j, i.e. Q is of the
form Q = q(Ω) for some random variable Ω ∈ [1,+∞). By Lemma 41, we
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also have Ωkε(g),g → Ωε ∈ [1,+∞]. By the Euler formula, the average inverse
degree of the root in MFkε(g),g is given by

#V (MFkε(g),g)
2#E(MFkε(g),g)

−−−−→
g→+∞

1
2

ε

1 + ε

∑
j > 1

(j − 1)αj,

so Corollary 27 again gives

d(qΩε) = 1
2

ε

1 + ε

∑
j > 1

(j − 1)αj (7.4.11)

almost surely. Now, since ω → d(q(ω)) is continuous and positive, we can
assume that ε was chosen small enough to have

1
2

ε

1 + ε

∑
j > 1

(j − 1)αj < min
1 6 ω 6 2ω0

d(q(ω)).

Then (7.4.11) implies Ωε > 2ω0 a.s., so E[Ω−1
ε ] < ω−1

0
2 , so E[Ωkε(g),g] < ω−1

0
for g large enough. We have proved that every subsequence (gi) has a subsub-
sequence along which E[Ωkε(g),g] < ω−1

0 for g large enough, so E[Ωkε(g),g] < ω−1
0

for g large enough. This proves our claim that MFk0(g),g is well-defined with
probability 1− o(1).

We now know that the maps MFk0(g),g and MFk0(g)+1,g are well-defined
with large probability. As before, by 27 and Lemma 40, up to extracting a
subsequence, we may assume the following joint convergences in distribution
as g → +∞:

MFk0(g),g −→ MqΩ ,

MFk0(g)+1,g −→ MqΩ̃ ,

Ωk0(g),g −→ Ω,
Ωk0(g)+1,g −→ Ω̃,

g

|Fk0(g)|
−→ θ,

where Ω, Ω̃ ∈ [1,+∞] and 0 6 θ < 1
2

(
1−∑j αj

)
.

We now specify the link between the distributions of the maps MFk0(g),g

and MFk0(g)+1,g. We recall that Fk0(g)+1 = Fk0(g) + 1J , where P(J = j) =
αj∑
i > 1 αi

for all j > 1. If we condition on Fk0(g) and Fk0(g)+1, then the law
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of MFk0(g),g is the law of MFk0(g)+1,g\m0
J , conditioned on m0

J ⊂ MFk0(g)+1,g.
Therefore, for any map m, we have

P
(
m ⊂MFk0(g),g|J = j

)
= P

(
m+m0

j ⊂MFk0(g)+1,g|J = j,m0
j ⊂MFk0(g)+1,g

)
.

By summing over j, we obtain

P
(
m ⊂MFk0(g),g

)
= 1∑

i > 1 αi

∑
j > 1

αj
P
(
m+m0

j ⊂MFk0(g)+1,g

)
P
(
m0
j ⊂MFk0(g)+1,g

) .

We now let g → +∞ to replace MFk0(g),g and MFk0(g)+1,g by respectively MqΩ

and MqΩ̃ . We write p for the perimeter of m, and note that mj
0 +m has the

same perimeter as m but one more internal face of degree 2j. We obtain, for
every finite map m with one hole,

E

Cp(qΩ)
∏
f∈m

qΩ
deg f/2

 = 1∑
i > 1 αi

∑
j > 1

αj
E
[
Cp(qΩ̃)×∏f∈m q

Ω̃
deg f/2 × qΩ̃

j

]
E
[
C1(qΩ̃)qΩ̃

j

] .

This can be interpreted as a Radon–Nikodym derivative, i.e. the map MqΩ

has the law of MqΩ̃ biased by

1∑
i > 1 αi

∑
j > 1

αj
qΩ̃
j

E
[
qΩ̃
j

] (7.4.12)

using the fact that C1(q) = 1. Since Ω is an almost sure function of the map
MqΩ , it follows that Ω has the law of Ω̃ biased by (7.4.12). In particular, we
have

E
[
Ω−1

]
=
∑
j > 1 αjE

[
qΩ̃
j Ω̃−1

]
∑
j > 1 αjE

[
qΩ̃
j

] (7.4.13)

On the other hand, by the definition of m0(g), we have

E
[
Ω−1
k0(g),g

]
6 ω−1

0 < E
[
Ω−1
k0(g)+1,g

]
so, by letting g → +∞ and using (7.4.13) to express E[Ω−1], we obtain

∑
j > 1 αjE

[
qΩ̃
j Ω̃−1

]
∑
j > 1 αjE

[
qΩ̃
j

] 6 ω−1
0 6 E

[
Ω̃−1

]
. (7.4.14)
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In particular, we have
∑
j > 1

αjE
[
qΩ̃
j Ω̃−1

]
6

∑
j > 1

αjE
[
qΩ̃
j

]
E
[
Ω̃−1

]
.

On the other hand, Lemma 26 ensures that qΩ̃
j is a nonincreasing function of

Ω̃, so
E
[
qΩ̃
j Ω̃−1

]
> E

[
qΩ̃
j

]
E
[
Ω̃−1

]
(7.4.15)

for all j > 1, so we must have equality in (7.4.14). Moreover, we know that
there is j > 2 such that αj > 0, so we must have equality in (7.4.15) for this
j. By Lemma 26, this is only possible if Ω̃ is deterministic and, by (7.4.14),
this implies Ω̃ = ω0. Moreover, by Corollary 27, we must have

d(qΩ̃) = 1
2

1− 2θ −
∑
j > 1

αj

 ,
which implies θ = 1

2

(
1−∑j > 1 αj

)
−2d(q(ω0)). We have proved that in each

subsequence (gi), there is a subsubsequence along which the convergence

g

|Fk0(g)|
−−−−→
g→+∞

1
2

1−
∑
j > 1

αj

− 2d(q(ω0)) (7.4.16)

in probability holds, so this convergence holds for g ∈ N.
We can now finish the proof. Fix ω1 with 1 < ω0 < ω1 < +∞, and

define k1(g) using ω1 in the same way as m0(g) is defined using ω0. Then
(7.4.16) holds if we replace k0(g) by k1(g) and ω0 by ω1. Moreover, we have
ω−1

1 < ω−1
0 , so by definition k1(g) 6 k0(g) for all g. Therefore, we have

g
|Fk1(g)| >

g
|Fk0(g)| . Letting g → +∞ and using (7.4.16) and its analogue for

ω1, we deduce

1
2

1−
∑
j > 1

αj

− 2d(q(ω1)) > 1
2

1−
∑
j > 1

αj

− 2d(q(ω0)),

so d(q(ω1)) 6 d(q(ω0)). We have proved that ω → d(q(ω)) is nonincreas-
ing on (1,+∞). Since it is analytic on (1,+∞) and nonconstant (because
limω→+∞ d(q(ω)) = 0), it is strictly decreasing on (1,+∞). By continuity on
[1,+∞), this function is strictly decreasing on [1,+∞), which concludes the
proof.
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i− 1 vertices

Figure 7.11 – A small piece of map.

7.5 Combinatorial asymptotics
In this section, we prove asymptotic results for the number of high genus
bipartite maps with prescribed degrees. Let gn, f (n), θ and (αi)i > 1 be defined
as in Theorem15. We will only give the proof of the asymptotics for θ > 0,
as in this case there exists a change of variables that shortens the proof
and makes it more readable. The proof for θ = 0 works exactly the same,
although it is longer to write.

Let Mn be a uniform map in Bgn(f (n)). By Theorem 15, there exists a
sequence of numbers q = (q1, q2, . . .) (with qi > 0 iff αi > 0) such that Mn

converges locally to Mq.
Fix i such that αi > 0. Let m be the map in Figure 7.11. On the one

hand, we have
P(m ⊂ Mq) = C2(q)qi.

On the other,

P(m ⊂Mn) = βgn(f (n) − 1i)
βgn(f (n)) .

The last equality is proven by contracting m in Mn into a root edge.
By local convergence, we have

βgn(f (n) − 1i)
βgn(f (n)) → C2(q)qi (7.5.1)

as n → ∞. We will make a change of variables to make the calculations
easier, and set, for all i,

ui = iαi
θ
,

and
φi(u1, u2, . . .) := C2(q)qi.

The function φi is defined on the domain defined by the inequalities∑
i

ui > 2 and
∑
i

ui <∞. (7.5.2)
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Lemma 42. There exists an integer k and a sequence of functions (u′i) that
are continuous and decreasing such that:

• u′i(ε) = ui if i > k,

• ∑i u
′
i(ε) = 2 + ε,

• if ui > 0, then u′i(ε) > 0 for all ε > 0, and u′i(ε) 6 ui for ε small
enough (uniformly).

Proof. Because ∑i ui <∞, there exists k such that

r :=
∑
i>k

ui < 2.

Let c = ∑
i 6 k ui. Set

u′i(ε) = 2 + ε− r
c

ui

for i 6 k and u′i = ui for i > k.

Theorem 22. Using the previously defined conventions, we have

βgn(f (n)) = n2gn exp (nf(u1, u2, . . .) + o(n)) , (7.5.3)

where
f(u1, u2, . . .) = lim

ε→0
Φ(ε),

and

Φ(ε) = 2θ(2 log 4
e
− log θ) + θ

k∑
i=1

1
i

∫ ui

ui′ (ε)
log φi(qi1(ε), qi2(ε), . . .)dt,

and qii(ε) = t, qij(ε) = u′i(ε) for j < i and qij(ε) = uj for j > i.

Let f ′ be such that f ′i = u′i(ε)g
i

for i 6 k and f ′i = fi for i > k. The idea
of the proof will be to write

Bg(f) = Bg(f)
Bg(f ′)

×Bg(f ′)

for some small ε > 0. The first term will be estimated by an integral via a
telescopic product (Proposition 27), and the second term will be compared
to an "extremal case", namely one-faced maps of maximal genus (see Propo-
sition 28).

By a telescopic product argument similar to the one in Chapter 6 (but in
"multiple dimensions" this time), we have:
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Proposition 27.

βg(f)
βg(f ′)

= exp
(
nθ

k∑
i=1

1
i

∫ ui

ui′ (ε)
log φi(ui1(ε), ui2(ε), . . .)dt+ o(n)

)
(7.5.4)

where uii(ε) = t, uij(ε) = u′i(ε) for j < i and uij(ε) = uj for j > i.

Proof. Let f i be defined as f ij = f ′j if j 6 i and f ij = fj if j > i. Note that
f0 = f and fk = f ′. Then we write:

βg(f)
βg(f ′)

=
k∏
i=1

βg(f i−1)
βg(f i)

.

Now, for all i we have, because of (7.5.1):

log βg(f
i−1)

βg(f i)
=

uig/i∑
t=u′ig/i

(
log φi(u′1, . . . , u′i−1, it/g, ui+1, . . .) + o(1)

)
.

If ui = 0, then f
(n)
i = o(n), so βg(f i−1)

βg(f i) = exp(o(n)) by the Bounded Ratio
Lemma.

If ui > 0, the function φi is bounded below by one, and, because of Lemma
29 (the bounded ratio lemma) uniformly bounded above by a constant Mε

on the whole region delimited by ∑i ui > 2+ε and ui > ui(ε) > 0. Therefore
we can approximate the previous sum by a Riemann sum and we have:

log βg(f
i−1)

βg(f i)
= g

i

∫ ui

ui′ (ε)
log φi(ui1(ε), ui2(ε), . . .)dt+ o(n).

Now we will estimate βg(f ′).

Proposition 28. There is a function h such that h(ε)→ 0 as ε→ 0 and

g2g
(4
e

)2g
eo(g) 6 βg(f ′) 6 eh(ε)g2g

(4
e

)2g
eo(g).

Let f = ∑
i f
′
i and m = ∑

i if
′
i . Note that m = (2 + ε)g + o(1) and

f 6 εg + o(1) by Euler’s formula. Let Ug,m be the number of one-faced
bipartite maps with m edges. We first need a few lemmas:

Lemma 43.
Ug,2g+1 = (4g + 1)!!

g + 1 = g2g
(4
e

)2g
eo(g).
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Proof. Adrianov’s formula [Adr97] applied to the "extremal" case of one-faced
maps with genus g and 2g + 1 edges reads:

(2g + 2)Ug,2g+1 = (4g + 1)(4g − 1)2gUg−1,2g−1.

Therefore:
Ug,2g+1 = (4g + 1)!!

g + 1 = g2g
(4
e

)2g
eo(g)

by Stirling’s formula.

Let us introduce some more notations: Let Bg(w, b, f) be the set of bipar-
tite maps of genus g with w white vertices, b black vertices, and f faces, and
Bipg(w, b, f) its cardinality. We have the following classical lemma, that is a
direct consequence of the representation of maps as triples of permutations:

Lemma 44. Bipg(w, b, f) is symmetric in its arguments (w, b, f).

Lemma 45. Bipg(w, b, f) 6 4f
(

n
f−1

)
Bipg(w, b, 1) with n = w+b+f+2g−2.

Proof. We adapt a classical argument about tree-rooted maps (going back
to [Mul67] in the planar case). Let β̂g(f) be the number of bipartite maps
of genus g with f faces and a distinguished spanning tree of the dual (see
Figure 7.12 left).

Obviously, Bipg(w, b, f) 6 β̂g(f). Given a map of genus g with f faces,
cut its edges that are crossed by the edges of the spanning tree, as in Fig-
ure 7.12. We obtain a map with one face, with n−f + 1 edges, f −1 marked
white corners, f − 1 marked black corners. There are Ug,n−f+1 such maps
with one face,

(
n
f−1

)
possible f − 1-uples of white (resp. black) corners. To

reconstruct the map, one also needs to remember how to pair white corners
with black corners without any crossings. The number of ways to do so is
Catalan(f − 1) < 4f .

Lemma 46. Suppose max(w, b, f) < εn for ε > 0 small enough. Then there
is a function h such that h(ε)→ 0 as ε→ 0 and

Bipg(w, b, f) 6 eh(ε)n+o(n)Ug,2g+1.

Proof. A repeated use of Lemmas 45 and 44 gives the following inequality:

Bipg(w, b, f) 6 4w+b+f
(

n

f − 1

)(
n

w − 1

)(
n

w − 1

)
Bipg(1, 1, 1).
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Figure 7.12 – Left: a bipartite map, with a spanning tree of its dual (in red).
Right: the "opened" (one-faced) map and the marked corners (in purple).

To finish the proof, we first notice that Bipg(1, 1, 1) = Ug,2g+1. Also, we have
the following bound:(

n

f − 1

)
6

(
n

εn

)
6 exp

(
n
(
ε log 1

ε
+ (1− ε) log 1

1− ε

)
+ o(n)

)

by Stirling’s formula. The same bound holds when replacing f by w or b.

We are now ready to prove Proposition 28.

Proof of Proposition 28. The first estimation is quite straightforward. First,
by Lemma 32, we have βg(f ′) > Ug,m. But we have Ug,m > Ug,2g+1. We
conclude by using Lemma 43.

For the second inequality, notice that, if we set v = m+ 2− 2g− f , then
we have v < εg, and

βg(f ′) 6
∑

w+b=v
Bipg(w, b, f)

6
∑

w+b=v
eh(ε)n+o(n)Ug,2g+1

= eh(ε)ng2g
(4
e

)2g
eo(g)

where in the second line we applied Lemma 46, and in the third line we
applied Lemma 43.

We are finally ready to finish the proof:

Proof of Theorem 22. Let ωn = 1
n

log βg(f)
n2g . To finish the proof, we want to

prove that Φ(ε) converges as ε→ 0, that ωn converges as n→∞, and that
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both these limits are the same. Propositions 27 and 28 combined show that
for all ε > 0, we have

Φ(ε) + o(1) 6 ωn 6 Φ(ε) + h(ε) + o(1) (7.5.5)

as n → ∞, knowing that h(ε) → 0 as ε → 0. By the inequality above, ωn
converges to a finite number ω, and therefore Φ(ε) → ω as ε → 0, and the
proof is over.

7.6 Appendix: proof of the technical lemmas

7.6.1 Proof of Lemma 26
We recall (7.1.14) here:

q
(ω)
j = αj

ωj−1hj(ω)

1−∑i > 1
1

4i−1

(
2i−1
i−1

)
αi

ωi−1hi(ω)

4

j−1

.

Let us write gj(ω) = (2j−1
j−1 )

(4ω)j−1
∑j−1

i=0
1

(4ω)i (2i
i )

(this is a decreasing function of

ω). After taking the derivative and splitting the sum, what we want becomes
equivalent to the inequality:

g′j(ω)− g′j(ω)gi(ω)− (j − 1)gj(ω)g′i(ω) 6 0

for all i, j > 1 and ω > 1.
Let’s write gj(ω) = (2j−1

j−1 )
Pj

. We have P1 = 1, P0 = 0 and

Pj+1 = 4ωPj +
(

2j
j

)
.

The problem rewrites

F (i, j) := P 2
i P
′
j −

(
2i− 1
i− 1

)(
P ′jPi + (j − 1)P ′iPj

)
> 0.

Let us introduce

∆F (i, j) := F (i, j + 1)− 4ωF (i, j)

= 4PjP 2
i −

(
2i− 1
i− 1

)(
4PjPi + j

(
2j
j

)
P ′i + 4ωP ′iPj

)
.
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and

∆2F (i, j) := ∆F (i, j + 1)− 4ω∆F (i, j)

= 4
(

2j
j

)
P 2
i −

(
2i− 1
i− 1

)(
4
(

2j
j

)
Pi

)

−
(

2i− 1
i− 1

)(
((j + 1)

(
2(j + 1)
j + 1

)
− 4ω(j − 1)

(
2j
j

)
)P ′i

)

>

(
2j
j

)(
4P 2

i −
(

2i− 1
i− 1

)
(4Pi + 6P ′i )

)
.

Let G(i) := P 2
i −

(
2i−1
i−1

) (
Pi + 3

2P
′
i

)
. We want to prove that for ω > 1,

G(i) > 0. On the one hand, since deg(Pi) = i− 1, for all k > i,

[ωk]G(i) > 0.

On the other hand, let k 6 i− 2, then

[ωk]G(i) 6 [ωk]P 2
i −

(
2i− 1
i− 1

)
P ′i

=
∑

a+b=k
4k
(

2(i− 1− a)
i− 1− a

)(
2(i− 1− b)
i− 1− b

)

− 4k+1(k + 1)
(

2i− 1)
i− 1

)(
2(i− 2− k)
i− 2− k

)
.

It is easily checked that the quantity
(

2(i−1−a)
i−1−a

)(
2(i−1−b)
i−1−b

)
is maximal when

a = k or b = k. Finally, since we have

4
(

2i− 1
i− 1

)(
2(i− 2− k)
i− 2− k

)
>

(
2(i− 1)
i− 1

)(
2(i− 1− k)
i− 1− k

)

we can conclude that
[ωk]G(i) 6 0.

In other words, we have proved that the coefficients ofG(i) are all positive,
then all negative (starting from the highest order coefficients). This implies
that G(i) has a unique real root ω∗, and is positive for all ω > ω∗.

It remains to show that ω∗ = 1, i.e. that G(i) = 0 when ω = 1. But this
is true since it is easily checked that

Pi(1) = i

2

(
2i
i

)
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and
P ′i (1) = i(i− 1)

3

(
2i
i

)
.

Therefore, for all i and j, we have

∆2F (i, j) > 0.

But since ∆F (i, 0) = 0, we have ∆F (i, j) > 0, and since F (i, 0) = 0, we have

F (i, j) > 0.

7.6.2 The face degree transfer lemmas
Here we prove the face degree transfer lemmas.

Proof of Lemma 31. This is proved by an injection. Take a map in Bg(f−1p),
pick an edge e that has a face of degree 2i lying on its right (there are ifi of
those). Glue a path of p− i edges to the black vertex of e (see Figure 7.13).
One obtains a map of Bg(f − 1i) with a marked edge. Going backwards is
straightforward.

Figure 7.13 – The injection (here with i = 3 and p = 5). The marked edge
is in red.

Proof of Lemma 32. This is again an injection. Take a map in the set Bg(f−∑k
j=1 1dj), and pick an edge e that has a face of degree 2i lying on its right

(there are ifi of those).
Let d = ∑k

j=1 dj − (k− 1). If d > i, transform the face of degree 2i into a
face of degree 2d by adding a path of d− i edges like in the previous proof.
Then "tessellate" this face as in Figure 7.14.

One obtains a map of Bg(f − 1i) with a marked edge. Going backwards
is straightforward.
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Figure 7.14 – The injection (here with i = 5 and (d1, d2, d3) = (2, 3, 3)).

7.6.3 The estimation lemmas
Here we prove Lemmas 34 and 35. We restate (7.1.3) here:

(
n+ 1

2

)
βg(f) =

∑
s+t=f

g1+g2+g∗=g

(1+n1)
(

v2

2g∗ + 2

)
βg1(s)βg2(t)+

∑
g∗ > 0

(
v + 2g∗
2g∗ + 2

)
βg−g∗(f).

First, we have the following lemmas.

Lemma 47. Under the assumptions of the estimation lemmas, there is a
constant C such that:

Cnβg(f) >
∑

s+t=f
s,t 6=0

g1+g2=g

n1βg1(s)n2βg2(t)

and
2Cβg(f) >

∑
s+t=f
s,t 6=0

g1+g2=g

βg1(s)βg2(t).

Proof. By only keeping certain terms in (7.1.3), we have:(
n+ 1

2

)
βg(f) >

∑
s+t=f
s,t6=0

g1+g2=g
v2 > v1

(1 + n1)
(
v2

2

)
βg1(s)βg2(t). (7.6.1)

Since v1 + v2 = v + 2, we have

v2 − 1 > v

2 >
κ

2n >
κ

2n2

in every term of the sum above. Therefore,
(
v2
2

)
> κ2

8 nn2. We can use the
following crude bounds:

(
n+1

2

)
6 n2, (1 + n1) > n1. By using the last three
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bounds in (7.6.1), we obtain

n2βg(f) > κ2

8
∑

s+t=f
s,t6=0

g1+g2=g
v2 > v1

n1nn2βg1(s)βg2(t).

By symmetry,
∑

s+t=f
s,t 6=0

g1+g2=g
v2 > v1

n1n2βg1(s)βg2(t) > 1
2

∑
s+t=f
s,t6=0

g1+g2=g

n1n2βg1(s)βg2(t),

so the first inequality of the Lemma is proved.
The second inequality follows from the first and the fact that in every

term of the summand, we have n1n2 > n
2 (since n1 + n2 = n).

We also have this Lemma (whose proof is straightforward from (7.1.3),
by keeping one term in the second sum of the RHS):

Lemma 48. Under the assumption v > κn, we have

βg′(f) = O(n−2(g−g′)βg(f))

as n→∞.

Proof of Lemma 34. Let i∗ be the smallest i > 1 such that ifi
n
> δ for n large

enough. By tessellating the boundary by faces of degree i∗,

β
(pj1,p

j
2,...,p

j
`j

)
gj (h(j)) 6 n`j−1βgj(h′

(j))

where h′(j) = h(j) + (∑`j
i=1 p

j
i )1i∗ . That is because each boundary of size p

can be tessellated by at most p faces of size i∗.
Therefore,

k∏
j=1

β
(pj1,p

j
2,...,p

j
`j

)
gj (h(j)) 6 n

∑k

i=1(`j−1)
k∏
j=1

βgj(h′
(j)).

Moreover, by Lemma 47 there is a constant C ′ s.t.:∑
s+t=f
s,t6=0

g1+g2=g

βg1(s)βg2(t) 6 C ′βg(f),
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so, by an easy induction

∑
h(1)+h(2)+...+h(k)=h

g1+g2+...+gk=g−1−
∑

j
(`j−1)

k∏
j=1

βgj(h′
(j)) 6 C ′′βg′(h′)

with h′ = h′(1) + h′(2) + . . .+ h′(k), C ′′ another constant and

g′ = g1 + g2 + . . .+ gk = g − 1−
∑
j

(`j − 1).

We have h′ = h + p1i∗ where

p =
k∑
j=1

`j∑
i=1

pji .

Since h 6 f , we have

βg′(h′) 6 βg′(f + p1i∗) 6 C ′′′βg′(f)

where in the end we used the bounded ration lemma.
We just bounded the LHS by Cng−g′−1βg′(f) where C is a constant. And

finally, by Lemma 48,

βg′(f) = O(n−2(g−g′)βg(f))

which is enough to finish the proof.

Proof of Lemma 35. The proof of the first part works exactly the same as
in the proof of Lemma 34, except in the end where g′ = g − ∑

j(`j − 1)
(the −1 is not here anymore), so the LHS is now bounded by Cng−g′βg′(f).
Nevertheless, since the `j’s are not all equal to 1, we have g′ < g and the
conclusion remains the same.

Now we prove the second point. First, by tessellating the boundary, we
have

βp
j

gj
(h(j)) 6 βgj(h′

(j))

where h′(j) = h(j) + pj1i∗ .
By Lemma 47, we have the bound∑

s+t=f
s,t6=0

g1+g2=g

n1βg1(s)n2βg2(t) 6 C ′nβg(f)



CHAPTER 7. UNIVERSALITY OF HIGH GENUS LOCAL LIMITS 212

for a certain constant C ′. By induction (and keeping only certain terms in
the sum), we have

∑
h(1)+h(2)+...+h(k)=h

g1+g2+...+gk=g
n1,n2>a

k∏
j=1

njβgj(h′
(j)) 6 C ′′nβg(h′)

with h′ = h′(1) + h′(2) + . . . + h′(k), C ′′ another constant. In every term of
the summand, there must exist j∗ such that n∗j > n−u

k
. Thus the product∏k

j=1 nj can be bounded below by (n−u)a
k

> na
2k for n large enough. Therefore

∑
h(1)+h(2)+...+h(k)=h

g1+g2+...+gk=g
n1,n2>a

k∏
j=1

βgj(h′
(j)) 6 C ′′′′

a
nβg(h′).

We have h′ = h + p1i∗ where

p =
k∑
j=1

pj.

Since h 6 f , we have

βg(h′) 6 βg(f + p1i∗) 6 C ′′′βg(f)

where in the end we used the bounded ration lemma. We just bounded the
LHS by C

a
βg(f) where C is a constant, thus, we are done.

7.6.4 Proof of the analyticity in Lemma 40
We fix (αj)j > 1 such that ∑j > 1 jαj = 1 and recall that, for all ω ∈ [1,+∞),
the weight sequence q(ω) is given by (7.1.14). More precisely, we have

q
(ω)
j = jαj

ωj−1g(ω)j−1hω(j) , (7.6.2)

where hω(i) = ∑i−1
s=0

(
2s
s

)
(4ω)−s and

g(ω) = 4
1−∑i > 1

1
4i−1

(
2i−1
i−1

)
iαi

ωi−1hω(i) .
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If we denote by ρ the root vertex of an infinite map Mq, our goal is to
prove that the function

ω → E

 1
degMq(ω)

(ρ)


is analytic on (1,+∞). The first step of the proof is to make sure that g(ω)
is analytic, which will ensure that each of the qj is an analytic function of
ω. For this, we will prove that for each ω ∈ (1,+∞), the infinite sum in the
definition of g converges uniformly on a complex neighbourhood of ω. Since
each term of the sum is analytic (as an inverse of a polynomial), this will be
enough to conclude.

We fix ω0 > 1 and write δ = 1
2(ω0 − 1). We also fix an integer s0 which

will be specified later. For ω complex with |ω−ω0| < δ, we have |ω| > 1 + δ
2 .

Hence, for i > s0, we can write∣∣∣∣∣∣
i−1∑

s=s0+1

(
2s
s

)
(4ω)−s

∣∣∣∣∣∣ 6
∑
s>s0

|ω|−s 6

(
1 + δ

2

)−s0
δ/2 .

Therefore, we have, for i > s0, we have:

|hω(i)| >
∣∣∣∣∣
s0∑
s=0

(
2s
s

)
(4ω)−s

∣∣∣∣∣− 2
δ

(
1 + δ

2

)−s0
. (7.6.3)

We now fix the value of s0: we choose s0 large enough to have

2
δ

(
1 + δ

2

)−s0
<

1
8ω0

.

We now know that the function ω → ∑min(i,s0)
s=0

(
2s
s

)
(4ω)−s is continuous and

is at least 1 + 1
2ω0

for ω = ω0 (it is a sum of nonnegative terms where the
term s = 0 is 1 and the term s = 1 is 1

2ω0
). Therefore, there is 0 < ε < δ

such that, for |ω − ω0| < ε, we have∣∣∣∣∣
s0∑
s=0

(
2s
s

)
(4ω)−s

∣∣∣∣∣ > 1 + 1
4ω0

.

From now on, we consider ω in this complex ball. By (7.6.3), we have

|hω(i)| > 1 + 1
8ω0

,
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for i > s0, so

sup
ω∈B(ω0,ε)

∣∣∣∣∣ 1
4i−1

(
2i− 1
i− 1

)
iαi

ωi−1hω(i)

∣∣∣∣∣ 6 1
4i−1

(
2i− 1
i− 1

)
iαi

ωi−1
(
1 + 1

8ω0

) ,
which is summable over i. Therefore, the infinite sum in the definition of
g is a uniform limit of analytic functions in a neighbourhood of ω0, so it is
analytic in this neighbourhood. In particular, we know that g(ω) > 0 for
ω > 1 real, so there is a complex neighbourhood D1 of {ω > 1} on which
|g(ω)| > 0. In this neighbourhood, all the q(ω)

j are well-defined by the formula
(7.6.2) and analytic in ω.

We will write the expected inverse degree of the root as a sum over all the
possible values of the hull of radius 1 of Mq. To control this sum, we will need
to make sure that the qωj are not too large, i.e. that they are "admissible"
even for ω complex.

Lemma 49. Let ω0 > ω1 > 1 be real. There is a complex neighbourhood
of ω0 on which

∣∣∣q(ω)
j

∣∣∣ 6 q
(ω1)
j for all j > 1. In particular, on a complex

neighbourhood of the line {ω > 1}, the sequence
(∣∣∣q(ω)

j

∣∣∣)
j > 0

is admissible
and subcritical.

Proof. First, the last part of the lemma is an immediate consequence of the
first one, since a weight sequence dominated term by term by an admissible
and subcritical weight sequence is also admissible and subcritical. We now
prove the first part.

For j = 1, we have q(ω)
1 = α1 for all ω, so q(ω)

1 = q
(ω1)
1 in particular. We

now find a complex neighbourhood of ω0 on which
∣∣∣q(ω)
j

∣∣∣ 6 q
(ω1)
j for all j > 2.

Let δ > 0 to be specified later. By the same argument as above, there is a
complex neighbourhood of ω0 on which

|hω(j)| > (1− δ) |hω0(j)|

for all j > 1. Moreover, we have ω0g(ω0) > 0, so by continuity there is a
complex neighbourhood of ω0 on which

|ωg(ω)| > (1− δ) |ω0g(ω0)| .

By combining the last two equations, we get

∣∣∣q(ω)
j

∣∣∣ 6 1
(1− δ)j q

(ω0)
j = 1

1− δ

(
ω1g(ω1)

(1− δ)ω0g(ω0)

)j−1
hω1(j)
hω0(j) × q

(ω1)
j (7.6.4)
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for all j > 2. We know from Lemma 26 that q(ω)
2 is a decreasing function of

ω for ω real. Since hω0(j) is decreasing in ω0, it means that ω → ωg(ω) is
increasing over ω real, so if δ is chosen small enough, we have ω1g(ω1)

(1−δ)ω0g(ω0) < 1.
Since hω1 (j)

hω0 (j) 6 C
√
j for some absolute constant C, we conclude by (7.6.4)

that, on a complex neighbourhood of ω0, we have∣∣∣q(ω)
j

∣∣∣ < q
(ω1)
j (7.6.5)

for all j > j0, where j0 may depend on ω0 and ω1 but not on ω. Moreover,
for 2 6 j 6 j0, we know by Lemma 26 that q(ω0)

j < q
(1)
j and that q(ω)

j is
continuous in ω, so up to shrinking our neighbourhood of ω0, (7.6.5) holds
for all j > 2. This proves the lemma.

We now move on to the proof of analyticity. For this, we will write the
expected inverse degree of the root as an infinite sum over all possible values
of the "ball" of radius 1. For this, we first precise the notion of ball that
we will use 6. We consider the peeling algorithm Aroot such that, if the root
vertex ρ is on ∂m, then Aroot(m) is the edge on ∂m on the right of the root
vertex. If M is a map, we perform a filled-in peeling exploration of M using
the algorithm Aroot, and denote it by

(
EAn (M)

)
n > 0

. We stop the exploration
at the first time τ where ρ /∈ EAn (M), which is finite almost surely if ρ has
finite degree. We denote by B•1(M) the explored map EAτ (M). Finally, we
denote by H the set of maps m such that there is an infinite map M with
B•1(M) = m. This is an infinite set of finite maps.

We can now write, for ω > 1:

E

 1
degMq(ω)

(ρ)

 =
∑
m∈H

1
degm(ρ)P

(
B•1

(
Mq(ω)

)
= m

)

=
∑
m∈H

1
degm(ρ)P

(
m ⊂ Mq(ω)

)
=
∑
m∈H

1
degm(ρ) (ωg(ω))|∂m|−1 hω(|∂m|)

∏
f∈m

q
(ω)
|f | ,

where |∂m| is half of the degree of the hole of m, |f | = deg f/2, and the
product is over internal faces f of m. Since q(ω) is well-defined and analytic
in ω on a complex neighbourhood of {ω > 1}, each term of the sum is
well-defined and analytic in such a neighbourhood. We will now prove the
following result:

6This notion is actually closer to the hull of a map. Since it is not useful here, we will
not compare it to other notions of hull introduced in the literature.
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Lemma 50. Let ω0 > 1. There is a complex neighbourhood N of ω0 such
that ∑

m∈H
sup
ω∈N

∣∣∣∣∣∣(ωg(ω))|∂m|−1 hω(|∂m|)
∏
f∈m

q
(ω)
|f |

∣∣∣∣∣∣ < +∞.

Once Lemma 50 is proved, it follows that the sum defining E

[
1

degM
q(ω)

(ρ)

]
converges uniformly on a complex neighbourhood of ω0, so the sum is an-

alytic, so E

[
1

degM
q(ω)

(ρ)

]
is the restriction to {ω > 1} of a complex analytic

function, so it is analytic. Therefore, all we have to prove is Lemma 50.

Proof of Lemma 50. We write p(ω)
m = (ωg(ω))|∂m|−1 hω(|∂m|)∏f∈m q

(ω)
|f | . We

first replace q(ω)
j using (7.6.2) to obtain

∣∣∣p(ω)
m

∣∣∣ = |ωg(ω)||∂m|−1−
∑

f∈m(|f |−1) × |hω(|∂m|)| ×
∏
f∈m

|f |α|f |
|hω(|f |)| .

An application of the Euler formula shows that |∂m| − 1 − ∑f∈m(|f | − 1)
is equal to minus the number of internal vertices of m, which we denote by
Vint(m) > 0. We now fix ω1, ω2 real with 1 < ω1 < ω0 < ω2. Similarly as be-
fore, we know that hω(j) (resp. ω → ωg(ω)) is decreasing (resp. increasing)
on (1,+∞) and analytic, therefore there is a neighbourhood of ω0 in which
we have

|ωg(ω)| > ω1g(ω1) and ∀j > 2, hω2(j) 6 |hω(j)| 6 hω1(j) 6 1√
1− ω−1

1

where the rightmost inequality comes from the Taylor expansion of 1√
1−ω−1

1
.

In this neighbourhood N , we have∣∣∣p(ω)
m

∣∣∣ 6 1√
1− ω−1

1

(ω1g(ω1))−Vint(m) ∏
f∈m

|f |α|f |
hω2(|f |) .

On the other hand, for m ∈ H, we have

P
(
B•1

(
Mq(ω2)

)
= m

)
= p(ω2)

m = hω2(|∂m|) (ω2g(ω2))−Vint(m) ∏
f∈m

|f |α|f |
hω2(|f |) ,

with hω2(|∂m|) > 1. It follows that

sup
ω∈N
|p(ω)
m | 6

1√
1− ω−1

1

(
ω2g(ω2)
ω1g(ω1)

)Vint(m)

P
(
m ⊂ Mq(ω2)

)
,
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so ∑
m∈H

sup
ω∈N
|p(ω)
m | 6

1√
1− ω−1

1

E

(ω2g(ω2)
ω1g(ω1)

)Vint(B•1 (Mqω2 ))
 . (7.6.6)

Therefore, it is sufficient to prove that for any ω0 > 1, we can find numbers
1 < ω1 < ω0 < ω2 such that the last expectation is finite. This will follow
from the next lemma.

Lemma 51. Let ω0 > 1. We can find 1 < ω3 < ω0 < ω4 < +∞ and a
constant x > 1 such that, for all ω ∈ [ω3, ω4], we have

E
[
xVint(B•1 (Mqω ))

]
< +∞.

First, let us explain how (7.6.6) follows from Lemma 51. We fix ω3, ω4

such that 1 < ω3 < ω0 < ω4 < +∞. Since ω → ωg(ω) is continuous at ω0,
there are ω1 ∈ (ω3, ω0) and ω2 ∈ (ω0, ω4) such that

ω2g(ω2)
ω1g(ω1) < x.

Such ω1 and ω2 suit our needs.

Proof of Lemma 51. Sketch of proof:

• Step 1: pass from plane to half-plane (we can do it since peeling of plane
= peeling of half-plane conditioned on an event of positive probability).

• Step 2: let τ be the number of peeling steps needed to finish exploring
B•1 . Then P (τ > k) 6 e−αk for k large enough, with α independent of
ω ∈ [ω3, ω4].

• Step 3: let V1 be the number of internal vertices created by one half-
plane peeling step. We claim that there is x > 1 such that, for all
ω ∈ [ω3, ω4], we have E[xV1 ] < eα/2. Indeed, by summing over all
peeling cases, we get

E[xV1 − 1] = 2
∑
i > 0

(
1

ωg(ω)

)i+1 ∑
|∂m|=i

(
x#Vertices(m) − 1

) ∏
f∈m

q
(ω)
|f | .

(7.6.7)
The peeling cases where the peeled edge is glued to a new inner face
do not contribute since then xV1 − 1 = 0. Each term in this last
sum is decreasing in ω and increasing in x, and equal to 0 for x = 1.
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Therefore, to prove by dominated convergence that it is continuous on a
neighbourhood of (ω0, 1) (which implies our claim), it is enough to prove
that, if we fix 1 < ω5 < ω0, there is x > 1 such that Eω5 [xV1 ] < +∞.
For this, we rewrite (7.6.7) by removing the −1 term, and we use the
Euler formula to get rid of x#Vertices(m) − 1. We get

Eω5 [xV1 − 1] 6 2
∑
i > 0

(
x

ω5g(ω5)

)i+1

Wi

(
q(ω5,x)

)

6 2
∑
i > 0

(
x

ω5g(ω5)

)i+1

W •
i

(
q(ω5,x)

)
,

(7.6.8)

where q(ω,x)
j = q

(ω)
j xj−1, and W •

i is the pointed partition function (i.e.
biased by the total number of vertices). By definition of ωq in terms
of the walk νq, we must have ∑j > 1 qjg(ω5)jωj5 6 1 < +∞, so the
radius of convergence of (qj) is at least ω5g(ω5), so it is larger than
g(ω5). This ensures that, for x > 1 small enough, the weight sequence
q

(ω5,x)
j is admissible. Moreover gq(ω5,x) is a continuous function of x
in a neighbourhood of x = 1. By well-known combinatorial results
[MM07, Bud15], we know that

W •
i

(
q(ω5,x)

)
= giq(ω5,x) ×

1
4i

(
2i
i

)
,

so the right-hand side of (7.6.8) is finite if and only if gq(ω5,x) < ω5g(ω5)
x

.
This is obviously true for x = 1, so this is true for some x > 1, which
proves the claim.

• Step 4: E[xVk ] = E[xV1 ]k because peeling steps are independent in the
half-plane, so

E[xVτ ] 6
∑
k > 1

P (τ > k) E[xVk ] 6
∑
k > 1

E[xV1 ]k < +∞,

which finishes the proof.



Chapter 8

Open problems

We conclude this thesis by stating a few open problems that are in natural
continuation of the work presented here.

8.1 Bijective problems
As explained in the introduction and in Chapter 4, a general goal is to prove
the formulas arising from the hierarchies bijectively in full generality.

Open problem 1. Find a unified bijection for the formulas arising from the
KP and 2-Toda hierarchies.

In order to do so, it would be reasonable to work with the "simplest" of
those formulas, namely the Goulden–Jackson formula (1.2.2). Indeed, in the
planar and one-faced cases, the bijection is always simpler for cubic maps
than for general maps. Alternatively, one could try to find bijections for
special cases (i.e. planar or one-faced) of the formulas of Chapter 5. So
far, we only found bijections for the planar cases of the Goulden–Jackson
and Carrell–Chapuy formulas. In some sense, the formulas of Chapter 5
(especially (1.3.4)) are more complex, and finding a bijective explanation
could unveil some structural subtleties that were invisible in the simpler
cases.

But the formulas arising from the hierarchies are not always recurrence
formulas, they can be of a very different form, for instance the determinantal
formula of [ACEH18, Proposition 4.1].

Finally, outside the KP/2-Toda world, there are other formulas on maps
that are waiting for a bijective explanation. For instance, in [Tut74], Tutte
proved a quadratic recurrence for properly coloured planar triangulations.

219
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The coefficients that appear in the formula have a combinatorial interpreta-
tion.

Open problem 2. Prove Tutte’s recurrence for coloured triangulations.

A corollary of this formula is a recurrence formula for planar triangula-
tions without loops, which was recently proved bijectively by Abel Humbert
(private communication).

8.2 Maps and the KP hierarchy
Outside the bijective world, the relation between maps and the hierarchies
still has lots to offer.

Open problem 3. Find more formulas for maps using the KP/2-Toda hi-
erarchies.

First, one can try to find a formula for constellations with prescribed face
degrees. It would require a new approach, as in Chapter 5 the method we use
has clear limitations (see Remark 5.3.1). Also, we started with a generating
function that allows to control the cycle types of two permutations, but we
always had to "trivialize" one of these two permutations for practical reasons.
It would be interesting to derive formulas that control two cycle types (for
instance, bipartite maps with prescribed degrees of black and white vertices).

A possible way to do so would maybe imply more equations than the
simplest KP or 2-Toda equation. It would also involve more work on the
structure of the generating function itself. As an illustration, all the formulas
that were found before our work [GJ08, CC15, KZ15] use the KP equation
as a blackbox, whereas our approach involves some manipulation of the tau-
function itself. It is reasonable to expect that if there are more formulas to
be found, they would also require manipulations on the tau-function.

Conversely, studying maps could give us a better understanding of the
KP hierarchy. The first few1 equations of the KP hierarchy are:

F3,1 = F2,2 + 1
2F

2
1,1 + 1

12F14 ,

F4,1 = F3,2 + F1,1F2,1 + 1
6F13,2,

F5,1 = F4,2 + 1
24F14F12 +F12F3,1 + 1

480F16 + 1
8F

3
12 + 1

8F12,22 + 1
2F

2
2,1 + 1

8F3,13 .

1in the sense of [MJD00].
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We observe that all the equations above start with Fk,1 = Fk−1,2 + . . .,
and all the coefficients are positive2.

The bijections in Chapter 4 (and in particular Theorem 7) give an ex-
planation of the "planar part" of the first KP equation. As noted in the
introduction of Chapter 4 (paragraph Discussion and related works),
Theorem 7 also explains the planar part of the second KP equation, and it
can be applied to finding quadratic equations of the form Fk,1 = Fk−1,2 + . . .
for all k, where F is a well-chosen generating function of planar maps. On
the other hand, thanks to the bijection for one-faced maps [Cha11], we have
for all k a linear equation of the form Fk,1 = Fk−1,2 + . . . where F is the
generating function of one-faced maps. Every time, the coefficients that are
found have a combinatorial interpretation.

Open problem 4. Find, if it exists, a system S of equations of the form

Ek := Fk,1 = Fk−1,2 + . . .

such that the RHS of Ek has positive coefficients, that is satisfied by all the
solutions F of the KP hierarchy. Does S generate the KP hierarchy3 ? Is it
possible to have only quadratic equations in S ?

The existing bijections can help us conjecture the values of the coefficients
in the equations Ek.

8.3 High genus maps
Geometric properties Now that the local limits of high genus maps have
been studied, it is natural to ask for global geometric properties. The next
big question in this domain is the diameter.

Conjecture 5. Let gn be such that gn
n
→ θ ∈ (0, 1/2), and let Mn be a

uniform map of genus gn with n edges. Then there exist two constants c and
C depending only on θ such that

c log n < diamMn < C log n

holds asymptotically almost surely.
2they are also rational, but it is clear from the construction of the KP hierarchy that

all the equations must have rational coefficients.
3i.e. if F satisfies S then it is a solution of the KP hierarchy.
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The idea behind this conjecture is the following: in the PSHT, the balls
have exponential growth [Cur16], therefore the diameter should be logarith-
mic. Some evidence supports this conjecture: first, using the bounded ratio
lemma, one can prove the lower bound of the conjecture. Also, using the re-
sults and the methods of Chapter 6 along with a result of [CdVHdM14], it is
possible to show that the systole (the length of the smallest non contractible
cycle) of high genus triangulations4 is of logarithmic order5. We end this
paragraph with a (very ambitious) open question:

Open problem 6 (by Itai Benjamini). Let Mn defined as in the previous
open problem. Does there exist two constants c, h > 0 and a sequence of
subgraphs Gn of Mn such that for all n > 0:

• Gn has at least cn edges,

• Gn is an h-expander ?

Note that Mn itself cannot be an expander, since by our result, every
finite planar pattern happens somewhere in Mn.

Scaling limits ? Another natural question, after proving the local con-
vergence, is to investigate the scaling limit. Unfortunately, it is a general
principle that a model whose diameter is not polynomial in the size cannot
have a nice scaling limit. However, it is still possible to study some kind of
"local scaling limit". Indeed, it was proved that the PSHTs have a scaling
limit called the Hyperbolic Brownian Plane (HBP) [Bud18b].

Conjecture 7 (by Thomas Budzinski). Let gn = o(n) but gn → ∞ as
n → ∞, and let Mn be a uniform map of genus gn with n edges. Fix a
constant a > 0, and let rn = a

(
n
gn

)1/4
. Call Brn(Mn) the ball of radius rn

around the root of Mn. Then Brn(Mn) converges6 in distribution towards an
instance of the HBP, whose parameter is determined by a.

Let us make sense of this conjecture. First, a similar result exists in the
planar case [CLG14]. Also, to obtain the HBP, the parameter λ of the PSHT
has to go to λc as the scaling goes7, therefore we must have gn = o(n). The
parameter of the HBP is determined by how fast λ goes to λc. Since the HBP

4things would most probably be the same for many other models of maps.
5asymptotically almost surely.
6when the graph distance is rescaled by rn.
7it is proved in [Bud18b] that otherwise there is no scaling limit.
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has a constant total curvature, so does Brn(Mn). To ensure that, Brn(Mn)
must have a volume of order n

gn
. Since we have gn = o(n), the volume of

Br(Mn) is of order r1/4, so that explains why rn = a
(
n
gn

)1/4
.

Extremal genus case. Something is missing in our study of high genus
maps. What if gn

n
→ 1

2 ? Let Tn be a uniform triangulation of genus gn
with 2n faces. In this case, the average of degree of the root of Tn goes to
infinity, and therefore there is no local convergence and the sequence (Tn) is
not even tight for the local topology. Still, we can ask some questions about
the local behaviour around the root. For instance, in Chapter 6, the proof of
planarity is "less tight" than the proof of one-endedness. Therefore, it could
make sense to study the behaviour of

PRn = max{r|Br(Tn) is planar}.

The relevant parameter seems to be vn = n+ 2− 2gn, the number of vertices
in Tn.

Very large faces. After the results of Chapter 7, it is natural to ask what
happens when the distribution of the degrees of the faces have an even heavier
tail. Theorem 15 should still hold if we drop the condition ∑

i i
2αi < ∞.

Indeed, every part of the proof holds in this case except for the two holes
argument, and the (expected) limiting object exists (see Proposition 21). A
totally different regime (which is not covered by the IBPMs) would be the
case 0 < ∑

i iαi < 1. It means that there is a positive chance for the root face
to be infinite, and therefore, in the limiting object, there would be infinite
faces everywhere. We can expect that the local limit would look like a "thick
tree", with an infinite number of infinite branches (probably like the local
limit of unicellular maps [ACCR13]), that is "filled" with finite faces. To get
started on this question, the following model should capture the essential
features without too many parameters:

Open problem 8. Fix c > 0, and let gn be such that gn
n
→ θ > 0. Let Mn

be a uniform bipartite map of genus gn with n quadrangles and one face of
degree cn. Study the local convergence of the sequence Mn.

Once this is understood, it would be interesting to obtain "local scaling
limit" results for this model, it would be an analogue of some of the results
that were obtained [BMR] for planar quadrangulations with a large boundary.
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