
Certification dans Isabelle d’un Algorithme
d’Accessibilité pour les Systèmes à Pile

Raphaël Cauderlier, Tobias Nipkow, Javier Esparza, TU München

2011

Le contexte général

Les systèmes de transition à pile (Pushdown systems en anglais) sont une modélisation na-
turelle pour la sémantique des programmes, pas nécessairement déterministes, écrits dans des
langages séquentiels (C ou java par exemple) dans lesquels les fonctions peuvent s’appeller
mutuellement et récursivement et les variables prennent leurs valeurs dans un domaine fini.

Beaucoup de problèmes de vérification se ramènent au problème de l’accessibilité d’un en-
semble (éventuellement infini) de configurations. Une approche efficace pour résoudre ce prob-
lème dans le cas des systèmes à piles consiste à raisonner en remontant les transitions : étant
donné un ensemble de configurations cible C, on cherche à calculer (efficacement) l’ensemble
pre∗(C) des configurations qui mènent, en suivant un nombre arbitraire de transitions, à un élé-
ment de C. C’est possible dans le cas où C est un ensemble rationnel de configurations donné
par un automate [].

Le problème étudié

L’algorithme de calcul de pre∗(C) pour un langage rationnel C est implémenté dans des
model-checkers tel que [], les utilisations de ce genre d’outils étant souvent très sensibles (médecine,
aéronotique, spatial...), il est impératif que l’on ait totalement confiance dans cet algorithme. Les
assistants de preuve comme Isabelle apportent la plus grande confiance possible aujourd’hui.
Mon travail n’est pas totalement nouveau, Peter Lammich à Münster a travaillé sur des systèmes
un peu plus généraux et certifié dans Isabelle la correction de l’algorithme de calcul de pre∗ pour
ces systèmes mais n’a pas encore publié ses résultats.

La contribution proposée

Tout mon travail a été réalisé à l’intérieur du système Isabelle. J’ai écrit une formalisation des
systèmes à pile et des automates reconnaissant des ensembles de configurations de système à
pile, j’ai certifié l’algorithme abstrait non déterministe présenté dans [] et j’en ai déduit, toujours à
l’intérieur d’Isabelle, le théorème suivant : “pour tout langage rationnel C, pre∗(C) est rationnel”.

Les arguments en faveur de sa validité

Ma certification est entièrement vérifiable par Isabelle (version 2011), si le noyau logique d’Is-
abelle est correct alors ma certification l’est également. Mes résultats sont au niveau de confiance
maximal possible par la science actuelle.

Par ailleurs, pour faciliter la réutilisation de mes preuves, j’ai pris soin de toutes les écrire
dans le langage Isar d’Isabelle qui les rend beaucoup plus lisibles et faciles à maintenir que des
preuves écrites en “apply-style”.

Enfin mes résultats sont très abstraits et généraux, je ne force presque aucun choix d’implé-
mentation.

Le bilan et les perspectives

Il y a encore un trou important entre ma formalisation très abstraite et les algorithmes réelle-
ment utilisés dans les outils de Model-chacking comme [], c’est le domaine de raffinement de
donnée qui est un sujet qui intéresse beaucoup Peter Lammich et l’équipe dans laquelle j’ai fait
mon stage.

Il est aussi possible de symétriser le résultat en cherchant les configurations accessibles depuis
un ensemble donné de configurations, c’est un peu plus technique car il faut ajouter des états aux
automates et les marquer mais l’essentiel du travail est une adaptation de mes résultats.

Certifying in Isabelle an Automata-Based

Reachability Algorithm for Pushdown Systems

Raphaël Cauderlier

2011

Abstract

Pushdown systems are used in Model-Checking to represent ab-
stracted, non-determinist programs. For this class of infinite transition
systems, reachability of regular sets of configurations is computable by
automata transformation. I proved this in the proof assistant Isabelle.

Contents

1 Introduction 3

2 Scientific Context of my Internship 3
2.1 Isabelle . 3

2.1.1 Proof Assistant . 3
2.1.2 Isar Language . 4

2.2 Definitions . 5
2.2.1 Pushdown Systems . 5
2.2.2 Reachability, pre∗, post∗ 6
2.2.3 P-automata . 7

2.3 Main Algorithm and Theorem 7
2.3.1 pre∗ of a Regular Language 7
2.3.2 Saturation Procedure Computing pre∗ 8

3 My Formalization 8
3.1 Typing . 8

3.1.1 Finite Sets . 9
3.1.2 Records . 9

3.2 Locales . 9
3.3 Typeclass for Fresh Copy . 11

1

4 My Certification 12
4.1 Non-determinist Abstract Algorithm 12
4.2 Contrast Between Proofs for Humans and Proofs for Computers 12

4.2.1 Inductive Principles 12
4.2.2 “Without loss of generality, we assume that A has no

transition leading to an initial state” 13

5 Conclusion 14

6 Acknowledgement 14

A Source code 16
A.1 Fresh Function and Copy . 16
A.2 Pushdown Systems . 17
A.3 Transitions in a Pushdown System 17

A.3.1 Definition . 18
A.3.2 Properties . 18
A.3.3 The set pre∗ C . 19

A.4 P-Automata . 19
A.4.1 Recognition and language 20

A.5 Saturation Procedure . 21
A.5.1 Definition . 22
A.5.2 Invariants . 22
A.5.3 Saturated Automata 23

A.6 Certification of the saturation procedure 23
A.6.1 No Transition Should Lead to an Initial State 23
A.6.2 Main Lemmas . 28
A.6.3 Correctness . 32
A.6.4 Termination . 32
A.6.5 regular C =⇒ regular (pre∗ C) 34

2

1 Introduction

When proving properties of a program, one way to drastically reduce the
domain of the variables (and so the size of the search space) is to abstract
from the variable values to get an approximation of the behaviour of the
original for which Model-Checking is easy to perform. For example, to
prove mutual exclusion for a system using locks, it is usually OK to ignore
the value of every thing but locks because for this precise problem, we are
not interested in what computation is actually done in the critical section.
Abstraction often leads to non-determinism because we abstract over the
value of variables used in tests. For this we need good tools to handle
non-deterministic transition systems.

Pushdown systems used in the Moped [2] model-checker are very good at
modeling sequential programs once abstracted enough to get a reasonable
domain size for variables. Despite their infinite space, reachability prop-
erties can be computed efficiently using finite automata [1, 6]. Computing
reachability for some classes of infinite sets of configurations is even possible.

Because of their use in Model-Checking, we want to trust these reachability
algorithms by certifying them in the most formal way possible: using a proof
assistant.

Isabelle [5] is one of them, its main advantage is the readability of its proofs
written in the declarative Isar language [7]. My internship happened in
Technische Universität München in the German part of Isabelle development
team, the Theorem Proving Group lead by Tobias Nipkow in collaboration
with Javier Esparza, also professor at TUM, for the Model-Checking part.

2 Scientific Context of my Internship

2.1 Isabelle

2.1.1 Proof Assistant

Isabelle is a proof assistant. This means that Isabelle looks like a program-
ming environment for a functional language like OCaml [3] but instead of
producing programs, it produces proofs. Every step of every proof in Isabelle
is verified according to a small logic kernel which we trust so all theorems
proved in Isabelle are logical consequences of the axioms introduced in Is-
abelle libraries.

Working with a proof assistant is a way to increase the confidence we can
have in a proof. Formalizing the results of a scientific article often reveals

3

forgotten cases or even logical flaws (see for example [4] page 147).

Isabelle knows several logics but I only used the default one : Higher Order
Logic [7]. HOL is a typed logic in which one can quantify over arbitrary
(well typed) lambda terms.

In HOL one can define datatypes and recursive function pretty much like in
a pure functional programming language but all functions must terminate.
Most of the time, the termination proof is an obvious induction following a
datatype induction principle but the user can also provide it’s own complex
termination proof if it is not found automatically by the system.

2.1.2 Isar Language

Any proof in Isabelle can be written either in so called apply-style (as a list
of apply commands which reduce the current goal until it becomes True) or
using the Isar language. Apply-style proofs are easy to write but very hard
to read and maintain. Isar proofs on the other hand use usual English logic
words (assume, show, moreover, hence ...) which make them easier to
read for humans. Also increasing the readability is the use of the declarative
style. This means that proofs in Isar progress from assumptions to goals
and that the user writes each property he proves before actually providing
a method or a subproof for it.

Let’s look at an example from group theory : the characterization of the
subgroup generated by a set of elements.

This theorem states that both definitions of the subgroup generated by a
set S are equivalent.

grp S = grp ′ S

where grp is defined by grp S =
⋂
{A | subgroup A ∧ S ⊆ A} and grp ′ is

defined by grp ′ S = {Π as | pow-prod as S}
whith pow-prod as S ≡ ∀ a∈as. ∃ b∈S . ∃ z . a = bz

theorem isar-example: grp S = grp ′ S
proof
— the keyword proof starts a proof by applying a standard method
— here it transforms the set equality into two inclusions

have S ⊆ grp ′ S
— to prove the first one grp S ⊆ grp ′ S, we first prove this

proof
— S ⊆ grp ′ S has been turned to

∧
a. a ∈ S =⇒ a ∈ grp ′ S

fix a
assume a ∈ S
thus a ∈ grp ′ S

using grp ′-def [of [a], OF pow-prod-singl] by simp

4

qed
with subgroup-grp ′[of S] show grp S ⊆ grp ′ S

unfolding grp-def by blast
next

show grp ′ S ⊆ grp S
proof

fix a
assume a ∈ grp ′ S
then obtain as where p: pow-prod as S and a: a = Π as

unfolding original-grp ′-def by blast
have set as ⊆ grp S
proof

fix x
assume x ∈ set as
with p obtain b z where b: b ∈ S and [simp]: x = bz

— for later use, propositions can be explicitly named
— or declared as simplification rules
unfolding pow-prod-def by blast

thus x ∈ grp S using pow-grp[OF b] by fast
qed
from subgroup-prod [of grp S as, OF - this] show a ∈ grp S

by (simp add : a)
qed

qed

2.2 Definitions

2.2.1 Pushdown Systems

Pushdown systems [1] are like pushdown automata ignoring their input.
They are transition systems which use an unbounded stack so their set of
configurations are usually infinite. Pushdown systems are good for modeling
sequential programs written in language such as C or java where functions or
procedures can call each other, sometimes recursively or mutually recursively
because this is really how these programs are compiled. However, this model
forces finiteness of the variable domain and the size of the pushdown system
will be proportional to it.

Definition 1 (Pushdown System) A pushdown system P is formally de-
fined by:

• A finite set Control P of control states.

• An alphabet Σ P of stack symbols.

• An initial configuration Initial P (which doesn’t play any role for our
purpose)

5

• A finite set ∆ P of transition rules of the following form:

(p, γ) ↪→ (p ′, w)

where p and p ′ are control states, γ is a stack symbol and w is a string
of stack symbols.

We fix a pushdown system P.

Definition 2 (Configuration) Configurations of P are couples of control
states and stack contents (i.e. strings of stack symbols).

Definition 3 (Transition) Transitions of P are defined by:

(p, γu)⇒ (p ′, w @ u) if and only if (p, γ) ↪→ (p ′, w) is a rule of the system

where u is an arbitrary string of stack symbols.

As usual, we denote by ⇒∗ the reflexive transitive closure of the transition
relation ⇒.

2.2.2 Reachability, pre∗, post∗

In order to compute reachability properties for pushdown systems, two func-
tions, pre∗ and post∗ have proved to be very practical [1, 6]. They are defined
by

pre∗ C = {c | ∃ c ′∈C . c ⇒∗ c ′}

and symmetrically

post∗ C = {c | ∃ c ′∈C . c ′⇒∗ c}

The reachability problem

given two configurations c1 and c2,
do we have c1 ⇒∗ c2?

can be expressed in term of pre∗ (resp. post∗) as

given two configurations c1 and c2,
do we have c1 ∈ pre∗ {c2} (resp. c2 ∈ post∗ {c1})?

So we are looking for ways to represent (possibly infinite) sets with the
following requirements:

6

• one-element sets must be representable

• membership test must be computable (and preferably easy to perform)

• if a set C is representable, then pre∗ C is also representable and we
have an algorithm transforming any representation of C into a repre-
sentation of pre∗ C

They are several way to solve this [1], I only worked on the most simple one:
regular sets and automata.

2.2.3 P-automata

So we are going to manipulate sets of configuration represented by automata.
Since the configurations are not just strings but couples, we will slightly
change the usual definition of automata and recognition by taking into ac-
count the initial state used to read the word.

Definition 4 (P-automaton) A P-automaton A is defined by:

• a finite set Q A of states containing the set Control P of control states
of P used as initial states

• a finite set Final A of final states

• a finite set δ A of transitions i.e. triples of state, stack symbol and
state. (p, γ, q) ∈ δ A is abbreviated by p

γ−→A q.

Since P is fixed, we will simply call them automata. The transition relation
δ A is extended the usual way to strings.

Definition 5 (Language)
The language of A is then defined by replacing the usual set of initial states
by Control P and taking the chosen control state into account.

L A ≡ {(p, w) | ∃ q∈Final A. p ∈ Control P ∧ p
w−→A q}

2.3 Main Algorithm and Theorem

2.3.1 pre∗ of a Regular Language

The main property of pre∗ and post∗ for pushdown systems is that they
preserve the regularity ; for any regular set C of configurations (of P), pre∗

C and post∗ C are also regular [1].

7

2.3.2 Saturation Procedure Computing pre∗

Even more, we actually have a procedure to transform an automaton recog-
nizing C into an automaton recognizing pre∗ C (and also for post∗ C but
this is a bit more complex). This work by saturating the following rule:

If (p, γ) ↪→ (p ′, w) is a rule of P and p ′
w−→A q,

then add a transition p
γ−→A q.

3 My Formalization

3.1 Typing

Strings are simply represented by lists. This is a very reasonable typing
choice for a lot of reasons:

• This is a very simple datatype for which inductive proofs are usually
easy.

• It’s also very easy to define recursive functions on lists and reason
about them inductively.

• Isabelle provides a lot of theorems for lists in the standard library

• When they are used as stack values, it’s reasonable to access only the
head in constant time.

I tried not to force any other implementation choice so the choice of types
is totally let to the user. I accomplished this by working with polymorphic
datatypes using a type variable ′s for stack symbols and automata letters
and another type variable ′c for pushdown systems control symbols and
automata states. So for example, given an automaton A, it’s transition
table is so typed :

δ (A :: (′c, ′s) P-Automaton) :: (′c ∗ ′s ∗ ′c) set

However, for technical reasons that we will see later, I had to restrict the
choice for ′c to an infinite type and my results are really only totally proved
when ′c is the type of natural numbers.

8

3.1.1 Finite Sets

I formalized pushdown systems and automata using the built-in set type con-
structor and constraining them to be finite using the finite predicate. This
level of abstraction permits to write implementation-independent proofs
which are often easier to write and more general. The price to pay for
it is the loss of computability at this level of abstraction. Automatically de-
riving for such theorems corresponding ones replacing all the finite sets by
a real (usable for computation) datatype is the goal of a branch of theorem
proving called Data Refinement and on which several Isabelle developers
and contributors are currently working.

3.1.2 Records

Pushdown systems and automata are defined using the Isabelle record mech-
anism :

type-synonym (′c, ′s) config = ′c ∗ ′s list

record (′c, ′s) Pushdown-System =
∆ :: (′c ∗ ′s ∗ ′c ∗ ′s list) set
Initial :: (′c, ′s) config
Σ :: ′s set
Control :: ′c set

record (′c, ′s) P-Automaton =
Q :: ′c set
δ :: (′c ∗ ′s ∗ ′c) set
Final :: ′c set

I have chosen this mechanism because it gives explicit names to fields which
makes proofs easier to read and maintain than defining them by tuples
(which in Isabelle are just nested couples).

I did however not use the full power of records because I did not want nor
need to cope with exstensibility; usually, fields can be added to records in a
way similar to classe inheritance in object-oriented programming.

3.2 Locales

Locales are the way to define persistent contexts in Isabelle. I found them
very useful.

I use locales to axiomatize structural constraints which defines my objects,
especially finiteness constraints. For instance, here is the definition of the
locale predicate for automata:

PA P A ≡

9

(PS P ∧ finite (Q A)) ∧
∆ A ⊆ Q A × Σ P × Q A ∧ Final A ⊆ Q A ∧ Control P ⊆ Q A

For pushdown systems, I use the locale PS in order to fix a working push-
down system P, this is easy because I have only one pushdown system to
manage.

For automata on the other hand it would be harder to fix one because
my important lemmas deal with several automata so I’m working outside
from the locale PA but it nevertheless gives me a useful predicate PA which
summarizes all finiteness constraints over the fields of my automata. For
the small lemmas dealing with just one automaton, it would probably be
cleaner to write everything in the locale itself.

The locale mechanism also surprisingly solved a typing problem: usually in
abstract automata formalisations, it’s quite hard to define what a regular
set is. If we take the following definition

definition regular :: ′letter set ⇒ bool
where regular C ≡ (∃ (A :: (′letter , ′state) automaton). C = L A)

then Isabelle complains because the type of the states of A is unrelated to
C so it cannot be infered from the predicate argument.

Of course the type of the states of A in this definition does not really matter
unless it bounds the number of states, so a possible workaround is to impose
a type in this definition of regular like this:

definition regular ′ :: ′letter set ⇒ bool
where regular ′ C ≡ (∃ (A :: (′letter , nat) automaton). C = L A)

The difference between the two definitions is the use of nat instead of the
type variable ′state. nat is not a type variable, it is the type of natural
numbers defined in HOL standard library. This workaround however re-
quires more work if we want to avoid forcing any implementation choice so
we should prove a theorem like

theorem arbitrary-state-type:
∀ (A :: (′letter , ′state) automaton).
∃ (A ′ :: (′letter , nat) automaton).
L A = L A ′

from which we finally can deduce simple facts like

corollary regular-language: ∀ (A :: (′letter , ′state) automaton). regular ′ (L A)
by (simp add : regular ′-def arbitrary-state-type)

This is not very modular, it only works because there is a universal (inde-
pendent of C) choice for the type variable ′state moreover an additionnal
proof has to be supplied.

10

My definition of regularity is simply

definition myregular :: (′c, ′s) config set ⇒ bool
where myregular C ≡ (∃ A. PA P A ∧ C = L A)

It would work even if L just returned a ′s set as it usually does because
all type variables of A are fixed by those of P, which is a constant in the
locale context in which regularity is defined. In other words, I just define
P-regularity for which the typing issue of regularity does simply not exist.

Of course this magic is also limitating; the modelization of P-automata in
[1] does not force the set of states of P-automata to be of the same type
than Control P but to provide for each P-automaton A a bijection between
the set of initial states of A and Control P. This is not possible in my
modelization.

3.3 Typeclass for Fresh Copy

I needed to be able to add fresh states to my automata so I formalized the
notion of a type ′a together with a copy function which take two arguments
of type ′a set, assumed to be finite, the source to copy source and a set of
forbidden values forbidden and returns a function f of type ′a ⇒ ′a such
that f is injective on source and the image of source under f is disjoint from
source ∪ forbidden.

Isabelle provides a mecanism to define types together with constants and
specifications, it is borrowed from Haskell and called a typeclass.

class copy =
fixes copy-function :: ′a set ⇒ ′a set ⇒ (′a ⇒ ′a)
assumes finite-copy :

[[finite forbidden; finite source]] =⇒
((copy-function forbidden source) ‘ source ∩ (source ∪ forbidden) = ∅) ∧
inj-on (copy-function forbidden source) source

A typeclasses is simultaneously a kind of type for types together with a
locale; it is possible to work in a context named copy exactly as if copy
had been defined as a locale and it is enough to mark a type variable by the
typeclass like this: ′a :: copy to assume that ′a is an instance of the typeclass
and get access to the defined constants, assumptions and lemmas proved in
the context. so in fact the real definition of the record for automata is

record (′c :: copy , ′s) P-automaton =
Q :: ′c set
δ :: (′c ∗ ′s ∗ ′c) set
Final :: ′c set

For practical use, typeclasses are instanciated. When defining a typeclass in
Isabelle, it is good to provide one explicit instatiation or to prove it to be a
superclass of some nonempty typeclass.

11

The typeclass copy can be instanciated by any infinite type but I only proved
nat to be an instance of it. This does not force the user to implement
automata which use nat for state type, he just has to provide a proof that
his state type is an instance of the typeclass copy i.e. to give an explicit
copy-function for his type and to prove it to be conform to the corresponding
finite-copy specification.

4 My Certification

My certification of the algorithm for computing pre∗ for regular sets of
configurations is essentially an adaptation of Stefan Swoon’s proof [6].

4.1 Non-determinist Abstract Algorithm

There are to main limitations to the computability of my algorithm which
explain why I can not run it on an example (which would nicely decorate
this report but also be very interesting for a practical point of view for
applications of my certification).

The first reason is that I use Isabelle built-in set types to represent sets and
taking an element of a set is not a deterministic action.

The second reason is that my algorithm (the saturation procedure) is in
essence not deterministic. Let’s look at the rule again:

If (p, γ) ↪→ (p ′, w) is a rule of P and p ′
w−→A q,

then add a transition p
γ−→A q.

It does not tell us in what order new transitions should be added and in
fact efficiency of the different implementations is very dependent on the way
matching (p, γ, p ′, w , q) tuples are found.

The way I defined it should be compatible with all possible implementations;
I defined it as a transition A 7→ A ′ if and only if A ′ can be obtain from A
by applying the saturation rule exactly once:

A 7→ A (|δ := insert (p, γ, q) (δ A)|) ≡
∃ p p ′ q γ w . PA P A ∧ p ∈ Control P ∧ γ ∈ Σ P ∧ q ∈ Q A ∧ p ′ ∈

Control P ∧ (p, γ) ↪→ (p ′, w) ∧ p ′
w−→A q ∧ (p, γ, q) /∈ δ A

4.2 Contrast Between Proofs for Humans and Proofs for
Computers

4.2.1 Inductive Principles

In Isabelle, every inductive definition automatically produces a set of induc-
tive principles which are in practise more convenient to use than comming

12

back to induction on the size (or length) of the object we are studying. This
contrasts with pen-and-paper proofs for which inductions are often done on
natural numbers. For example, the following piece of proof from [6]:

Lemma 3.1 For every configuration (p, v) ∈ L A,
if (p ′, w) ⇒∗ (p, v) then p ′

w−→A ′ q for some final
state q of A ′.
Proof: Assume (p ′, w) ⇒k (p, v). We proceed by induction on k.

becomes

lemma Lemma3-1 :
assumes PA P A
assumes A 7→∗ A ′
assumes sat A ′
assumes (p ′, w) ⇒∗ (p, v)
assumes (p, v) ∈ L A
shows ∃ q ∈ PA-rec.Final A ′. A ′ ` p ′ −w→∗ q
using assms(4)

proof (induct rule: converse-rtrancl-induct2)

in my Isabelle formalisation. This means that I am doing a proof using the
following induction principle (defined in Isabelle library):

a ⇒∗ b P b
∧

y z .
y ⇒ z z ⇒∗ b P z

P y

P a

from assumption number 4 : (p ′, w) ⇒∗ (p, v).

4.2.2 “Without loss of generality, we assume that A has no tran-
sition leading to an initial state”

This sentence (from [6], page 32), is perfectly fine in a scientific article, this
assumption sounds very reasonable and I think it is despite I spent one
month proving it.

“Without loss of generality”-properties are evil for theorem proving. For
this one, I had to write an algorithm for converting any automaton A to
an automaton A ′ recognizing the same language and having no transition
leading to an initial state. Once again, this is not very hard to find and
prove with pen and paper but it takes one third of my code file (see the
appendix). The idea is to get a copy of all initial states, use the read letter
as a bridge to this parallel universe and stay in it until the end of input.

Formally, I do this by this function:

13

double-init A =
(|Q = Q A ∪ fcopy A ‘ Control P,

∆ = {(p, γ, gcopy A q) | (p, γ, q) ∈ δ A ∧ p ∈ Control P} ∪
{(gcopy A q , γ, gcopy A q ′) | (q , γ, q ′) ∈ δ A},

Final = Final A ∪ gcopy A ‘ Final A|)

The first line extends the set of states by a fresh copy of initial states (this
is the reason why I needed to formalize the notion of fresh copy), fcopy is
the fresh function injective on Control P and avoiding Q A: fcopy A =
fresh-copy (Q A) (Control P). The function gcopy is fcopy extended to all
Q A by identity on non initial states, this is the translation the parallel
universe.

The second line is the “bridge” part and the third line the “parallel” part.
The last line is not simply Final = gcopy A ‘ Final A as one could think
because we have to deal with the empty word which is too short to access
the parallel universe.

And then the real proofs begin... By the way, avoiding to have to add knew
states (even one by one which gives simpler proofs) is exactly what makes
the certification (termination and correctness) of the algorithm computing
pre∗ easier than the one computing post∗ so at least all this work can help
adapting my work to the certification for post∗.

5 Conclusion

A lot of work is still to be done on this subject. To adapt it to post∗ should
not be very difficult now I have formalised the notion of fresh copy and
research on data refinement is very active so I’m sure that my code will
soon be able to certify real implementations without too much efforts. It
then could be generalized to a lot of other classes of sets of configurations
for cases where the set we want to compute reachability for is not regular
because proofs for other classes of sets are seldom very different from the
one for regular sets.

6 Acknowledgement

I want to thank my supervisors Tobias Nipkow and Javier Esparza for this
very interesting internship topic and my tutor in Cachan Stefan Schwoon
for having asked this internship for me.

I have felt really welcome by the Theorem Proving Group, I’m really grateful
for the ambiance and the precision and pertinence of the answers to my
questions concerning Isabelle usage and automata formalization.

14

Thanks also to Peter Lammich for having sent to me his unpublished mod-
elization of Dynamic Pushdown Networks in Isabelle which helped me a lot
for a crucial lemma and discussed with me automata formalization issues.

15

A Source code

theory Pushdown-systems
imports Main
begin

type-synonym ′a rel = (′a ∗ ′a) set
— relation type synonym

abbreviation epsilon :: ′a list (ε)
where ε ≡ []

— strings are implemented by lists, the empty word is denoted by ε

A.1 Fresh Function and Copy

We will need to add fresh states to automata, for this purpose we define
a class of types enriched with a copy functions wich returns finitely many
fresh elements.

class fresh =
fixes fresh-copy :: ′a set ⇒ ′a set ⇒ (′a ⇒ ′a)
assumes finite-fresh-copy :

[[finite forbidden-set ; finite B]] =⇒ ((fresh-copy forbidden-set B) ‘ B ∩ (B ∪
forbidden-set) = {}) ∧ inj-on (fresh-copy forbidden-set B) B

begin
end

Any infinite type is a member of this class but for our purpose, using nat
will be enough.

instantiation nat :: fresh
begin
definition supnat :: nat set ⇒ nat

where supnat A = fold max 0 A

lemma sup: finite A =⇒ x ∈ A =⇒ x ≤ supnat A
unfolding supnat-def max-def by (induct A rule: Finite-Set .finite-induct) auto

definition fresh-copy-def :
fresh-copy forbidden-set B k = 1 + supnat (forbidden-set ∪ B) + k

instance proof
fix forbidden-set B :: nat set
assume finite: finite forbidden-set finite B
let ?n = 1 + supnat (forbidden-set ∪ B)
have [simp]:

∧
k . fresh-copy forbidden-set B k = ?n + k

16

by (auto simp: fresh-copy-def)
show fresh-copy forbidden-set B ‘ B ∩ (B ∪ forbidden-set) = {} ∧

inj-on (fresh-copy forbidden-set B) B
proof (auto simp: inj-on-def)

fix k
assume Suc (supnat (forbidden-set ∪ B) + k) ∈ B
hence ?n + k ∈ B by simp
hence ?n + k < ?n using finite sup[of forbidden-set ∪ B ?n + k] by simp
thus False by simp

next
fix k
assume Suc (supnat (forbidden-set ∪ B) + k) ∈ forbidden-set
hence ?n + k ∈ forbidden-set by simp
hence ?n + k < ?n using finite sup[of forbidden-set ∪ B ?n + k] by simp
thus False by simp

qed
qed
end

A.2 Pushdown Systems

Pushdown systems are transition systems over a finite set of control symbols
using an unbounded stack. A configuration of a pushdown systemm is given
by a control symbol and a string of stack symbols.

type-synonym (′c, ′s) config = ′c ∗ ′s list

Without loss of generality, we consider pushdown systems which pop one
symbol and push at most two symbols; this would be useful for post∗.

′c stands for control symbol and ′s for stack symbol.

record (′c :: fresh, ′s) PS-rec =
∆0 :: (′c ∗ ′s ∗ ′c) set
∆1 :: (′c ∗ ′s ∗ ′c ∗ ′s) set
∆2 :: (′c ∗ ′s ∗ ′c ∗ ′s ∗ ′s) set
Initial :: (′c, ′s) config
Σ :: ′s set
Control :: ′c set

A.3 Transitions in a Pushdown System

Membership and finiteness constraints are expressed by the following locale
in wich all interesting work is going to be done.

locale PS =
fixes P :: (′c :: fresh, ′s) PS-rec
assumes finite (Σ P)
and finite (Control P)
and ∆0 P ⊆ Control P × Σ P × Control P
and ∆1 P ⊆ Control P × Σ P × Control P × Σ P

17

and ∆2 P ⊆ Control P × Σ P × Control P × Σ P × Σ P
begin

fun PS-rule :: (′c ∗ ′s) ⇒ (′c, ′s) config ⇒ bool
(infix ↪→ 100)

where
(p, γ) ↪→ (p ′, ε) = ((p, γ, p ′) ∈ ∆0 P)
| (p, γ) ↪→ (p ′, [γ ′]) = ((p, γ, p ′, γ ′) ∈ ∆1 P)
| (p, γ) ↪→ (p ′, [γ1, γ2]) = ((p, γ, p ′, γ1, γ2) ∈ ∆2 P)
| (p, γ) ↪→ (p ′, -) = False

lemma PS-rule-mem-constraints[intro, dest]:
assumes (p, γ) ↪→ (p ′, w)
shows p ∈ Control P γ ∈ Σ P p ′ ∈ Control P set w ⊆ Σ P using assms and

PS-axioms
by (cases rule: PS-rule.cases[of ((p, γ), (p ′, w))], auto simp: PS-def)+

A.3.1 Definition

definition PS-transition-rel :: (′c, ′s) config rel
where
PS-transition-rel ≡
{((p, γ # w), (p ′, w ′ @ w)) | p γ w p ′ w ′.

set w ⊆ Σ P ∧ set w ′ ⊆ Σ P ∧ (p, γ) ↪→ (p ′, w ′)}

abbreviation PS-transition-frel :: (′c, ′s) config ⇒ (′c, ′s) config ⇒ bool
(infix ⇒ 100)

where
c ⇒ c ′ ≡ (c, c ′) ∈ PS-transition-rel

A.3.2 Properties

lemma PS-transition-append [intro]:
(p, w) ⇒ (p ′, w ′) =⇒ set u ⊆ Σ P =⇒ (p, w @ u) ⇒ (p ′, w ′ @ u)
by (auto simp: PS-transition-rel-def)

lemma PS-transition-rel-mem-constraints[intro]:
assumes (p, w) ⇒ (p ′, w ′)
shows p ∈ Control P set w ⊆ Σ P p ′ ∈ Control P set w ′ ⊆ Σ P using assms
by (auto simp: PS-transition-rel-def)

abbreviation PS-transition-tr :: (′c, ′s) config ⇒ (′c, ′s) config ⇒ bool
(infix ⇒∗ 100)

where c ⇒∗ c ′ ≡ (c, c ′) ∈ PS-transition-rel ˆ∗

notation PS-transition-tr (infixl ⇒∗ 100)

lemma rtrancl-f [intro]:
assumes

∧
a b. (a, b) ∈ r =⇒ (f a, f b) ∈ r

shows (a, b) ∈ rˆ∗ =⇒ (f a, f b) ∈ rˆ∗

18

apply (induct rule: rtrancl-induct)
using assms by simp-all fastsimp

lemma rtrancl-f-2 [intro]:
assumes

∧
a a ′ b b ′. ((a, a ′), (b, b ′)) ∈ r =⇒ ((f a, f ′ a ′), (f b, f ′ b ′)) ∈ r

shows ((a, a ′), (b, b ′)) ∈ rˆ∗ =⇒ ((f a, f ′ a ′), (f b, f ′ b ′)) ∈ rˆ∗
using assms and rtrancl-f [where f = λ (a, a ′). (f a, f ′ a ′)] by auto

lemma PS-transition-tr-append [intro]:
assumes set u ⊆ Σ P
shows (p, w) ⇒∗ (p ′, w ′) =⇒ (p, w @ u) ⇒∗ (p ′, w ′ @ u)
using assms by auto

lemma PS-transition-tr-mem-constraints[intro]:
assumes (p, w) ⇒∗ (p ′, w ′)
and p ∈ Control P
shows p ′ ∈ Control P using assms
by (induct rule: rtrancl-induct2) auto

lemma PS-transition-tr-rev-mem-constraints[intro]:
assumes (p, w) ⇒∗ (p ′, w ′)
and p ′ ∈ Control P
shows p ∈ Control P using assms
by (induct rule: rtrancl-induct2) auto

A.3.3 The set pre∗ C

definition prestar :: (′c, ′s) config set ⇒ (′c, ′s) config set
(pre∗ - [101] 100)

where pre∗ C = {c. (∃ c ′∈C . c ⇒∗ c ′)}

notation prestar (pre∗ 1000)

definition poststar :: (′c, ′s) config set ⇒ (′c, ′s) config set
(post∗ - [101] 100)

where post∗ C = {c. (∃ c ′∈C . c ′⇒∗ c)}

notation poststar (post∗ 1000)

end

A.4 P-Automata

P-automata are word automata which recognize sets of configuations of the
fixed pushdown system P
record (′c :: fresh, ′s) PA-rec =

Q :: ′c set
∆ :: (′c ∗ ′s ∗ ′c) set
Final :: ′c set

19

locale PA =
fixes P :: (′c :: fresh, ′s) PS-rec
fixes A :: (′c, ′s) PA-rec
assumes PS P
assumes finite (Q A)
assumes ∆ A ⊆ Q A × Σ P × Q A
assumes Final A ⊆ Q A
assumes Control P ⊆ Q A

lemma PA-Control [intro]: [[PA P A; p ∈ Control P]] =⇒ p ∈ Q A by (auto simp:
PA-def)
lemma PA-Final [intro]: [[PA P A; q ∈ Final A]] =⇒ q ∈ Q A by (auto simp:
PA-def)

A.4.1 Recognition and language

abbreviation delta1 :: (′c :: fresh, ′s) PA-rec ⇒ ′c ⇒ ′s ⇒ ′c ⇒ bool
(- ` - −-→ - [101 , 0 , 0 , 101] 100)

where A ` q −a→ q ′ ≡ (q , a, q ′) ∈ ∆ A

lemma delta1-mem-constraints[intro, dest]:
assumes PA P A
and A ` q −a→ q ′

shows q ∈ Q A a ∈ Σ P q ′ ∈ Q A
using assms
by (auto simp: PA-def)

inductive delta :: (′c :: fresh, ′s) PA-rec ⇒ ′c ⇒ ′s list ⇒ ′c ⇒ bool
where
base[iff]: q ∈ Q A =⇒ delta A q ε q |
step[intro]: [[delta1 A q a q ′; delta A q ′ w q ′′]] =⇒ delta A q (a#w) q ′′

notation delta (- ` - −-→∗ - [101 , 0 , 0 , 101] 100)

lemma delta-mem-constraints[rule-format , intro]:
A ` q −w→∗ q ′ =⇒ PA P A −→ (q ∈ Q A ∧ q ′ ∈ Q A)
by (induct rule: delta.induct) auto

lemma delta-word-mem-constraints[rule-format , intro]:
A ` q −w→∗ q ′ =⇒ PA P A −→ set w ⊆ Σ P
by (induct rule: delta.induct) auto

inductive-cases delta-epsilon[elim]: A ` q −ε→∗ q ′

lemma delta-epsilon-iff [iff]: (A ` q −ε→∗ q ′) = (q ∈ Q A ∧ q = q ′)
by blast

inductive-cases delta-single[elim]: A ` q −[a]→∗ q ′

lemma delta-single2 [simp]: PA P A =⇒ A ` q −[a]→∗ q ′←→ A ` q −a→ q ′

20

by auto
inductive-cases delta-cons[elim]: A ` q −a#w→∗ q ′

lemma delta-cons-dest [dest]: A ` q −a#w→∗ q ′′ =⇒ (∃ q ′. A ` q −a→ q ′ ∧ A
` q ′ −w→∗ q ′′)

by blast

lemma delta-append [intro]: [[A ` q −u→∗ q ′; A ` q ′ −v→∗ q ′′]] =⇒ A ` q
−u@v→∗ q ′′

by (induct u arbitrary : q) (auto, fast)

lemma delta-append-elim[elim]:
[[A ` q −u@v→∗ q ′′;

∧
q ′. [[A ` q −u→∗ q ′; A ` q ′ −v→∗ q ′′]] =⇒ P ; PA P A;

q ∈ Q A]] =⇒ P
proof (induct u arbitrary : q P)

fix q ′

case (Cons a u)
then obtain qa where A ` q −a→ qa and A ` qa −u@v→∗ q ′′ by auto
with Cons obtain q ′ where A ` qa −u→∗ q ′ and A ` q ′ −v→∗ q ′′ by auto
from 〈A ` q −a→ qa〉 〈A ` qa −u→∗ q ′〉 have A ` q −a#u→∗ q ′ ..
with 〈A ` q ′ −v→∗ q ′′〉 Cons(3) show ?case by auto

qed simp

context PS begin

definition language :: (′c :: fresh, ′s) PA-rec ⇒ (′c, ′s) config set (L)
where L A ≡ {(p, w). ∃ q ∈ Final A. p ∈ Control P ∧ A ` p −w→∗ q}

lemma language-intro[intro]:
[[p ∈ Control P; A ` p −w→∗ q ; q ∈ Final A]] =⇒ (p, w) ∈ L A
by (auto simp: language-def)

lemma language-elim[elim]:
fixes A
assumes (p, w) ∈ L A
obtains q where p ∈ Control P and A ` p −w→∗ q and q ∈ Final A
using assms by (auto simp: language-def)

definition regular :: (′c, ′s) config set ⇒ bool
where regular (C :: (′c, ′s) config set) ≡ ∃ A :: (′c, ′s) PA-rec. PA P A ∧ C =
L A

A.5 Saturation Procedure

This is the saturation procedure to transform an automaton A recognizing
a language C into an automaton recognizing pre∗ C : For evrery rule (p, γ)
↪→ (p ′, w), take q such that A ` p ′ −w→∗ q and add a transition (p, γ, q)
if it’s not already present.

21

A.5.1 Definition

definition pre-sat-rel :: (′c, ′s) PA-rec rel
where pre-sat-rel = {(A, A (|∆ := insert (p, γ, q) (∆ A)|)) | A p p ′ q γ w .

PA P A ∧ p ∈ Control P ∧ γ ∈ Σ P ∧ q ∈ Q A ∧ p ′ ∈ Control P ∧
(p, γ) ↪→ (p ′, w) ∧
A ` p ′ −w→∗ q ∧
¬ A ` p −γ→ q}

abbreviation pre-sat-frel :: (′c, ′s) PA-rec ⇒ (′c, ′s) PA-rec ⇒ bool
(infix 7→ 100)

where A 7→ A ′ ≡ (A, A ′) ∈ pre-sat-rel

lemma pre-sat-PA[intro]:
assumes A 7→ A ′
shows PA P A and PA P A ′
using assms and PS-axioms
by (auto simp: pre-sat-rel-def PA-def)

abbreviation pre-sat-tr :: (′c, ′s) PA-rec ⇒ (′c, ′s) PA-rec ⇒ bool (infix 7→∗
100)

where A 7→∗ A ′ ≡ (A, A ′) ∈ pre-sat-relˆ∗

notation pre-sat-tr (infix 7→∗ 100)

A.5.2 Invariants

lemma pre-sat-tr-PA[rule-format , dest]: A 7→∗ A ′ =⇒ PA P A −→ PA P A ′
by (induct rule: rtrancl-induct) auto

lemma pre-sat-Q [dest]: A 7→ A ′ =⇒ Q A = Q A ′
by (auto simp: pre-sat-rel-def)

lemma pre-sat-delta1 : [[A ` q −a→ q ′; A 7→ A ′]] =⇒ A ′ ` q −a→ q ′

by (auto simp: pre-sat-rel-def)
lemma pre-sat-delta: [[A ` q −w→∗ q ′; A 7→ A ′]] =⇒ A ′ ` q −w→∗ q ′

by (induct rule: delta.induct) (auto elim: pre-sat-delta1)
lemma pre-sat-final : A 7→ A ′ =⇒ Final A = Final A ′

by (auto simp: pre-sat-rel-def)

lemma pre-sat-Delta:
assumes A 7→ A ′
obtains p γ q where ∆ A ′ = insert (p, γ, q) (∆ A) ¬ A ` p −γ→ q using

assms by (auto simp: pre-sat-rel-def)

lemma pre-sat-L: A 7→ A ′ =⇒ L A ⊆ L A ′ by (auto elim: pre-sat-delta simp:
pre-sat-final language-def)

lemma pre-sat-tr-final [dest]: A 7→∗ A ′ =⇒ Final A = Final A ′ by (induct rule:
rtrancl-induct) (auto dest : pre-sat-final)
lemma pre-sat-tr-L[dest]: A 7→∗ A ′=⇒ L A ⊆ L A ′ apply (induct rule: rtrancl-induct)
apply simp using pre-sat-L by blast

22

A.5.3 Saturated Automata

definition sat
where sat A ≡ (PA P A ∧ ¬ (∃ A ′. A 7→ A ′))

lemma sat-iff : sat A = (PA P A ∧ (
∀ p ∈ Control P.
∀ γ ∈ Σ P.
∀ p ′ ∈ Control P.
∀ q ∈ Q A.
∀w .

(p, γ) ↪→ (p ′, w) ∧ A ` p ′ −w→∗ q −→ A ` p −γ→ q)) unfolding sat-def
pre-sat-rel-def by blast

lemma sat-iff-nomem[iff]: PA P A =⇒ sat A = (∀ p γ p ′ w . ∀ q ∈ Q A. (p, γ)
↪→ (p ′, w) ∧ A ` p ′ −w→∗ q −→ A ` p −γ→ q) using sat-iff by blast
— same lemma but without all implicit membership constraints

A.6 Certification of the saturation procedure

A.6.1 No Transition Should Lead to an Initial State

definition init-no-income :: (′c, ′s) PA-rec ⇒ bool
where init-no-income A ≡ (∀ q ∈ Q A. ∀ γ ∈ Σ P. ∀ p ∈ Control P. ¬ A `

q −γ→ p)

lemma init-no-income-elim:
assumes A ` q −γ→ p
PA P A
p ∈ Control P
init-no-income A
shows P using assms by (auto simp: init-no-income-def PA-def)

We now show that this further assumption doesn’t limit the power of the
automata, given an automaton A, we construct an equivalent automaton A ′
satisfying this condition

definition fcopy A = fresh-copy (Q A) (Control P)
lemma fsimp:

fixes q
assumes q ∈ Control P
and fcopy A q ∈ Control P
and PA P A
shows False

proof −
from assms(1 ,2) have fcopy A q ∈ fresh-copy (Q A) (Control P) ‘ Control P
∩ (Control P ∪ Q A)

by (auto simp: fcopy-def)
with assms(3) finite-fresh-copy show False by (auto simp: PA-def PS-def)

qed

definition gcopy A q = (if q ∈ Control P then fcopy A q else q)

23

lemma gsimp:
fixes q
assumes q ∈ Q A
and gcopy A q ∈ Control P
and PA P A
shows False using assms by (cases q ∈ Control P) (auto simp: gcopy-def dest :

fsimp)

definition double-init A = (|
Q = Q A ∪ fcopy A ‘ (Control P),
∆ =
{(p, γ, gcopy A q) | p γ q . (p, γ, q) ∈ ∆ A ∧ p ∈ Control P} ∪
{(gcopy A q , γ, gcopy A q ′) | q γ q ′. (q , γ, q ′) ∈ ∆ A},

Final = Final A ∪ gcopy A ‘ (Final A)|)

lemma double-init-Q-sub:
Q A ⊆ Q (double-init A) by (auto simp: double-init-def)

lemma g-copy-Q : q ∈ Q A =⇒ gcopy A q ∈ Q (double-init A)
by (auto simp: double-init-def gcopy-def fcopy-def)

lemma inj-on-f : PA P A =⇒ inj-on (fcopy A) (Control P)
by (auto simp: finite-fresh-copy fcopy-def PA-def PS-def)

lemma fsimp2 :
fixes A p
assumes A: PA P A
assumes p: p ∈ Control P
assumes f : fcopy A p ∈ Q A
shows False

proof −
from p f have fcopy A p ∈ fcopy A ‘ Control P ∩ (Q A ∪ Control P) by simp
with finite-fresh-copy A show False by (auto simp: PA-def PS-def fcopy-def)

qed
lemma inj-on-g : PA P A =⇒ inj-on (gcopy A) (Q A)
by (auto simp: inj-on-def gcopy-def dest : inj-on-f fsimp2)

lemma PA-double-init :
fixes A
assumes PA P A
shows PA P (double-init A) using assms by (auto simp: double-init-def gcopy-def

fcopy-def PA-def PS-def)

lemma double-init-no-income:
fixes A
assumes PA P A
assumes double-init A ` p −γ→ q
shows q /∈ Control P

24

using assms
by (auto simp: double-init-def dest : gsimp)

lemma delta1-double-init :
fixes A
assumes A ` q −γ→ q ′

shows double-init A ` gcopy A q −γ→ gcopy A q ′

using assms by (auto simp: double-init-def)

lemma delta-double-init :
fixes A
assumes PA P A
assumes A ` p −w→∗ q
shows double-init A ` gcopy A p −w→∗ gcopy A q
using assms(2)

proof (induct rule: delta.induct)
case (base q A) thus ?case by (auto simp: g-copy-Q)

next
case (step A q a q ′ w q ′′)
with delta1-double-init show ?case by fast

qed

lemma delta-double-init-rev :
fixes A
assumes PA P A
assumes double-init A ` gcopy A q −w→∗ gcopy A q ′

assumes q ∈ Q A and q ′ ∈ Q A — probably a consequence of the other
assumptions but I find it easier like this

shows A ` q −w→∗ q ′

using assms(2 ,3 ,4)
proof (induct w arbitrary : q)

case Nil
hence eq : gcopy A q = gcopy A q ′ by simp
with 〈PA P A〉 〈q ∈ Q A〉 〈q ′ ∈ Q A〉 have q = q ′ using inj-on-g unfolding

inj-on-def by simp
thus A ` q −ε→∗ q ′ using 〈q ∈ Q A〉 by blast

next
case (Cons γ u)
then obtain gq1 where
γ: double-init A ` gcopy A q −γ→ gq1 and
u: double-init A ` gq1 −u→∗ gcopy A q ′

by blast
from γ 〈q ∈ Q A〉 〈PA P A〉 obtain q1 where [simp]: gq1 = gcopy A q1 and

γA: A ` q −γ→ q1 unfolding double-init-def
proof (auto dest : gsimp)

fix qq q ′

assume H [of q ′, simplified]:
∧

q1 . [[gcopy A q ′ = gcopy A q1 ; A ` q −γ→
q1]] =⇒ thesis

and q : q ∈ Q A and A: PA P A

25

and γ: A ` qq −γ→ q ′

and eq : gcopy A q = gcopy A qq
from eq A q γ inj-on-g have [simp]: q = qq unfolding inj-on-def by blast
from H γ show thesis by simp

qed
hence [simp]: q1 ∈ Q A using 〈PA P A〉 by blast
from u[simplified] Cons have A ` q1 −u→∗ q ′ by simp
with γA show ?case by auto

qed

lemma double-init-L-1 :
fixes A
assumes A: PA P A
assumes w : A ` p −w→∗ q
assumes p: p ∈ Control P
assumes q : q ∈ Final A
shows ∃ q ′ ∈ Final (double-init A). double-init A ` p −w→∗ q ′

proof (cases w)
case Nil note [simp] = this
from A q have q ∈ Q A by (auto simp: PA-def)
hence q ∈ Q (double-init A) by (auto simp: double-init-def)
with A w p q show ?thesis by (simp add : double-init-def)

next
case (Cons γ u) note [simp] = this
{
from w obtain q1 where g : A ` p −γ→ q1 and u: A ` q1 −u→∗ q by auto
from g have double-init A ` p −γ→ gcopy A q1using p unfolding double-init-def

by (auto simp: gcopy-def fcopy-def)
moreover
from u delta-double-init A have double-init A ` gcopy A q1 −u→∗ gcopy A

q by simp
ultimately
have double-init A ` p −γ # u→∗ gcopy A q by fast

}
moreover
from q have gcopy A q ∈ Final (double-init A) by (simp add : double-init-def)
ultimately
show ?thesis by auto

qed

lemma double-init-g-inv :
fixes A q q ′

assumes A: PA P A
assumes double-init A ` gcopy A q −w→∗ q ′

assumes q : q ∈ Q A
shows ∃ q ′′ ∈ Q A. q ′ = gcopy A q ′′ using assms(2 ,3)

proof (induct w arbitrary : q)
case Nil
hence q ′ = gcopy A q by simp

26

with Nil(2) show ?case by blast
next

case (Cons γ u)
then obtain gq1 where
γ: double-init A ` gcopy A q −γ→ gq1 and
u: double-init A ` gq1 −u→∗ q ′ by blast

from γ obtain q1 where [simp]: gq1 = gcopy A q1 q1 ∈ Q A unfolding
double-init-def

using A by auto
from u[simplified] Cons show ?case by simp

qed

lemma double-init-L-2 :
fixes A
assumes A: PA P A
assumes w : double-init A ` p −w→∗ q
assumes p: p ∈ Control P
assumes q : q ∈ Final (double-init A)
shows ∃ q ′ ∈ Final A. A ` p −w→∗ q ′

proof (cases w)
case Nil note [simp] = this
from A w p have q2 : q ∈ Control P q ∈ Q A by (auto simp: PA-def)
with A q gsimp[of q A] have q ∈ Final A
proof (cases q ∈ Final A)

case True thus ?thesis by assumption
next

case False then obtain q ′ where q = gcopy A q ′ q ′ ∈ Final A
using q unfolding double-init-def by auto

with w p A PA-Final have gcopy A q ′ ∈ Control P q ′ ∈ Q A by auto
hence False using A by (auto dest : gsimp)
thus ?thesis by simp

qed
with w A show ?thesis by auto

next
case (Cons γ u) note [simp] = this
from w obtain gq1 where γ: double-init A ` p −γ→ gq1 and u: double-init
A ` gq1 −u→∗ q

by auto
from γ A p gsimp obtain q1 where γA: A ` p −γ→ q1 and [simp]: gq1 =

gcopy A q1
unfolding double-init-def by auto

hence [simp]: q1 ∈ Q A using A by blast
from double-init-g-inv [OF A u[simplified]] obtain q ′ where [simp]: q ′ ∈ Q A q

= gcopy A q ′ by auto
from delta-double-init-rev [OF A u[simplified]] have uA: A ` q1 −u→∗ q ′ by

simp
moreover
have q ′ ∈ Final A
proof −

27

{
assume q ∈ Final A
hence q ∈ Q A using A by auto
with A have q ′ /∈ Control P by (auto simp: gcopy-def dest : fsimp2)
hence q = q ′ by (simp add : gcopy-def)
hence q ′ ∈ Final A using 〈q ∈ Final A〉 by simp

}
moreover
{

assume q ∈ gcopy A ‘ Final A
then obtain q ′′ where gcopy A q ′ = gcopy A q ′′ q ′′ ∈ Final A by auto
with A 〈q ′ ∈ Q A〉 inj-on-g have q ′ = q ′′ unfolding inj-on-def by blast
with 〈q ′′ ∈ Final A〉 have q ′ ∈ Final A by blast

}
ultimately show ?thesis using q unfolding double-init-def by fastsimp

qed
ultimately show ?thesis using γA by auto

qed

lemma init-no-income-wlog :
fixes A
assumes PA P A
shows PA P (double-init A) init-no-income (double-init A) L A = L (double-init
A)
proof −

from PA-double-init assms show PA P (double-init A) by simp
from double-init-no-income assms show init-no-income (double-init A) unfold-

ing init-no-income-def by blast
from double-init-L-1 double-init-L-2 assms show L A = L (double-init A)

unfolding language-def by auto
qed

A.6.2 Main Lemmas

First lemma

lemma Lemma1 :
assumes PA P A
assumes A 7→∗ A ′
assumes sat A ′
assumes (p ′, w) ⇒∗ (p, v)
assumes (p, v) ∈ L A
shows ∃ q ∈ Final A ′. A ′ ` p ′ −w→∗ q

using assms(4)
proof (induct rule: converse-rtrancl-induct2)

case refl
from assms(2 ,5) show ?case by blast

next
case (step p ′ w p ′′ u)
show ?case

28

proof −
from assms(1 ,2) have [simp]: PA P A ′ by auto
with step (1) have [simp]: p ′′ ∈ Q A ′ by blast
from step(1) obtain γ w1 u1 where

[simp]: w = γ # w1 and [simp]: u = u1 @ w1
and [simp]: (p ′, γ) ↪→ (p ′′, u1)
by (auto simp: PS-transition-rel-def)

from step(3) obtain q where
[simp]: q ∈ Final A ′ and A ′ ` p ′′ −u→∗ q
by blast

then obtain q1 where
Split : A ′ ` p ′′ −u1→∗ q1 A ′ ` q1 −w1→∗ q
by (auto elim: delta-append-elim[where P = P])

hence [simp]: q1 ∈ Q A ′
by (auto simp: delta-mem-constraints[where P = P])

from Split(1) assms step have A ′ ` p ′ −γ→ q1
using sat-iff-nomem[of A ′]
by fastsimp

from this Split(2) show ∃ q ∈ Final A ′. A ′ ` p ′ −w→∗ q by auto
qed

qed

second lemma

special induction lemma

This lemma is used to do induction on the number of times a new rule is
used

lemma new-rule-induct :
assumes [simp]: PA P A and Next : A ′ = A(|∆ := insert (p1 , γ, q ′) (∆ A)|)
assumes A: A ′ ` p −w→∗ q and [simp]: p ∈ Control P
assumes Base-case:

∧
p w . [[p ∈ Control P; A ` p −w→∗ q]] =⇒ P p w

assumes Step-case:∧
u v p. [[
A ` p −u→∗ p1 ;
p ∈ Control P;
A ′ ` q ′ −v→∗ q ;∧

p2 w2 . A ` p2 −w2→∗ q ′ =⇒ p2 ∈ Control P =⇒ P p2 (w2 @v)
]] =⇒ P p (u@γ#v)
shows P p w

proof −
{

fix v
have

∧
qm u p. [[p ∈ Control P; A ` p −u→∗ qm; A ′ ` qm −v→∗ q]] =⇒ P

p (u@v)
proof (induct v)

case (Nil qh u) with Base-case show ?case by simp
next

case (Cons e v qm u) note IHP=this

29

then obtain qh where Split : A ′ ` qm −e→ qh A ′ ` qh −v→∗ q
by (auto intro: delta1-mem-constraints[where P = P])

show ?case proof (cases (qm,e,qh) = (p1 ,γ,q ′))
case False
with Split(1) Next have A ` qm −e→ qh by auto
hence A ` qm −[e]→∗ qh by (simp add : delta-single2 [where P = P])
with IHP(3) have A ` p −u@[e]→∗ qh by blast
with IHP(1 ,2) Split have P p ((u@[e])@v) by blast
thus ?thesis by simp

next
case True note CASE=this
with Split IHP have A ` p −u→∗ p1 ∧ A ′ ` q ′ −v→∗ q

and
∧

uu. A ` p −uu→∗ q ′ =⇒ P p (uu@v) by auto
with Step-case CASE Cons show ?thesis by auto

qed
qed

} note C =this
from A C [of p [] p w] show ?thesis by (auto simp: delta.base[of p A] PA-Control [of
P A p])
qed

lemma ex-monotonic: [[∃ x . P x ;
∧

x . P x =⇒ P ′ x]] =⇒ ∃ x . P ′ x by blast

lemma Lemma2 :
assumes A 7→∗ A ′
and init-no-income A
and A ′ ` p −w→∗ q
and [simp]: PA P A
and p ∈ Control P
shows ∃ p ′ w ′. (p, w) ⇒∗ (p ′, w ′) ∧ A ` p ′ −w ′→∗ q ∧ (q ∈ Control P −→

w ′ = ε) using assms
proof (induct arbitrary : p w q rule: rtrancl-induct)

case base
thus ?case
proof (cases w = ε)

from base(4)[simp] have [simp]: p ∈ Q A by (simp add : PA-Control [where
P = P])

case False
hence [simp]: butlast w @ [last w] = w by simp
from base(2) obtain q1 where A ` p −butlast w→∗ q1

and A ` q1 −last w→ q
using delta-append-elim[of A p butlast w [last w] - - P]
by auto

with 〈init-no-income A〉 have ¬ q ∈ Control P by (auto intro: init-no-income-elim)
— I don’t understand why but it has to be used as an intro rule...

with 〈A ` p −w→∗ q〉 show ?thesis by blast
qed auto — case w = ε is trivial

next
let ?P = λ p w q . ∃ p ′ w ′.

30

(p, w) ⇒∗ (p ′, w ′) ∧
A ` p ′ −w ′→∗ q ∧
(q ∈ Control P −→ w ′ = ε)

case (step B A ′)
from step(1) have [simp]: PA P B by auto
from 〈B 7→ A ′〉 obtain p1 γ q ′ p2 w2 where

[simp]: p1 ∈ Control P γ ∈ Σ P q ′ ∈ Q B p2 ∈ Control P
and [simp]: A ′ = B(|∆ := insert (p1 , γ, q ′) (∆ B)|)
and (p1 , γ) ↪→ (p2 , w2)
and Bw2 : B ` p2 −w2→∗ q ′ and A ′ ` p1 −γ→ q ′

by (auto simp: pre-sat-rel-def)
let ?A ′ = B(|∆ := insert (p1 , γ, q ′) (∆ B)|)
from step(2) have [simp]: PA P ?A ′ by auto
with step show ?case
proof (induct rule: new-rule-induct [of B ?A ′ p1 γ q ′ p w q], simp-all)

fix u v p
assume A ′v : ?A ′ ` q ′ −v→∗ q hence [simp]: set v ⊆ Σ P

by (auto simp: delta-word-mem-constraints[of ?A ′ q ′ v q P])
assume

∧
p w q . [[B ` p −w→∗ q ; p ∈ Control P]] =⇒ ?P p w q

B ` p −u→∗ p1
p ∈ Control P

hence Pu: ?P p u p1 by blast
assume IH :

∧
p2 w2 . [[B ` p2 −w2→∗ q ′;

∧
p w q . [[B ` p −w→∗ q ; p ∈

Control P]] =⇒ True;
?A ′ ` p2 −w2 @ v→∗ q ; p2 ∈ Control P]]
=⇒ ?P p2 (w2 @ v) q

{
from Pu have (p, u) ⇒∗ (p1 , ε) by simp
hence (p, u @ γ # v) ⇒∗ (p1 , γ # v)

using PS-transition-tr-append [of γ # v p u p1 ε]
by simp

moreover
from 〈(p1 , γ) ↪→ (p2 , w2)〉 have (p1 , γ # v) ⇒ (p2 , w2 @ v)

by (auto simp: PS-transition-rel-def)
ultimately have (p, u @ γ # v) ⇒∗ (p2 , w2 @ v) by simp

}
moreover
{

from Bw2 〈B 7→ A ′〉 have ?A ′ ` p2 −w2→∗ q ′

by (auto dest : pre-sat-delta)
with A ′v have ?A ′ ` p2 −w2 @ v→∗ q

by blast
moreover
have

∧
p w q . [[B ` p −w→∗ q ; p ∈ Control P]] =⇒ True by simp

ultimately have ?P p2 (w2 @ v) q
using IH Bw2
by simp

}

31

ultimately
show ?P p (u @ γ # v) q

by (auto elim!: ex-monotonic)
qed

qed

A.6.3 Correctness

theorem sat-correct :
assumes init-no-income A
and A 7→∗ A ′
and sat A ′
and PA P A
shows L A ′ = pre∗ (L A)

proof auto
fix p w
assume (p,w) ∈ pre∗ (L A)
then obtain p ′ w ′ where

(p, w) ⇒∗ (p ′, w ′) (p ′, w ′) ∈ L A
and [simp]: p ∈ Control P
by (auto simp: prestar-def)

thus (p, w) ∈ L A ′
unfolding language-def
using Lemma1 and assms
by blast

next
fix p w
from 〈A 7→∗ A ′〉 have [simp]: Final A ′ = Final A by blast
assume (p, w) ∈ L A ′
then obtain q where
A ′ ` p −w→∗ q and [simp]: p ∈ Control P and [simp]:q ∈ Final A ′
unfolding language-def by blast

with Lemma2 assms obtain p ′ w ′ where (p, w) ⇒∗ (p ′, w ′) A ` p ′ −w ′→∗ q
by metis

thus (p, w) ∈ pre∗ L A
unfolding language-def prestar-def
using 〈q ∈ Final A ′〉
by (subgoal-tac p ′ ∈ Control P, auto)

qed

A.6.4 Termination

lemma wf-bounded-measure:
fixes ub :: ′a ⇒ nat and f :: ′a ⇒ nat
assumes

∧
a b. (b,a) : r =⇒ ub b ≤ ub a ∧ ub a ≥ f b ∧ f b > f a

shows wf r
apply (rule wf-subset [OF wf-measure[of λa. ub a − f a]])
apply (auto dest : assms)
done

32

lemma wf-bounded-set :
fixes ub :: ′a ⇒ ′b set and f :: ′a ⇒ ′b set
assumes

∧
a b. (b,a) : r =⇒

finite(ub a) ∧ ub b ⊆ ub a ∧ ub a ⊇ f b ∧ f b ⊃ f a
shows wf r
apply (rule wf-bounded-measure[of r λa. card(ub a) λa. card(f a)])
apply (drule assms)
apply (blast intro: card-mono finite-subset psubset-card-mono dest :

psubset-eq [THEN iffD2])
done

theorem insert-new : x /∈ A =⇒ A 6= insert x A by blast

theorem wf-sat-rel : wf {(A ′, A). A 7→ A ′}
proof (intro wf-bounded-set [of - λ A. Q A × Σ P × Q A ∆], simp)

fix A A ′
assume A 7→ A ′
with pre-sat-PA pre-sat-Q pre-sat-delta1 pre-sat-Delta insert-new show

finite (Q A × Σ P × Q A) ∧
Q A ′ × Σ P × Q A ′ ⊆ Q A × Σ P × Q A ∧
∆ A ′ ⊆ Q A × Σ P × Q A ∧
∆ A ⊂ ∆ A ′

unfolding PA-def PS-def
apply auto
by (metis 〈A 7→ A ′〉 in-measures(1) insert-new)

qed
corollary saturation:

fixes A
assumes PA P A
shows ∃ A ′. PA P A ′ ∧ A 7→∗ A ′ ∧ sat A ′

unfolding sat-def using assms
proof (induct rule: wf-induct [OF wf-sat-rel], auto)

fix x
assume H0 : PA P x
assume H1 : ∀ y . x 7→ y −→ PA P y −→ (∃A ′. PA P A ′ ∧ y 7→∗ A ′ ∧ PA P
A ′ ∧ (∀ z . ¬ A ′ 7→ z))

show ∃A ′. PA P A ′ ∧ x 7→∗ A ′ ∧ PA P A ′ ∧ (∀ z . ¬ A ′ 7→ z)
proof (cases ∀ z . ¬ x 7→ z)

case True with H0 show ?thesis by blast
next

case False
then obtain y where H3 : x 7→ y by blast
with H0 have PA P y by auto
from H1 [rule-format , where y = y , OF H3 this] obtain z

where PA P z and y 7→∗ z and
∧

w . ¬ z 7→ w
by blast

with H3 show ?thesis by auto
qed

qed

33

A.6.5 regular C =⇒ regular (pre∗ C)

corollary regular C =⇒ regular (pre∗ C)
proof −

assume regular C
then obtain A where PA P A and L A = C

unfolding regular-def by blast
then obtain A ′ where PA P A ′ and L A = L A ′ and init-no-income A ′

using init-no-income-wlog by metis
from 〈PA P A ′〉 obtain A ′′ where A ′ 7→∗ A ′′ and sat A ′′ PA P A ′′

using saturation by blast
with 〈PA P A ′〉 and 〈init-no-income A ′〉 and sat-correct have L A ′′ = pre∗ (L
A ′)

by simp
with 〈L A = C 〉 and 〈L A = L A ′〉 have L A ′′ = pre∗ C

by simp
with 〈PA P A ′′〉 show regular (pre∗ C)

unfolding regular-def by blast
qed

end

end

34

References

[1] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model-checking. In International Con-
ference on Concurrency Theory, pages 135–150, 1997.

[2] S. Kiefer, S. Schwoon, and D. Suwimonteerabuth. Moped - a model-
checker for pushdown systems. http://www.fmi.uni-stuttgart.de/szs/
tools/moped/.

[3] X. Leroy. Ocaml. http://caml.inria.fr/ocaml/.

[4] T. Nipkow, L. C. Paulson, and M. Wenzel. A proof assistant for higher-
order logic, 2011.

[5] L. Paulson, T. Nipkow, and M. Wenzel. Isabelle. http://isabelle.in.tum.
de/.

[6] S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische
Universität München, 2002.

[7] M. Wenzel. The isabelle/isar reference manual, 2011.

35

http://www.fmi.uni-stuttgart.de/szs/tools/moped/
http://www.fmi.uni-stuttgart.de/szs/tools/moped/
http://caml.inria.fr/ocaml/
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/

