Syzygies among reduction operators

Cyrille Chenavier

Université Paris-Est Marne-la-Vallée
Laboratoire d’informatique Gaspard-Monge

September 10, 2017
Plan

I. **Motivations**
 - Various notions of syzygy
 - Computation of syzygies

II. **Reduction operators**
 - Linear algebra, syzygies and useless reductions
 - Reduction operators and labelled reductions

III. **Lattice description of syzygies**
 - Lattice structure of reduction operators
 - Construction of a basis of syzygies
 - A lattice criterion for rejecting useless reductions
I. Motivations
Various notions of syzygy

Consider the following questions:

- **Standardisation problems**: given two vertices in an abstract rewriting system

\[\begin{array}{c}
\downarrow \downarrow \downarrow \downarrow \\
V \\
\uparrow \uparrow \uparrow \uparrow \\
V'
\end{array} \]

- **Construction of free resolutions**: given an augmented algebra

\[A \langle X | R \rangle \rightarrow A \langle S \rangle \rightarrow A \langle X \rangle \rightarrow \epsilon \rightarrow K \rightarrow 0, \]

- **Detecting useless critical pairs**: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

A method for studying these problems:

compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy, identity among relations, ...).
Various notions of syzygy

Consider the following questions:

- **Standardisation problems**: given two vertices in an abstract rewriting system how to choose a "standard" path between them?
Various notions of syzygy

Consider the following questions:

- **Standardisation problems**: given two vertices in an abstract rewriting system

 ![Diagram of two vertices](image)

 how to choose a "standard" path between them?

- **Construction of free resolutions**: given an augmented algebra $A \langle X \mid R \rangle$ and

 $$A[R] \xrightarrow{d} A[X] \xrightarrow{d} A \xrightarrow{\varepsilon} K \rightarrow 0,$$

 how to extend the beginning of a resolution of the ground field?

- **Detecting useless critical pairs**: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

- A method for studying these problems:

 - compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy, identity among relations, ···).
Consider the following questions:

- **Standardisation problems**: given two vertices in an abstract rewriting system

 ![Diagram of standardisation problems]

 how to choose a "standard" path between them?

- **Construction of free resolutions**: given an augmented algebra \(A \langle X \mid R \rangle \) and

 \[
 A[S] \xrightarrow{d} A[R] \xrightarrow{d} A[X] \xrightarrow{d} A \xrightarrow{\varepsilon} K \rightarrow 0,
 \]

 how to extend the beginning of a resolution of the ground field?
Various notions of syzygy

- Consider the following questions:
 - **Standardisation problems**: given two vertices in an abstract rewriting system how to choose a "standard" path between them?
 - **Construction of free resolutions**: given an augmented algebra $A \langle X \mid R \rangle$ and
 \[A[S] \xrightarrow{d} A[R] \xrightarrow{d} A[X] \xrightarrow{d} A \xrightarrow{\varepsilon} K \xrightarrow{} 0, \]
 how to extend the beginning of a resolution of the ground field?
 - **Detecting useless critical pairs**: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?
Various notions of syzygy

▶ Consider the following questions:

▶ **Standardisation problems**: given two vertices in an abstract rewriting system

![Diagram of a graph with vertices v and v’ connected by paths](image)

how to choose a "standard" path between them?

▶ **Construction of free resolutions**: given an augmented algebra $A \langle X | R \rangle$ and

$$
A[S] \xrightarrow{d} A[R] \xrightarrow{d} A[X] \xrightarrow{d} A \xrightarrow{c} K \rightarrow 0,$$

how to extend the beginning of a resolution of the ground field?

▶ **Detecting useless critical pairs**: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

▶ A method for studying these problems:

▶ compute a generating set for the associated notion of syzygy
Various notions of syzygy

- Consider the following questions:
 - **Standardisation problems**: given two vertices in an abstract rewriting system
 \[\cdots \rightarrow v \rightarrow v' \rightarrow \cdots \]
 how to choose a "standard" path between them?
 - **Construction of free resolutions**: given an augmented algebra \(A \langle X \mid R \rangle \) and
 \[A[S] \xrightarrow{d} A[R] \xrightarrow{d} A[X] \xrightarrow{d} A \xrightarrow{\varepsilon} K \rightarrow 0, \]
 how to extend the beginning of a resolution of the ground field?
 - **Detecting useless critical pairs**: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

- A method for studying these problems:
 - compute a generating set for the associated notion of syzygy (two-dimensional cell)
Various notions of syzygy

- Consider the following questions:
 - **Standardisation problems**: given two vertices in an abstract rewriting system
 \[v \rightarrow v' \]
 - **Construction of free resolutions**: given an augmented algebra \(A \langle X \mid R \rangle \) and
 \[A[S] \xrightarrow{d} A[R] \xrightarrow{d} A[X] \xrightarrow{d} A \xrightarrow{\varepsilon} K \xrightarrow{} 0, \]
 - **Detecting useless critical pairs**: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

- A method for studying these problems:
 - compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy)
Various notions of syzygy

Consider the following questions:

- **Standardisation problems**: given two vertices in an abstract rewriting system

 \[
 v \rightarrow v' \rightarrow v' \rightarrow v' \rightarrow v' \rightarrow v' \rightarrow v
 \]

 how to choose a "standard" path between them?

- **Construction of free resolutions**: given an augmented algebra \(A \langle X \mid R \rangle \) and

 \[
 A[S] \xrightarrow{d} A[R] \xrightarrow{d} A[X] \xrightarrow{d} A \xrightarrow{\varepsilon} K \rightarrow 0,
 \]

 how to extend the beginning of a resolution of the ground field?

- **Detecting useless critical pairs**: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

A method for studying these problems:

- compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy, **identity among relations**

Université Paris-Est Marne-la-Vallée

Syzygies among reduction operators
Various notions of syzygy

Consider the following questions:

- **Standardisation problems**: given two vertices in an abstract rewriting system

 ![Diagram of standardisation problems](image)

 how to choose a "standard" path between them?

- **Construction of free resolutions**: given an augmented algebra $A \langle X \mid R \rangle$ and

 $A[S] \xrightarrow{d} A[R] \xrightarrow{d} A[X] \xrightarrow{d} A \xrightarrow{\epsilon} K \rightarrow 0,$

 how to extend the beginning of a resolution of the ground field?

- **Detecting useless critical pairs**: how to obtain a criterion for rejecting useless critical pairs during the completion procedure?

A method for studying these problems:

- compute a generating set for the associated notion of syzygy (two-dimensional cell, homological syzygy, identity among relations, ⋯).
Computation of syzygies

- Consider an algebra \(A \) presented by \(\langle X \mid R \rangle \).
Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R \rangle$.
 - Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
Consider an algebra \(A \) presented by \(\langle X \mid R \rangle \).

Question: how are the syzygies of \(\langle X \mid R \rangle \) generated?

If \(A \) is homogeneous, a candidate is the Koszul dual \(A^! \langle X^* \mid R^\perp \rangle \).
Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R \rangle$.
 - Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- If A is homogeneous, a candidate is the Koszul dual $A^! \langle X^* \mid R^\perp \rangle$.
- Methods from rewriting theory

$\text{Université Paris-Est Marne-la-Vallée}$
Motivations

Reduction operators

Lattice description of syzygies

Computation of syzygies

Consider an algebra A presented by $\langle X \mid R \rangle$.

Question: how are the syzygies of $\langle X \mid R \rangle$ generated?

If A is homogeneous, a candidate is the Koszul dual $A^! \langle X^* \mid R^\perp \rangle$.

Methods from rewriting theory:

If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R \rangle$.
 - Question: how are the syzygies of $\langle X \mid R \rangle$ generated?

- If A is homogeneous, a candidate is the Koszul dual $A^! \langle X^* \mid R^\perp \rangle$.

- Methods from rewriting theory:
 - If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - If R is a not a Gröbner basis, apply the completion-reduction procedure.
Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R \rangle$.
 - Question: how are the syzygies of $\langle X \mid R \rangle$ generated?

- If A is homogeneous, a candidate is the Koszul dual $A^! \langle X^* \mid R^\perp \rangle$.

- Methods from rewriting theory:
 - If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - If R is a not a Gröbner basis, apply the completion-reduction procedure:
 - Complete R into a Gröbner basis \overline{R}.
Computation of syzygies

Consider an algebra A presented by $\langle X \mid R \rangle$.

- Question: how are the syzygies of $\langle X \mid R \rangle$ generated?

If A is homogeneous, a candidate is the Koszul dual $A^! \langle X^* \mid R^\perp \rangle$.

Methods from rewriting theory:

- If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
- If R is a not a Gröbner basis, apply the completion-reduction procedure:
 - Complete R into a Gröbner basis \overline{R}.
 - Let \overline{S} be the set of critical pairs of \overline{R}.
Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R \rangle$.
 - Question: how are the syzygies of $\langle X \mid R \rangle$ generated?
- If A is homogeneous, a candidate is the Koszul dual $A^! \langle X^* \mid R^\perp \rangle$.
- Methods from rewriting theory:
 - If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - If R is a not a Gröbner basis, apply the completion-reduction procedure:
 - Complete R into a Gröbner basis \overline{R}.
 - Let \overline{S} be the set of critical pairs of \overline{R}.
 - Reduce \overline{S} and \overline{R} (algebraic Morse theory, homotopical reduction, ···).
Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R \rangle$.
 - Question: how are the syzygies of $\langle X \mid R \rangle$ generated?

- If A is homogeneous, a candidate is the Koszul dual $A^! \langle X^* \mid R^\perp \rangle$.

- Methods from rewriting theory:
 - If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - If R is a not a Gröbner basis, apply the completion-reduction procedure:
 - Complete R into a Gröbner basis \overline{R}.
 - Let \overline{S} be the set of critical pairs of \overline{R}.
 - Reduce \overline{S} and \overline{R} (algebraic Morse theory, homotopical reduction, · · ·).

- Our goals:
Consider an algebra A presented by $\langle X \mid R \rangle$.

Question: how are the syzygies of $\langle X \mid R \rangle$ generated?

If A is homogeneous, a candidate is the Koszul dual $A^! \langle X^* \mid R^\perp \rangle$.

Methods from rewriting theory:

- If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
- If R is a not a Gröbner basis, apply the completion-reduction procedure:
 - Complete R into a Gröbner basis \bar{R}.
 - Let \bar{S} be the set of critical pairs of \bar{R}.
 - Reduce \bar{S} and \bar{R} (algebraic Morse theory, homotopical reduction, · · ·).

Our goals:

- Compute syzygies of abstract rewriting systems using the lattice structure of reduction operators.
Computation of syzygies

- Consider an algebra A presented by $\langle X \mid R \rangle$.
 - Question: how are the syzygies of $\langle X \mid R \rangle$ generated?

- If A is homogeneous, a candidate is the Koszul dual $A^! \langle X^* \mid R^\perp \rangle$.

- Methods from rewriting theory:
 - If R is a Gröbner basis, the syzygies are spanned by critical pairs of R.
 - If R is a not a Gröbner basis, apply the completion-reduction procedure:
 - Complete R into a Gröbner basis \overline{R}.
 - Let \overline{S} be the set of critical pairs of \overline{R}.
 - Reduce \overline{S} and \overline{R} (algebraic Morse theory, homotopical reduction, \cdots).

- Our goals:
 - Compute syzygies of abstract rewriting systems using the lattice structure of reduction operators.
 - Deduce a lattice criterion for rejecting useless reductions during the completion procedure.
II. Reduction operators
Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.
Linear algebra, syzygies and useless reductions

▶ We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

▶ e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
A' &= e - c, \\
B' &= c - b, \\
C' &= e - b, \\
\vdots \\
F' &= C - B - A + A'.
\end{align*}
\]

iii. Compute a row echelon basis of the syzygies.
iv. Remove the reductions corresponding to leading terms of syzygies.

The reductions \(C\) and \(F\) are useless!
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
A & \rightarrow C & D \\
B & \rightarrow b & a \\
C & \rightarrow e & D \\
E & \rightarrow e & B \\
F & \rightarrow F & \leftarrow E \\
\end{align*}
\]

- The reductions \(C\) and \(F\) are useless!
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{array}{c}
e \\
A & C & D \\
\downarrow & \downarrow & \downarrow \\
c & b & a \\
\downarrow & \downarrow & \downarrow \\
B & N & e \\
\downarrow & \downarrow & \downarrow \\
d & E & F \\
\end{array}
\]

- The reductions \(C\) and \(F\) are useless!
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

- The reductions \(C\) and \(F\) are useless!
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
A' &= e - c, \\
B' &= c - b, \\
C' &= e - b, \\
D' &= e - a, \\
E' &= e - d, \\
F' &= e - b + A'
\end{align*}
\]

- The reductions \(C\) and \(F\) are useless!
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
A' &= e - c, \\
B' &= c - b, \\
C' &= e - b, \\
\vdots \\
F' &= E' - D' + A'.
\end{align*}
\]

- The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
A &\rightarrow C \\
B &\rightarrow D \\
C &\rightarrow E \\
D &\rightarrow F
\end{align*}
\]

- The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

i. Replace each reduction by the difference between its source and its target.
Linear algebra, syzygies and useless reductions

We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions:

\[
\begin{align*}
A & \rightarrow C \\
B & \rightarrow a \\
C & \rightarrow d \\
D & \rightarrow \downarrow \\
E & \rightarrow \downarrow \\
F & \rightarrow \downarrow
\end{align*}
\]

\text{i. } A' = e - c

- The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

- Replace each reduction by the difference between its source and its target.
Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.
 - e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{array}{c}
e \\
\downarrow \\
A \\
\downarrow \\
c \\
\downarrow \\
B \\
\downarrow \\
b \\
\downarrow \\
a \\
\downarrow \\
A' = e - c, \quad B' = c - b
\end{array}
\]

- The reductions \(C\) and \(F\) are useless!

- How to detect useless reductions using syzygies and linear algebra?
 - i. Replace each reduction by the difference between its source and its target.
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
\text{i. } A' &= e - c, & B' &= c - b, & C' &= e - b \\
\text{ii. } A' = e - c, & B' = c - b, & C' = e - b \\
\text{iii. } C' - B' - A' & \text{ and } F' - E' - D' + A'.
\end{align*}
\]

The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

- Replace each reduction by the difference between its source and its target.
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
A' &= e - c, \\
B' &= c - b, \\
C' &= e - b, \\ &\cdots
\end{align*}
\]

The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

- Replace each reduction by the difference between its source and its target.
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{array}{ccc}
A & C & D \\
\downarrow & \downarrow & \downarrow \\
B & e & D \\
\end{array}
\]

\[
\begin{array}{ccc}
C & D & A \\
\downarrow & \downarrow & \downarrow \\
B & c & e \\
\end{array}
\]

\[
\begin{array}{ccc}
B & e & C \\
\downarrow & \downarrow & \downarrow \\
A & b & d \\
\end{array}
\]

\[
\begin{array}{ccc}
E & F & C \\
\downarrow & \downarrow & \downarrow \\
D & a & f \\
\end{array}
\]

\[
\begin{array}{ccc}
D & F & E \\
\downarrow & \downarrow & \downarrow \\
C & b & c \\
\end{array}
\]

- The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

1. Replace each reduction by the difference between its source and its target.
2. Introduce a terminating order on labels.
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{array}{c}
\text{A} \\
\downarrow \\
\text{C} \\
\downarrow \\
\text{D} \\
\downarrow \\
\text{E} \\
\downarrow \\
\text{F} \\
\downarrow \\
\text{B} \\
\downarrow \\
\text{c} \\
\downarrow \\
\text{d} \\
\downarrow \\
\text{a} \\
\downarrow \\
\text{b} \\
\downarrow \\
\text{e} \\
\end{array}
\]

- i. \(A' = e - c\), \(B' = c - b\), \(C' = e - b\), \ldots
- ii. \(A \sqsubseteq B \sqsubseteq \cdots \sqsubseteq F\).

- The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

- i. Replace each reduction by the difference between its source and its target.
- ii. Introduce a terminating order on labels.
Motivations
Reduction operators
Lattice description of syzygies

Linear algebra, syzygies and useless reductions

- We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.
 - e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{array}{c}
\text{e} \\
\text{A} \Downarrow \downarrow \Downarrow \text{D} \\
\text{c} \rightarrow \text{b} \rightarrow \text{a} \\
\text{B} \rightarrow \rightarrow \rightarrow \text{F} \\
\text{d} \\
\text{E} \rightarrow \rightarrow \rightarrow \text{F}
\end{array}
\]

 i. \(A' = e - c, \quad B' = c - b, \quad C' = e - b, \cdots\)
 ii. \(A \sqsubseteq B \sqsubseteq \cdots \sqsubseteq F.\)

 - The reductions \(C\) and \(F\) are useless!

- How to detect useless reductions using syzygies and linear algebra?
 i. Replace each reduction by the difference between its source and its target.
 ii. Introduce a terminating order on labels.
 iii. Compute a row echelon basis of the syzygies.
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
A' &= e - c, \\
B' &= c - b, \\
C' &= e - b, \\
&\cdots \\
i. &A' \sqsubseteq B' \sqsubseteq \cdots \sqsubseteq F.
\end{align*}
\]

- The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

- Replace each reduction by the difference between its source and its target.
- Introduce a terminating order on labels.
- Compute a row echelon basis of the syzygies.
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
 A' &= e - c, \quad B' = c - b, \quad C' = e - b, \quad \ldots \\
 i. \quad A &\sqsubset B \sqsubset \cdots \sqsubset F. \\
 ii. \quad C' - B' - A' \quad \text{and} \quad F' - E' - D' + A'.
\end{align*}
\]

- The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

- i. Replace each reduction by the difference between its source and its target.
- ii. Introduce a terminating order on labels.
- iii. Compute a row echelon basis of the syzygies.
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
\text{i. } & \quad A' = e - c, \quad B' = c - b, \quad C' = e - b, \quad \ldots \\
\text{ii. } & \quad A \sqsubseteq B \sqsubseteq \cdots \sqsubseteq F.
\end{align*}
\]

\[
\begin{align*}
\text{iii. } & \quad C' - B' - A' \quad \text{and} \quad F' - E' - D' + A'.
\end{align*}
\]

- The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

- i. Replace each reduction by the difference between its source and its target.
- ii. Introduce a terminating order on labels.
- iii. Compute a row echelon basis of the syzygies.
- iv. Remove the reductions corresponding to leading terms of syzygies.
We consider abstract rewriting systems \((V, \rightarrow)\) such that \(V\) is a vector space and every reduction is labelled.

- e.g., \(V\) is spanned by the letters \(\{a, b, c, d, e\}\) submitted to the reductions

\[
\begin{align*}
\text{i. } A' & = e - c, \\
\text{ii. } A & \sqsubseteq B \sqsubseteq \cdots \sqsubseteq F.
\end{align*}
\]

- \(C' - B' - A'\) and \(F' - E' - D' + A'\).

- \(C\) and \(F\).

The reductions \(C\) and \(F\) are useless!

How to detect useless reductions using syzygies and linear algebra?

- i. Replace each reduction by the difference between its source and its target.
- ii. Introduce a terminating order on labels.
- iii. Compute a row echelon basis of the syzygies.
- iv. Remove the reductions corresponding to leading terms of syzygies.
Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G, <)$.

Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G, <)$.

Definition.

- An endomorphism T of V is a **reduction operator** if
 - T is a projector,
 - $\forall g \in G$, we have either $T(g) = g$ or $\text{lt}(T(g)) < g$.

Université Paris-Est Marne-la-Vallée

Syzgies among reduction operators
We fix V is a vector space equipped with a well-ordered basis $(G, <)$.

Definition.

- An endomorphism T of V is a reduction operator if
 - T is a projector,
 - $\forall g \in G$, we have either $T(g) = g$ or $\text{lt}(T(g)) < g$.
- The set of reduction operators is denoted by $\text{RO}(G, <)$.
Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G, <)$.

Definition.

- An endomorphism T of V is a reduction operator if
 - T is a projector,
 - $\forall g \in G$, we have either $T(g) = g$ or $\text{lt}(T(g)) < g$.

- The set of reduction operators is denoted by $\text{RO}(G, <)$.

Labelled reductions.

- A reduction operator T induces the labelled reductions $v \xrightarrow{\ell_{T,v}} T(v)$.
Motivations

Reduction operators

Lattice description of syzygies

Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G, <)$.

Definition.

- An endomorphism T of V is a reduction operator if
 - T is a projector,
 - $\forall g \in G$, we have either $T(g) = g$ or $\text{lt} (T(g)) < g$.

- The set of reduction operators is denoted by $\text{RO} (G, <)$.

Labelled reductions.

- A reduction operator T induces the labelled reductions $v \xrightarrow{\ell_{T,v}} T(v)$.

- The labels of reductions induced by $F = \{T_1, \cdots, T_n\} \subset \text{RO} (G, <)$ are ordered by:
 \[
 \ell_{T_i,u} \sqsubseteq \ell_{T_j,v} := (i < j) \lor (i = j \land \text{lt} (u) < \text{lt} (v)).
 \]
Reduction operators and labelled reductions

- We fix V is a vector space equipped with a well-ordered basis $(G, <)$.

Definition.

- An endomorphism T of V is a reduction operator if
 - T is a projector,
 - $\forall g \in G$, we have either $T(g) = g$ or $\text{lt}(T(g)) < g$.

- The set of reduction operators is denoted by $\text{RO}(G, <)$.

Labelled reductions.

- A reduction operator T induces the labelled reductions $v \xrightarrow{\ell_{T,v}} T(v)$.

- The labels of reductions induced by $F = \{T_1, \cdots, T_n\} \subset \text{RO}(G, <)$ are ordered by:
 $$\ell_{T_i,u} \sqsubseteq \ell_{T_j,v} := (i < j) \lor (i = j \land \text{lt}(u) < \text{lt}(v)).$$
We fix V is a vector space equipped with a well-ordered basis (G, \prec).

Definition.

- An endomorphism T of V is a **reduction operator** if
 - T is a projector,
 - $\forall g \in G$, we have either $T(g) = g$ or $\operatorname{lt}(T(g)) < g$.
- The set of reduction operators is denoted by $\mathbf{RO}(G, \prec)$.

Labelled reductions.

- A reduction operator T induces the labelled reductions $v \xrightarrow{\ell_{T,v}} T(v)$.
- The labels of reductions induced by $F = \{T_1, \cdots, T_n\} \subset \mathbf{RO}(G, \prec)$ are ordered by:
 $$\ell_{T_i,u} \sqsubset \ell_{T_j,v} := (i < j) \lor (i = j \land \operatorname{lt}(u) < \operatorname{lt}(v)).$$
Example

\[G = \left\{ a < b < c < d < e \right\} \text{ and} \]

\[∵ \]

\[\begin{array}{c}
 e \\
 \downarrow \quad \downarrow \quad \downarrow \\
 c \quad \quad \quad b \\
 \quad \quad \quad \quad \uparrow \quad \quad \quad \quad \uparrow \\
 d \quad \quad \quad a \\
 \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
 \quad \ quatre
Example

$G = \left\{ a < b < c < d < e \right\}$ and

We obtain the following order on labels:
Example

- $G = \{a < b < c < d < e\}$ and

- We obtain the following order on labels:

 $\ell_{T_1,e}$
Example

\[G = \{ a < b < c < d < e \} \text{ and} \]

\[
\begin{array}{c}
\text{\uparrow} e \\
\ell_{T_1,e} \\
\downarrow T_2 \\
b \\
\ell_{T_2,c} \\
\downarrow T_4 \\
c \\
\downarrow T_5 \\
d \\
\uparrow a
\end{array}
\]

- We obtain the following order on labels:

\[\ell_{T_1,e} \sqsubseteq \ell_{T_2,c} \]
Example

Let $G = \{ a < b < c < d < e \}$ and

\[
\begin{array}{c}
\ell_{T_1,e} & \ell_{T_2,e} \\
\downarrow & \downarrow \\
T_4 & T_5 \\
\ell_{T_2,c} & \ell_{T_1,e} \\
\downarrow & \downarrow \\
c & b \\
a & d
\end{array}
\]

We obtain the following order on labels:

\[
\ell_{T_1,e} \sqsubseteq \ell_{T_2,c} \sqsubseteq \ell_{T_2,e}
\]
Example

\(G = \{ a < b < c < d < e \} \) and

We obtain the following order on labels:

\[\ell_{T_1,e} \sqsubseteq \ell_{T_2,c} \sqsubseteq \ell_{T_2,e} \sqsubseteq \ell_{T_3,e} \]
Example

$G = \{ a < b < c < d < e \}$ and

We obtain the following order on labels:

$\ell_{T_1,e} \sqsubseteq \ell_{T_2,c} \sqsubseteq \ell_{T_2,e} \sqsubseteq \ell_{T_3,e} \sqsubseteq \ell_{T_4,d}$
Example

\[G = \{ a < b < c < d < e \} \text{ and } \]

\[
\begin{array}{c}
\text{c} \\
\ell_{T2,c}
\end{array}
\quad
\begin{array}{c}
\text{b} \\
\ell_{T2,e}
\end{array}
\quad
\begin{array}{c}
\text{a}
\end{array}
\quad
\begin{array}{c}
\text{d}
\ell_{T5,d}
\end{array}
\]

\[
\begin{array}{c}
\text{e}
\ell_{T1,e}
\end{array}
\quad
\begin{array}{c}
\text{e}
\ell_{T3,e}
\end{array}
\quad
\begin{array}{c}
\text{c}
\ell_{T2,c}
\end{array}
\quad
\begin{array}{c}
\text{d}
\ell_{T5,d}
\end{array}
\]

\[\text{We obtain the following order on labels:} \]

\[\ell_{T1,e} \sqsubseteq \ell_{T2,c} \sqsubseteq \ell_{T2,e} \sqsubseteq \ell_{T3,e} \sqsubseteq \ell_{T4,d} \sqsubseteq \ell_{T5,d}. \]
III. Lattice description of syzygies
Definition of syzygies

Syzygies.

- The space of **syzygies** of \(F = \{ T_1, \cdots, T_n \} \subseteq \text{RO}(G, <) \) is the kernel of

\[
\ker(T_1) \times \cdots \times \ker(T_n) \longrightarrow V, \quad (v_1, \cdots, v_n) \mapsto v_1 + \cdots + v_n.
\]
Definition of syzygies

Syzygies.

- The space of syzygies of $F = \{ T_1, \cdots, T_n \} \subset \text{RO} (G, <)$ is the kernel of
 $$\ker (T_1) \times \cdots \times \ker (T_n) \longrightarrow V, \quad (v_1, \cdots, v_n) \longmapsto v_1 + \cdots + v_n.$$

- The space of syzygies of F is denoted by $\text{syz} (F)$.

Example.

![Diagram showing the reduction operators and their effects on elements c, d, a, b, e.](image-url)
Definition of syzygies

Syzygies.

- The space of syzygies of $F = \{T_1, \cdots, T_n\} \subset \text{RO}(G, <)$ is the kernel of $\text{ker}(T_1) \times \cdots \times \text{ker}(T_n) \rightarrow V$, $(v_1, \cdots, v_n) \mapsto v_1 + \cdots + v_n$.
- The space of syzygies of F is denoted by $\text{syz}(F)$.

Example.

\[
\text{syz}(T_1, \cdots, T_5) = \mathbb{K}\{s_1, s_2\} \text{ where }
\]

\[
\begin{array}{c}
e \\
\downarrow T_1 \uparrow T_2 \\
\downarrow T_3 \\
b \\
\downarrow a \\
\downarrow T_4 \\
\downarrow T_5 \\
d
\end{array}
\]
Definition of syzygies

Syzygies.

- The space of syzygies of \(F = \{ T_1, \ldots, T_n \} \subset \text{RO}(G, <) \) is the kernel of

 \[
 \ker(T_1) \times \cdots \times \ker(T_n) \longrightarrow V, \ (v_1, \ldots, v_n) \mapsto v_1 + \cdots + v_n.
 \]

- The space of syzygies of \(F \) is denoted by \(\text{syz}(F) \).

Example.

\[
\text{syz}(T_1, \ldots, T_5) = \mathbb{K}\{s_1, s_2\} \quad \text{where} \quad s_1 = (- (e - c), (e - b) - (c - b), 0, 0, 0)
\]
Definition of syzygies

Syzygies.

- The space of syzygies of \(F = \{ T_1, \cdots, T_n \} \subset \text{RO}(G, <) \) is the kernel of
 \[
 \ker(T_1) \times \cdots \times \ker(T_n) \longrightarrow V, \quad (v_1, \cdots, v_n) \longmapsto v_1 + \cdots + v_n.
 \]
- The space of syzygies of \(F \) is denoted by \(\text{syz}(F) \).

Example.

\[
\begin{align*}
\text{syz}(T_1, \cdots, T_5) &= \mathbb{K}\{s_1, s_2\} \quad \text{where} \\
s_1 &= (- (e - c), (e - b) - (c - b), 0, 0, 0) \\
s_2 &= (e - c, 0, -(e - a), -(d - c), d - a)
\end{align*}
\]
Definition of syzygies

Syzygies.

- The space of syzygies of $F = \{T_1, \cdots, T_n\} \subset \text{RO}(G, <)$ is the kernel of
 $$\ker(T_1) \times \cdots \times \ker(T_n) \longrightarrow V, \ (v_1, \cdots, v_n) \longmapsto v_1 + \cdots + v_n.$$

- The space of syzygies of F is denoted by $\text{syz}(F)$.

Notation. We denote by $u_{i,g} = (0, \cdots, 0, g - T_i(g), 0, \cdots, 0)$.

Example.

\[
\begin{align*}
\text{syz}(T_1, \cdots, T_5) &= \mathbb{K}\{s_1, s_2\} 	ext{ where} \\
s_1 &= (- (e - c), (e - b) - (c - b), 0, 0, 0) \\
s_2 &= (e - c, 0, -(e - a), -(d - c), d - a)
\end{align*}
\]
Definition of syzygies

Syzygies.

- The space of syzygies of \(F = \{ T_1, \cdots, T_n \} \subset \text{RO} \left(G, < \right) \) is the kernel of
 \[
 \ker(T_1) \times \cdots \times \ker(T_n) \longrightarrow V, \quad (v_1, \cdots, v_n) \longmapsto v_1 + \cdots + v_n.
 \]
- The space of syzygies of \(F \) is denoted by \(\text{syz}(F) \).

Notation. We denote by \(u_{i,g} = (0, \cdots, 0, g - T_i(g), 0, \cdots, 0) \).

Example.

\[
\text{syz}(T_1, \cdots, T_5) = \mathbb{K}\{s_1, s_2\} \quad \text{where}
\]
\[
s_1 = (-(e-c), (e-b)-(c-b), 0, 0, 0)
\]
\[
= u_{2,e}
\]
\[
s_2 = (e-c, 0, -(e-a), -(d-c), d-a)
\]
Definition of syzygies

Syzygies.

- The space of syzygies of \(F = \{ T_1, \cdots, T_n \} \subset \text{RO} (G, <) \) is the kernel of
 \[
 \ker (T_1) \times \cdots \times \ker (T_n) \longrightarrow V, \quad (v_1, \cdots, v_n) \longmapsto v_1 + \cdots + v_n.
 \]

- The space of syzygies of \(F \) is denoted by \(\text{syz} (F) \).

Notation. We denote by \(u_{i,g} = (0, \cdots, 0, g - T_i (g), 0, \cdots, 0) \).

Example.

\[
\begin{align*}
\text{syz} (T_1, \cdots, T_5) &= \mathbb{K}\{s_1, s_2\} \text{ where} \\
s_1 &= (-(e - c), (e - b) - (c - b), 0, 0, 0) \\
 &= u_{2,e} - u_{2,c} \\
s_2 &= (e - c, 0, -(e - a), -(d - c), d - a)
\end{align*}
\]
Definition of syzygies

Syzygies.

- The space of syzygies of $F = \{ T_1, \cdots, T_n \} \subset \text{RO}(G, <)$ is the kernel of
 \[\ker(T_1) \times \cdots \times \ker(T_n) \longrightarrow V, \quad (v_1, \cdots, v_n) \longmapsto v_1 + \cdots + v_n. \]

- The space of syzygies of F is denoted by $\text{syz}(F)$.

Notation. We denote by $u_{i,g} = (0, \cdots, 0, g - T_i(g), 0, \cdots, 0)$.

Example.

\[
\begin{align*}
\text{syz}(T_1, \cdots, T_5) &= \mathbb{K}\{s_1, s_2\} \quad \text{where} \\
 s_1 &= (-(e - c), (e - b) - (c - b), 0, 0, 0) \\
 &= u_{2,e} - u_{2,c} - u_{1,e} \\
 s_2 &= (e - c, 0, -(e - a), -(d - c), d - a)
\end{align*}
\]
Definition of syzygies

Syzygies.

- The space of syzygies of \(F = \{T_1, \cdots, T_n\} \subset \text{RO}(G, <) \) is the kernel of
 \[
 \text{ker}(T_1) \times \cdots \times \text{ker}(T_n) \longrightarrow V, \ (v_1, \cdots, v_n) \longmapsto v_1 + \cdots + v_n.
 \]
- The space of syzygies of \(F \) is denoted by \(\text{syz}(F) \).

Notation. We denote by \(u_{i,g} = (0, \cdots, 0, g - T_i(g), 0, \cdots, 0) \).

Example.

\[
\begin{align*}
\text{syz}(T_1, \cdots, T_5) &= \mathbb{K}\{s_1, s_2\} \quad \text{where} \\
s_1 &= (- (e - c), (e - b) - (c - b), 0, 0, 0) \\
 &= u_{2,e} - u_{2,c} - u_{1,e} \\
s_2 &= (e - c, 0, -(e - a), -(d - c), d - a) \\
 &= u_{5,d} - u_{4,d} - u_{3,e} + u_{1,e}
\end{align*}
\]
Lattice structure on \(\text{RO}(G, <) \) and syzygies

Lattice structure on \(\text{RO}(G, <) \).

- The map \(\text{RO}(G, <) \rightarrow \text{Subspaces}(V), \ T \mapsto \ker(T) \) is a bijection.
Lattice structure on \(\text{RO}(G, <) \) and syzygies

Lattice structure on \(\text{RO}(G, <) \).

- The map \(\text{RO}(G, <) \rightarrow \text{Subspaces}(V), \; T \mapsto \ker(T) \) is a bijection.
- \(\text{RO}(G, <) \) admits a lattice structure where:
 - \(T_1 \preceq T_2 \) if \(\ker(T_2) \subseteq \ker(T_1) \),
 - \(T_1 \land T_2 := \ker^{-1}(\ker(T_1) + \ker(T_2)) \),
 - \(T_1 \lor T_2 := \ker^{-1}(\ker(T_1) \cap \ker(T_2)) \).
Lattice structure on \(\text{RO} \(G, \prec \) \) and syzygies

Lattice structure on \(\text{RO} \(G, \prec \) \).

- The map \(\text{RO} \(G, \prec \) \rightarrow \text{Subspaces} \(V \), \(T \mapsto \ker \(T \) \) \) is a bijection.

- \(\text{RO} \(G, \prec \) \) admits a lattice structure where:
 - \(T_1 \preceq T_2 \) if \(\ker \(T_2 \) \subseteq \ker \(T_1 \) \),
 - \(T_1 \wedge T_2 := \ker^{-1} \(\ker \(T_1 \) + \ker \(T_2 \) \) \),
 - \(T_1 \vee T_2 := \ker^{-1} \(\ker \(T_1 \) \cap \ker \(T_2 \) \) \).

Proposition i. Let \(P = (T, T') \subset \text{RO} \(G, \prec \) \). We have a linear isomorphism

\[
\ker \left(T \vee T' \right) \sim \text{syz} \(P \).
\]
Lattice structure on $\text{RO} (G, <)$ and syzygies

Lattice structure on $\text{RO} (G, <)$.

▷ The map $\text{RO} (G, <) \to \text{Subspaces} (V)$, $T \mapsto \ker (T)$ is a bijection.

▷ $\text{RO} (G, <)$ admits a lattice structure where:

- $T_1 \preceq T_2$ if $\ker (T_2) \subseteq \ker (T_1)$,
- $T_1 \wedge T_2 := \ker^{-1} (\ker (T_1) + \ker (T_2))$,
- $T_1 \vee T_2 := \ker^{-1} (\ker (T_1) \cap \ker (T_2))$.

Proposition i. Let $P = (T, T') \subset \text{RO} (G, <)$. We have a linear isomorphism

$$\ker (T \vee T') \overset{\sim}{\longrightarrow} \text{syz} (P), \quad v \mapsto (−v, v).$$
Lattice structure on \(\text{RO}(G, <) \) and syzygies

Lattice structure on \(\text{RO}(G, <) \).

- The map \(\text{RO}(G, <) \to \text{Subspaces}(V), \ T \mapsto \ker(T) \) is a bijection.
- \(\text{RO}(G, <) \) admits a lattice structure where:
 - \(T_1 \preceq T_2 \) if \(\ker(T_2) \subseteq \ker(T_1) \),
 - \(T_1 \wedge T_2 := \ker^{-1}(\ker(T_1) + \ker(T_2)) \),
 - \(T_1 \vee T_2 := \ker^{-1}(\ker(T_1) \cap \ker(T_2)) \).

Proposition i. Let \(P = (T, T') \subset \text{RO}(G, <) \). We have a linear isomorphism

\[
\ker(T \vee T') \xrightarrow{\sim} \text{syz}(P).
\]

Proposition ii. Let \(F = \{T_1, \cdots, T_n\} \subset \text{RO}(G, <) \). For every integer \(2 \leq i \leq n \), we have a short exact sequence

\[
0 \to \text{syz}(T_1, \cdots, T_{i-1}) \xrightarrow{\iota_i} \text{syz}(T_1, \cdots, T_i) \xrightarrow{\pi_i} \text{syz}(T_1 \wedge \cdots \wedge T_{i-1}, T_i) \to 0.
\]
Construction of a basis of $\text{syz}(F)$

- How to construct a basis of $\text{syz}(F)$?
Motivations

Reduction operators

Lattice description of syzygies

Construction of a basis of $\text{syz}(F)$

How to construct a basis of $\text{syz}(F)$?

We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
How to construct a basis of $\text{syz}(F)$?

- We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
- Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_{i-1})$ in $\text{syz}(T_1, \cdots, T_i)$.

Example.

```
    c
   ↘ ↘
  T_2 ↓  \\
 ▶ ▶
  T_1 ↙ ↙  \\

    b a
d
   ↘ ↘
  T_4 ↙  \\
   ↘ ↘
  T_5 ↙  \\
```
Construction of a basis of $\text{syz}(F)$

- How to construct a basis of $\text{syz}(F)$?
 - We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
 - Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_{i-1})$ in $\text{syz}(T_1, \cdots, T_i)$.
 - This supplement is constructed using the isomorphism
 $$\text{syz}(T_1 \cdots, T_i)/\text{syz}(T_1, \cdots, T_{i-1}) \cong \ker((T_1 \land \cdots \land T_{i-1}) \lor T_i).$$
Construction of a basis of $\text{syz}(F)$

- How to construct a basis of $\text{syz}(F)$?
 - We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
 - Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_{i-1})$ in $\text{syz}(T_1, \cdots, T_i)$.
 - This supplement is constructed using the isomorphism
 $$\text{syz}(T_1, \cdots, T_i) / \text{syz}(T_1, \cdots, T_{i-1}) \cong \ker ((T_1 \land \cdots \land T_{i-1}) \lor T_i).$$

Example.
Construction of a basis of \(\text{syz}(F) \)

- How to construct a basis of \(\text{syz}(F) \)?
 - We have \(\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n) \).
 - Main step: construct a supplement of \(\text{syz}(T_1, \cdots, T_{i-1}) \) in \(\text{syz}(T_1, \cdots, T_i) \).
 - This supplement is constructed using the isomorphism
 \[
 \text{syz}(T_1 \cdots, T_i) / \text{syz}(T_1, \cdots, T_{i-1}) \cong \ker((T_1 \land \cdots \land T_{i-1}) \lor T_i).
 \]

Example.

Step 1. We have \(\ker(T_1 \lor T_2) = \mathbb{K}\{e - c\} \).
Construction of a basis of $\text{syz}(F)$

- **How to construct a basis of $\text{syz}(F)$?**
 - We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
 - Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_{i-1})$ in $\text{syz}(T_1, \cdots, T_i)$.
 - This supplement is constructed using the isomorphism
 $$\text{syz}(T_1 \cdots, T_i) / \text{syz}(T_1, \cdots, T_{i-1}) \simeq \ker((T_1 \land \cdots \land T_{i-1}) \lor T_i).$$

Example.

Step 1. We have $\ker(T_1 \lor T_2) = \mathbb{K}\{e - c\}$.
- $e - c = e - T_1(e)$.

\[
\begin{array}{ccc}
\text{e} & \downarrow T_2 & \text{b} \\
\text{c} & \downarrow T_4 & \text{d} \\
\text{a} & \downarrow T_5 & \text{d}
\end{array}
\]
Construction of a basis of $\text{syz}(F)$

- How to construct a basis of $\text{syz}(F)$?
 - We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
 - Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_{i-1})$ in $\text{syz}(T_1, \cdots, T_i)$.
 - This supplement is constructed using the isomorphism
 $$\text{syz}(T_1 \cdots, T_i) / \text{syz}(T_1, \cdots, T_{i-1}) \cong \ker ((T_1 \land \cdots \land T_{i-1}) \lor T_i).$$

Example.

- **Step 1.** We have $\ker(T_1 \lor T_2) = \mathbb{K}\{e - c\}$.
 - $e - c = e - T_1(e)$.
 - $e - c = (e - T_2(e)) - (c - T_2(c))$.

Université Paris-Est Marne-la-Vallée
Szygues among reduction operators
Construction of a basis of $\text{syz}(F)$

- How to construct a basis of $\text{syz}(F)$?
 - We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
 - Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_{i-1})$ in $\text{syz}(T_1, \cdots, T_i)$.
 - This supplement is constructed using the isomorphism
 $$\text{syz}(T_1 \cdots, T_i) / \text{syz}(T_1, \cdots, T_{i-1}) \cong \ker ((T_1 \land \cdots \land T_{i-1}) \lor T_i).$$

Example.

```
Step 1. We have $\ker (T_1 \lor T_2) = \mathbb{K}\{e - c\}$.
  - $e - c = e - T_1(e)$.
  - $e - c = (e - T_2(e)) - (c - T_2(c))$.
  - We get the first basis element:
    $$s_1 = u_{2,e}$$
```
How to construct a basis of $\text{syz}(F)$?

- We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
- Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_{i-1})$ in $\text{syz}(T_1, \cdots, T_i)$.

 ▶ This supplement is constructed using the isomorphism

 $$\text{syz}(T_1 \cdots, T_i) / \text{syz}(T_1, \cdots, T_{i-1}) \cong \ker ((T_1 \land \cdots \land T_{i-1}) \lor T_i).$$

Example.

![Diagram](attachment:diagram.png)

Step 1. We have $\ker(T_1 \lor T_2) = \mathbb{K}\{e - c\}$.

- $e - c = e - T_1(e)$.

- $e - c = (e - T_2(e)) - (c - T_2(c))$.

- We get the first basis element:

 $$s_1 = u_2, e - u_2, c$$
Construction of a basis of \(\text{syz}(F) \)

- **How to construct a basis of \(\text{syz}(F) \)?**
 - We have \(\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n) \).
 - **Main step:** construct a supplement of \(\text{syz}(T_1, \cdots, T_{i-1}) \) in \(\text{syz}(T_1, \cdots, T_i) \).
 - This supplement is constructed using the isomorphism
 \[
 \frac{\text{syz}(T_1 \cdots, T_i)}{\text{syz}(T_1, \cdots, T_{i-1})} \cong \ker ((T_1 \land \cdots \land T_{i-1}) \lor T_i).
 \]

Example.

![Diagram](image)

Step 1. We have \(\ker(T_1 \lor T_2) = \mathbb{K}\{e - c\} \).
 - \(e - c = e - T_1(e) \).
 - \(e - c = (e - T_2(e)) - (c - T_2(c)) \).
 - We get the first basis element:
 \[
 s_1 = u_{2,e} - u_{2,c} - u_{1,c}.
 \]
Construction of a basis of $\text{syz}(F)$

- How to construct a basis of $\text{syz}(F)$?
 - We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
 - Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_i-1)$ in $\text{syz}(T_1, \cdots, T_i)$.
 - This supplement is constructed using the isomorphism
 \[
 \frac{\text{syz}(T_1 \cdots T_i)}{\text{syz}(T_1, \cdots, T_{i-1})} \cong \ker((T_1 \land \cdots \land T_{i-1}) \lor T_i).
 \]

Example.

Step 2. We have $\ker((T_1 \land T_2) \lor T_3) = \{0\}$.

![Diagram showing relationships between reduction operators](image-url)
Construction of a basis of $\text{syz}(F)$

How to construct a basis of $\text{syz}(F)$?

- We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
- Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_{i-1})$ in $\text{syz}(T_1, \cdots, T_i)$.
 - This supplement is constructed using the isomorphism
 \[\text{syz}(T_1, \cdots, T_{i}) / \text{syz}(T_1, \cdots, T_{i-1}) \cong \ker ((T_1 \wedge \cdots \wedge T_{i-1}) \vee T_i). \]

Example.

Step 2. We have $\ker((T_1 \wedge T_2) \vee T_3) = \{0\}$.

- No new basis element!
Construction of a basis of $\text{syz}(F)$

- How to construct a basis of $\text{syz}(F)$?
 - We have $\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n)$.
 - Main step: construct a supplement of $\text{syz}(T_1, \cdots, T_{i-1})$ in $\text{syz}(T_1, \cdots, T_i)$.
 - This supplement is constructed using the isomorphism
 \[
 \text{syz}(T_1, \cdots, T_i) / \text{syz}(T_1, \cdots, T_{i-1}) \cong \ker ((T_1 \wedge \cdots \wedge T_{i-1}) \vee T_i).
 \]

Example.

- **Step 3.** $\ker ((T_1 \wedge T_2 \wedge T_3) \vee T_4) = \{0\}$.
 - No new basis element!
Construction of a basis of \(\text{syz}(F) \)

> How to construct a basis of \(\text{syz}(F) \)?

- We have \(\text{syz}(T_1, T_2) \subseteq \text{syz}(T_1, T_2, T_3) \subseteq \cdots \subseteq \text{syz}(T_1, \cdots, T_n) \).

- Main step: construct a supplement of \(\text{syz}(T_1, \cdots, T_{i-1}) \) in \(\text{syz}(T_1, \cdots, T_i) \).
 - This supplement is constructed using the isomorphism
 \[
 \text{syz}(T_1, \cdots, T_i)/\text{syz}(T_1, \cdots, T_{i-1}) \cong \ker((T_1 \wedge \cdots \wedge T_{i-1}) \lor T_i).
 \]

Example.

\[
\begin{array}{c}
\text{Step 4.} \text{ We have} \\
\ker((T_1 \wedge T_2 \wedge T_3 \wedge T_4) \lor T_5) = \mathbb{K}\{d - a\}. \\
\text{ } \\
\text{ } \\
\text{We get the second basis element:} \\
s_2 = u_{5,d} - u_{4,d} - u_{3,e} + u_{1,e}.
\end{array}
\]
A lattice criterion for rejecting useless reductions

The criterion. Let $F = \{T_1, \cdots, T_n\} \subset \text{RO}(G, <)$.
A lattice criterion for rejecting useless reductions

The criterion. Let $F = \{T_1, \cdots, T_n\} \subset RO(G, <)$.

- The useless reductions are labelled by leading terms of syzygies.
A lattice criterion for rejecting useless reductions

The criterion. Let $F = \{T_1, \ldots, T_n\} \subset \text{RO}(G, \prec)$.

- The useless reductions are labelled by leading terms of syzygies.
 - These labels are $\ell_{T_i, g}$, where $g \notin \text{im}((T_1 \land \ldots \land T_{i-1}) \lor T_i)$.

Example.

![Diagram](image)
A lattice criterion for rejecting useless reductions

The criterion. Let $F = \{T_1, \cdots, T_n\} \subset \text{RO}(G, <)$.

- The useless reductions are labelled by leading terms of syzygies.
 - These labels are $\ell_{T_i, g}$, where $g \notin \text{im}((T_1 \land \cdots \land T_{i-1}) \lor T_i)$.

Example.

![Diagram](image.png)
A lattice criterion for rejecting useless reductions

The criterion. Let \(F = \{ T_1, \cdots, T_n \} \subset \text{RO}(G, <) \).

▷ The useless reductions are labelled by leading terms of syzygies.

▷ These labels are \(\ell_{T_i, g} \), where \(g \notin \text{im}((T_1 \wedge \cdots \wedge T_{i-1}) \vee T_i) \).

Example.

We have:

▷ \(\ker(T_1 \vee T_2) = \mathbb{K}\{e - c\} \).
A lattice criterion for rejecting useless reductions

The criterion. Let $F = \{ T_1, \cdots, T_n \} \subset \text{RO}(G, <)$.

- The useless reductions are labelled by leading terms of syzygies.
 - These labels are $\ell_{T_i, g}$, where $g \notin \text{im}((T_1 \land \cdots \land T_{i-1}) \lor T_i)$.

Example.

We have:

- $\ker(T_1 \lor T_2) = \mathbb{K}\{e - c\}$.
- $T_1 \lor T_2(e) = c$.
A lattice criterion for rejecting useless reductions

The criterion. Let $F = \{ T_1, \cdots, T_n \} \subset \text{RO}(G, \langle \rangle)$.

▷ The useless reductions are labelled by leading terms of syzygies.

▷ These labels are $\ell_{T_i, g}$, where $g \notin \text{im} ((T_1 \land \cdots \land T_{i-1}) \lor T_i)$.

Example.

We have:

▷ $\ker (T_1 \lor T_2) = \mathbb{K}\{ e - c \}$.

▷ $T_1 \lor T_2(e) = c$.

▷ The labelled reduction $\ell_{T_2, e}$ is useless.
A lattice criterion for rejecting useless reductions

The criterion. Let \(F = \{ T_1, \cdots, T_n \} \subset \text{RO}(G, <) \).

- The useless reductions are labelled by leading terms of syzygies.
- These labels are \(\ell_{T_i, g} \), where \(g \notin \text{im}((T_1 \wedge \cdots \wedge T_{i-1}) \vee T_i) \).

Example.

We have:

- \(\ker (T_1 \vee T_2) = \mathbb{K}\{e - c\} \).
- \(T_1 \vee T_2(e) = c \).
- The labelled reduction \(\ell_{T_2, e} \) is useless.

- \(\ker ((T_1 \wedge T_2 \wedge T_3 \wedge T_4) \vee T_5) = \mathbb{K}\{d - a\} \).
- The labelled reduction \(\ell_{T_5, d} \) is useless.
Thank you for listening!