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Clustering data

Estimated number of clusters: 3

How do we find those clusters?



How do we find those clusters?

We eyeball them.



Center-based clustering




Recognizing digits

10 clusters: 0,123456,7,89
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Project onto low dimension, then cluster
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Local search heuristic

objective function global maximmm

shoulder

\ local maximom

/

“flat” local maximom

state Space

cuomem
stare

Example: hill-climbing methods

Comment: instead, put a photo of Massif de Belledonne



objective function global maximuam

shoulder

\ local maximom

/

"flat” local maximom

state space
comem e

stare

Local optimum can be good or bad
Where we end up depends
where we start
how we improve the solution



There can be many local optima



Example: Local search for TSP

A B

it [BC]+[DE]<[BE]+[CD]

New amrangement >

| 1 [CD) + [AE) <[AD] + [CE)

New arrangement >

On benchmark, local opt is within a few % of global opt



Local search heuristic

Try a local change

(Start with a squtiorD /\

5/

Restart and Obtain a slightly
Try another Better? different
local change No Yes solution

'

Repeat and start
with this solution

Cost=Sum of dist(client,closest center)
k centers



A local optimum

Global Opt

length=1/2+eps

Clients

length=1/2

Local Opt
1 2 (k-2)/3 (k-2)/3+1 K

Cost of top solution = (1/2)*2*(k-k/3)=(2/3)*k
Cost of bottom solution = 2*k+(2/3)*k
Off by a factor of 4
Local opt even if we allow swapping 2 centers in and out



A local optimum that is not globally
optimum

Even if we allow swapping up to p centers in

and out, local opt can be off by a factor of
3+2/p

How can local search be better?
Only in special cases:
Restrict attention to planar metrics

Comment: put a picture of a roadmap here to motivate



Facility location, weighted planar graph

dist(u,closest center)=3+2+2=7
f: cost of opening a facility
Cost=#(facilities)*f+sum of dist(clients,closest center)



Extended local search

S . current set of centers
Repeat:
Find better solution S’ among sets that
differ from S in at most 1/€* centers

Replace S by S’

Until: local optimum



Polynomial-time approximation scheme:
cost < (1+epsilon)*OPT

Extended local search yields a
polynomial-time approximation scheme

(PTAS) for facility location in
edge-weighted planar graphs







S . current set of centers
Repeat:
Find better solution S’ among sets that
differ from S in at most 1/€* centers

Replace S by S’

Until: local optimum

Cost analysis: Why does a locally optimal solution
have cost at most (1 +¢€)OPT >



Voronoi cells

Notations for facilities

: ap client u —> closest facilit
L: local optimum Map f Y

defines Voronoi cells

F: L union C




Contraction

>‘ ¢ : Contract >‘ <

Notations for facilities

: [ —> ¢l ili
L: local optimum map client u —> closest facility

defines Voronoi cells
contract cells : graph G

F: L union C

G is planar

—>
Contract




(Parenthesis on planar graphs, 1/3)

-

G planar

What do we know about planar graphs?



(Parenthesis on planar graphs, 2/3)

balanced

/7

G planar G planar v\

separator

Lipton-Tarjan: if G is planar then
there is a small roughly balanced
separator: O(4/n) vertices



(Parenthesis on planar graphs, 3/3)

Corollary: if G planar then there is a partition into
- small regions: at most 1/62 vertices in each region
- with small boundaries : at most €X1 boundary vertices

Region 1 Region 3 Region 5

Region 2 Region 4 Region 6



L: local optimum client u —> closest facility
C: global optimum Voronoi cells
F: L union C G: after contracting cells

Partition G into small regions with small boundaries
B: centers of boundary regions

Region 1 Region 3 Region 5

Region 2 Region 4 Region 6



Region 1 Region 3 Region 5

Region 2 Region 4 Region 6



Comparing L (local) to C (global opt)

For each region,
define a mixed solution M
compare L to M






1. Comparing L to M

® Mixed solution M:
facilities of C
union B inside, of
L outside

oM L only differ
inside region: 1/
eps”2 facilities
L local optimum,
so: cost(L)<cost(M)




2. Client connection cost: internal clients

for internal client x: dist(x,M) is at most dist(x,C)
for outside client y: dist(y,M) is at most dist(y,L)



Comment: ugliest 1. cost(L) is at most cost(M)
slide of the 2. for internal client x: dist(x,M) is at most dist(x,C)
whole talk 3. for outside client y: dist(y,M) is at most dist(y,L)

cost(L) < cost(M)
cost(M) < Z dist(z, C') + Z dist(y, L) + f| M|
r internal y outside
cost(L) = Z dist(x, L) + Z dist(y, L) + f|L|
r internal y outside
—
Z dist(z, L) + f|Linternall < Z dist(z, C) + f[Mipternal
z internal z internal

Sum over regions
cost(L) < cost(C') + f|Boundary facilities|
cost(L) < (1 + O(e))cost(C')






Extended local search yields aPTAS for
facility location in
weighted planar graphs

S : current set of centers

Repeat:
Find better solution S’ among sets that {
differ from S in at most 1/€ centers

Replace S by S’

Until: local optimum




Wait... what about the runtime?

S . current set of centers S . current set of centers
Repeat: Repeat:
Find better solution S" among sets that  Find much better solution S’ among sets that
differ from S in at most 1/ €’ centers differ from S in at most 1/ €2 centers
Replace S by S’ Replace S by S’

Until: local optimum Until: cost(S) < (1 — ¢/n)cost(S")



Extensions



What if, in objective, dist(x L) is replaced by dist(x,L)"2 Then: ok
What if dist(x,L) is replaced by monotone function of dist(x,L)?

What if, instead of planar, points in minor-closed graph family? Then: ok

What if, instead of planar, points are in Euclidean space?

Lipton-Tarjan: if G is planar then small balanced separator...
..Euclidean analog?

Surface: n
“~Perimeter: O(1/n)

Add a few points so that the Voronoi cells can be partitioned into small, separated regions
Euclidean analog: Separating Voronoi diagrams,

Bhattiprolu Har-Peled 2014, so ok



What if, instead of uniform facility
opening cost, the cost varies?

?

What if, instead of uncapacitated facility
location, a facility can only serve k clients?

?



What if, instead of paying f to open a
facility, we are only allowed k facilities?

Hard constraint
We are not allowed to add boundary facility
not even just a few, not even onel

But OPT(k) can be much larger than OPT(k+1):
problematic example

;: Q.Q “: 0.0

k=3: cost=0 k=2: cost=infinity




8 0 s$ 5
k=3: cost=0 k=2: cost=infinity

However: this example is obvious and
local search for k=3 will work

(2) Extended local search yields a PTAS for k-median
in edge-weighted planar graphs






Definition (deferred): non-isolated facilities
Notation: k' non-isolated facilities of C.

Robustness theorem: ¢° k' facilities can be removed
from C with small additional connection cost.

Proof idea: use non-isolation to re-route clients of f to a different facility of C
atsmall cost, then remove f from C

AClients served by | inL
A but served by

A a different facility in C

client served by f inC



C: optimum L: local

Consider f in C. Mark its clients that, in L, are served
by a facility that has a significant (e) fraction of clients
that, in C, are served elsewhere.

Definition: f is not isolated if a significant fraction of
its clients are marked.

Clients served by | in L
but not served by f inC

AL

Clients served by | A
Marked clients served by | A



Step 1. use non-isolation to re-route clients of f o a
different facility of C

Clients served by | in L
A but not served by f in C

client served by f inC

Exists map from non-isolated facilities of C to C, with no
fixed point, s.t. reassigning f's clients to its image incurs
additional connection cost O(cost(C) + cost(L)) /e

f | in L"
®—9o o 0o

client client client

f




Step 2: any map graph with no fixed point is 3-colorable,
and some color class has at least 33% of facilities

iIsolated
isolated

33% of facilities are red, and their images are not red.



isolated
iIsolated

Step 3: Partition that color class into many (1/eps”3)
parts. For one of them, S, re-assigning its clients to
f(x) incurs small additional cost.

After re-assignment, facilities of S now serve no one
and can be removed. QED



Rep
Rep
Rep
Rep
Rep
Rep

acing
acing
acing
acing
acing
acing

Extension of r-division

Region 1

Region 2

Region 3

B
B
B
B
B
B
D&
B
B
B
B
B
B
B

Region 4

_ by C in region 1 would change #facilities by 3

_ by C in region 2 wou
_ by C in region 3 wou
_ by C in region 4 wou
_ by C in region 5 wou

_ by C in region 6 wou

d change #faci
d change #faci
d change #faci
d change #faci
d change #faci

ities by -1
ities by -2
ities by 4
ities by -4
ities by O

Region 5

Region 6

g Super-region 1

> Super-region 2

<

Super-region 3




From robustness theorem to PTAS

Robustness theorem: o(k') non-isolated facilities can be
removed from C w/ small additional connection cost.

v

Apply extension of r-division approach to that solution and L

v

Local search yields a PTAS for k-median
in edge-weighted planar graphs







(1) Local search yields a PTAS for
uniform facility location in
edge-weighted planar graphs

(2) Local search yields a PTAS for
k-median
in edge-weighted planar graphs

Take-home message: local search works
well for clustering type problems in
structured instances s.a. planar graphs.






THE END



C: optimum L: local

Definition: Consider f in C and L' subset of L.
(f L) is isolated if
- for each | in L', most clients served by | in L are
served by f in C &
- most clients served by f in C are served by L'




Proving the key lemma (1/2)

- iIsolated
iIsolated

Consider f in C that is not isolated.
Let L" be the subset of L consisting of | s.t.
NOT: "most clients served by | in L are served by f in C*

i.e.: at least eps % of clients served by | are served by f' other than f in C
Then at least eps % of clients served by f in C are served by L"

f | in L" f'
@ » B ® -

client client client

Use that to re-route f's clients



Step 1: Exists map from non-isolated facilities of C to
C s.t. reassigning every client of f to its image incurs
additional connection cost O(cost(C) + cost(L))/e

° iIsolated

isolated



To re-route f's clients: fractional assignment.

clientsof f f 1/eps 1/eps |in "

:.70 o—eo

client

1 1 1/eps 1/eps
o—0 o er

client |linlL" client

Additional connection cost: edges of Cand L carry
at most 1/eps”™2 connections, QED.



Proving the key lemma (2/2)

Consider f in C that is not isolated.

f | in L" f'
@ O @ ®—©O %
client client client
To re-route f's clients: fractional assignment.
lients 1/eps 1/eps |in ™
clien Of.f f Lep B /ep 'l inL Additional connection cost:
client edges of Cand L carry at most
1 1 1/eps 1/eps 1/eps”2 connections, QED.
ol g s P - Q

client |linlL" client



