
Local search for clustering-type 
problems



How do we find those clusters?

Clustering data



How do we find those clusters?

We eyeball them.



Center-based clustering



Recognizing digits

10 clusters: 0,1,2,3,4,5,6,7,8,9

data "point" = image = 64 pixels 
= element of [0,1]^64



Project onto low dimension, then cluster



Clustering 
population: 

voting 
centers,…

Clustering 
around 
centers



Local search heuristic

Example: hill-climbing methods
Comment: instead, put a photo of Massif de Belledonne



Local optimum can be good or bad 
Where we end up depends  

- where we start 
- how we improve the solution



There can be many local optima



Example: Local search for TSP

On benchmark, local opt is within a few % of global opt



Yes
Better?

Try a local change

No

Start with a solution

Restart and
Try another
local change

Obtain a slightly 
different
solution

Repeat and start
with this solution

Local search heuristic

Cost=Sum of dist(client,closest center) 
k centers



A local optimum

1

21 k-13

(k-2)/32

4 kk-2

(k-2)/3+1 k

Global Opt

Local Opt

Clients

length=2

length=0

length=1/2

length=1/2+eps

Cost of top solution = (1/2)*2*(k-k/3)=(2/3)*k 
Cost of bottom solution = 2*k+(2/3)*k 

Off by a factor of 4 
Local opt even if we allow swapping 2 centers in and out



A local optimum that is not globally 
optimum

Even if we allow swapping up to p centers in 
and out, local opt can be off by a factor of 

3+2/p 

How can local search be better? 
Only in special cases: 

Restrict attention to planar metrics

Comment: put a picture of a roadmap here to motivate



u
3

2
2

dist(u,closest center)=3+2+2=7 
f: cost of opening a facility 

Cost=#(facilities)*f+sum of dist(clients,closest center)

Facility location, weighted planar graph



S : current set of centers

Repeat:

Find better solution S0 among sets that

di↵er from S in at most 1/✏2 centers

Replace S by S0

Until: local optimum

Extended local search



Extended local search yields a 
polynomial-time approximation scheme 

(PTAS) for facility location in 
edge-weighted planar graphs

Polynomial-time approximation scheme: 
cost < (1+epsilon)*OPT



Proof



Cost analysis: Why does a locally optimal solution 
have cost at most                         ? (1+ ✏)OPT

S : current set of centers

Repeat:

Find better solution S0 among sets that

di↵er from S in at most 1/✏2 centers

Replace S by S0

Until: local optimum



Notations for facilities 
L: local optimum 
C: global optimum 
F: L union C 

map client u —> closest facility 
defines Voronoi cells 

Voronoi cells



Notations for facilities 
L: local optimum 
C: global optimum 
F: L union C 

map client u —> closest facility 
defines Voronoi cells 
contract cells : graph G

G is planar

Contraction

Contract

Contract



What do we know about planar graphs?

G planar

(Parenthesis on planar graphs, 1/3)



Lipton-Tarjan: if G is planar then 
there is a small roughly balanced 
separator:                   vertices

G planar

O(
p
n)

(Parenthesis on planar graphs, 2/3)

G planar

separator

balanced



Region 1 

Region 2 

Region 3 Region 5 

Region 4 Region 6 

Corollary: if G planar then there is a partition into 
- small regions: at most              vertices in each region 
- with small boundaries : at most          boundary vertices 

1/✏2

✏n

(Parenthesis on planar graphs, 3/3)



Partition G into small regions with small boundaries

L: local optimum 
C: global optimum 
F: L union C 

client u —> closest facility 
Voronoi cells 
G: after contracting cells 

B: centers of boundary regions

Region 1 

Region 2 

Region 3 Region 5 

Region 4 Region 6 



Region 1 

Region 2 

Region 3 Region 5 

Region 4 Region 6 



Comparing L (local) to C (global opt)

For each region,  
define a mixed solution M 
compare L to M

boundary

L



boundary

CL

L

C



1. Comparing L to M

Mixed solution M: 
facilities of C 
union B inside, of 
L outside

M, L only differ 
inside region: 1/
eps^2 facilities 
L local optimum, 
so: cost(L)<cost(M)

boundary

CL

L



2. Client connection cost: internal clients

for internal client x: dist(x,M) is at most dist(x,C) 
for outside client y: dist(y,M) is at most dist(y,L)

boundary

CL
x

y



1. cost(L) is at most cost(M) 
2. for internal client x: dist(x,M) is at most dist(x,C) 
3. for outside client y: dist(y,M) is at most dist(y,L)

X

x internal

dist(x, L) + f |Linternal| 
X

x internal

dist(x,C) + f |Minternal|

cost(L)  cost(M)

cost(M) 
X

x internal

dist(x,C) +
X

y outside

dist(y, L) + f |M |

cost(L) =
X

x internal

dist(x, L) +
X

y outside

dist(y, L) + f |L|

=)

Sum over regions

cost(L)  cost(C) + f |Boundary facilities|

cost(L)  (1 +O(✏))cost(C)

Comment: ugliest  
slide of the  
whole talk





Extended local search yields a PTAS for 
facility location in 

weighted planar graphs

S : current set of centers

Repeat:

Find better solution S0 among sets that

di↵er from S in at most 1/✏2 centers

Replace S by S0

Until: local optimum



S : current set of centers

Repeat:

Find better solution S0 among sets that

di↵er from S in at most 1/✏2 centers

Replace S by S0

Until: local optimum

S : current set of centers

Repeat:

Find much better solution S0 among sets that

di↵er from S in at most 1/✏2 centers

Replace S by S0

Until: cost(S) < (1� ✏/n)cost(S0)

Wait… what about the runtime?



Extensions



What if, instead of planar, points are in Euclidean space?

Lipton-Tarjan: if G is planar then small balanced separator… 
…Euclidean analog?

Surface: n 
Perimeter: O(

p
n)

Euclidean analog: Separating Voronoi diagrams, 
Bhattiprolu Har-Peled 2014, so ok 

What if dist(x,L) is replaced by monotone function of dist(x,L)?  Then: ok

What if, in objective, dist(x,L) is replaced by dist(x,L)^2 Then: ok

What if, instead of planar, points in minor-closed graph family?Then: ok

Add a few points so that the Voronoi cells can be partitioned into small, separated regions



?

What if, instead of uniform facility 
opening cost, the cost varies?

What if, instead of uncapacitated facility 
location, a facility can only serve k clients?

?



Hard constraint 
We are not allowed to add boundary facility 

not even just a few, not even one! 
But OPT(k) can be much larger than OPT(k+1): 

problematic example

k=3: cost=0 k=2: cost=infinity

What if, instead of paying f to open a 
facility, we are only allowed k facilities?



(2) Extended local search yields a PTAS for k-median  
in edge-weighted planar graphs

k=3: cost=0 k=2: cost=infinity

However: this example is obvious and 
local search for k=3 will work



Proof



Definition (deferred): non-isolated facilities 
Notation: k’ non-isolated facilities of C. 
Robustness theorem:        k’ facilities can be removed 
from C with small additional connection cost.

Proof idea: use non-isolation to re-route clients of f to a different facility of C 
atsmall cost, then remove f from C

f in C
l in L

Clients served by l in L 
but served by  

a different facility in C

client served by f in C

✏3



Consider f in C. Mark its clients that, in L, are served 
by a facility that has a significant (e) fraction of clients 
that, in C, are served elsewhere.  
Definition: f is not isolated if a significant fraction of 
its clients are marked.

C: optimum     L: local

f in C
l in L

Clients served by l
Marked clients served by l

Clients served by l in L 
but not served by f in C



client

f

client

l in L”

client

f’

Step 1: use non-isolation to re-route clients of f to a 
different facility of C

f in C
l in L

Clients served by l in L 
but not served by f in C

client served by f in C

Exists map from non-isolated facilities of C to C, with no 
fixed point, s.t. reassigning f’s clients to its image incurs 
additional connection cost O(cost(C) + cost(L))/✏2



isolated
isolated

Step 2: any map graph with no fixed point is 3-colorable, 
and some color class has at least 33% of facilities 

33% of facilities are red, and their images are not red. 



isolated
isolated

Step 3: Partition that color class into many (1/eps^3) 
parts. For one of them, S, re-assigning its clients to 
f(x) incurs small additional cost. 

After re-assignment, facilities of S now serve no one 
and can be removed. QED



Extension of r-division
Region 1 

Region 2 

Region 3 Region 5 

Region 4 Region 6 

Replacing L by C in region 1 would change #facilities by 3 
Replacing L by C in region 2 would change #facilities by -1 
Replacing L by C in region 3 would change #facilities by -2 
Replacing L by C in region 4 would change #facilities by 4 
Replacing L by C in region 5 would change #facilities by -4 
Replacing L by C in region 6 would change #facilities by 0

Super-region 1

Super-region 2

Super-region 3



Local search yields a PTAS for k-median  
in edge-weighted planar graphs

Robustness theorem: o(k’) non-isolated facilities can be 
removed from C w/ small additional connection cost.

Apply extension of r-division approach to that solution and L

From robustness theorem to PTAS





(1) Local search yields a PTAS for 
uniform facility location in 

edge-weighted planar graphs

(2)         Local search yields a PTAS for      
k-median  

in edge-weighted planar graphs

Take-home message: local search works 
well for clustering type problems in 

structured instances s.a. planar graphs.





THE END



Definition: Consider f in C and L’ subset of L.  
(f,L’) is isolated if 

- for each l in L’, most clients served by l in L are 
served by f in C & 
- most clients served by f in C are served by L’

C: optimum     L: local

L’ L’

L’

f in C



Proving the key lemma (1/2)

Consider f in C that is not isolated.  
Let L” be the subset of L consisting of l s.t.  
NOT: “most clients served by l in L are served by f in C” 
    i.e.: at least eps % of clients served by l are served by f’ other than f in C 
Then at least eps % of clients served by f in C are served by L”

Use that to re-route f’s clients

client

f

client

l in L”

client

f’

isolated
isolated



Step 1: Exists map from non-isolated facilities of C to 
C s.t. reassigning every client of f to its image incurs        
additional connection cost O(cost(C) + cost(L))/✏2

isolated
isolated



To re-route f’s clients:  fractional assignment.

clients of f f

client

1/eps

client l in L” client
f’

l in L”1/eps

1 1 1/eps1/eps

Additional connection cost: edges of C and L  carry 
at most 1/eps^2 connections, QED.



Proving the key lemma (2/2)

Consider f in C that is not isolated. 

To re-route f’s clients:  fractional assignment.

client

f

client

l in L”

client

f’

clients of f f

client

1/eps

client l in L” client
f’

l in L”1/eps

1 1 1/eps1/eps

Additional connection cost:  
edges of C and L  carry at most 
1/eps^2 connections, QED.


