Distance in the Forest Fire Model How far are you from Eve?

Varun Kanade, Reut Levi, Zvi Lotker, Frederik Mallmann-Trenn, and Claire Mathieu

Distance in the Forest Fire Model How far are you from Eve?

Motivation

How many degrees of separation are there between you and François Hollande?

- Why bother?
 - Social networks are everywhere in daily life.
 - How do we meet new friends?
 - Has impact in economics, social science, marketing, disease propagation, ...

Motivation

Number of Patent Oblations among companies with images

Created with Nodel/L (http://nodeil.codeplex.com)

- ► We study the distance in the Forest Fire model [Leskovec, Kleinberg and Faloutsos (2005)] (> 1000 citations)
 - Random graph
 - Only simulations

Densification

Distance (between two random vertices)

Distance

Empirical Result[KLF05]

Many social networks have constant expected distance.

Simulation Result[KLF05]

The Forest Fire Model has expected constant expected distance.

Theorem

Nothing proved before this work

Other social network models

Static Models

- ► Small world; grid+random edges [Kleinberg et al., 01]
- Small world; grid+random walk [Chaintreau et al., 08]
- Kronecker product [Leskovec et al., 05]
- Chung Lu graphs [Chung and Lu, 03]
- Block Two-Level Erdős-Rényi [Seshadhri et al., 12]
- Dynamic Models
 - Preferential attachment [Barabási and R. Albert, 99]
 - Edge copying model [Kumar et al., 00] [Kleinberg et al., 99]
 - Community guided attachment [Leskovec et al., 07]
 - Recursive search model [Vazquez, 01]
 - Random Surfer model [Blum et al., 06]

Outline

ntroduction Related Work

1st Model: The Windy Forest Fire model Model definition Proof intuition A potential function Ambassador tree

2nd Model: Random Walk model

Conclusion/Open questions

Forest Fire Process

- Question: How do we meet new friends?
- Answer: We are introduced to them by our friends and the friends of our friends etc.

Generative model

Current network

Example: arrival

Next step: new node **u** arrives (black node).

u already has one friend, amb(u), a uniform random node.

Introduction to friends: start the 'forest fire'. Every 'burnt' node v activates edges w.p. α /outdeg(v).

Continue burning...

Friends of *u*: vertex *u* connects to all 'burnt' nodes.

Figure: The three steps: 1) Choose amb(u) u.a.r. 2) Forest Fire (percolation) 3) Connect

Differences with original Forest Fire Process model

- Windy: we regard a special case in which we only burn edges in one direction (from 'younger' nodes to 'older' nodes).
- Initialization: we assume a seed-graph of constant size.

Our Theorem

Empirical Result[KLF05]

Many social networks have constant expected distance.

Simulation Result[KLF05]

The Forest Fire Model has bounded expected distance.

Theorem 1 Assume α , $|G_0|$ large enough. For Windy Forest Fire Process:

 $\mathbb{E}[\operatorname{dist}_{G_t}(u,G_0)]=O(1).$

Windy Forest Line Process

From now on: $amb(u_t) = u_{t-1}$.

Outline

ntroduction Related Work

1st Model: The Windy Forest Fire model Model definition Proof intuition A potential function Ambassador tree

2nd Model: Random Walk model

Conclusion/Open questions

Proving bounded distance: Failed attempt #1

- Attempt: Extend analysis of Erdós-Renyi or Preferential Attachment graphs
- Problem: Independence (ER) vs Correlated edges (Forest Fire)
 - Neighborhood of u is closely related to neighborhood of amb(u).

Introduction

Proving bounded distance: Failed attempt #2

- Attempt: Simplify graph by insertion/deletion of edges
- Problem: expected distance is not monotone under insertion/deletion of edges

Distance in the Forest Fire Model How far are you from Eve?

Proving bounded distance: Failed attempt #3

- Attempt: Show $E[dist(u, root)] \leq E[dist(amb(u), root)]$
- Problem: false (if one doesn't assume anything about the graph structure)

For every α one can construct a graph with $E[\operatorname{dist}(u, \operatorname{root})] > E[\operatorname{dist}(\operatorname{amb}(u), \operatorname{root})].$

Proving bounded distance: Failed attempt #4

Idea: Show

 $E[longest_path(u, root)] \le E[longest_path(amb(u), root)]$

Problem: Wrong - Longest path is strictly increasing!

Proving bounded distance: Attempt #5

- $\phi(u)$ longest path to root without ambassador edges.
- Idea: Show $E[\phi(u)] \leq E[\phi(amb(u))]$
- Problem: ?

Proving bounded distance: Failed Attempt #5

Problem: There might not be enough good edges ...

Proving bounded distance: Successful Attempt

- What if we look at two consecutive arrivals?
- The first node prepares the graph structure
- The second node exploits it

Outline

ntroduction Related Work

1st Model: The Windy Forest Fire model Model definition Proof intuition A potential function Ambassador tree

2nd Model: Random Walk model

Conclusion/Open questions

Define a potential that drops?

Define ϕ so that in expectation,

• $\phi(v) - \phi(\operatorname{amb}(\operatorname{amb}(v))) < 0$, assuming that $\phi(\operatorname{amb}(v))$ is 'big'

The last issue: ϕ may increase suddenly

- Problem: $\phi(\operatorname{amb}(\operatorname{amb}(u)))$ small but $\mathbf{E}[\phi(\mathbf{u})]$ huge.
- ► $E[\phi(v) \phi(\operatorname{amb}(\operatorname{amb}(v)))|\phi(\operatorname{amb}(\operatorname{amb}(v)))$ is 'big'] < 0 fails.

The ϕ -function

$$\phi(v) = \begin{cases} 0 & \text{if } v \in \text{seed} \\ \max \begin{cases} 1 + \max\{\phi(u) : u \in \mathcal{N}(v) \setminus \{\operatorname{amb}(v)\}\} \\ 1 + \phi(\operatorname{amb}(v)) \\ \max \begin{cases} 1 + \max\{\phi(u) : u \in \mathcal{N}(v) \setminus \{\operatorname{amb}(v)\}\} \\ \phi(\operatorname{amb}(v)) - 2 \end{cases} & \text{otherwise} \end{cases}$$

ϕ dominates the distance to the seed

$$\operatorname{dist}_{L_t}(v, L_0) = \begin{cases} 0 \text{ if } v \in \operatorname{seed} \\ 1 + \min_{u \in \mathcal{N}(v)} \{ \operatorname{dist}_{L_t}(u, \operatorname{seed}) \} \text{ otherwise} \end{cases}$$

Using definitions, by induction $\operatorname{dist}_{L_t}(v, L_0) \leq \phi(v)$.

Hajek's theorem

We have defined ϕ so that

- ϕ dominates distances to seed: dist_{L_t}(ν , L₀) $\leq \phi(\nu)$
- ► Expected negative bias: $E[\phi(v) - \phi(\operatorname{amb}(\operatorname{amb}(v)))|\phi(\operatorname{amb}(\operatorname{amb}(v)))$ is 'big'] < 0
- $\phi(v)$ has an exponential tail

Hajek's theorem then implies:

$$E[\operatorname{dist}_{L_t}(v,L_0)] \leq E[\phi(v)] = O(1).$$

Windy Forest Line Process

Windy Forest Fire Process

• $amb(u_t) = uniform random node.$

Every u has a special outgoing edge, to its ambassador

Relating the two processes: Ambassador tree

• A_t : Take G_t and consider only the edges $\{(u, amb(u))\}$.

Distance in the Forest Fire Model How far are you from Eve?

Ambassador tree

Line Fire result: $E[\operatorname{dist}_{L_t}(v, L_0)] = O(1)$,

+ Ambassador tree properties

 \Rightarrow Forest Fire result:

 $E[\operatorname{dist}_{\boldsymbol{G}_t}(\boldsymbol{v},\boldsymbol{G}_0)]=O(1).$

Outline

ntroduction Related Work

1st Model: The Windy Forest Fire model Model definition Proof intuition A potential function Ambassador tree

2nd Model: Random Walk model

Conclusion/Open questions

Model

Random walk model with parameter 0 . At arrival of <math>u

- Connect to a node amb(u) chosen u.a.r.
- Perform random walk starting from amb(u).
- At every step, w.p. *p*, stop the random walk.
- Connect *u* to all nodes visited by the random walk.

Our results

Theorem 2

Let G_0 be a strongly connected graph. The Random Walk Process with parameters p < 1/3 and G_0 has the property of non-increasing distance to G_0 , i.e., for every t,

 $\mathbb{E}[\operatorname{dist}_{G_t}(u,G_0)]=O(1).$

Theorem 3

For all G_0 , the Random Walk Process with parameters p > 1/3and G_0 , has the property that

$$\mathbb{E}[\operatorname{dist}_{G_t}(u, G_0)] = \Omega(\log t).$$

- Principle of deferred randomness. We uncover the random choices 'backwards'.
- ► The degree of node u distributed deg(u) ~ Geom(p).
- When the random walk arrives at a node u it takes the edge with ID X ∼ Uniform(Geom(p)).

- ► Consider the decisions of the random walk with r steps X₁, X₂, ..., X_r.
- ▶ Where does us the 5'th edge of node *u* take? Need to know where the edges 0, 1, 2, 3, 4 take us.
- ▶ We don't care about the other edges of *u*!

Conclusion/Open questions

Main result:

 François Hollande is probably not too 'far' from you (if you care), i.e., Forest Fire Process and Random Walk model have constant expected distance.

Open questions for Forest Fire Process:

- We analyzed the Windy FF. What about the original one?
- Prove densification.

Thank you!