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MOTIVATIONS

• Formalization of syntactic results by proof assistants.

• Avoiding α-equivalence.
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TRICKY CASES OF CUT ELIMINATION



CASE OF A GENERALIZATION VERSUS AN INSTANTIATION

For some y not free in Γ nor in ∀xA we have:

π

Γ ` A[y/x]
(∀I)

Γ ` ∀xA

ρ

∆,A[t/x] ` B
(∀L)

∆, ∀xA ` B
(cut)

Γ, ∆ ` B

Cut elimination step:

π[t/y]
Γ ` A[t/x]

ρ

∆,A[t/x] ` B
(cut)

Γ, ∆ ` B
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FIRST EXAMPLE

(ax)
Px,Py ` Py

(∀L)
Px, ∀xPx ` Py

(∀I)
Px, ∀xPx ` ∀xPx

(∨IR)
Px, ∀xPx ` Py∨ ∀xPx

(∀I)
Px, ∀xPx ` ∀y(Py∨ ∀xPx)

(ax)
Px∨ ∀xPx ` Px∨ ∀xPx

(∀L)
∀y(Py∨ ∀xPx) ` Px∨ ∀xPx

(cut)
Px, ∀xPx ` Px∨ ∀xPx

3



FIRST EXAMPLE

(ax)
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(∀L)
Px, ∀xPx ` Px

(∀I)
Px, ∀xPx ` ∀xPx

(∨IR)
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(ax)
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(cut)
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CASE OF A COMMUTATIVE CUT

For some y not free in ∆,A nor in ∀xB we have:

π

Γ ` A

ρ

∆,A ` B[y/x]
(∀I)

∆,A ` ∀xB
(cut)

Γ, ∆ ` ∀xB

Cut elimination step:

π

Γ ` A
ρ

∆,A ` B[y/x]
(cut)

Γ, ∆ ` B[y/x]
(∀I)

Γ, ∆ ` ∀xB
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SECOND EXAMPLE

(ax)
Py,Px ` Px

(∀L)
Py, ∀xPx ` Px

(∀I)
Py, ∀xPx ` ∀xPx

(ax)
Py ` Py

(∀L)
∀xPx ` Py

(∀I)
∀xPx ` ∀xPx

(cut)
Py, ∀xPx ` ∀xPx
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SECOND EXAMPLE

(ax)
Py,Px ` Px

(∀L)
Py, ∀xPx ` Px

(∀I)
Py, ∀xPx ` ∀xPx

(ax)
Py ` Py

(∀L)
∀xPx ` Py

(cut)
Py, ∀xPx ` Py

(∀I)
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ONE POSSIBLE SOLUTION

• Introduce a notion of nice derivation:
each occurrence of the (∀I) rule has its own variable.

• Every derivation is equivalent to a nice derivation.
• We can apply any cut elimination step to a nice derivation.
• But we have to resort to variable renaming several times...
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A DIFFERENT APPROACH



TWO KINDS OF VARIABLES

Gentzen’s approach, with e not occurring in Γ nor A:

Γ ` A[e/x]
(∀I)

Γ ` ∀xA

• e-variables (“eigen”) in E, denoted e, e ′, e1, . . .
◦ Constants at the level of terms and formulas.
◦ Variables at the level of proofs.

• f-variables (“formula”) in V, denoted x, y, z, . . .
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TERMS AND SUBSTITUTION

E-terms are given by:

t ::= x | e | gt . . . t

An E-term is f-closed if it contains no f-variable.

The substitution t[u/x] of an f-variable x by an E-term u in an
E-term t is defined by induction on t:

x[u/x] = u
y[u/x] = y (if x 6= y)
e[u/x] = e

(gt1 . . . tk)[u/x] = g(t1[u/x]) . . . (tk[u/x])
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FORMULAS AND SUBSTITUTION

E-formulas are given by:

A ::= Pt . . . t | A ⋆ A | ∀xA | ∃xA

The substitution A[u/x] of an f-variable x by an E-term u in an
E-formula A is defined by induction on A:

(Pt1 . . . tk)[u/x] = P(t1[u/x]) . . . (tk[u/x])
(B ⋆ C)[u/x] = (B[u/x]) ⋆ (C[u/x])
(∀xB)[u/x] = ∀xB
(∀yB)[u/x] = ∀y(B[u/x]) (if x 6= y)
(∃xB)[u/x] = ∃xB
(∃yB)[u/x] = ∃y(B[u/x]) (if x 6= y)
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INSTANTIATION RULES

If t is an f-closed term:

Γ ` A[t/x]
(∃I)

Γ ` ∃xA
Γ,A[t/x] ` B

(∀L)
Γ, ∀xA ` B

Notice that Pt→ ∃xPx is provable if and only if t is f-closed.

Not a problem: provability of f-closed formulas (i.e. with no
free occurrence of f-variable) in our system corresponds to
provability of formulas in usual intuitionistic sequent calculus.
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GENERALIZATION RULES

If e does not occur in Γ,A, C:

Γ ` A[e/x]
(∀I)

Γ ` ∀xA
Γ,A[e/x] ` B

(∃L)
Γ, ∃xA ` B

The e-variable e is called the eigenvariable of these rules.

We wish for uniqueness of eigenvariables, but this is not
possible due to proof transformations with duplications
involved.
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THE ANTI-LOCALLY-NAMELESS APPROACH



A MIXED GENTZEN-DE BRUIJN APPROACH

We fix E = N and we lift eigenvariables when crossing a
generalization rule upwards.

Γ ` A [0/x]
(∀I)

Γ ` ∀xA
Γ ,A [0/x] ` B

(∃L)
Γ, ∃xA ` B
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A CONCRETE EXAMPLE

(ax)
P00 ` P00

(∀L)
∀yP0y ` P00

(∀L)
∀x∀yPxy ` P00

(ax)
P01 ` P01

(∀L)
∀yP0y ` P01

(∀L)
∀x∀yPxy ` P01

(∀I)
∀x∀yPxy ` ∀yPy0

(∧I)
∀x∀y ` P00∧ ∀yPy0

(∀I)
∀x∀yPxy ` ∀x(Pxx∧ ∀yPyx)
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PARALLEL SUBSTITUTION

Given a function r : E → E-terms, we define the parallel
substitution t[r] by induction on t:

x[r] = x
e[r] = r(e)

(gt1 . . . tk)[r] = g(t1[r]) . . . (tk[r])

We also have A[r] defined by induction on A:

(Pt1 . . . tk)[r] = P(t1[r]) . . . (tk[r])
(B→ C)[r] = (B[r]) → (C[r])

(∀xB)[r] = ∀x(B[r])
(∃xB)[r] = ∃x(B[r])
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COMPOSITION AND COMMUTATION LEMMAS

We say that r is f-closed if r(e) is f-closed for all e ∈ E.

Lemma (Composition).

t[r][s] = t[e 7→ r(e)[s]]
A[r][s] = A[e 7→ r(e)[s]]

Lemma (Commutation). If r is f-closed, then:

t[u/x][r] = t[r][u[r]/x]
A[u/x][r] = A[r][u[r]/x]
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FORMALIZING LIFTING

Let S : N → N-terms be defined by S(n) = n+ 1. We define:

t = t[S]
A = A[S]

And given r : N → N-terms, we define r : N → N-terms by:

r(n) =

0 if n = 0
r(n− 1) otherwise

By construction is f-closed and r is f-closed if r is f-closed.
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LIFTING LEMMA

Lemma (Lifting).

t [ r] = t[r]
A [ r] = A[r]

Proof. By the composition lemma, we have:

t [ r] = t[n 7→ (n+ 1)[ r]] = t[n 7→ r(n) ] = t[r]

Analogous for formulas.
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SUBSTITUTION IN PROOFS, CASE OF A GENERALIZATION

Given a derivation π of Γ ` A, we define a derivation π[r] of
Γ [r] ` A[r] for every f-closed r by induction on the size of π.

π0

Γ ` B [0/x]
π = (∀I)

Γ ` ∀xB

π0[ r]
Γ [ r] `

π[r] =

(∀I)
Γ [r] ` ∀x(B[r])

18
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SUBSTITUTION IN PROOFS, CASE OF AN INSTANTIATION

Suppose t is an f-closed term, in which case t[r] is f-closed.
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BACK TO CUT ELIMINATION



AN AUXILIARY FUNCTION

Given an N-term v, we define v : N → N-terms by:

v (n) =

v if n = 0
n− 1 otherwise

By construction v is f-closed if v is f-closed.
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DELETION LEMMA

Lemma (Deletion).

t [v ] = t
A [v ] = A

Proof. By the composition lemma, we have:

t [v ] = t[n 7→ (n+ 1)[v ]] = t[n 7→ n] = t

Analogous for formulas.
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SUBSTITUTION LEMMA

Lemma (Substitution). If π is a derivation of Γ ` A [0/x] and t
is an f-closed term, then π[t ] is a derivation of Γ ` A[t/x].

Proof. We have that π[t ] is a derivation of:

Γ [t ] ` A [0/x][t ]
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CASE OF A GENERALIZATION VERSUS AN INSTANTIATION REVISITED

π

Γ ` A [0/x]
(∀I)

Γ ` ∀xA

ρ

∆,A[t/x] ` B
(∀L)

∆, ∀xA ` B
(cut)

Γ, ∆ ` B

Cut elimination step:

π[t ]
Γ ` A[t/x]

ρ

∆,A[t/x] ` B
(cut)

Γ, ∆ ` B
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FIRST EXAMPLE REVISITED

(ax)
P2,P0 ` P0

(∀L)
P2, ∀xPx ` P0

(∀I)
P1, ∀xPx ` ∀xPx

(∨IR)
P1, ∀xPx ` P0∨ ∀xPx

(∀I)
P0, ∀xPx ` ∀y(Py∨ ∀xPx)

(ax)
P0∨ ∀xPx ` P0∨ ∀xPx

(∀L)
∀y(Py∨ ∀xPx) ` P0∨ ∀xPx

(cut)
P0, ∀xPx ` P0∨ ∀xPx
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(∀I)
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(∨IR)
P0, ∀xPx ` P0∨ ∀xPx

(ax)
P0∨ ∀xPx ` P0∨ ∀xPx

(cut)
P0, ∀xPx ` P0∨ ∀xPx
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CASE OF A COMMUTATIVE CUT REVISITED

π

Γ ` A

ρ

∆ ,A ` B [0/x]
(∀I)

∆,A ` ∀xB
(cut)

Γ, ∆ ` ∀xB

Cut elimination step:

π[ ]

Γ ` A
ρ

∆ ,A ` B [0/x]
(cut)

Γ , ∆ ` B [0/x]
(∀I)

Γ, ∆ ` ∀xB
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∆,A ` ∀xB
(cut)
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Cut elimination step:

π[ ]

Γ ` A
ρ

∆ ,A ` B [0/x]
(cut)

Γ , ∆ ` B [0/x]
(∀I)

Γ, ∆ ` ∀xB
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SECOND EXAMPLE REVISITED

(ax)
P1,P0 ` P0

(∀L)
P1, ∀xPx ` P0

(∀I)
P0, ∀xPx ` ∀xPx

(ax)
P0 ` P0

(∀L)
∀xPx ` P0

(∀I)
∀xPx ` ∀xPx

(cut)
P0, ∀xPx ` ∀xPx
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SECOND EXAMPLE REVISITED

(ax)
P2,P0 ` P0

(∀L)
P2, ∀xPx ` P0

(∀I)
P1, ∀xPx ` ∀xPx

(ax)
P0 ` P0

(∀L)
∀xPx ` P0

(cut)
P1, ∀xPx ` P0

(∀I)
P0, ∀xPx ` ∀xPx

26



EXPRESSIVENESS ANALYSIS



FROM LJ TO ALN, CASE OF A GENERALIZATION

Lemma. If the free variables of Γ and A are among x1, . . . , xn
and Γ `LJ A, then Γ [t1/x1, . . . , tn/xn] `ALN A[t1/x1, . . . , tn/xn] for
any f-closed terms t1, . . . , tn.

Proof. By induction on the size of the proof of Γ ` A in LJ.
Suppose that y is not free in Γ nor in ∀xB.

Γ ` B[y/x]
(∀I)

Γ ` ∀xB

Γ [t1 /x1, . . . , tn /xn, 0/y] ` B[y/x][t1 /x1, . . . , tn /xn, 0/y]

(∀I)
Γ [t1/x1, . . . , tn/xn] ` ∀x(B[t1/x1, . . . , tn/xn])
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FROM LJ TO ALN, CASE OF AN INSTANTIATION

Let t be a term with free variables among x1, . . . , xn, y1, . . . , ym.

Γ ` B[t/x]
(∃I)

Γ ` ∃xB

Γ [ti/xi, 0/yk] ` B[t/x][ti/xi, 0/yk]

(∃I)
Γ [ti/xi] ` ∃x(B[ti/xi])

The other cases are trivial.
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FROM ALN TO LJ, CASE OF A GENERALIZATION

Lemma. If the e-variables of Γ and A are among e1, . . . , en and
Γ `ALN A, then Γ [x1/e1, . . . , xn/en] `LJ A[x1/e1, . . . , xn/en] for any
variables x1, . . . , xn not bound in Γ nor in A.

Proof. By induction on the size of the proof of Γ ` A in ALN.

Γ ` B [0/x]
(∀I)

Γ ` ∀xB

Let y be a fresh variable.

Γ [x1/e1 , . . . , xn/en , y/0] ` B [0/x][x1/e1 , . . . , xn/en , y/0]

(∀I)
Γ [x1/e1, . . . , xn/en] ` ∀x(B[x1/e1, . . . , xn/en])
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FROM ALN TO LJ, CASE OF AN INSTANTIATION

Let t be f-closed with e-variables among e1, . . . , en, e ′1, . . . , e ′m.

Γ ` B[t/x]
(∃I)

Γ ` ∃xB

Γ [xi/ei, y/e ′k] ` B[t/x][xi/ei, y/e ′k]

(∃I)
Γ [xi/ei] ` ∃x(B[xi/ei])
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CONCLUSIONS

Proposition (Embedding LJ). If the free variables of Γ and A are
among x1, . . . , xn, then:

Γ `LJ A ⇐⇒ Γ [1/x1, . . . ,n/xn] `ALN A[1/x1, . . . ,n/xn]

Proposition (Embedding ALN). If Γ and A are f-closed, their
e-variables are among e1, . . . , en and if x1, . . . , xn are variables
not bound in Γ nor in A, then:

Γ `ALN A ⇐⇒ Γ [x1/e1, . . . , xn/en] `LJ A[x1/e1, . . . , xn/en]
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