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CASE OF A GENERALIZATION VERSUS AN INSTANTIATION

For some y not free in T' nor in VXA we have:

n L
' Aly/X] - AAlt/X] - B -
I A, FB
NMAFB

(cut)

Cut elimination step:

- 7i(t/y] P
I Alt/x] AAlt/x] - B
NLAFB

(cut)




FIRST EXAMPLE

(ax)

Px, Py = Py
Px,VxPx = Py
Px, VxPx = ¥xPx
(VIR) (ax)
Px,VxPx = Py \/ ¥xPx i) Px \/ VxPx = Px 'V VxPx (
Px, VxPx F Px 'V VxPx :

cut)

Px, VxPx = Px\V ¥xPx



FIRST EXAMPLE

(ax)

Px, Px = Px
Px, ¥xPx  Px
Px, VxPx F ¥xPx IR :
Px, VYXxPx = Px\/ ¥YxPx Px\V/ VxPx = Px '\ VYxPx (
Px, VxPx = Px\V ¥xPx

ax)

cut)




CASE OF A COMMUTATIVE CUT

For some y not free in A,A nor in VxB we have:

P
T A,A F Bly/x] u
I A, A+ VXB

(cut)

I A VxB



CASE OF A COMMUTATIVE CUT

For some y not free in A,A nor in VxB we have:

P
T A,A F Bly/x] u
I A, A+ VXB
I A VxB

(cut)

Cut elimination step:

70 P
Ik A, A+ Bly/X]
I A Bly/X] -
I, A+ VxB

(cut)




SECOND EXAMPLE

- () — (ax)
Py, Px = Px o Py = Py
Py, VxPx = Px VXPX = Py
vy —(V
Py, VXPx F VxPx (

cut)

Py, VxPx F ¥xPx



SECOND EXAMPLE

(ax)

Py, Px = Px
— (W) — ()
Py, VxPx = Px - Py - Py o
Py, VXPx - F Py
(cut)
Py, VxPx \= Py

Py, VxPx = ¥xPx
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ONE POSSIBLE SOLUTION

Introduce a notion of nice derivation:
each occurrence of the (V/) rule has its own variable.

Every derivation is equivalent to a nice derivation.

We can apply any cut elimination step to a nice derivation.

But we have to resort to variable renaming several times...



A DIFFERENT APPROACH
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Gentzen's approach, with e not occurring in T nor A:

I+ Ale/x]
- T W
Ik VxA

e c-variables (“eigen”) in €, denoted e, e’ ey, ...
o Constants at the level of terms and formulas.
o Variables at the level of proofs.

e f-variables (“formula”) in V, denoted x, y, z, ...
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TERMS AND SUBSTITUTION

&-terms are given by:
to=xlelgt...t

An &-term is f-closed if it contains no f-variable.

The tlu/x] of an f-variable x by an &-term u in an
&-term t is defined by induction on t:

u/xl=u

u/xl =y (ifx #y)
e
g



FORMULAS AND SUBSTITUTION

are given by:

Auz=Pt...t|AxA| VXA | IXA



FORMULAS AND SUBSTITUTION

&-formulas are given by:
Az=Pt...t|AxA|VxA|IxA

The Alu/x] of an f-variable x by an &-term u in an
&-formula A is defined by induction on A:

(Pty...to)u/x] = P(thlu/x]) ... (tplu/x])

(VxB

(VyB)lu/x] = Vy(Blu/x]) (ifx#y)
(IxB)[u/x] = 3IxB

(

JyB)lu/x1 = 3y(Blu/x]) (if x #y)



INSTANTIATION RULES

If tisan term:

I Alt/X] o IVA[t/X] + B w
I' - 3xA I VXA - B
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INSTANTIATION RULES

If tisan term:
I Alt/X] o IVA[t/X] + B w
' 3xA I VXA - B

Notice that Pt — 3xPx is provable if and only if t is f-closed.

10



INSTANTIATION RULES

If tisan term:

I Alt/X] IVA[t/X] + B
— (3 — (VL
Ik 3xA I VXA - B
Notice that Pt — 3xPx is provable if and only if t is f-closed.

Not a problem: provability of f-closed formulas (i.e. with no
free occurrence of f-variable) in our system corresponds to
provability of formulas in usual intuitionistic sequent calculus.

10



GENERALIZATION RULES

If e does not occurin T, A, C

' Ale/X] - IAle/x] + B :
I' - VXA I, 3IxA - B
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GENERALIZATION RULES

If e does not occurin T, A, C

' Ale/X] - IAle/x] + B :
I' - VXA I, 3IxA - B

The e-variable e is called the of these rules.

i



GENERALIZATION RULES

If e does not occurin T, A, C

' Ale/X] IAle/x] + B
— (V) — (3D
[ VXA I 3xA - B
The e-variable e is called the of these rules.

We wish for uniqueness of eigenvariables, but this is not
possible due to proof transformations with duplications
involved.

i



THE ANTI-LOCALLY-NAMELESS APPROACH




A MIXED GENTZEN-DE BRUIJN APPROACH

We fix &€ =N and we eigenvariables when crossing a
generalization rule upwards.

I'T = AT[0/X] u I',ATI0/X] =B
I VXA I'y3IxA - B

12



A CONCRETE EXAMPLE

ax)

—
P01+ PO1

- (ax) -
P00 = POO - VyPOy F P01
VyPOy = P00 o VxVyPxy = P01 »
VxVyPxy = POO VxVyPxy F YyPy0 A

VxVy = P00 /A YyPyO
VXVYPXy F Vx(Pxx /\ YyPyx)

13



PARALLEL SUBSTITUTION

Given a function r: &€ — &-terms, we define the
t[r] by induction on t:

x[r]

Il
~

0,
Il

el
(gt1 . tk)m

r(e)
g(tlr) ... (tlr])

We also have Alr] defined by induction on A:

(Pt1...te) [ = P(t4[r]) ... (tlr])
(B — Q) = (BIr]) — (CIr)
(VxB)[r] = Vx(BIr])
(3xB)[r] = 3x(BIr])

14



COMPOSITION AND COMMUTATION LEMMAS

We say that ris f-closed if r(e) is f-closed for all e € €.

15



COMPOSITION AND COMMUTATION LEMMAS

We say that ris f-closed if r(e) is f-closed for all e € €.

Lemma ( ).

tlr[s] = tle — r(e)[s]]
Alrl[s] = Ale — r(e)[sl]

Lemma ( ). If ris f-closed, then:

tlu/x1lr] = tirlfulrl/x]
Alu/x]r] = Alrllulr] /X]

15
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FORMALIZING LIFTING

Let S: N — N-terms be defined by S(n) = n + 1. We define:

tT = t[S]
AT = A[S]

And given r: N — N-terms, we define fir: N — N-terms by:

0 ifn=0
(n) = _
r(n—1)T otherwise

By construction T is f-closed and fir is f-closed if r is f-closed.
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LIFTING LEMMA

Lemma ( ).

trnr] = tin?7
AT[r] = AlrT

Proof. By the composition lemma, we have:
T = tln = (n+ D] = tln — r(n)7 = tr7

Analogous for formulas. O]
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Given a derivation tof I' = A, we define a derivation of
I'lr] = A[r] for every r by induction on the size of 7.

. To
reBsmom
'+ VxB

- o (1]
- Il = BT0/X][Nr]

m=----------=



SUBSTITUTION IN PROOFS, CASE OF A GENERALIZATION

Given a derivation tof I' = A, we define a derivation of
I'lr] = A[r] for every r by induction on the size of 7.

. To
reBsmom
'+ VxB

- o (1]
_ T = BTIr[0/X]

n=--------=-"-=



SUBSTITUTION IN PROOFS, CASE OF A GENERALIZATION

Given a derivation tof I' = A, we define a derivation of
I'lr] = A[r] for every r by induction on the size of 7.

. To
reBsmom
'+ VxB

- o (1]
1A F BTA[0/X]
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SUBSTITUTION IN PROOFS, CASE OF A GENERALIZATION

Given a derivation tof I' = A, we define a derivation of
I'lr] = A[r] for every r by induction on the size of 7.

. To
reBsmom
'+ VxB

- o (1]
I T+ Blr]T[0/X]

nilr] =
I'lr] = Vx(B[n)
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SUBSTITUTION IN PROOFS, CASE OF A GENERALIZATION

Given a derivation tof I' = A, we define a derivation of
I'lr] = A[r] for every r by induction on the size of 7.

. To
reBsmom
'+ VxB

- o (1]
Al = T+ BIrT[0/x] o
I'(r] =




SUBSTITUTION IN PROOFS, CASE OF AN INSTANTIATION

Suppose t is an f-closed term, in which case t[r] is f-closed.

:7’[0
'+ B[t/xX] »
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SUBSTITUTION IN PROOFS, CASE OF AN INSTANTIATION

Suppose t is an f-closed term, in which case t[r] is f-closed.

:7’[0
'+ B[t/xX] »
I 3xB

- molr]
I'[r] = Blt/x1[r]
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SUBSTITUTION IN PROOFS, CASE OF AN INSTANTIATION

Suppose t is an f-closed term, in which case t[r] is f-closed.

:7’[0
'+ B[t/xX] »
I 3xB

- molr]
[l = BIrl[t[r]/x]

nlr] = [
I'[r] = 3x(B[)

19



SUBSTITUTION IN PROOFS, CASE OF AN INSTANTIATION

Suppose t is an f-closed term, in which case t[r] is f-closed.

:7’[0
'+ B[t/xX] »
I 3xB

- molr]
MA - BIAk/X

19



SUBSTITUTION IN PROOFS, CASE OF AN INSTANTIATION

Suppose t is an f-closed term, in which case t[r] is f-closed.

:7’[0
'+ B[t/xX] »
I 3xB

- molr]
MA - BIAk/X

19



BACK TO CUT ELIMINATION




AN AUXILIARY FUNCTION

Given an N-term v, we define vl: N — N-terms by:

Vv ifn=0
(n) =

n—1 otherwise

20



AN AUXILIARY FUNCTION

Given an N-term v, we define vl: N — N-terms by:

Vv ifn=0
(n) =

n—1 otherwise

By construction vl is f-closed if v is f-closed.

20



DELETION LEMMA

Lemma ( ).

tTvl] =t
ATV = A

21



DELETION LEMMA

Lemma ( ).

tTvl] =t
ATV = A

Proof. By the composition lemma, we have:
T =tin— (n+ 1M =tlh—n] =t

Analogous for formulas. O]

21



SUBSTITUTION LEMMA

Lemma ( ). If 7t is a derivation of T AT[0/x] and t
is an f-closed term, then 7t[tl] is a derivation of ' - Alt/x].
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SUBSTITUTION LEMMA

Lemma ( ). If 7t is a derivation of T AT[0/x] and t
is an f-closed term, then 7t[tl] is a derivation of ' - Alt/x].

Proof. We have that 7[tl] is a derivation of:

ITIel] = ATIO/X][tL]

22



SUBSTITUTION LEMMA

Lemma ( ). If 7t is a derivation of T AT[0/x] and t
is an f-closed term, then 7t[tl] is a derivation of ' - Alt/x].

Proof. We have that 7t[tl] is a derivation of:

I'Tel] = AT[O/x][tU]

22
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Lemma ( ). If 7t is a derivation of T AT[0/x] and t
is an f-closed term, then 7t[tl] is a derivation of ' - Alt/x].

Proof. We have that 7t[tl] is a derivation of:

ITel] = ATt /X]
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SUBSTITUTION LEMMA

Lemma ( ). If 7t is a derivation of T AT[0/x] and t
is an f-closed term, then 7t[tl] is a derivation of ' - Alt/x].

Proof. We have that 7t[tl] is a derivation of:

r = AT[tU] [t/ X]

22



SUBSTITUTION LEMMA

Lemma ( ). If 7t is a derivation of T AT[0/x] and t
is an f-closed term, then 7t[tl] is a derivation of ' - Alt/x].

Proof. We have that 7t[tl] is a derivation of:

I Alt/X] O

22



CASE OF A GENERALIZATION VERSUS AN INSTANTIATION REVISITED

‘T p
I'T = AT[0/X] - AVAlt/XI = B -
I A, B
ITAFB

(cut)

23



CASE OF A GENERALIZATION VERSUS AN INSTANTIATION REVISITED

‘T p
I'T = AT[0/X] - AVAlt/XI = B -
I A, B
ITAFB

(cut)

Cut elimination step:

- i[tl] P
FEAlL/X A AILX - B
LAFB

(cut)

23



FIRST EXAMPLE REVISITED

(ax)

P2, PO PO
P2,VxPx = PO
P1, ¥XxPx = VxPx
(VIR) (ax)
P1,¥xPx = POV VxPx i) PO V VxPx = POV VxPx
PO, VxPx F POV VxPx

(cut)

PO, VxPx = POV VxPx

24



FIRST EXAMPLE REVISITED

(ax)

P1,PO0 F PO
VL)

P1,¥xPx + PO
PO, VXPx F VxPx
(VIR) (ax
PO, VxPx = PO \/ VYxPx POV ¥xPx = PO\ VYxPx (cut]
cu
PO, VxPx = PO\ VYxPx

2%



CASE OF A COMMUTATIVE CUT REVISITED

e
i AT, AT E BT[0/X]
I A, A+ VXB

(cut)
AL VxB

25



CASE OF A COMMUTATIVE CUT REVISITED

P

im ALATF BI0/A
re A, A+ VxB
(cut)
I A+ VxB
Cut elimination step:

ET[[T] p

I AT, ATk B1[0/X]

', AT F BT[0/x]
I A F VxB

25



SECOND EXAMPLE REVISITED

— (ax) — (ax)
P1, PO = PO o PO+ PO
P1,¥XxPx = PO VxPx = PO
V) — (VI
PO, VXPx F VxPx (

cut)

PO, VXxPx - VxPx

26



SECOND EXAMPLE REVISITED

(ax)

P2, PO F PO
i i ——— TN — (ax)
P2,vxPx - PO PO = PO
vy —— (V1)
P1, VXPx = = PO
(cut)
P1, VxPx = PO

PO, VXxPx - VxPx

26



EXPRESSIVENESS ANALYSIS




FROM L) TO ALN, CASE OF A GENERALIZATION

Lemma. If the of 'and A are among Xq,..., Xy
and rl—u A, then F[t1/ ,...,tn/ ] }_ALN A[ﬁ/ ,...,tn/ } for
any f-closed terms ty, ..., tn.
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FROM L) TO ALN, CASE OF AN INSTANTIATION
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FROM ALN TO LJ, CASE OF AN INSTANTIATION

Let t be f-closed with e-variables among es,...,en, e;,...,e/,.
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CONCLUSIONS
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Proposition ( ). If the of T'and A are
among Xxi, ..., Xp, then:

Ny A <= /X1y .o yn/Xn] Fan Al1/Xqy .00y n/XR]

Proposition (Embedding ALN). If T and A are f-closed, their
e-variables are among ey, ..., e, and if xq,...,Xx, are
not bound in T norin A, then:

FEan A < Tlxi/eq, ... xn/enl Fy Al/eq, ...y Xn/enl
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