# An Internal Language for Autonomous Categories 

Raffaele Di Donna
February 22, 2022
Aix-Marseille University

## Introduction

Logics Categories

## Introduction

## Logics Categories

$\lambda$-calculi
Cartesian Closed Categories
Intuitionistic type theories
Toposes

## Introduction

Logics Categories
$\lambda$-calculi
Intuitionistic type theories
Linear term calculi Autonomous categories

[^0]
## TAble of contents

IMLL and the linear term calculus

Interpreting the deduction system

Categorical logic correspondence

Applications

IMLL AND THE LINEAR TERM CALCULUS

## LINEAR LOGIC

A logic of resources: weakening and contraction are removed.

## LINEAR LOGIC

A logic of resources: weakening and contraction are removed.
IMLL is the intuitionistic multiplicative fragment of linear logic. Formulas are defined by the following grammar:

$$
A::=X|1| A \otimes A \mid A \multimap A
$$

## LINEAR LAMBDA CALCULUS

## Construction <br> Constraint <br> Free variables

* 

None
$\varnothing$

## LINEAR LAMBDA CALCULUS

## Construction <br> Constraint <br> Free variables

| $\star$ | None | $\varnothing$ |
| :---: | :---: | :---: |
| $x$ | None | $\{x\}$ |
| $t u$ | $F V(t) \cap F V(u)=\varnothing$ | $F V(t) \cup F V(u)$ |
| $\lambda x . t$ | $x \in F V(t)$ | $F V(t) \backslash\{x\}$ |

## LINEAR LAMBDA CALCULUS

| Construction | Constraint | Free variables |
| :---: | :---: | :---: |
| $\star$ | None | $\varnothing$ |
| $x$ | None | $\{x\}$ |
| $t u$ | $F V(t) \cap F V(u)=\varnothing$ | $F V(t) \cup F V(u)$ |
| $\lambda x . t$ | $x \in F V(t)$ | $F V(t) \backslash\{x\}$ |
| $t \otimes u$ | $F V(t) \cap F V(u)=\varnothing$ | $F V(t) \cup F V(u)$ |
| let $t$ be $\star \operatorname{in~} u$ | $F V(t) \cap F V(u)=\varnothing$ | $F V(t) \cup F V(u)$ |

## LINEAR LAMBDA CALCULUS

| Construction | Constraint | Free variables |
| :---: | :---: | :---: |
| $\star \star$ | None | $\varnothing$ |
| $x$ | None | $\{x\}$ |
| $t u$ | $F V(t) \cap F V(u)=\varnothing$ | $F V(t) \cup F V(u)$ |
| $\lambda x . t$ | $x \in F V(t)$ | $F V(t) \backslash\{x\}$ |
| $t \otimes u$ | $F V(t) \cap F V(u)=\varnothing$ | $F V(t) \cup F V(u)$ |
| let $t$ be $\star$ in $u$ | $F V(t) \cap F V(u)=\varnothing$ | $F V(t) \cup F V(u)$ |
| let $t$ be $x \otimes y$ in $u$ | $F V(t) \cap F V(u)=\varnothing$ | $F V(t) \cup F$ |
|  | $x, y \in F V(u)$ | $F=F V(u) \backslash\{x, y\}$ |

TYPING SYSTEM: AXIOM, EXCHANGE AND UNIT RULES

$$
\begin{gathered}
\overline{x: A \vdash x: A}(\text { axiom }) \\
\frac{\Gamma, x: A, y: B, \Delta \vdash t: C}{\Gamma, y: B, x: A, \Delta \vdash t: C}(\text { exchange) }
\end{gathered}
$$

TYPING SYSTEM: AXIOM, EXCHANGE AND UNIT RULES

$$
\begin{gathered}
\overline{x: A \vdash x: A}(a x i o m) \\
\frac{\Gamma, x: A, y: B, \Delta \vdash t: C}{\Gamma, y: B, x: A, \Delta \vdash t: C} \text { (exchange) } \\
\frac{\vdash \star: 1}{}(1-\text { intro }) \\
\frac{\Gamma \vdash t: 1 \quad \Delta \vdash u: B}{\Gamma, \Delta \vdash \text { let } t \text { be } \star \text { in } u: B}(1-\text { elim })
\end{gathered}
$$

TYPING SYSTEM: CONNECTIVES

$$
\begin{gathered}
\frac{\Gamma \vdash t: A \quad \Delta \vdash u: B}{\Gamma, \Delta \vdash t \otimes u: A \otimes B}(\otimes-\text { intro }) \\
\frac{\Gamma \vdash t: A \otimes B \quad x: A, y: B, \Delta \vdash u: C}{\Gamma, \Delta \vdash \text { let } t \text { be } x \otimes y \text { in } u: C}(\otimes-\text { elim })
\end{gathered}
$$

## TYPING SYSTEM: CONNECTIVES

$$
\frac{\Gamma \vdash t: A \quad \Delta \vdash u: B}{\Gamma, \Delta \vdash t \otimes u: A \otimes B}(\otimes-\text { intro })
$$

$$
\frac{\Gamma \vdash t: A \otimes B \quad x: A, y: B, \Delta \vdash u: C}{\Gamma, \Delta \vdash \text { let } t \text { be } x \otimes y \text { in } u: C}(\otimes-\text { elim })
$$

$$
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x . t: A \multimap B}(\multimap-\text { intro })
$$

$$
\frac{\Gamma \vdash t: A \multimap B \quad \Delta \vdash u: A}{\Gamma, \Delta \vdash t u: B}(\multimap-e l i m)
$$

## Evaluation equations

$$
\begin{gathered}
\text { let } \star \text { be } \star \text { in } u \rightarrow_{\beta} u \\
\text { let } t \text { be } \star \text { in } \star \rightarrow_{\eta} t \\
\text { let } t \otimes u \text { be } x \otimes y \text { in } v \rightarrow_{\beta} v[t / x, u / y] \\
\text { let } t \text { be } x \otimes y \text { in } x \otimes y \rightarrow_{\eta} t \\
(\lambda x . t) u \rightarrow_{\beta} t[u / x] \\
\lambda x .(t x) \rightarrow_{\eta} t
\end{gathered}
$$

## TERMS WITH HOLES

A term $t$ with free occurrences of a variable $x$ is called a context or a term with holes and denoted $t[]$.

## TERMS WITH HOLES

A term $t$ with free occurrences of a variable $x$ is called a context or a term with holes and denoted $t[]$. The substitution $t[u / x]$ is denoted $t[u]$.

## TERMS WITH HOLES

A term $t$ with free occurrences of a variable $x$ is called a context or a term with holes and denoted $t[]$. The substitution $t[u / x]$ is denoted $t[u]$.

We define three kinds of contexts by the following grammars:

$$
\begin{aligned}
& C_{0}[]::=x[]\left|C_{0}[] t\right| t C_{0}[] \\
& C_{1}[]::=C_{0}[]\left|t \otimes C_{1}[]\right| C_{1}[] \otimes t \\
& C_{2}[]::=C_{1}[] \mid \lambda x . C_{2}[]
\end{aligned}
$$

## Commutative conversion rules

Let $C_{0}$ [let $t$ be $p$ in $\left.v\right]$ be $\star$ in $w \equiv$ let $t$ be $p$ in let $C_{0}[v]$ be $\star$ in $w$ let $C_{1}$ [let $t$ be $p$ in $\left.v\right]$ be $x \otimes y$ in $w \equiv$ let $t$ be $p$ in let $C_{1}[v]$ be $x \otimes y$ in $w$
let $t$ be $\star$ in $C_{2}[u] \equiv C_{2}[$ let $t$ be $\star$ in $u]$ if $\star$ does not occur in $C_{2}[]$ let $t$ be $x \otimes y$ in $C_{2}[u] \equiv C_{2}[$ let $t$ be $x \otimes y$ in $u]$ if $x, y \notin F V\left(C_{2}[]\right)$

## Autonomous theories

An autonomous theory $\mathcal{L}$ is given by:

## Autonomous theories

An autonomous theory $\mathcal{L}$ is given by:

- A set of types, which are formulas of IMLL uniquely determined by a set of atomic types.


## Autonomous theories

An autonomous theory $\mathcal{L}$ is given by:

- A set of types, which are formulas of IMLL uniquely determined by a set of atomic types.
- A set of plain terms, which are linear lambda terms and possibly supplementary terms.


## Autonomous theories

An autonomous theory $\mathcal{L}$ is given by:

- A set of types, which are formulas of IMLL uniquely determined by a set of atomic types.
- A set of plain terms, which are linear lambda terms and possibly supplementary terms.
- A set of reduction relations, which is the union of $\rightarrow_{\beta}$ with $\rightarrow_{\eta}$ and eventually a set of supplementary reductions.


## AUTONOMOUS THEORIES

An autonomous theory $\mathcal{L}$ is given by:

- A set of types, which are formulas of IMLL uniquely determined by a set of atomic types.
- A set of plain terms, which are linear lambda terms and possibly supplementary terms.
- A set of reduction relations, which is the union of $\rightarrow_{\beta}$ with $\rightarrow_{\eta}$ and eventually a set of supplementary reductions.

A typed term is a typing judgement $\Gamma \vdash t$ : A where $t$ is a plain term modulo the symmetric transitive reflexive closure of all reduction relations and modulo commutative conversion rules.

INTERPRETING THE DEDUCTION SYSTEM

## CATEGORICAL INTERPRETATION OF TYPES

The interpretation $\llbracket X \rrbracket$ in an autonomous category $\mathcal{C}$ of an atomic type $X$ is an object of $\mathcal{C}$.

## CATEGORICAL INTERPRETATION OF TYPES

The interpretation $\llbracket X \rrbracket$ in an autonomous category $\mathcal{C}$ of an atomic type $X$ is an object of $\mathcal{C}$. We extend it to all types by:

## CATEGORICAL INTERPRETATION OF TYPES

The interpretation $\llbracket X \rrbracket$ in an autonomous category $\mathcal{C}$ of an atomic type $X$ is an object of $\mathcal{C}$. We extend it to all types by:

$$
\llbracket 1 \rrbracket=1
$$

## CATEGORICAL INTERPRETATION OF TYPES

The interpretation $\llbracket X \rrbracket$ in an autonomous category $\mathcal{C}$ of an atomic type $X$ is an object of $\mathcal{C}$. We extend it to all types by:

$$
\begin{aligned}
\llbracket 1 \rrbracket & =1 \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket
\end{aligned}
$$

## CATEGORICAL INTERPRETATION OF TYPES

The interpretation $\llbracket X \rrbracket$ in an autonomous category $\mathcal{C}$ of an atomic type $X$ is an object of $\mathcal{C}$. We extend it to all types by:

$$
\begin{aligned}
\llbracket 1 \rrbracket & =1 \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket \\
\llbracket A \multimap B \rrbracket & =\llbracket A \rrbracket \multimap \llbracket B \rrbracket
\end{aligned}
$$

## CATEGORICAL INTERPRETATION OF TYPES

The interpretation $\llbracket X \rrbracket$ in an autonomous category $\mathcal{C}$ of an atomic type $X$ is an object of $\mathcal{C}$. We extend it to all types by:

$$
\begin{aligned}
\llbracket 1 \rrbracket & =1 \\
\llbracket A \otimes B \rrbracket & =\llbracket A \rrbracket \otimes \llbracket B \rrbracket \\
\llbracket A \multimap B \rrbracket & =\llbracket A \rrbracket \multimap \llbracket B \rrbracket
\end{aligned}
$$

We define the interpretation of a context by:

$$
\begin{aligned}
\llbracket-\rrbracket & =1 \\
\llbracket \Gamma, A \rrbracket & =\llbracket \Gamma \rrbracket \otimes \llbracket A \rrbracket
\end{aligned}
$$

## BOOKKEEPING MORPHISMS

- split ${ }_{\Gamma, \Delta}: \llbracket \Gamma, \Delta \rrbracket \rightarrow \llbracket \Gamma \rrbracket \otimes \llbracket \Delta \rrbracket$

$$
\begin{aligned}
\text { split }_{-, \Delta} & =\lambda_{\Delta}^{-1} \\
\text { split }_{\Gamma,-} & =\rho_{\Gamma}^{-1} \\
\text { split }_{\Gamma, A} & =\mathrm{id}_{\Gamma, A} \\
\text { split }_{\Gamma,(\Sigma, A)} & =\alpha_{\Gamma, \Sigma, A} \circ\left(\text { split }_{\Gamma, \Sigma} \otimes \mathrm{id}_{A}\right)
\end{aligned}
$$

## BOOKKEEPING MORPHISMS

- split $_{\Gamma, \Delta}: \llbracket \Gamma, \Delta \rrbracket \rightarrow \llbracket \Gamma \rrbracket \otimes \llbracket \Delta \rrbracket$

$$
\begin{aligned}
\text { split }_{-, \Delta} & =\lambda_{\Delta}^{-1} \\
\text { split }_{\Gamma,-} & =\rho_{\Gamma}^{-1} \\
\text { split }_{\Gamma, A} & =i d_{\Gamma, A} \\
\text { split }_{\Gamma,(\Sigma, A)} & =\alpha_{\Gamma, \Sigma, A} \circ\left(\text { split }_{\Gamma, \Sigma} \otimes \mathrm{id}_{A}\right)
\end{aligned}
$$

- join ${ }_{\Gamma, \Delta}: \llbracket \Gamma \rrbracket \otimes \llbracket \Delta \rrbracket \rightarrow \llbracket \Gamma, \Delta \rrbracket$


## BOOKKEEPING MORPHISMS

- split $_{\Gamma, \Delta}: \llbracket \Gamma, \Delta \rrbracket \rightarrow \llbracket \Gamma \rrbracket \otimes \llbracket \Delta \rrbracket$

$$
\begin{aligned}
\text { split }_{-, \Delta} & =\lambda_{\Delta}^{-1} \\
\text { split }_{\Gamma,-} & =\rho_{\Gamma}^{-1} \\
\text { split }_{\Gamma, A} & =i d_{\Gamma, A} \\
\text { split }_{\Gamma,(\Sigma, A)} & =\alpha_{\Gamma, \Sigma, A} \circ\left(\text { split }_{\Gamma, \Sigma} \otimes i d_{A}\right)
\end{aligned}
$$

- join ${ }_{\Gamma, \Delta}: \llbracket \Gamma \rrbracket \otimes \llbracket \Delta \rrbracket \rightarrow \llbracket \Gamma, \Delta \rrbracket$
- exch $_{\Gamma, A, B, \Delta}: \llbracket \Gamma, A, B, \Delta \rrbracket \rightarrow \llbracket \Gamma, B, A, \Delta \rrbracket$


## CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation $\llbracket t \rrbracket_{\Gamma \vdash A}$ of a judgement $\Gamma \vdash t: A$ is a morphism in $\mathcal{C}$ from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket$, inductively defined by:

## CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation $\llbracket t \rrbracket_{\Gamma \vdash A}$ of a judgement $\Gamma \vdash t: A$ is a morphism in $\mathcal{C}$ from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket$, inductively defined by:

$$
\llbracket x \rrbracket_{A \vdash A}=\mathrm{id}_{A}
$$

## CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation $\llbracket t \rrbracket_{\Gamma \vdash A}$ of a judgement $\Gamma \vdash t: A$ is a morphism in $\mathcal{C}$ from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket$, inductively defined by:

$$
\begin{aligned}
\llbracket x \rrbracket_{A \vdash A} & =\mathrm{id}_{A} \\
\llbracket t \rrbracket_{\Gamma, B, A, \Delta \vdash C} & =\llbracket t \rrbracket_{\Gamma, A, B, \Delta \vdash C} \circ \operatorname{exch}_{\Gamma, B, A, \Delta}
\end{aligned}
$$

## CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation $\llbracket t \rrbracket_{\Gamma \vdash A}$ of a judgement $\Gamma \vdash t: A$ is a morphism in $\mathcal{C}$ from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket$, inductively defined by:

$$
\begin{aligned}
\llbracket x \rrbracket_{A \vdash A} & =\mathrm{id}_{A} \\
\llbracket t \rrbracket_{\Gamma, B, A, \Delta \vdash-C} & =\llbracket t \rrbracket_{\Gamma, A, B, \Delta \vdash-C} \circ \operatorname{exch}_{\Gamma, B, A, \Delta} \\
\llbracket \star \rrbracket_{\vdash-1} & =\mathrm{id}_{1}
\end{aligned}
$$

## CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation $\llbracket t \rrbracket_{\Gamma \vdash A}$ of a judgement $\Gamma \vdash t: A$ is a morphism in $\mathcal{C}$ from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket$, inductively defined by:

$$
\begin{aligned}
\llbracket x \rrbracket_{A \vdash-A} & =\mathrm{id}_{A} \\
\llbracket t \rrbracket_{\Gamma, B, A, \Delta \vdash-} & =\llbracket t \rrbracket_{\Gamma, A, B, \Delta \vdash C} \circ \operatorname{exch}_{\Gamma, B, A, \Delta} \\
\llbracket \star \rrbracket_{\vdash-1} & =\mathrm{id}_{1} \\
\llbracket \text { let } t \text { be } \star \text { in } u \rrbracket_{\Gamma, \Delta \vdash-A} & =\lambda_{A} \circ\left(\llbracket t \rrbracket_{\Gamma \vdash-1} \otimes \llbracket u \rrbracket_{\Delta \vdash A}\right) \circ \text { split }_{\Gamma, \Delta}
\end{aligned}
$$

## CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation $\llbracket t \rrbracket_{\Gamma \vdash-A}$ of a judgement $\Gamma \vdash t: A$ is a morphism in $\mathcal{C}$ from $\llbracket\ulcorner\rrbracket$ to $\llbracket A \rrbracket$, inductively defined by:

$$
\begin{aligned}
\llbracket x \rrbracket_{\rrbracket-A} & =\mathrm{id}_{A} \\
\llbracket t]_{\Gamma, B, A, \Delta-C} & =\llbracket t \rrbracket_{\Gamma, A, B, \Delta-C} \circ \operatorname{exch}_{\Gamma, B, A, \Delta} \\
\llbracket \star \rrbracket_{+1} & =i d_{1}
\end{aligned}
$$

$\llbracket$ let $t$ be $*$ in $u \rrbracket_{\Gamma, \Delta-A}=\lambda_{A} \circ\left(\llbracket t \rrbracket_{\Gamma \vdash-1} \otimes \llbracket u \rrbracket_{\Delta-A}\right) \circ$ split $_{\Gamma, \Delta}$

$$
\llbracket t \otimes u \rrbracket_{\Gamma, \Delta \vdash-A \otimes B}=\left([\llbracket]_{\Gamma \vdash-A} \otimes \llbracket u \rrbracket_{\Delta \vdash B}\right) \circ \text { split } t_{\Gamma, \Delta}
$$

## CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation $\llbracket t \rrbracket_{\Gamma \vdash A}$ of a judgement $\Gamma \vdash t: A$ is a morphism in $\mathcal{C}$ from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket$, inductively defined by:

$$
\begin{aligned}
\llbracket x \rrbracket_{A \vdash A} & =\mathrm{id}_{A} \\
\llbracket t \rrbracket_{\Gamma, B, A, \Delta \vdash C} & =\llbracket t \rrbracket_{\Gamma, A, B, \Delta \vdash-C} \circ \operatorname{exch}_{\Gamma, B, A, \Delta} \\
\llbracket \star \rrbracket_{\vdash-1} & =\mathrm{id}_{1}
\end{aligned}
$$

$\llbracket$ let $t$ be $\star$ in $u \rrbracket_{\Gamma, \Delta \vdash-A}=\lambda_{A} \circ\left(\llbracket t \rrbracket_{\Gamma \vdash-1} \otimes \llbracket u \rrbracket_{\Delta \vdash-A}\right) \circ$ split $_{\Gamma, \Delta}$

$$
\llbracket t \otimes u \rrbracket_{\Gamma, \Delta \vdash A \otimes B}=\left(\llbracket t \rrbracket_{\Gamma \vdash A} \otimes \llbracket u \rrbracket_{\Delta \vdash B}\right) \circ \text { split }_{\Gamma, \Delta}
$$

$\llbracket$ let $t$ be $x \otimes y$ in $u \rrbracket_{\Gamma, \Delta \vdash C}=\llbracket u \rrbracket_{A, B, \Delta \vdash C} \circ$ join $\circ\left(\llbracket t \rrbracket_{\Gamma \vdash A \otimes B} \otimes\right.$ id $) \circ$ split $T_{\Gamma, \Delta}$

## CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation $\llbracket t \rrbracket_{\Gamma \vdash A}$ of a judgement $\Gamma \vdash t: A$ is a morphism in $\mathcal{C}$ from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket$, inductively defined by:

$$
\begin{aligned}
\llbracket x \rrbracket_{A \vdash A} & =\mathrm{id}_{A} \\
\llbracket t \rrbracket_{\Gamma, B, A, \Delta \vdash C} & =\llbracket t \rrbracket_{\Gamma, A, B, \Delta \vdash-C} \circ \operatorname{exch}_{\Gamma, B, A, \Delta} \\
\llbracket \star \rrbracket_{\vdash-1} & =\mathrm{id}_{1}
\end{aligned}
$$

$\llbracket$ let $t$ be $\star$ in $u \rrbracket_{\Gamma, \Delta \vdash A}=\lambda_{A} \circ\left(\llbracket t \rrbracket_{\Gamma \vdash-1} \otimes \llbracket u \rrbracket_{\Delta \vdash A}\right) \circ$ split $_{\Gamma, \Delta}$

$$
\llbracket t \otimes u \rrbracket_{\Gamma, \Delta \vdash A \otimes B}=\left(\llbracket t \rrbracket_{\Gamma \vdash A} \otimes \llbracket u \rrbracket_{\Delta \vdash B}\right) \circ \text { split }_{\Gamma, \Delta}
$$

$\llbracket$ let $t$ be $x \otimes y$ in $u \rrbracket_{\Gamma, \Delta \vdash C}=\llbracket u \rrbracket_{A, B, \Delta \vdash C} \circ$ join $\circ\left(\llbracket t \rrbracket_{\Gamma \vdash A \otimes B} \otimes\right.$ id $) \circ$ split $_{\Gamma, \Delta}$

$$
\llbracket \lambda x . t \rrbracket_{\Gamma \vdash A-B}=\Lambda_{\Gamma, A, B}\left(\llbracket t \rrbracket_{\Gamma, A \vdash B}\right)
$$

## CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation $\llbracket t \rrbracket_{\Gamma \vdash A}$ of a judgement $\Gamma \vdash t: A$ is a morphism in $\mathcal{C}$ from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket$, inductively defined by:

$$
\begin{aligned}
\llbracket x \rrbracket_{A \vdash A} & =\mathrm{id}_{A} \\
\llbracket t \rrbracket_{\Gamma, B, A, \Delta \vdash C} & =\llbracket t \rrbracket_{\Gamma, A, B, \Delta \vdash-C} \circ \operatorname{exch}_{\Gamma, B, A, \Delta} \\
\llbracket \star \rrbracket_{\vdash-1} & =\mathrm{id}_{1}
\end{aligned}
$$

$\llbracket$ let $t$ be $\star$ in $u \rrbracket_{\Gamma, \Delta \vdash A}=\lambda_{A} \circ\left(\llbracket t \rrbracket_{\Gamma \vdash-1} \otimes \llbracket u \rrbracket_{\Delta \vdash A}\right) \circ$ split $_{\Gamma, \Delta}$

$$
\llbracket t \otimes u \rrbracket_{\Gamma, \Delta \vdash A \otimes B}=\left(\llbracket t \rrbracket_{\Gamma \vdash A} \otimes \llbracket u \rrbracket_{\Delta \vdash B}\right) \circ \text { split }_{\Gamma, \Delta}
$$

$\llbracket$ let $t$ be $x \otimes y$ in $u \rrbracket_{\Gamma, \Delta \vdash C}=\llbracket u \rrbracket_{A, B, \Delta \vdash C} \circ$ join $\circ\left(\llbracket t \rrbracket_{\Gamma \vdash A \otimes B} \otimes\right.$ id $) \circ$ split $_{\Gamma, \Delta}$

$$
\begin{aligned}
\llbracket \lambda x . t \rrbracket_{\Gamma \vdash A-O B} & =\Lambda_{\Gamma, A, B}\left(\llbracket t \rrbracket_{\Gamma, A \vdash B}\right) \\
\llbracket t u \rrbracket_{\Gamma, \Delta \vdash B} & =\operatorname{ev}_{A, B} \circ\left(\llbracket t \rrbracket_{\Gamma \vdash A-O B} \otimes \llbracket u \rrbracket_{\Delta \vdash A}\right) \circ \text { split } \Gamma_{\Gamma, \Delta}
\end{aligned}
$$

## CATEGORICAL INTERPRETATION OF TYPED TERMS

Lemma (Substitution). If $\Gamma, x: A \vdash t: B$ and $\Delta \vdash u: A$, then:

$$
\Gamma, \Delta \vdash t[u / x]: B
$$

Moreover, we have the following condition:

$$
\llbracket t[u / x] \rrbracket=\llbracket t \rrbracket \circ\left(\mathrm{id}_{\Gamma} \otimes \llbracket u \rrbracket\right) \circ \text { split }_{\Gamma, \Delta}
$$

## CATEGORICAL INTERPRETATION OF TYPED TERMS

Lemma (Substitution). If $\Gamma, x: A \vdash t: B$ and $\Delta \vdash u: A$, then:

$$
\Gamma, \Delta \vdash t[u / x]: B
$$

Moreover, we have the following condition:

$$
\llbracket t[u / x] \rrbracket=\llbracket t \rrbracket \circ\left(\mathrm{id}_{\Gamma} \otimes \llbracket u \rrbracket\right) \circ \text { split }_{\Gamma, \Delta}
$$

Theorem. If $\Gamma \vdash t: A, \Gamma \vdash s: A$ and $t \rightarrow_{\beta \eta} s$, then $\llbracket t \rrbracket=\llbracket s \rrbracket$.

## CATEGORICAL INTERPRETATION OF TYPED TERMS

Lemma (Substitution). If $\Gamma, x: A \vdash t: B$ and $\Delta \vdash u: A$, then:

$$
\Gamma, \Delta \vdash t[u / x]: B
$$

Moreover, we have the following condition:

$$
\llbracket t[u / x] \rrbracket=\llbracket t \rrbracket \circ\left(\mathrm{id}_{\Gamma} \otimes \llbracket u \rrbracket\right) \circ \text { split }_{\Gamma, \Delta}
$$

Theorem. If $\Gamma \vdash t: A, \Gamma \vdash s: A$ and $t \rightarrow_{\beta \eta} s$, then $\llbracket t \rrbracket=\llbracket s \rrbracket$.
It follows from this result that the interpretation of judgements is well defined on typed terms.

## CATEGORICAL LOGIC CORRESPONDENCE

## THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory $\mathcal{L}$, we can define an autonomous category $\mathbb{C}(\mathcal{L})$ as follows:

## THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory $\mathcal{L}$, we can define an autonomous category $\mathbb{C}(\mathcal{L})$ as follows:

- The objects are the types of $\mathcal{L}$.


## THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory $\mathcal{L}$, we can define an autonomous category $\mathbb{C}(\mathcal{L})$ as follows:

- The objects are the types of $\mathcal{L}$.
- A morphism from type $A$ to type $B$ is an equivalence class of typed terms of $\mathcal{L}$ with exactly one free variable, denoted ( $x: A, t: B$ ), with respect to the equivalence relation:

$$
(x: A, t: B) \sim(y: A, t[y / x]: B)
$$

## THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory $\mathcal{L}$, we can define an autonomous category $\mathbb{C}(\mathcal{L})$ as follows:

- The objects are the types of $\mathcal{L}$.
- A morphism from type $A$ to type $B$ is an equivalence class of typed terms of $\mathcal{L}$ with exactly one free variable, denoted $(x: A, t: B)$, with respect to the equivalence relation:

$$
(x: A, t: B) \sim(y: A, t[y / x]: B)
$$

- $(x: B, t: C) \circ(y: A, u: B)$ is the morphism $(y: A, t[u / x]: C)$.


## THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory $\mathcal{L}$, we can define an autonomous category $\mathbb{C}(\mathcal{L})$ as follows:

- The objects are the types of $\mathcal{L}$.
- A morphism from type $A$ to type $B$ is an equivalence class of typed terms of $\mathcal{L}$ with exactly one free variable, denoted $(x: A, t: B)$, with respect to the equivalence relation:

$$
(x: A, t: B) \sim(y: A, t[y / x]: B)
$$

- $(x: B, t: C) \circ(y: A, u: B)$ is the morphism $(y: A, t[u / x]: C)$.
- The identity morphism on type $A$ is $(x: A, x: A)$.


## The internal Language of an autonomous category

Given a small autonomous category $\mathcal{C}$, its internal language $\mathbb{L}(\mathcal{C})$ is the autonomous theory defined as follows:

## THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category $\mathcal{C}$, its internal language $\mathbb{L}(\mathcal{C})$ is the autonomous theory defined as follows:

- Atomic types are the objects of $\mathcal{C}$.


## THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category $\mathcal{C}$, its internal language $\mathbb{L}(\mathcal{C})$ is the autonomous theory defined as follows:

- Atomic types are the objects of $\mathcal{C}$. Their interpretation will be chosen to be the identity, thus $\llbracket A \rrbracket=A$ for all types $A$.


## THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category $\mathcal{C}$, its internal language $\mathbb{L}(\mathcal{C})$ is the autonomous theory defined as follows:

- Atomic types are the objects of $\mathcal{C}$. Their interpretation will be chosen to be the identity, thus $\llbracket A \rrbracket=A$ for all types $A$.
- Let [f] be a constant symbol for all arrows $f: A \rightarrow B$ of $\mathcal{C}$.


## THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category $\mathcal{C}$, its internal language $\mathbb{L}(\mathcal{C})$ is the autonomous theory defined as follows:

- Atomic types are the objects of $\mathcal{C}$. Their interpretation will be chosen to be the identity, thus $\llbracket A \rrbracket=A$ for all types $A$.
- Let [ $f$ ] be a constant symbol for all arrows $f: A \rightarrow B$ of $\mathcal{C}$. Then supplementary terms are inductively defined by the following rule: if $t$ is a plain term and $f: A \rightarrow B$ is a morphism in $\mathcal{C}$, then [f]t is a supplementary term.


## THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category $\mathcal{C}$, its internal language $\mathbb{L}(\mathcal{C})$ is the autonomous theory defined as follows:

- Atomic types are the objects of $\mathcal{C}$. Their interpretation will be chosen to be the identity, thus $\llbracket A \rrbracket=A$ for all types $A$.
- Let [ $f$ ] be a constant symbol for all arrows $f: A \rightarrow B$ of $\mathcal{C}$. Then supplementary terms are inductively defined by the following rule: if $t$ is a plain term and $f: A \rightarrow B$ is a morphism in $\mathcal{C}$, then [f]t is a supplementary term. Moreover, if $\Gamma \vdash t: A$, then $\Gamma \vdash[f] t: B$.
- For all morphisms $f: A \rightarrow B, g: B \rightarrow C, h: A \otimes B \rightarrow C$ in $\mathcal{C}$, whenever $t$ is typable with $A, u$ is typable with $B, v$ is typable with $A \multimap B$, $r$ is typable with $A \otimes 1$, s is typable with $1 \otimes A$ and $w$ is typable with $(A \otimes B) \otimes C$, we have the supplementary reductions:

$$
\begin{aligned}
& {\left[i d A_{A}\right] t \rightarrow t} \\
& {[g][f] t \rightarrow[g \circ f] t \quad[f] t \otimes[g] u \rightarrow[f \otimes g](t \otimes u)} \\
& {\left[\rho_{A}^{-1}\right] t \rightarrow t \otimes \star \quad\left[\Lambda_{A, B, C}(h)\right] t \rightarrow \lambda x .[h](t \otimes x)} \\
& {\left[\lambda_{A}^{-1}\right] t \rightarrow \star \otimes t \quad\left[\mathrm{ev}_{A, B}\right](v \otimes u) \rightarrow v u} \\
& {\left[\rho_{A}\right] r \rightarrow \text { let } r \text { be } x \otimes y \text { in let } y \text { be } \star \text { in } x} \\
& {\left[\lambda_{A}\right] s \rightarrow \text { let } s \text { be } y \otimes x \text { in let } y \text { be } \star \text { in } x} \\
& {\left[\alpha_{A, B, C}\right] w \rightarrow \text { let } w \text { be } e \otimes z \text { in let } e \text { be } x \otimes y \text { in } x \otimes(y \otimes z)}
\end{aligned}
$$

## EXTENDING THE CATEGORICAL INTERPRETATION

We give an interpretation in $\mathcal{C}$ of all judgements of $\mathbb{L}(\mathcal{C})$ by extending the definition to the following case:

$$
\llbracket[f f] t \rrbracket_{\Gamma \vdash B}=f \circ \llbracket t \rrbracket_{\Gamma \vdash-A}
$$

## EXTENDING THE CATEGORICAL INTERPRETATION

We give an interpretation in $\mathcal{C}$ of all judgements of $\mathbb{L}(\mathcal{C})$ by extending the definition to the following case:

$$
\llbracket[f] t \rrbracket_{\Gamma \vdash B}=f \circ \llbracket t \rrbracket_{\Gamma \vdash A}
$$

One easily checks that the substitution lemma and the theorem expressing invariance of the semantics hold true.

## EXTENDING THE CATEGORICAL INTERPRETATION

We give an interpretation in $\mathcal{C}$ of all judgements of $\mathbb{L}(\mathcal{C})$ by extending the definition to the following case:

$$
\llbracket[f] t \rrbracket_{\Gamma \vdash B}=f \circ \llbracket t \rrbracket_{\Gamma \vdash A}
$$

One easily checks that the substitution lemma and the theorem expressing invariance of the semantics hold true. Thus, the interpretation is still well defined on typed terms.

## $\mathfrak{C} \simeq \mathbb{C}(\mathbb{L}(\mathrm{C}))$

## PROOF OF THE EQUIVALENCE

$$
F: \mathcal{C} \longrightarrow \mathbb{C}(\mathbb{L}(\mathcal{C})) \quad G: \mathbb{C}(\mathbb{L}(\mathcal{C})) \longrightarrow \mathcal{C}
$$

$$
\begin{aligned}
F: \mathcal{C} & \longrightarrow \mathbb{C}(\mathbb{L}(\mathcal{C})) & G: \mathbb{C}(\mathbb{L}(\mathcal{C})) & \longrightarrow \mathcal{C} \\
A & \longmapsto A & & \longmapsto A
\end{aligned}
$$

## PROOF OF THE EQUIVALENCE

$$
\begin{aligned}
F: C & \longrightarrow \mathbb{C}(\mathbb{L}(\mathcal{C})) & G: \mathbb{C}(\mathbb{L}(\mathcal{C})) & \longrightarrow C \\
A & \longmapsto A & & \longmapsto A \\
(f: A \rightarrow B) & \longmapsto(x: A,[f] x: B) & (x: A, t: B) & \longmapsto \llbracket t \rrbracket
\end{aligned}
$$

## PROOF OF THE EQUIVALENCE

$$
\begin{aligned}
F: \mathcal{C} & \longrightarrow \mathbb{C}(\mathbb{L}(\mathcal{C})) & G: \mathbb{C}(\mathbb{L}(\mathcal{C})) & \longrightarrow \mathcal{C} \\
A & \longmapsto A & & \longmapsto A \\
(f: A \rightarrow B) & \longmapsto(x: A,[f] x: B) & (x: A, t: B) & \longmapsto \llbracket t \rrbracket
\end{aligned}
$$

One easily proves that $F$ is a functor by using the supplementary relations for identities and for composition.

## PROOF OF THE EQUIVALENCE

$$
\begin{aligned}
F: \mathcal{C} & \longrightarrow \mathbb{C}(\mathbb{L}(\mathcal{C})) & G: \mathbb{C}(\mathbb{L}(\mathcal{C})) & \longrightarrow \mathcal{C} \\
A & \longmapsto A & & \longmapsto A \\
(f: A \rightarrow B) & \longmapsto(x: A,[f] x: B) & (x: A, t: B) & \longmapsto \llbracket t \rrbracket
\end{aligned}
$$

One easily proves that $F$ is a functor by using the supplementary relations for identities and for composition.
The substitution lemma implies that $G$ is a functor as well.

## Proof of the equivalence

$$
\begin{aligned}
F: \mathcal{C} & \longrightarrow \mathbb{C}(\mathbb{L}(\mathcal{C})) & G: \mathbb{C}(\mathbb{L}(\mathcal{C})) & \longrightarrow \mathcal{C} \\
A & \longmapsto A & & \longmapsto A \\
(f: A \rightarrow B) & \longmapsto(x: A,[f] x: B) & (x: A, t: B) & \longmapsto \llbracket t \rrbracket
\end{aligned}
$$

One easily proves that $F$ is a functor by using the supplementary relations for identities and for composition.
The substitution lemma implies that $G$ is a functor as well.
Now, if $f: A \rightarrow B$ is a morphism in $\mathcal{C}$ and $(x: A, t: B)$ is a morphism in $\mathbb{C}(\mathbb{L}(\mathcal{C}))$, then we have:

## Proof of the equivalence

$$
\begin{aligned}
F: \mathcal{C} & \longrightarrow \mathbb{C}(\mathbb{L}(\mathcal{C})) & G: \mathbb{C}(\mathbb{L}(\mathcal{C})) & \longrightarrow C \\
A & \longmapsto A & & \longmapsto A \\
(f: A \rightarrow B) & \longmapsto(x: A,[f] x: B) & (x: A, t: B) & \longmapsto \llbracket t \rrbracket
\end{aligned}
$$

One easily proves that $F$ is a functor by using the supplementary relations for identities and for composition.
The substitution lemma implies that $G$ is a functor as well.
Now, if $f: A \rightarrow B$ is a morphism in $\mathcal{C}$ and $(x: A, t: B)$ is a morphism in $\mathbb{C}(\mathbb{L}(\mathcal{C}))$, then we have:

$$
G F f=G(x: A,[f] x: B)=\llbracket[f] x \rrbracket_{A \vdash B}=f \circ \llbracket x \rrbracket_{A \vdash A}=f
$$

## Proof of the equivalence

$$
\begin{aligned}
F: \mathcal{C} & \longrightarrow \mathbb{C}(\mathbb{L}(\mathcal{C})) & G: \mathbb{C}(\mathbb{L}(\mathcal{C})) & \longrightarrow \mathcal{C} \\
A & \longmapsto A & & \longmapsto A \\
(f: A \rightarrow B) & \longmapsto(x: A,[f] x: B) & (x: A, t: B) & \longmapsto \llbracket t \rrbracket
\end{aligned}
$$

One easily proves that $F$ is a functor by using the supplementary relations for identities and for composition.
The substitution lemma implies that $G$ is a functor as well.
Now, if $f: A \rightarrow B$ is a morphism in $\mathcal{C}$ and $(x: A, t: B)$ is a morphism in $\mathbb{C}(\mathbb{L}(\mathcal{C}))$, then we have:

$$
\begin{aligned}
G F f= & G(x: A,[f] x: B)=\llbracket[f] x \rrbracket_{A \vdash B}=f \circ \llbracket x \rrbracket_{A \vdash A}=f \\
& F G(x: A, t: B)=F \llbracket t \rrbracket=(x: A, \llbracket t \rrbracket x: B)
\end{aligned}
$$

## AUXILIARY RESULTS

For any integer $n \geqslant 0$ and for any terms $t_{1}, \ldots, t_{n}$ we define:

$$
t_{1} \otimes \cdots \otimes t_{n}:= \begin{cases}\star & \text { if } n=0 \\ \left(t_{1} \otimes \cdots \otimes t_{n-1}\right) \otimes t_{n} & \text { otherwise }\end{cases}
$$

## AUXILIARY RESULTS

For any integer $n \geqslant 0$ and for any terms $t_{1}, \ldots, t_{n}$ we define:

$$
t_{1} \otimes \cdots \otimes t_{n}:= \begin{cases}\star & \text { if } n=0 \\ \left(t_{1} \otimes \cdots \otimes t_{n-1}\right) \otimes t_{n} & \text { otherwise }\end{cases}
$$

Lemma. If $t_{i}$ is typable with $A_{i}$ then, for all $k=0, \ldots, n$, we have:

$$
\begin{aligned}
& {\left[\operatorname{split}_{\left(A_{1}, \ldots, A_{k}\right),\left(A_{k+1}, \ldots, A_{n}\right)}\right]\left(t_{1} \otimes \cdots \otimes t_{n}\right)=\left(t_{1} \otimes \cdots \otimes t_{k}\right) \otimes\left(t_{k+1} \otimes \cdots \otimes t_{n}\right)} \\
& \left.\operatorname{jjoin}_{\left(A_{1}, \ldots, A_{k}\right),\left(A_{k+1}, \ldots, A_{n}\right)}\right]\left(\left(t_{1} \otimes \cdots \otimes t_{k}\right) \otimes\left(t_{k+1} \otimes \cdots \otimes t_{n}\right)\right)=t_{1} \otimes \cdots \otimes t_{n}
\end{aligned}
$$

## AUXILIARY RESULTS

For any integer $n \geqslant 0$ and for any terms $t_{1}, \ldots, t_{n}$ we define:

$$
t_{1} \otimes \cdots \otimes t_{n}:= \begin{cases}\star & \text { if } n=0 \\ \left(t_{1} \otimes \cdots \otimes t_{n-1}\right) \otimes t_{n} & \text { otherwise }\end{cases}
$$

Lemma. If $t_{i}$ is typable with $A_{i}$ then, for all $k=0, \ldots, n$, we have:

$$
\begin{aligned}
& {\left[\operatorname{split}_{\left(A_{1}, \ldots, A_{k}\right),\left(A_{k+1}, \ldots, A_{n}\right)}\right]\left(t_{1} \otimes \cdots \otimes t_{n}\right)=\left(t_{1} \otimes \cdots \otimes t_{k}\right) \otimes\left(t_{k+1} \otimes \cdots \otimes t_{n}\right)} \\
& \left.\operatorname{join}_{\left(A_{1}, \ldots, A_{k}\right),\left(A_{k+1}, \ldots, A_{n}\right)}\right]\left(\left(t_{1} \otimes \cdots \otimes t_{k}\right) \otimes\left(t_{k+1} \otimes \cdots \otimes t_{n}\right)\right)=t_{1} \otimes \cdots \otimes t_{n}
\end{aligned}
$$

Lemma. If $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B$, then in $\mathbb{L}(\mathcal{C})$ we have:

$$
t=\llbracket t \rrbracket\left(x_{1} \otimes \cdots \otimes x_{n}\right)
$$

## APPLICATIONS

## COHERENCE THEOREM

The multisets of positive and negative type variables occurring in a type $A$ are defined by mutual induction:

$$
\begin{aligned}
(X)^{+} & =\{X\} & (X)^{-} & =\varnothing \\
(1)^{+} & =\varnothing & (1)^{-} & =\varnothing \\
(A \otimes B)^{+} & =(A)^{+} \cup(B)^{+} & (A \otimes B)^{-} & =(A)^{-} \cup(B)^{-} \\
(A \multimap B)^{+} & =(A)^{-} \cup(B)^{+} & (A \multimap B)^{-} & =(A)^{+} \cup(B)^{-}
\end{aligned}
$$

## COHERENCE THEOREM

The multisets of positive and negative type variables occurring in a type $A$ are defined by mutual induction:

$$
\begin{aligned}
(X)^{+} & =\{X\} & (X)^{-} & =\varnothing \\
(1)^{+} & =\varnothing & (1)^{-} & =\varnothing \\
(A \otimes B)^{+} & =(A)^{+} \cup(B)^{+} & (A \otimes B)^{-} & =(A)^{-} \cup(B)^{-} \\
(A \multimap B)^{+} & =(A)^{-} \cup(B)^{+} & (A \multimap B)^{-} & =(A)^{+} \cup(B)^{-}
\end{aligned}
$$

A type $A$ is binary if $(A)^{+}=(A)^{-}$and in this multiset each atomic formula appears exactly once.

## COHERENCE THEOREM

The multisets of positive and negative type variables occurring in a type $A$ are defined by mutual induction:

$$
\begin{aligned}
(X)^{+} & =\{X\} & (X)^{-} & =\varnothing \\
(1)^{+} & =\varnothing & (1)^{-} & =\varnothing \\
(A \otimes B)^{+} & =(A)^{+} \cup(B)^{+} & (A \otimes B)^{-} & =(A)^{-} \cup(B)^{-} \\
(A \multimap B)^{+} & =(A)^{-} \cup(B)^{+} & (A \multimap B)^{-} & =(A)^{+} \cup(B)^{-}
\end{aligned}
$$

A type $A$ is binary if $(A)^{+}=(A)^{-}$and in this multiset each atomic formula appears exactly once.

Theorem (Coherence). If two arrows in the free autonomous category have the same binary type, then they are equal.

## References

E
Richard Blute. "Linear logic, coherence and dinaturality". In: Theoretical Computer Science 115.1 (1993), pp. 3-41.

Jean Louis Krivine. Lambda-calculus, types and models. Ellis Horwood, 1993.

E Ian Mackie, Leopoldo Román, and Samson Abramsky. "An internal language for autonomous categories". In: Applied Categorical Structures 1.3 (1993), pp. 311-343.


[^0]:    Autonomous = symmetric monoidal closed

