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IMLL AND THE LINEAR TERM CALCULUS



LINEAR LOGIC

A logic of resources: weakening and contraction are removed.

IMLL is the intuitionistic multiplicative fragment of linear logic.
Formulas are defined by the following grammar:

A ::= X | 1 | A⊗ A | A⊸ A
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LINEAR LAMBDA CALCULUS

Construction Constraint Free variables

⋆ None ∅

x None {x}

tu FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

λx.t x ∈ FV(t) FV(t)\{x}

t⊗ u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be ⋆ in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be x⊗ y in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ F

x, y ∈ FV(u) F = FV(u)\{x, y}
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TYPING SYSTEM: AXIOM, EXCHANGE AND UNIT RULES

(axiom)
x : A ` x : A

Γ, x : A, y : B, ∆ ` t : C
(exchange)

Γ, y : B, x : A, ∆ ` t : C

(1− intro)
` ⋆ : 1

Γ ` t : 1 ∆ ` u : B
(1− elim)

Γ, ∆ ` let t be ⋆ in u : B
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TYPING SYSTEM: CONNECTIVES

Γ ` t : A ∆ ` u : B
(⊗− intro)

Γ, ∆ ` t⊗ u : A⊗ B

Γ ` t : A⊗ B x : A, y : B, ∆ ` u : C
(⊗− elim)

Γ, ∆ ` let t be x⊗ y in u : C

Γ, x : A ` t : B
(⊸− intro)

Γ ` λx.t : A⊸ B

Γ ` t : A⊸ B ∆ ` u : A
(⊸− elim)

Γ, ∆ ` tu : B
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EVALUATION EQUATIONS

let ⋆ be ⋆ in u→β u
let t be ⋆ in ⋆ →η t

let t⊗ u be x⊗ y in v→β v[t/x,u/y]
let t be x⊗ y in x⊗ y→η t

(λx.t)u→β t[u/x]
λx.(tx) →η t
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TERMS WITH HOLES

A term t with free occurrences of a variable x is called a context
or a term with holes and denoted t[ ].

The substitution t[u/x] is
denoted t[u].

We define three kinds of contexts by the following grammars:

C0[ ] ::= x[ ] | C0[ ]t | tC0[ ]
C1[ ] ::= C0[ ] | t⊗ C1[ ] | C1[ ]⊗ t
C2[ ] ::= C1[ ] | λx.C2[ ]
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COMMUTATIVE CONVERSION RULES

let C0[let t be p in v] be ⋆ in w ≡ let t be p in let C0[v] be ⋆ in w
let C1[let t be p in v] be x⊗ y in w ≡ let t be p in let C1[v] be x⊗ y in w

let t be ⋆ in C2[u] ≡ C2[let t be ⋆ in u] if ⋆ does not occur in C2[ ]
let t be x⊗ y in C2[u] ≡ C2[let t be x⊗ y in u] if x, y /∈ FV(C2[ ])
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AUTONOMOUS THEORIES

An autonomous theory L is given by:

• A set of types, which are formulas of IMLL uniquely
determined by a set of atomic types.

• A set of plain terms, which are linear lambda terms and
possibly supplementary terms.

• A set of reduction relations, which is the union of→β with
→η and eventually a set of supplementary reductions.

A typed term is a typing judgement Γ ` t : A where t is a plain
term modulo the symmetric transitive reflexive closure of all
reduction relations and modulo commutative conversion rules.
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INTERPRETING THE DEDUCTION SYSTEM



CATEGORICAL INTERPRETATION OF TYPES

The interpretation JXK in an autonomous category C of an
atomic type X is an object of C.

We extend it to all types by:

J1K = 1JA⊗ BK = JAK ⊗ JBKJA⊸ BK = JAK ⊸ JBK
We define the interpretation of a context by:

J−K = 1JΓ,AK = JΓK ⊗ JAK
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BOOKKEEPING MORPHISMS

• splitΓ,∆ : JΓ, ∆K → JΓK ⊗ J∆K
split−,∆ = λ−1∆

splitΓ,− = ρ−1Γ

splitΓ,A = idΓ,A
splitΓ,(Σ,A) = αΓ,Σ,A ◦ (splitΓ,Σ ⊗ idA)

• joinΓ,∆ : JΓK ⊗ J∆K → JΓ, ∆K
• exchΓ,A,B,∆ : JΓ,A,B, ∆K → JΓ,B,A, ∆K
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CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idAJtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆J⋆K⊢1 = id1Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆
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CATEGORICAL LOGIC CORRESPONDENCE



THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory L, we can define an autonomous
category C(L) as follows:

• The objects are the types of L.
• A morphism from type A to type B is an equivalence class
of typed terms of L with exactly one free variable, denoted
(x : A, t : B), with respect to the equivalence relation:

(x : A, t : B) ∼ (y : A, t[y/x] : B)

• (x : B, t : C) ◦ (y : A,u : B) is the morphism (y : A, t[u/x] : C).
• The identity morphism on type A is (x : A, x : A).
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THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category C, its internal language
L(C) is the autonomous theory defined as follows:

• Atomic types are the objects of C. Their interpretation will
be chosen to be the identity, thus JAK = A for all types A.

• Let [ f ] be a constant symbol for all arrows f : A→ B of C.
Then supplementary terms are inductively defined by the
following rule: if t is a plain term and f : A→ B is a
morphism in C, then [ f ]t is a supplementary term.
Moreover, if Γ ` t : A, then Γ ` [ f ]t : B.
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• For all morphisms f : A→ B, g : B→ C, h : A⊗ B→ C in C,
whenever t is typable with A, u is typable with B, v is
typable with A⊸ B, r is typable with A⊗ 1, s is typable
with 1⊗ A and w is typable with (A⊗ B)⊗ C, we have the
supplementary reductions:

[idA]t→ t
[g][ f ]t→ [g ◦ f ]t [ f ]t⊗ [g]u→ [ f⊗ g](t⊗ u)
[ρ−1A ]t→ t⊗ ⋆ [ΛA,B,C(h)]t→ λx.[h](t⊗ x)
[λ−1A ]t→ ⋆⊗ t [evA,B](v⊗ u) → vu
[ρA]r→ let r be x⊗ y in let y be ⋆ in x
[λA]s→ let s be y⊗ x in let y be ⋆ in x

[αA,B,C]w→ let w be e⊗ z in let e be x⊗ y in x⊗ (y⊗ z)
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EXTENDING THE CATEGORICAL INTERPRETATION

We give an interpretation in C of all judgements of L(C) by
extending the definition to the following case:

J[ f ]tKΓ⊢B = f ◦ JtKΓ⊢A

One easily checks that the substitution lemma and the
theorem expressing invariance of the semantics hold true.
Thus, the interpretation is still well defined on typed terms.
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C ' C(L(C))
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PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [ f ]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [ f ]x : B) = J[ f ]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18



PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A

(f : A→ B) 7−→ (x : A, [ f ]x : B) (x : A, t : B) 7−→ JtK
One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [ f ]x : B) = J[ f ]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18



PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [ f ]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [ f ]x : B) = J[ f ]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18



PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [ f ]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.

The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [ f ]x : B) = J[ f ]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18



PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [ f ]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [ f ]x : B) = J[ f ]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18



PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [ f ]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [ f ]x : B) = J[ f ]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18



PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [ f ]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [ f ]x : B) = J[ f ]xKA⊢B = f ◦ JxKA⊢A = f

FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18



PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [ f ]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [ f ]x : B) = J[ f ]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18



AUXILIARY RESULTS

For any integer n ⩾ 0 and for any terms t1, . . . , tn we define:

t1 ⊗ · · · ⊗ tn :=

⋆ if n = 0
(t1 ⊗ · · · ⊗ tn−1)⊗ tn otherwise

Lemma. If ti is typable with Ai then, for all k = 0, . . . ,n, we have:

[split(A1,...,Ak),(Ak+1,...,An)](t1 ⊗ · · · ⊗ tn) = (t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)

[join(A1,...,Ak),(Ak+1,...,An)]((t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)) = t1 ⊗ · · · ⊗ tn

Lemma. If x1 : A1, . . . , xn : An ` t : B, then in L(C) we have:

t = JtK(x1 ⊗ · · · ⊗ xn)

19



AUXILIARY RESULTS

For any integer n ⩾ 0 and for any terms t1, . . . , tn we define:

t1 ⊗ · · · ⊗ tn :=

⋆ if n = 0
(t1 ⊗ · · · ⊗ tn−1)⊗ tn otherwise

Lemma. If ti is typable with Ai then, for all k = 0, . . . ,n, we have:

[split(A1,...,Ak),(Ak+1,...,An)](t1 ⊗ · · · ⊗ tn) = (t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)

[join(A1,...,Ak),(Ak+1,...,An)]((t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)) = t1 ⊗ · · · ⊗ tn

Lemma. If x1 : A1, . . . , xn : An ` t : B, then in L(C) we have:

t = JtK(x1 ⊗ · · · ⊗ xn)

19



AUXILIARY RESULTS

For any integer n ⩾ 0 and for any terms t1, . . . , tn we define:

t1 ⊗ · · · ⊗ tn :=

⋆ if n = 0
(t1 ⊗ · · · ⊗ tn−1)⊗ tn otherwise

Lemma. If ti is typable with Ai then, for all k = 0, . . . ,n, we have:

[split(A1,...,Ak),(Ak+1,...,An)](t1 ⊗ · · · ⊗ tn) = (t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)

[join(A1,...,Ak),(Ak+1,...,An)]((t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)) = t1 ⊗ · · · ⊗ tn

Lemma. If x1 : A1, . . . , xn : An ` t : B, then in L(C) we have:

t = JtK(x1 ⊗ · · · ⊗ xn)

19



APPLICATIONS



COHERENCE THEOREM

The multisets of positive and negative type variables occurring
in a type A are defined by mutual induction:

(X)+ = {X} (X)− = ∅

(1)+ = ∅ (1)− = ∅

(A⊗ B)+ = (A)+ ∪ (B)+ (A⊗ B)− = (A)− ∪ (B)−

(A⊸ B)+ = (A)− ∪ (B)+ (A⊸ B)− = (A)+ ∪ (B)−

A type A is binary if (A)+ = (A)− and in this multiset each
atomic formula appears exactly once.

Theorem (Coherence). If two arrows in the free autonomous
category have the same binary type, then they are equal.
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