
AN INTERNAL LANGUAGE FOR
AUTONOMOUS CATEGORIES

Raffaele Di Donna
February 22, 2022

Aix-Marseille University

INTRODUCTION

Logics Categories

λ-calculi Cartesian Closed Categories

Intuitionistic type theories Toposes

Linear term calculi Autonomous categories

1

INTRODUCTION

Logics Categories

λ-calculi Cartesian Closed Categories

Intuitionistic type theories Toposes

Linear term calculi Autonomous categories

1

INTRODUCTION

Logics Categories

λ-calculi Cartesian Closed Categories

Intuitionistic type theories Toposes

Linear term calculi Autonomous categories

Autonomous = symmetric monoidal closed

1

TABLE OF CONTENTS

IMLL and the linear term calculus

Interpreting the deduction system

Categorical logic correspondence

Applications

IMLL AND THE LINEAR TERM CALCULUS

LINEAR LOGIC

A logic of resources: weakening and contraction are removed.

IMLL is the intuitionistic multiplicative fragment of linear logic.
Formulas are defined by the following grammar:

A ::= X | 1 | A⊗ A | A⊸ A

2

LINEAR LOGIC

A logic of resources: weakening and contraction are removed.

IMLL is the intuitionistic multiplicative fragment of linear logic.
Formulas are defined by the following grammar:

A ::= X | 1 | A⊗ A | A⊸ A

2

LINEAR LAMBDA CALCULUS

Construction Constraint Free variables

⋆ None ∅

x None {x}

tu FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

λx.t x ∈ FV(t) FV(t)\{x}

t⊗ u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be ⋆ in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be x⊗ y in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ F

x, y ∈ FV(u) F = FV(u)\{x, y}

3

LINEAR LAMBDA CALCULUS

Construction Constraint Free variables

⋆ None ∅

x None {x}

tu FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

λx.t x ∈ FV(t) FV(t)\{x}

t⊗ u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be ⋆ in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be x⊗ y in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ F

x, y ∈ FV(u) F = FV(u)\{x, y}

3

LINEAR LAMBDA CALCULUS

Construction Constraint Free variables

⋆ None ∅

x None {x}

tu FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

λx.t x ∈ FV(t) FV(t)\{x}

t⊗ u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be ⋆ in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be x⊗ y in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ F

x, y ∈ FV(u) F = FV(u)\{x, y}

3

LINEAR LAMBDA CALCULUS

Construction Constraint Free variables

⋆ None ∅

x None {x}

tu FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

λx.t x ∈ FV(t) FV(t)\{x}

t⊗ u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be ⋆ in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ FV(u)

let t be x⊗ y in u FV(t) ∩ FV(u) = ∅ FV(t) ∪ F

x, y ∈ FV(u) F = FV(u)\{x, y}

3

TYPING SYSTEM: AXIOM, EXCHANGE AND UNIT RULES

(axiom)
x : A ` x : A

Γ, x : A, y : B, ∆ ` t : C
(exchange)

Γ, y : B, x : A, ∆ ` t : C

(1− intro)
` ⋆ : 1

Γ ` t : 1 ∆ ` u : B
(1− elim)

Γ, ∆ ` let t be ⋆ in u : B

4

TYPING SYSTEM: AXIOM, EXCHANGE AND UNIT RULES

(axiom)
x : A ` x : A

Γ, x : A, y : B, ∆ ` t : C
(exchange)

Γ, y : B, x : A, ∆ ` t : C

(1− intro)
` ⋆ : 1

Γ ` t : 1 ∆ ` u : B
(1− elim)

Γ, ∆ ` let t be ⋆ in u : B

4

TYPING SYSTEM: CONNECTIVES

Γ ` t : A ∆ ` u : B
(⊗− intro)

Γ, ∆ ` t⊗ u : A⊗ B

Γ ` t : A⊗ B x : A, y : B, ∆ ` u : C
(⊗− elim)

Γ, ∆ ` let t be x⊗ y in u : C

Γ, x : A ` t : B
(⊸− intro)

Γ ` λx.t : A⊸ B

Γ ` t : A⊸ B ∆ ` u : A
(⊸− elim)

Γ, ∆ ` tu : B

5

TYPING SYSTEM: CONNECTIVES

Γ ` t : A ∆ ` u : B
(⊗− intro)

Γ, ∆ ` t⊗ u : A⊗ B

Γ ` t : A⊗ B x : A, y : B, ∆ ` u : C
(⊗− elim)

Γ, ∆ ` let t be x⊗ y in u : C

Γ, x : A ` t : B
(⊸− intro)

Γ ` λx.t : A⊸ B

Γ ` t : A⊸ B ∆ ` u : A
(⊸− elim)

Γ, ∆ ` tu : B

5

EVALUATION EQUATIONS

let ⋆ be ⋆ in u→β u
let t be ⋆ in ⋆ →η t

let t⊗ u be x⊗ y in v→β v[t/x,u/y]
let t be x⊗ y in x⊗ y→η t

(λx.t)u→β t[u/x]
λx.(tx) →η t

6

TERMS WITH HOLES

A term t with free occurrences of a variable x is called a context
or a term with holes and denoted t[].

The substitution t[u/x] is
denoted t[u].

We define three kinds of contexts by the following grammars:

C0[] ::= x[] | C0[]t | tC0[]
C1[] ::= C0[] | t⊗ C1[] | C1[]⊗ t
C2[] ::= C1[] | λx.C2[]

7

TERMS WITH HOLES

A term t with free occurrences of a variable x is called a context
or a term with holes and denoted t[]. The substitution t[u/x] is
denoted t[u].

We define three kinds of contexts by the following grammars:

C0[] ::= x[] | C0[]t | tC0[]
C1[] ::= C0[] | t⊗ C1[] | C1[]⊗ t
C2[] ::= C1[] | λx.C2[]

7

TERMS WITH HOLES

A term t with free occurrences of a variable x is called a context
or a term with holes and denoted t[]. The substitution t[u/x] is
denoted t[u].

We define three kinds of contexts by the following grammars:

C0[] ::= x[] | C0[]t | tC0[]
C1[] ::= C0[] | t⊗ C1[] | C1[]⊗ t
C2[] ::= C1[] | λx.C2[]

7

COMMUTATIVE CONVERSION RULES

let C0[let t be p in v] be ⋆ in w ≡ let t be p in let C0[v] be ⋆ in w
let C1[let t be p in v] be x⊗ y in w ≡ let t be p in let C1[v] be x⊗ y in w

let t be ⋆ in C2[u] ≡ C2[let t be ⋆ in u] if ⋆ does not occur in C2[]
let t be x⊗ y in C2[u] ≡ C2[let t be x⊗ y in u] if x, y /∈ FV(C2[])

8

AUTONOMOUS THEORIES

An autonomous theory L is given by:

• A set of types, which are formulas of IMLL uniquely
determined by a set of atomic types.

• A set of plain terms, which are linear lambda terms and
possibly supplementary terms.

• A set of reduction relations, which is the union of→β with
→η and eventually a set of supplementary reductions.

A typed term is a typing judgement Γ ` t : A where t is a plain
term modulo the symmetric transitive reflexive closure of all
reduction relations and modulo commutative conversion rules.

9

AUTONOMOUS THEORIES

An autonomous theory L is given by:

• A set of types, which are formulas of IMLL uniquely
determined by a set of atomic types.

• A set of plain terms, which are linear lambda terms and
possibly supplementary terms.

• A set of reduction relations, which is the union of→β with
→η and eventually a set of supplementary reductions.

A typed term is a typing judgement Γ ` t : A where t is a plain
term modulo the symmetric transitive reflexive closure of all
reduction relations and modulo commutative conversion rules.

9

AUTONOMOUS THEORIES

An autonomous theory L is given by:

• A set of types, which are formulas of IMLL uniquely
determined by a set of atomic types.

• A set of plain terms, which are linear lambda terms and
possibly supplementary terms.

• A set of reduction relations, which is the union of→β with
→η and eventually a set of supplementary reductions.

A typed term is a typing judgement Γ ` t : A where t is a plain
term modulo the symmetric transitive reflexive closure of all
reduction relations and modulo commutative conversion rules.

9

AUTONOMOUS THEORIES

An autonomous theory L is given by:

• A set of types, which are formulas of IMLL uniquely
determined by a set of atomic types.

• A set of plain terms, which are linear lambda terms and
possibly supplementary terms.

• A set of reduction relations, which is the union of→β with
→η and eventually a set of supplementary reductions.

A typed term is a typing judgement Γ ` t : A where t is a plain
term modulo the symmetric transitive reflexive closure of all
reduction relations and modulo commutative conversion rules.

9

AUTONOMOUS THEORIES

An autonomous theory L is given by:

• A set of types, which are formulas of IMLL uniquely
determined by a set of atomic types.

• A set of plain terms, which are linear lambda terms and
possibly supplementary terms.

• A set of reduction relations, which is the union of→β with
→η and eventually a set of supplementary reductions.

A typed term is a typing judgement Γ ` t : A where t is a plain
term modulo the symmetric transitive reflexive closure of all
reduction relations and modulo commutative conversion rules.

9

INTERPRETING THE DEDUCTION SYSTEM

CATEGORICAL INTERPRETATION OF TYPES

The interpretation JXK in an autonomous category C of an
atomic type X is an object of C.

We extend it to all types by:

J1K = 1JA⊗ BK = JAK ⊗ JBKJA⊸ BK = JAK ⊸ JBK
We define the interpretation of a context by:

J−K = 1JΓ,AK = JΓK ⊗ JAK

10

CATEGORICAL INTERPRETATION OF TYPES

The interpretation JXK in an autonomous category C of an
atomic type X is an object of C. We extend it to all types by:

J1K = 1JA⊗ BK = JAK ⊗ JBKJA⊸ BK = JAK ⊸ JBK
We define the interpretation of a context by:

J−K = 1JΓ,AK = JΓK ⊗ JAK

10

CATEGORICAL INTERPRETATION OF TYPES

The interpretation JXK in an autonomous category C of an
atomic type X is an object of C. We extend it to all types by:

J1K = 1

JA⊗ BK = JAK ⊗ JBKJA⊸ BK = JAK ⊸ JBK
We define the interpretation of a context by:

J−K = 1JΓ,AK = JΓK ⊗ JAK

10

CATEGORICAL INTERPRETATION OF TYPES

The interpretation JXK in an autonomous category C of an
atomic type X is an object of C. We extend it to all types by:

J1K = 1JA⊗ BK = JAK ⊗ JBK

JA⊸ BK = JAK ⊸ JBK
We define the interpretation of a context by:

J−K = 1JΓ,AK = JΓK ⊗ JAK

10

CATEGORICAL INTERPRETATION OF TYPES

The interpretation JXK in an autonomous category C of an
atomic type X is an object of C. We extend it to all types by:

J1K = 1JA⊗ BK = JAK ⊗ JBKJA⊸ BK = JAK ⊸ JBK

We define the interpretation of a context by:

J−K = 1JΓ,AK = JΓK ⊗ JAK

10

CATEGORICAL INTERPRETATION OF TYPES

The interpretation JXK in an autonomous category C of an
atomic type X is an object of C. We extend it to all types by:

J1K = 1JA⊗ BK = JAK ⊗ JBKJA⊸ BK = JAK ⊸ JBK
We define the interpretation of a context by:

J−K = 1JΓ,AK = JΓK ⊗ JAK
10

BOOKKEEPING MORPHISMS

• splitΓ,∆ : JΓ, ∆K → JΓK ⊗ J∆K
split−,∆ = λ−1∆

splitΓ,− = ρ−1Γ

splitΓ,A = idΓ,A
splitΓ,(Σ,A) = αΓ,Σ,A ◦ (splitΓ,Σ ⊗ idA)

• joinΓ,∆ : JΓK ⊗ J∆K → JΓ, ∆K
• exchΓ,A,B,∆ : JΓ,A,B, ∆K → JΓ,B,A, ∆K

11

BOOKKEEPING MORPHISMS

• splitΓ,∆ : JΓ, ∆K → JΓK ⊗ J∆K
split−,∆ = λ−1∆

splitΓ,− = ρ−1Γ

splitΓ,A = idΓ,A
splitΓ,(Σ,A) = αΓ,Σ,A ◦ (splitΓ,Σ ⊗ idA)

• joinΓ,∆ : JΓK ⊗ J∆K → JΓ, ∆K

• exchΓ,A,B,∆ : JΓ,A,B, ∆K → JΓ,B,A, ∆K

11

BOOKKEEPING MORPHISMS

• splitΓ,∆ : JΓ, ∆K → JΓK ⊗ J∆K
split−,∆ = λ−1∆

splitΓ,− = ρ−1Γ

splitΓ,A = idΓ,A
splitΓ,(Σ,A) = αΓ,Σ,A ◦ (splitΓ,Σ ⊗ idA)

• joinΓ,∆ : JΓK ⊗ J∆K → JΓ, ∆K
• exchΓ,A,B,∆ : JΓ,A,B, ∆K → JΓ,B,A, ∆K

11

CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idAJtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆J⋆K⊢1 = id1Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆

12

CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idA

JtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆J⋆K⊢1 = id1Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆

12

CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idAJtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆

J⋆K⊢1 = id1Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆

12

CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idAJtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆J⋆K⊢1 = id1

Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆

12

CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idAJtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆J⋆K⊢1 = id1Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆

Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆

12

CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idAJtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆J⋆K⊢1 = id1Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆

Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆

12

CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idAJtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆J⋆K⊢1 = id1Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆

Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆

12

CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idAJtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆J⋆K⊢1 = id1Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)

JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆

12

CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation JtKΓ⊢A of a judgement Γ ` t : A is a
morphism in C from JΓK to JAK, inductively defined by:

JxKA⊢A = idAJtKΓ,B,A,∆⊢C = JtKΓ,A,B,∆⊢C ◦ exchΓ,B,A,∆J⋆K⊢1 = id1Jlet t be ⋆ in uKΓ,∆⊢A = λA ◦ (JtKΓ⊢1 ⊗ JuK∆⊢A) ◦ splitΓ,∆Jt⊗ uKΓ,∆⊢A⊗B = (JtKΓ⊢A ⊗ JuK∆⊢B) ◦ splitΓ,∆Jlet t be x⊗ y in uKΓ,∆⊢C = JuKA,B,∆⊢C ◦ join ◦ (JtKΓ⊢A⊗B ⊗ id) ◦ splitΓ,∆Jλx.tKΓ⊢A⊸B = ΛΓ,A,B(JtKΓ,A⊢B)JtuKΓ,∆⊢B = evA,B ◦ (JtKΓ⊢A⊸B ⊗ JuK∆⊢A) ◦ splitΓ,∆

12

CATEGORICAL INTERPRETATION OF TYPED TERMS

Lemma (Substitution). If Γ, x : A ` t : B and ∆ ` u : A, then:

Γ, ∆ ` t[u/x] : B

Moreover, we have the following condition:

Jt[u/x]K = JtK ◦ (idΓ ⊗ JuK) ◦ splitΓ,∆

Theorem. If Γ ` t : A, Γ ` s : A and t→βη s, then JtK = JsK.
It follows from this result that the interpretation of judgements
is well defined on typed terms.

13

CATEGORICAL INTERPRETATION OF TYPED TERMS

Lemma (Substitution). If Γ, x : A ` t : B and ∆ ` u : A, then:

Γ, ∆ ` t[u/x] : B

Moreover, we have the following condition:

Jt[u/x]K = JtK ◦ (idΓ ⊗ JuK) ◦ splitΓ,∆
Theorem. If Γ ` t : A, Γ ` s : A and t→βη s, then JtK = JsK.

It follows from this result that the interpretation of judgements
is well defined on typed terms.

13

CATEGORICAL INTERPRETATION OF TYPED TERMS

Lemma (Substitution). If Γ, x : A ` t : B and ∆ ` u : A, then:

Γ, ∆ ` t[u/x] : B

Moreover, we have the following condition:

Jt[u/x]K = JtK ◦ (idΓ ⊗ JuK) ◦ splitΓ,∆
Theorem. If Γ ` t : A, Γ ` s : A and t→βη s, then JtK = JsK.
It follows from this result that the interpretation of judgements
is well defined on typed terms.

13

CATEGORICAL LOGIC CORRESPONDENCE

THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory L, we can define an autonomous
category C(L) as follows:

• The objects are the types of L.
• A morphism from type A to type B is an equivalence class
of typed terms of L with exactly one free variable, denoted
(x : A, t : B), with respect to the equivalence relation:

(x : A, t : B) ∼ (y : A, t[y/x] : B)

• (x : B, t : C) ◦ (y : A,u : B) is the morphism (y : A, t[u/x] : C).
• The identity morphism on type A is (x : A, x : A).

14

THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory L, we can define an autonomous
category C(L) as follows:

• The objects are the types of L.

• A morphism from type A to type B is an equivalence class
of typed terms of L with exactly one free variable, denoted
(x : A, t : B), with respect to the equivalence relation:

(x : A, t : B) ∼ (y : A, t[y/x] : B)

• (x : B, t : C) ◦ (y : A,u : B) is the morphism (y : A, t[u/x] : C).
• The identity morphism on type A is (x : A, x : A).

14

THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory L, we can define an autonomous
category C(L) as follows:

• The objects are the types of L.
• A morphism from type A to type B is an equivalence class
of typed terms of L with exactly one free variable, denoted
(x : A, t : B), with respect to the equivalence relation:

(x : A, t : B) ∼ (y : A, t[y/x] : B)

• (x : B, t : C) ◦ (y : A,u : B) is the morphism (y : A, t[u/x] : C).
• The identity morphism on type A is (x : A, x : A).

14

THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory L, we can define an autonomous
category C(L) as follows:

• The objects are the types of L.
• A morphism from type A to type B is an equivalence class
of typed terms of L with exactly one free variable, denoted
(x : A, t : B), with respect to the equivalence relation:

(x : A, t : B) ∼ (y : A, t[y/x] : B)

• (x : B, t : C) ◦ (y : A,u : B) is the morphism (y : A, t[u/x] : C).

• The identity morphism on type A is (x : A, x : A).

14

THE CATEGORY OF AN AUTONOMOUS THEORY

Given an autonomous theory L, we can define an autonomous
category C(L) as follows:

• The objects are the types of L.
• A morphism from type A to type B is an equivalence class
of typed terms of L with exactly one free variable, denoted
(x : A, t : B), with respect to the equivalence relation:

(x : A, t : B) ∼ (y : A, t[y/x] : B)

• (x : B, t : C) ◦ (y : A,u : B) is the morphism (y : A, t[u/x] : C).
• The identity morphism on type A is (x : A, x : A).

14

THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category C, its internal language
L(C) is the autonomous theory defined as follows:

• Atomic types are the objects of C. Their interpretation will
be chosen to be the identity, thus JAK = A for all types A.

• Let [f] be a constant symbol for all arrows f : A→ B of C.
Then supplementary terms are inductively defined by the
following rule: if t is a plain term and f : A→ B is a
morphism in C, then [f]t is a supplementary term.
Moreover, if Γ ` t : A, then Γ ` [f]t : B.

15

THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category C, its internal language
L(C) is the autonomous theory defined as follows:

• Atomic types are the objects of C.

Their interpretation will
be chosen to be the identity, thus JAK = A for all types A.

• Let [f] be a constant symbol for all arrows f : A→ B of C.
Then supplementary terms are inductively defined by the
following rule: if t is a plain term and f : A→ B is a
morphism in C, then [f]t is a supplementary term.
Moreover, if Γ ` t : A, then Γ ` [f]t : B.

15

THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category C, its internal language
L(C) is the autonomous theory defined as follows:

• Atomic types are the objects of C. Their interpretation will
be chosen to be the identity, thus JAK = A for all types A.

• Let [f] be a constant symbol for all arrows f : A→ B of C.
Then supplementary terms are inductively defined by the
following rule: if t is a plain term and f : A→ B is a
morphism in C, then [f]t is a supplementary term.
Moreover, if Γ ` t : A, then Γ ` [f]t : B.

15

THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category C, its internal language
L(C) is the autonomous theory defined as follows:

• Atomic types are the objects of C. Their interpretation will
be chosen to be the identity, thus JAK = A for all types A.

• Let [f] be a constant symbol for all arrows f : A→ B of C.

Then supplementary terms are inductively defined by the
following rule: if t is a plain term and f : A→ B is a
morphism in C, then [f]t is a supplementary term.
Moreover, if Γ ` t : A, then Γ ` [f]t : B.

15

THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category C, its internal language
L(C) is the autonomous theory defined as follows:

• Atomic types are the objects of C. Their interpretation will
be chosen to be the identity, thus JAK = A for all types A.

• Let [f] be a constant symbol for all arrows f : A→ B of C.
Then supplementary terms are inductively defined by the
following rule: if t is a plain term and f : A→ B is a
morphism in C, then [f]t is a supplementary term.

Moreover, if Γ ` t : A, then Γ ` [f]t : B.

15

THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category C, its internal language
L(C) is the autonomous theory defined as follows:

• Atomic types are the objects of C. Their interpretation will
be chosen to be the identity, thus JAK = A for all types A.

• Let [f] be a constant symbol for all arrows f : A→ B of C.
Then supplementary terms are inductively defined by the
following rule: if t is a plain term and f : A→ B is a
morphism in C, then [f]t is a supplementary term.
Moreover, if Γ ` t : A, then Γ ` [f]t : B.

15

• For all morphisms f : A→ B, g : B→ C, h : A⊗ B→ C in C,
whenever t is typable with A, u is typable with B, v is
typable with A⊸ B, r is typable with A⊗ 1, s is typable
with 1⊗ A and w is typable with (A⊗ B)⊗ C, we have the
supplementary reductions:

[idA]t→ t
[g][f]t→ [g ◦ f]t [f]t⊗ [g]u→ [f⊗ g](t⊗ u)
[ρ−1A]t→ t⊗ ⋆ [ΛA,B,C(h)]t→ λx.[h](t⊗ x)
[λ−1A]t→ ⋆⊗ t [evA,B](v⊗ u) → vu
[ρA]r→ let r be x⊗ y in let y be ⋆ in x
[λA]s→ let s be y⊗ x in let y be ⋆ in x

[αA,B,C]w→ let w be e⊗ z in let e be x⊗ y in x⊗ (y⊗ z)

16

EXTENDING THE CATEGORICAL INTERPRETATION

We give an interpretation in C of all judgements of L(C) by
extending the definition to the following case:

J[f]tKΓ⊢B = f ◦ JtKΓ⊢A

One easily checks that the substitution lemma and the
theorem expressing invariance of the semantics hold true.
Thus, the interpretation is still well defined on typed terms.

17

EXTENDING THE CATEGORICAL INTERPRETATION

We give an interpretation in C of all judgements of L(C) by
extending the definition to the following case:

J[f]tKΓ⊢B = f ◦ JtKΓ⊢A
One easily checks that the substitution lemma and the
theorem expressing invariance of the semantics hold true.

Thus, the interpretation is still well defined on typed terms.

17

EXTENDING THE CATEGORICAL INTERPRETATION

We give an interpretation in C of all judgements of L(C) by
extending the definition to the following case:

J[f]tKΓ⊢B = f ◦ JtKΓ⊢A
One easily checks that the substitution lemma and the
theorem expressing invariance of the semantics hold true.
Thus, the interpretation is still well defined on typed terms.

17

C ' C(L(C))

17

PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [f]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [f]x : B) = J[f]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18

PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A

(f : A→ B) 7−→ (x : A, [f]x : B) (x : A, t : B) 7−→ JtK
One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [f]x : B) = J[f]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18

PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [f]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [f]x : B) = J[f]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18

PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [f]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.

The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [f]x : B) = J[f]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18

PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [f]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [f]x : B) = J[f]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18

PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [f]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [f]x : B) = J[f]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18

PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [f]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [f]x : B) = J[f]xKA⊢B = f ◦ JxKA⊢A = f

FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18

PROOF OF THE EQUIVALENCE

F : C −→ C(L(C)) G : C(L(C)) −→ C

A 7−→ A A 7−→ A
(f : A→ B) 7−→ (x : A, [f]x : B) (x : A, t : B) 7−→ JtK

One easily proves that F is a functor by using the
supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f : A→ B is a morphism in C and (x : A, t : B) is a
morphism in C(L(C)), then we have:

GF f = G(x : A, [f]x : B) = J[f]xKA⊢B = f ◦ JxKA⊢A = f
FG(x : A, t : B) = FJtK = (x : A, JtKx : B)

18

AUXILIARY RESULTS

For any integer n ⩾ 0 and for any terms t1, . . . , tn we define:

t1 ⊗ · · · ⊗ tn :=

⋆ if n = 0
(t1 ⊗ · · · ⊗ tn−1)⊗ tn otherwise

Lemma. If ti is typable with Ai then, for all k = 0, . . . ,n, we have:

[split(A1,...,Ak),(Ak+1,...,An)](t1 ⊗ · · · ⊗ tn) = (t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)

[join(A1,...,Ak),(Ak+1,...,An)]((t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)) = t1 ⊗ · · · ⊗ tn

Lemma. If x1 : A1, . . . , xn : An ` t : B, then in L(C) we have:

t = JtK(x1 ⊗ · · · ⊗ xn)

19

AUXILIARY RESULTS

For any integer n ⩾ 0 and for any terms t1, . . . , tn we define:

t1 ⊗ · · · ⊗ tn :=

⋆ if n = 0
(t1 ⊗ · · · ⊗ tn−1)⊗ tn otherwise

Lemma. If ti is typable with Ai then, for all k = 0, . . . ,n, we have:

[split(A1,...,Ak),(Ak+1,...,An)](t1 ⊗ · · · ⊗ tn) = (t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)

[join(A1,...,Ak),(Ak+1,...,An)]((t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)) = t1 ⊗ · · · ⊗ tn

Lemma. If x1 : A1, . . . , xn : An ` t : B, then in L(C) we have:

t = JtK(x1 ⊗ · · · ⊗ xn)

19

AUXILIARY RESULTS

For any integer n ⩾ 0 and for any terms t1, . . . , tn we define:

t1 ⊗ · · · ⊗ tn :=

⋆ if n = 0
(t1 ⊗ · · · ⊗ tn−1)⊗ tn otherwise

Lemma. If ti is typable with Ai then, for all k = 0, . . . ,n, we have:

[split(A1,...,Ak),(Ak+1,...,An)](t1 ⊗ · · · ⊗ tn) = (t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)

[join(A1,...,Ak),(Ak+1,...,An)]((t1 ⊗ · · · ⊗ tk)⊗ (tk+1 ⊗ · · · ⊗ tn)) = t1 ⊗ · · · ⊗ tn

Lemma. If x1 : A1, . . . , xn : An ` t : B, then in L(C) we have:

t = JtK(x1 ⊗ · · · ⊗ xn)

19

APPLICATIONS

COHERENCE THEOREM

The multisets of positive and negative type variables occurring
in a type A are defined by mutual induction:

(X)+ = {X} (X)− = ∅

(1)+ = ∅ (1)− = ∅

(A⊗ B)+ = (A)+ ∪ (B)+ (A⊗ B)− = (A)− ∪ (B)−

(A⊸ B)+ = (A)− ∪ (B)+ (A⊸ B)− = (A)+ ∪ (B)−

A type A is binary if (A)+ = (A)− and in this multiset each
atomic formula appears exactly once.

Theorem (Coherence). If two arrows in the free autonomous
category have the same binary type, then they are equal.

20

COHERENCE THEOREM

The multisets of positive and negative type variables occurring
in a type A are defined by mutual induction:

(X)+ = {X} (X)− = ∅

(1)+ = ∅ (1)− = ∅

(A⊗ B)+ = (A)+ ∪ (B)+ (A⊗ B)− = (A)− ∪ (B)−

(A⊸ B)+ = (A)− ∪ (B)+ (A⊸ B)− = (A)+ ∪ (B)−

A type A is binary if (A)+ = (A)− and in this multiset each
atomic formula appears exactly once.

Theorem (Coherence). If two arrows in the free autonomous
category have the same binary type, then they are equal.

20

COHERENCE THEOREM

The multisets of positive and negative type variables occurring
in a type A are defined by mutual induction:

(X)+ = {X} (X)− = ∅

(1)+ = ∅ (1)− = ∅

(A⊗ B)+ = (A)+ ∪ (B)+ (A⊗ B)− = (A)− ∪ (B)−

(A⊸ B)+ = (A)− ∪ (B)+ (A⊸ B)− = (A)+ ∪ (B)−

A type A is binary if (A)+ = (A)− and in this multiset each
atomic formula appears exactly once.

Theorem (Coherence). If two arrows in the free autonomous
category have the same binary type, then they are equal.

20

REFERENCES

Richard Blute. “Linear logic, coherence and dinaturality”.
In: Theoretical Computer Science 115.1 (1993), pp. 3–41.

Jean Louis Krivine. Lambda-calculus, types and models.
Ellis Horwood, 1993.

Ian Mackie, Leopoldo Román, and Samson Abramsky. “An
internal language for autonomous categories”. In: Applied
Categorical Structures 1.3 (1993), pp. 311–343.

21

	IMLL and the linear term calculus
	Interpreting the deduction system
	Categorical logic correspondence
	Applications

