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is the intuitionistic multiplicative fragment of linear logic.
Formulas are defined by the following grammar:

A=X|1|ARA|A <A
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TYPING SYSTEM: AXIOM, EXCHANGE AND UNIT RULES

(axiom)

X:AFEX:A

Ix:Ay:BAFT:C
Ly:Bx:A/AFt:C

(exchange)

(1—intro)

l_

M=t:1 AFu:B
A :B

(1—elim)




TYPING SYSTEM: CONNECTIVES

=t A AFuUu:B
A F :A®B

(® —intro)

'Ft:A®B X:Ay:BAFuU:C
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(® —elim)




TYPING SYSTEM: CONNECTIVES

=t A AFuUu:B
NMAFtQU:AQB

(® —intro)

'Ft:A®B X:Ay:BAFu:C

- (® —elim)
A lettbex®yinu:C

Mx:Akt:B
T Axt:A—B

(—o — intro)

TFt:A—oB AFU:A
NLAFtU:B

(—o —elim)



EVALUATION EQUATIONS

letxbexinu—pgu
lett be xin% —q t
lett®@ubex®yinv—g vit/x,u/yl
lettbex®@yinx®y —qt
(Ax.t)u —p tlu/X]

AX.(tX) —q t
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TERMS WITH HOLES

A term t with free occurrences of a variable x is called a context

or a term with holes and denoted t[]. The substitution t[u/x] is
denoted t[u].

We define three kinds of contexts by the following grammars:
Coll == X[11 Collt | tCol]

Gll==GlteGllGllat
Gl] == G] | .Gl



COMMUTATIVE CONVERSION RULES

let Collettbe pinvlbexinw=lettbepinlet Cylv]l be xinw
let Cillettbepinvibex®@yinw=lettbepinlet Cilvlbex®@yinw
lettbe xin Glu] = Gllet t be x in u] if x does not occur in G[]
lettbex®yin Glul = Gllettbex®yin ulifx,y ¢ FV(GI])
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AUTONOMOUS THEORIES

An L is given by:

e A set of types, which are formulas of IMLL uniquely
determined by a set of atomic types.

e A set of plain terms, which are linear lambda terms and
possibly supplementary terms.

e Aset of reduction relations, which is the union of —g with
—y and eventually a set of supplementary reductions.

A isatyping judgement '+t : A where tis a plain
term modulo the symmetric transitive reflexive closure of all
reduction relations and modulo commutative conversion rules.
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CATEGORICAL INTERPRETATION OF TYPES

The interpretation [X] in an autonomous category € of an
atomic type X is an object of €. We extend it to all types by:

[ =1
[A® B] = [A] ® [B]
[A— B] = [A] — [B]

We define the interpretation of a context by:

[-] =1
ra] = [ @ 4]

10



BOOKKEEPING MORPHISMS
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split_ o =2y’
splitp _ = py:'
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BOOKKEEPING MORPHISMS

o splitp A1 [ A] — [T @ [A]

split_ o =2y’
splitp _ = py:'
Splitr’A = idr’A

Sp“tr’(Z,A) = OCF)):,A e} (Sp“tr’z X |dA)
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BOOKKEEPING MORPHISMS

o splitp A1 [ A] — [T @ [A]

split_ o =2y’
splitp _ = py:'
Splitr’A = idr’A

Sp“tr’(Z,A) = OCF)):,A e} (Sp“tr’z X |dA)

e joinpa: [I®[A] — [ 4]
. . [N A, B, A] — [T, B, A, A]

i
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CATEGORICAL INTERPRETATION OF JUDGEMENTS

The interpretation [t]rra of a l-t:Aisa
morphism in € from [I'] to [A], inductively defined by:

[X]a-a = ida
[tlr.8,a,arc = [tra,8,a-c © €XChr g a A
[x]r1 = id4
[let t be x in ulr,ara = Aa o ([t]re1 ® [u)ara) o Splitr o
[t ® ulr,arage = ([thrra ® [u]ars) o splity A
[lettbe x®y in u]r,arc = [U]a,B,arc ©join o ([tlrrags ® id) o splitp o
AX.t]rra—s = Aras([tlra-s)

[tullr,are = eVag © ([t rra—s & [U]Ara) ©

12



CATEGORICAL INTERPRETATION OF TYPED TERMS

Lemma ( L IfT,x:AFt:Band AF u:A, then:
AR tu/x:B
Moreover, we have the following condition:

[tlu/X]] = [t] o (idr ® [u]) o
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CATEGORICAL INTERPRETATION OF TYPED TERMS

Lemma (Substitution). If T,x: A+ t:Band AF u: A, then:
A tu/x:B
Moreover, we have the following condition:
[tlu/X1] = [t] o (idr & [u]) o splitp A

Theorem. IfT-t:A T'Fs:Aandt —py S, then [t] = [s].

It follows from this result that the interpretation of judgements
is well defined on

13
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THE CATEGORY OF AN AUTONOMOUS THEORY
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category C(£) as follows:
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Given an autonomous theory £, we can define an autonomous
category C(£) as follows:

e The objects are the types of L.

e A morphism from type A to type B is an equivalence class
of typed terms of £ with exactly one free variable, denoted
(x: A t:B), with respect to the equivalence relation:

(x:At:B) ~ (y: A tly/x] : B)

e (x:B,t:C)o(y:A,u:B)isthe morphism (y:A,tlu/x]: C).
e The morphism on type A is (x: A, x : A).
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THE INTERNAL LANGUAGE OF AN AUTONOMOUS CATEGORY

Given a small autonomous category @, its internal language
L(C) is the autonomous theory defined as follows:

e Atomic types are the objects of €. Their interpretation will
be chosen to be the identity, thus [A] = A for all types A.

e Let [f] be a constant symbol for all arrows f: A — B of C.
Then supplementary terms are inductively defined by the
following rule: if tis a plain termand f: A — Bisa
morphism in €, then [f]t is a supplementary term.
Moreover, if '=t: A then ' [f]t: B.

15



e Forall morphismsf:A—B,g:B—C h:A®B— CinGC,
whenever t is typable with A, u is typable with B, v is
typable with A — B, r is typable with A® 1, s is typable
with T® A and w is typable with (A ® B) ® C, we have the

supplementary reductions:

[idalt = t

[gl[f1t — [g o f1t (flt®glu = [fegl(t® u)
lp, It = t®x [Aag,c(h)]t = Ax.[h](t ® X)
N Tt—=xet  [evasl(veu) =

A

[oalr — let rbex®@yin lety be xin x
[M]s — letsbey®xinletybe xinx
[oapcdlw—letwbee®zinletebex®yinx® (y®2)
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We give an interpretation in € of all judgements of IL(€) by
extending the definition to the following case:

[[f1tlr-8 = fo [t]rra

One easily checks that the substitution lemma and the
theorem expressing invariance of the semantics hold true.
Thus, the interpretation is still well defined on
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PROOF OF THE EQUIVALENCE

F: ¢ — C(L(C)) G: C(L(€)) — €
Ar— A Ar— A
(ft A= B) — (X:A/[fIx:B) (x:At:B) —> [t]
One easily proves that F is a functor by using the

supplementary relations for identities and for composition.
The substitution lemma implies that G is a functor as well.

Now, if f: A — Bis a morphismin €and (x:A,t:B)isa
morphism in C(IL(@)), then we have:
GFf=G(x: A, [flx: B) = [lfIx]ars =fo [X]ara =1
FG(x:A,t:B) = F[t] = (x: A, [t]x: B)



AUXILIARY RESULTS

For any integer n > 0 and for any terms ty,...,t, we define:

ifn=0
(1@ @th—1)® otherwise

t1®®tﬂ —
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For any integer n > 0 and for any terms ty,...,t, we define:

ifn=0
(1@ ®th_q) Dty oOtherwise

- ®th) =

Lemma. If t; is typable with A; then, forall k =0,...,n, we have:
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AUXILIARY RESULTS

For any integer n > 0 and for any terms ty,...,t, we define:

ifn=0
(1@ ®th_q) Dty oOtherwise

- ®th) =

Lemma. If t; is typable with A; then, forall k =0,...,n, we have:

[SPLita,.... A0, (g1t ] (LT ® - @ 1) = (1@ - R k) @ (L1 ® -+ ® 1)
[0iNay,.... A0, gyt ] (LT ® - B L) @ (trs1 ® - Rt)) =1 @Rty

Lemma. If X1 : A, ..., X, : Ay B t: B, then in L(C) we have:

t=[tIx1® - ®xn)
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COHERENCE THEOREM

The multisets of positive and negative type variables occurring
in atype A are defined by mutual induction:

X" = X)) =9

M=o N =2
(A®B)" =(A)TU(B)" (A®B)” =(A)"uU(B)”
(A—B)f =(A)"U(B)" (A—B)” =(A)TU(B)”
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COHERENCE THEOREM

The multisets of positive and negative type variables occurring
in atype A are defined by mutual induction:

X" = X)) =9

M=o M =0
A®B)F =AU (B)" (A®B)” =(A)"U(B)~
(A—B)" =(A)"uU(B)" (A—B)” =(A)"U(B)”

Atype A is binary if (A)™ = (A)~ and in this multiset each
atomic formula appears exactly once.

Theorem ( ). If two arrows in the free autonomous
category have the same binary type, then they are

20
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