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The 24th problem in my Paris lecture was to be: Criteria of simplicity, or proof of the greatest
simplicity of certain proofs. Develop a theory of the method of proof in mathematics in general.
Under a given set of conditions there can be but one simplest proof. Quite generally, if there are

two proofs for a theorem, you must keep going until you have derived each from the other, or
until it becomes quite evident what variant conditions (and aids) have been used in the two

proofs. Given two routes, it is not right to take either of these two or look for a third; it is
necessary to investigate the area lying between the two routes.

David Hilbert



Abstract

We review some recent results concerning the question of injectivity in
the multiplicative and exponential fragment of linear logic. We review the
notion of obsessional experiment, the properties of the multiplicative case
and we revisit a sufficient condition of local injectivity. Then, we study the
Taylor expansion of 𝜆-terms. We prove the commutation of Taylor support
and head reduction. As a corollary, we also establish the property that, if a
𝜆-term has a head normal form, then its head reduction terminates.

Keywords: linear logic, obsessional experiment, Taylor expansion, lambda
calculus, proof net, denotational semantics.
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Chapter 1

Introduction

What is a proof? This simple yet non trivial question received several answers
in the history of thought and, to date, none of them is completely satisfactory.

One of the simplest ideas was proposed by David Hilbert with his calculus.
In this system, a proof was just a finite list of formulas such that every element
of this list is an axiom or is deduced from its predecessors by using the modus
ponens rule. Another approach was suggested by Gödel, who showed that one
can encode proofs with natural numbers. However, these notions of proof are
quite artificial because they lack geometrical structure.

This missing component was taken into account with the work of Gerhard
Gentzen, who introduced natural deduction and sequent calculus. The former
was meant to be a representation of proofs which is closer to the intuition of a
mathematical proof, but it was not easy to reason about proofs in this system:
Gentzen was unable to prove the cut elimination theorem which, among other
things, guarantees the consistency of the formal system. It was for this reason
that he introduced sequent calculus, for which he managed to establish the cut
elimination theorem. Indeed, even though this system lacked the naturality of
natural deduction, it turned out to be a way better tool to reason about proofs.
A sequent calculus proof was essentially a tree built by applying specific rules
to sequences of formulas called sequents. Figure 1.1 shows an example of such
a proof in linear logic (the choice of this logical system will soon be clear). We
now notice that, if we were to accept this as a good notion of proof, then what
we get by swapping the two tensor rules in figure 1.1 would be considered as a
different proof. This contrasts with the intuition that proving 𝐴 ⊗ 𝐵⊥ before or
after 𝐵 ⊗ 𝐶⊥ makes no difference. Such intuition is supported by the idea that
we should not distinguish a proof which provides first a demonstration of the
fact that 𝐴 linearly implies 𝐵, then an argument to state that 𝐵 linearly implies
𝐶, from the proof using the same arguments but in the opposite order. Hence,
this is not a good definition of proof.

With the discovery of linear logic by Jean-Yves Girard in his article [Gir87],
a notion of proof net was born. This new formalism allows us to capture more
accurately the essence of a proof, since it identifies proofs which, in Gentzen’s
formalism, were morally the same. In particular, we can represent the sequent
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ax
⊢ 𝐴, 𝐴⊥

ax
⊢ 𝐵, 𝐵⊥ ax

⊢ 𝐶, 𝐶⊥
⊗

⊢ 𝐵⊥ , 𝐵 ⊗ 𝐶⊥ , 𝐶
⊗

⊢ 𝐴 ⊗ 𝐵⊥ , 𝐵 ⊗ 𝐶⊥ , 𝐶, 𝐴⊥
`⊢ 𝐴 ⊗ 𝐵⊥ , 𝐵 ⊗ 𝐶⊥ , 𝐶 ` 𝐴⊥

Figure 1.1: A sequent calculus proof.

𝐶⊥ 𝐶𝐵⊥ 𝐵

𝐴

𝐴⊗𝐵⊥ 𝐵⊗𝐶⊥

𝐴⊥

𝐶`𝐴⊥

ax

ax ax

⊗1 2 ⊗1 2 `1 2

1 2 3

Figure 1.2: A proof net.

proofs mentioned before with a single proof net, in figure 1.2. Thus, proof nets
contain less redundant information concerning the order of application of the
rules. We mention here that proof nets (and, more generally, proof structures)
are also interesting as pure computational objects. In particular, the procedure
of cut elimination is defined via local transformations. Thus, this formalism is
suitable for examining the dynamics of normalization and for establishing the
most fundamental properties of the system, such as strong normalization: the
fact that any chain of reductions ends by producing a normal object.

We now wonder if it is possible to make “more identifications” than proof
nets. With the idea of “measuring” the quality of the proof net formalism as a
way to represent proofs, one can examine three equivalence relations on proof
nets: the syntactic, semantic and observational equivalences. Basically, we can
say that two proof nets are syntactically equivalent if we can transform one in
the other by applying to them some specific syntactic manipulations (that is to
say, those defining the cut elimination procedure). On the other hand, we have
that two proof nets are semantically equivalent with respect to a model if that
model interprets them as the same mathematical object. Lastly, two proof nets
are observationally equivalent with respect to a particular type, usually called
“ground” or “observable”, if they normalize to the same value in each context
of that type. Observational equivalence was born in the field of programming
languages semantics: in order to compare two pieces of code (equivalently, by
following the point of view of Curry-Howard correspondence, two fragments
of proofs), it is natural to plug them into a program producing a ground value,
such as a number and check whether they both produce the same output.
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When comparing the syntactic and semantic equivalences, we address the
question of injectivity: for any given model, we ask if it interprets syntactically
non equivalent proofs with different objects. If, on the other hand, we compare
the syntactic and observational equivalences, then we address the question of
separability: we wonder if, given syntactically non equivalent proofs, there is a
context where they behave differently.

The study of both the questions of injectivity and separability inspired this
work, through an accurate analysis of the papers [Pag07] and [TdF03]. We got
interested in the tools which are used to investigate the question of injectivity.
One of them is the notion of obsessional experiment, that provides a sufficient
condition of local injectivity for a particular kind of proof nets. Another recent
and important tool is the Taylor expansion of a proof net, that is the possibility
of expressing a proof net as the infinite series of its linear approximations. This
technique was recently used by Daniel de Carvalho to prove that the relational
model is injective for proof nets of multiplicative and exponential linear logic.
We then felt encouraged to study the Taylor expansion in the setting of lambda
calculus, by conducting a detailed analysis of part of the article [Vau19] and by
proving independently some well known results.

We now outline the structure of the document. We start this chapter with a
section in which we present the framework of denotational semantics in a few
words. Section 1.2 is intended to recall some basic notions and provide all the
notations which are used in the sequel. In section 1.3, we use notions of graph
theory to obtain a very precise definition of proof structures and proof nets. In
section 1.4, we pinpoint significant paths and trees in proof structures and we
study their properties. Then, in chapter 2, we revisit some crucial results of the
article [TdF03] concerning the question of injectivity whereas, in chapter 3, we
study the Taylor expansion of lambda terms and use it to prove some expected
properties. In the conclusion, we look back at the accomplished results and we
try to assess the current state of the art.

1.1 Denotational semantics

We give a brief description of denotational semantics, a broad field of research
in theoretical computer science in which some of the tools recently used in the
study of the question of identity of proofs were developed and employed and
which contributed substantially to the birth of linear logic. We do not intend to
provide an exhaustive presentation of this theme: our aim is just to stress that
all advancements in proof theory we discuss in the sequel were made possible
by the research on denotational semantics. For a more detailed discussion, we
invite the reader to consult the books [GTL89] or [AC98]. We sometimes use as
a source the article [TdF06] as well.

In mathematical terms, a denotational semantics (or a model) is a map that
associates any program 𝑡 with a mathematical object, usually denoted J𝑡K and
such that, when 𝑡 evaluates to 𝑠, we get J𝑡K = J𝑠K. Thus, denotational semantics
provides invariants with respect to computation. But we know that a proof is a
program by the already mentioned Curry-Howard correspondence and so we
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get an interpretation of proofs that is invariant with respect to cut elimination
(intuitively, a process removing the uses of lemmas in a proof). Such invariants
can be understood as meanings of the proofs according to the model and thus
they can help us grasp the true essence of a proof.

It is then natural to ask which models we should work with. Categories are
extensively used, but we will briefly discuss some more concrete models. First,
in the 1970s, domains were introduced by Scott and Plotkin in order to obtain
a denotational semantics of pure 𝜆-calculus. These structures can be described
either as topological spaces that satisfy the 𝑇0 separation axiom or as partially
ordered sets. Later, the full abstraction problem for the PCF language, a typed
functional programming language introduced by Plotkin in 1977, encouraged
a lot of research and a lot of models were thus defined: the stable and bistable
models brought by Berry in 1978, the model of sequential algorithms by Berry
and Curien in 1982, the strongly stable model presented in 1991 by Bucciarelli
and Ehrhard. The efforts to find a solution to the full abstraction problem have
contributed to the development of semantic analysis techniques such as game
semantics and the study of logical relationships.

As an additional side effect, the simplification of the structures introduced
by Berry led Jean-Yves Girard to propose coherent spaces as new structures to
interpret formulas of natural deduction. In these structures, it was possible to
decompose the intuitionistic implication connective ⇒ of natural deduction. It
was not evident that this decomposition could be internalized with new logic
operators, but Girard revealed that this is indeed possible: we can express any
intuitionistic implication 𝐴 ⇒ 𝐵 as !𝐴 ⊸ 𝐵, where the connective⊸ is a linear
implication, that is an implication using its premise exactly once, whereas ! is a
modal operator which, in algorithmic terms, puts its argument into storage, so
!𝐴 means that 𝐴 is available an arbitrary number of times.

Linear logic was born: a refinement of both intuitionistic and classical logic
characterized by a decomposition of usual conjunction and disjunction in two
classes, multiplicative and additive and by the use of two new connectives, the
exponentials, which allow to restrict the two structural rules of weakening and
contraction. Due to this restriction, formulas are now computational resources
and their management is a key aspect of this logical system. This new point of
view had surprising consequences in proof theory. One of the most important
is certainly the introduction of proof nets, an innovative syntax that provides a
much more geometrical representation of proofs and normalization, with a lot
of interesting properties which were already discussed above.

1.2 Notations

We specify in this section all notations we adopt for this document.
First of all, we use the symbol N to denote the set of non negative integers,

that is 0, 1, 2 . . . When we enumerate a list of elements 𝑎1 , . . . , 𝑎𝑘 , it is intended
that 𝑘 is a non negative integer and that the list is empty if 𝑘 = 0. We adopt the
same conventions for sets. In addition, if we are dealing with indices, we write
𝑖1 , . . . , 𝑖ℎ = 1, . . . , 𝑘 meaning that 𝑖1 , . . . , 𝑖ℎ ∈ {1, . . . , 𝑘}. Finally, whenever 𝐴 is
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a finite subset ofN, we can consider the least upper bound of 𝐴 with respect to
the usual ordering of non negative integers. We denote this number sup𝐴. We
remark, in particular, that sup𝐴 = 0 if 𝐴 is the empty set.

Let 𝐴 be a set. We denote
⋃
𝐴 the reunion of 𝐴, that is the set the elements

of which are precisely the elements of the elements of 𝐴. To put it another way,
the reunion of 𝐴 is just the union of the elements of 𝐴. If 𝐵 is a subset of 𝐴, the
set difference of 𝐴 and 𝐵, denoted 𝐴\𝐵, is the set whose elements are precisely
the elements of 𝐴 which are not elements of 𝐵.

A relation is a subset of a cartesian product of sets. If the cartesian product
only involves 𝑛 copies of the same set 𝐴, we talk about an 𝑛-ary relation on 𝐴.
If 𝑅 is a binary (𝑛 = 2) relation on 𝐴, we say that 𝑅 is reflexive if it contains the
identity relation on 𝐴, that is the set {(𝑎, 𝑎) : 𝑎 ∈ 𝐴}. On the other hand, we say
that 𝑅 is symmetric if, for any two elements 𝑎, 𝑏 ∈ 𝐴, we have (𝑎, 𝑏) ∈ 𝑅 if and
only if (𝑏, 𝑎) ∈ 𝑅. Lastly, the relation 𝑅 is transitive when, for all 𝑎, 𝑏, 𝑐 ∈ 𝐴, the
conditions (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅 imply (𝑎, 𝑐) ∈ 𝑅. The reflexive closure of 𝑅,
denoted 𝑅?, is defined as the smallest reflexive relation on 𝐴 which contains 𝑅
or, equivalently, as the union of 𝑅 with the identity relation on 𝐴. Now, if 𝑛 is a
non negative integer, then the 𝑛-th power of 𝑅, denoted 𝑅𝑛 , is the relation on 𝐴
defined inductively as follows:

• If 𝑛 = 0, then 𝑅𝑛 is the identity relation on 𝐴.

• If 𝑛 ≥ 1 then, for all 𝑎, 𝑐 ∈ 𝐴, we have (𝑎, 𝑐) ∈ 𝑅𝑛 when there exists 𝑏 ∈ 𝐴
such that (𝑎, 𝑏) ∈ 𝑅𝑛−1 and (𝑏, 𝑐) ∈ 𝑅.

Lastly, the reflexive transitive closure of 𝑅, denoted 𝑅∗, is the smallest reflexive
and transitive relation on 𝐴 which contains 𝑅. Equivalently, we define:

𝑅∗ :=
⋃{𝑅𝑛 : 𝑛 ∈ N}

We call permutation over 1, . . . , 𝑛 a bĳective map from the set {1, . . . , 𝑛} to
itself. If 𝐴 is a finite set, a finite multiset with support 𝐴 is a map from 𝐴 to the
set of strictly positive integers. Now, for every 𝑎 ∈ 𝐴, let 𝜇𝑎 be a finite multiset
with support 𝑎. Then, let 𝜇 be a finite multiset with support {𝜇𝑎 : 𝑎 ∈ 𝐴}. To be
capable of expressing a notion of multiset union indexed over a finite multiset,
we define the finite multiset

⋃
𝜇, called reunion of 𝜇. It is a finite multiset with

support the reunion of 𝐴 and such that, whenever 𝑖 ∈ ⋃
𝐴, we have:

(⋃𝜇)(𝑖) :=
∑
𝑖∈𝑎∈𝐴

𝜇(𝜇𝑎)𝜇𝑎(𝑖)

Finally, if 𝜇 is a finite multiset with support 𝐴, an element 𝑥 of 𝐴 is also called
an element of 𝜇 and we write 𝑥 ∈ 𝜇. The multiplicity of 𝑥 in 𝜇 is just 𝜇(𝑥). Now,
to facilitate the intuition that finite multisets are a generalization of finite sets,
we introduce the notation {𝑛1[𝑥1], . . . , 𝑛𝑘[𝑥𝑘]} to talk about the finite multiset
𝜇 with support {𝑥1 , . . . , 𝑥𝑘} and such that 𝜇(𝑥𝑖) = 𝑛𝑖 for all indices 𝑖 = 1, . . . , 𝑘.
The notation 𝑛[𝑥] can therefore be understood as 𝑛 distinct occurrences of the
element 𝑥. It is then natural to write just 𝑥 instead of 1[𝑥]. From now on, for the
sake of simplicity, we talk about multisets meaning finite multisets.
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A finite word over a set 𝐴 is just a finite sequence of elements of 𝐴 and it is
denoted 𝑤1 . . . 𝑤𝑛 . The length of 𝑤1 . . . 𝑤𝑛 is the non negative integer 𝑛. When
𝑛 = 0, we have the empty word, denoted 𝜀. The set 𝐴 is called alphabet and its
elements are called letters. We can define the juxtaposition of two finite words
𝑢 = 𝑢1 . . . 𝑢𝑛 and 𝑣 = 𝑣1 . . . 𝑣𝑚 as the finite word 𝑢1 . . . 𝑢𝑛𝑣1 . . . 𝑣𝑚 , denoted 𝑢𝑣.
Juxtaposition is obviously an associative operation on finite words. Finally, we
say that 𝑣 is a factor of 𝑢 if there exist two finite words 𝑥 and 𝑦 over 𝐴 such that
𝑢 = 𝑥𝑣𝑦.

Lastly, we recall the notion of MELL formula. Throughout the document, it
is assumed that an infinite set of symbols called atomic formulas is fixed once
for all and that we have a symmetric binary relation NOT on this set such that,
for every atomic formula 𝑋, there exists a unique atomic formula 𝑌 satisfying
(𝑋,𝑌) ∈ NOT. Now let L be the alphabet made up of the atomic formulas, the
symbols ⊗, `, !, ? called tensor, par, bang and why not respectively, the comma
, and the parentheses ( and ). The set of MELL formulas (or formulas of MELL)
is the set of finite words over L produced by the following inductive definition:

• If 𝑋 is an atomic formula, then 𝑋 is an MELL formula.

• If 𝐴 and 𝐵 are MELL formulas, then so are (𝐴 ⊗ 𝐵) and (𝐴` 𝐵).
• If 𝐴 is an MELL formula, then so are !𝐴 and ?𝐴.

Outermost parentheses are not written. It is important to notice that we do not
deal with units in this work. We then define a function, called linear negation,
which associates with every MELL formula 𝐴 another MELL formula, denoted
𝐴⊥. This function is defined inductively as follows:

• If 𝑋 is an atomic formula, then 𝑋⊥ is the only atomic formula𝑌 such that
(𝑋,𝑌) ∈ NOT.

• If 𝐴 and 𝐵 are MELL formulas, then:

(𝐴 ⊗ 𝐵)⊥ = 𝐴⊥ ` 𝐵⊥

(𝐴` 𝐵)⊥ = 𝐴⊥ ⊗ 𝐵⊥

• If 𝐴 is an MELL formula, then (!𝐴)⊥ = ?𝐴⊥ and (?𝐴)⊥ = !𝐴⊥.

1.3 Proof nets

We recall that proof nets were originally introduced by Girard in [Gir87]. Since
then, however, a lot of variants for the definition of proof net have been used. It
is then necessary to precisely specify what we mean by this notion. Given that
our aim is to revisit the results of the article [TdF03] and given that we want to
support the intuition that proof nets are just particular graphs, our choice is to
translate in a purely graph theoretical language the kind of proof nets used in
that paper. As we want to define proof nets as very special graphs, we start by
providing a possible definition of graph.
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Definition 1.1. A graph is a tuple 𝐺 = (𝑉, 𝐴, ℓ𝑉 , ℓ𝐴) consisting in a finite set 𝑉
whose elements are called vertices, an irreflexive binary relation 𝐴 on 𝑉 whose
elements are called arcs, a function ℓ𝑉 , called vertex labeling, associating to each
vertex of 𝐺 a multiset whose elements are called labels and a function ℓ𝐴, called
arc labeling, associating with each arc of 𝐺 a multiset the elements of which are
also called labels. A vertex or arc of 𝐺 is unlabeled if the multiset associated with
it is empty. In addition, when 𝑎 = (𝑥, 𝑦) is an arc of 𝐺, we say that 𝑥 is the tail of
𝑎 and 𝑦 is the head of 𝑎. We also say that 𝑥 and 𝑦 are adjacent and that a vertex 𝑧
is incident to 𝑎 if 𝑧 = 𝑥 or 𝑧 = 𝑦. Furthermore, we call undirected closure of 𝐺 any
graph having 𝑉 as set of vertices and the symmetric closure of 𝐴 as set of arcs.

In what follows, we always want to consider graphs modulo isomorphism.
We then recall this notion.

Convention. For simplicity, if Φ : 𝑈 → 𝑉 is a map, we denote in the same way
the function from𝑈 ×𝑈 to𝑉 ×𝑉 which associates to a pair (𝑢, 𝑢′) the ordered
couple (Φ(𝑢),Φ(𝑢′)).
Definition 1.2. Let 𝐺 = (𝑈, 𝐴, ℓ𝑈 , ℓ𝐴) and 𝐻 = (𝑉, 𝐵, ℓ𝑉 , ℓ𝐵) be two graphs. An
isomorphism between 𝐺 and 𝐻 is a bĳection Φ : 𝑈 → 𝑉 such that, if 𝑎 ∈ 𝑈 ×𝑈 ,
then 𝑎 ∈ 𝐴 if and only if Φ(𝑎) ∈ 𝐵 and such that ℓ𝑈 = ℓ𝑉 ◦Φ, ℓ𝐴 = ℓ𝐵 ◦Φ.

We say that 𝐺 and 𝐻 are isomorphic if there exists an isomorphism between
them and, in that case, we write 𝐺 = 𝐻.

It is well known that one can manipulate graphs by making disjoint unions
of graphs, by deleting or contracting arcs and by suppressing vertices. Each of
these operations on graphs is precisely defined in [BM08].

Definition 1.3. Let 𝑢 and 𝑣 be non adjacent vertices of a graph 𝐺. If 𝑢 = 𝑣, the
graph we get from 𝐺 by identifying 𝑢 and 𝑣 is 𝐺. If not, it is defined as follows:

• We first suppress 𝑢 and 𝑣 (necessarily with all arcs they are incident to).

• We then add a vertex 𝑤 which is labeled with all labels of 𝑢 and 𝑣.

• Finally, for all vertices 𝑥 such that (𝑥, 𝑢) or (𝑥, 𝑣) is an arc of 𝐺, we add an
arc (𝑥, 𝑤) with all labels of both arcs, if they exist, otherwise all labels of
the existing arc. In the same manner, for every vertex 𝑦 such that (𝑢, 𝑦) or
(𝑣, 𝑦) is an arc of 𝐺, we add an arc (𝑤, 𝑦) having all labels of both arcs, if
they exist, otherwise all labels of the existing arc.

Remark 1.1. The previous definition only makes sense because the arc relation
on 𝐺 is irreflexive and we pick 𝑢 and 𝑣 as non adjacent vertices.

Definition 1.4. Let 𝑎 = (𝑢, 𝑣) and 𝑏 = (𝑥, 𝑦) be two distinct arcs with the same
label of a graph 𝐺 and suppose that 𝑢 and 𝑥, 𝑣 and 𝑦 are pairs of non adjacent
vertices. The graph obtained from 𝐺 by identifying 𝑎 and 𝑏 is the graph we get
by first deleting one of the arcs 𝑎 or 𝑏 and then identifying 𝑢 with 𝑥 and 𝑣 with
𝑦.
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𝐴 𝐴⊥
𝐴 𝐴⊥ 𝐴 𝐵

𝐴`𝐵

𝐴 𝐵

𝐴⊗𝐵

ax cut `1 2 ⊗1 2

𝐴

!𝐴

𝐴

?𝐴 ?𝐴

?𝐴 ?𝐴

?𝐴

?𝐴

?𝐴

! ?de ?𝑤 ?co

· · ·
𝑝

Figure 1.3: MELL links.

Remark 1.2. Since the operation of identifying distinct arcs in a graph is local, if
we apply it repeatedly, then we will end up with the same graph no matter the
order in which we identify the arcs.

Convention. We represent arcs oriented from top to bottom, meaning that the
head is always lower than the tail.

Definition 1.5. We call MELL links the graphs depicted in figure 1.3 and, more
specifically, from left to right, top to bottom, we have the axiom, cut, par, tensor,
of course, dereliction, weakening, contraction and pax links. Each possesses exactly
one labeled vertex 𝑛 which, with a slight abuse of notation, is usually referred
to as a link, just as the graph it belongs to. All other vertices are unlabeled. We
say that an arc is a premise if 𝑛 is its head, a conclusion if 𝑛 is its tail. The arity of
a link is the number of its premises. Contraction links may have arity 𝑘 for any
integer 𝑘 ≥ 2. We call type of an arc the formula of MELL which labels that arc.
In addition, the axiom and weakening links are called initial links, whereas the
weakening and contraction links are called structural links. A fragment of MELL
is a subset of the set of MELL links. In particular, the fragment consisting of the
axiom, cut, par and tensor links is denoted MLL.

Now let 𝑅 be the graph obtained by first taking a non trivial disjoint union
of MELL links, possibly with repetitions of the same link and then identifying
couples of arcs, labeled by the same MELL formula, such that one is a premise,
the other is a conclusion, they both have an unlabeled vertex as a tail or a head
and they do not share the other vertex. Now suppose that every arc of 𝑅 is the
conclusion of a unique link and the premise of at most one link. Assume that 𝐹
is the set of arcs of 𝑅 which are not the premise of any link and define 𝑠 as the
cardinality of 𝐹. We call a pseudo proof structure the graph produced from 𝑅 by
ordering the elements of 𝐹, that is, by labeling them with 1, . . . , 𝑠 in such a way
that different arcs possess distinct labels. The elements of 𝐹 and their types are
both called conclusions of 𝑅. A link of 𝑅 is called terminal when its conclusion is
a conclusion of 𝑅. We define the conclusion of 𝑅 as the list Γ = 𝐶1 , . . . , 𝐶𝑠 where
𝐶𝑖 is the type of an arc 𝑐𝑖 ∈ 𝐹 and 𝑐𝑖 is labeled by 𝑖 for all 𝑖 = 1, . . . , 𝑠. A pseudo
proof structure is cut free if it was produced without using the cut link and we
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say that it belongs to a particular fragment of MELL if it was obtained by only
using links of that fragment.

A proof structure is a pseudo proof structure 𝑅 satisfying the two following
conditions:

(1) !-box condition. With any of course link 𝑛 is associated a unique subgraph
𝐵 of 𝑅 which is a pseudo proof structure such that one of its conclusions
is the conclusion of 𝑛 and any other conclusion is the conclusion of a pax
link. We call 𝐵 an exponential box or just a box and we visually represent it
by using a rectangular frame. We call 𝑛 a front door or pal door of 𝐵.
With every pax link 𝑛 is associated a unique exponential box 𝐵 such that
one among the conclusions of 𝐵 is the conclusion of 𝑛. We say that 𝑛 is a
pax door of 𝐵.

(2) Nesting condition. Any two boxes are disjoint or included one in the other.

Let 𝐵 be a box of a proof structure 𝑅. We say that an arc of 𝐵 is contained in
𝐵 if it is not a conclusion of 𝐵. In the same way, a link of 𝐵 is contained in 𝐵 if it
is not a door of 𝐵. Finally, we say that a proof structure is contained in 𝐵 when
its arcs are all contained in 𝐵. We can now define the depth of 𝐵 as the number
of boxes in which 𝐵 is strictly contained. We can also define the depth of a link
or of an arc of 𝑅 as the number of boxes in which it is contained. Lastly, the box
complexity of 𝑅 is 0, if 𝑅 has no boxes, otherwise it is defined as 𝑚 + 1, where 𝑚
is the maximal depth of its boxes.

Remark 1.3. The labels 1 and 2 on the premises of par and tensor links allow us
to distinguish the left and the right premise.
Remark 1.4. All pseudo proof structures of MLL are proof structures.
Remark 1.5. The depth of a box is well defined thanks to the immediate remark
that boxes are proof structures.
Remark 1.6. The biggest proof structure contained in a box is simply the proof
structure obtained from that box by deleting its conclusions.

Lemma 1.1. Let 𝐵 be a box of depth 𝑝. The doors of 𝐵 have depth 𝑝, their conclusions
have depth 𝑝 and their premises have depth 𝑝 + 1.

Proof. We reason by induction on 𝑝. First, suppose 𝑝 = 0. If there existed boxes
containing a door or the conclusion of a door of 𝐵, then they would contain the
premise of that door, because boxes are pseudo proof structures. Therefore, by
the nesting condition, they would also contain 𝐵, contradicting the hypothesis
that the depth of 𝐵 is 𝑝 = 0. We can then conclude that the doors of 𝐵 and their
conclusions have depth 0. Their premises have depth at least 1, since 𝐵 is a box
containing them. If a box contains the premise of a door of 𝐵, it is contained in
𝐵 by the nesting condition and the hypothesis that 𝐵 has depth 0. Then the box
is 𝐵, because they have a common door and by definition the box associated to
a door is unique. Hence, the premises of the doors of 𝐵 have depth 1.
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Now assume 𝑝 ≥ 1 and that the result holds for any box of depth 𝑝 − 1. Let
𝐵0 be the box of depth 0 containing 𝐵 and let 𝑅0 be the biggest proof structure
contained in 𝐵0. We know for sure that 𝐵 is also a box of 𝑅0, because boxes are
proof structures and 𝑅0 is maximal among those which 𝐵0 contains. Since the
depth of 𝐵 in 𝑅0 is 𝑝 − 1, by applying the inductive hypothesis and taking into
account the presence of the box 𝐵0 we get the desired conclusion. □

Lemma 1.2. Let 𝑛 be a link of depth 𝑝 in a proof structure 𝑅. If 𝑛 is not the door of a
box, then its premises and its conclusion have depth 𝑝.

Proof. Again, we reason by induction on 𝑝. Suppose 𝑝 = 0. If the conclusion of
𝑛 were contained in a box, then 𝑛 would, too. This goes against the hypothesis
that 𝑛 has depth 𝑝 = 0, hence the conclusion of 𝑛 has depth 0. If a premise of 𝑛
were contained in a box 𝐵, then this premise would not be a conclusion of that
box. Since the conclusion of 𝑛 has depth 0, it must be a conclusion of 𝐵. Then 𝑛
would be a door of 𝐵, contradicting our hypotheses. Therefore, the premises of
𝑛 have depth 0. In the case 𝑝 ≥ 1, we repeat the argument seen in the proof of
the previous result. □

We recall the notion of path. It is important to stress that, for this definition
of path, the orientation of arcs matters.

Definition 1.6. Let 𝐺 be a graph. A path in 𝐺 is a sequence of arcs of 𝐺 denoted
𝑎0 . . . 𝑎𝑘 for which there are pairwise distinct vertices 𝑥0 , . . . , 𝑥𝑘 of 𝐺 such that
𝑥𝑖−1 is the head of 𝑎𝑖−1 and the tail of 𝑎𝑖 for all indices 𝑖 = 1, . . . , 𝑘. Moreover, a
path 𝑎0 . . . 𝑎𝑘 is called a cycle when the head of 𝑎𝑘 and the tail of 𝑎0 are the same
vertex. We say that 𝐺 is acyclic if there exists no cycle in 𝐺. On the other hand,
the graph 𝐺 is connected if, for any two distinct vertices 𝑥 and 𝑦 of 𝐺, there is a
path 𝑎0 . . . 𝑎𝑘 in 𝐺 from 𝑥 to 𝑦, that is, such that the tail of 𝑎0 is 𝑥 and the head
of 𝑎𝑘 is 𝑦.

We finally provide the definition of proof net.

Definition 1.7. A switching of a proof structure 𝑅 is a set 𝑆 whose elements are
exactly one premise of each par and contraction link of 𝑅 with depth zero. We
can then define the correctness graph of 𝑅 with respect to the switching 𝑆 as the
graph 𝑆(𝑅) produced from 𝑅 by deleting every premise of a par or contraction
link with depth zero which is not an element of 𝑆 and by substituting each box
of 𝑅 with a vertex such that this vertex and the conclusions of the removed box
are adjacent.

A proof structure 𝑅 is an AC proof net (respectively, an ACC proof net) when,
for every box 𝐵 of 𝑅 with depth zero, the maximal proof structure contained in
𝐵 is an AC proof net (respectively, ACC proof net) and 𝑅 satisfies the so called
acyclicity criterion (respectively, acyclicity and connectedness criterion): whenever
𝑆 is a switching of 𝑅, the unlabeled undirected closure of 𝑆(𝑅) is a forest, that
is an acyclic graph (respectively, a tree, that is an acyclic and connected graph).
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Remark 1.7. The previous definition reveals that there are actually two notions
of proof net. One can prove that the notion of AC proof net corresponds to the
standard notion of sequent calculus proof, provided that one adds to the usual
rules the so called mix rule, allowing to infer ⊢ Γ,Δ from any two sequents ⊢ Γ

and ⊢ Δ. On the other hand, an ACC proof net can be transformed in a sequent
calculus proof without the need for supplementary rules, but only if it belongs
to a fragment of MELL not containing the weakening link.

Convention. For now on, whenever we refer to proof nets, we mean either AC
proof nets or ACC proof nets. In addition, when we mention proof nets several
times in the same context, we consistently refer every time to the same kind of
proof net.

1.4 Paths and trees in proof structures

Convention. In this section, unless otherwise specified, we suppose that 𝑅 is a
cut free proof structure.

Remark 1.8. Let 𝑎 be an arc of 𝑅. If 𝑎0 . . . 𝑎𝑘 and 𝑏0 . . . 𝑏ℎ are paths of 𝑅 such that
𝑎0 = 𝑏0 = 𝑎, then one is the prefix of the other. In fact, assuming ℎ ≤ 𝑘 without
loss of generality and bearing in mind that we always consider directed paths,
we must have 𝑎𝑖 = 𝑏𝑖 for all indices 𝑖 = 0, . . . , ℎ by definition of proof structure
(one easily checks this by induction on 𝑖). In particular, there is just one path of
length 𝑘 whose first arc is 𝑎. This motivates the following definition.

Definition 1.8. We say that the path 𝑎0 . . . 𝑎𝑘 of 𝑅 is:

• Issued by an arc 𝑎 of 𝑅 if 𝑎0 = 𝑎.

• Issued by a link of 𝑅 if it is issued by the conclusion of that link.

• A descending path if 𝑎𝑘 is a conclusion of 𝑅.

Remark 1.9. Let 𝑎0 . . . 𝑎𝑘 be a path of 𝑅. Then, by the two previous lemmas, the
depth of 𝑎𝑖−1 is greater than or equal to the depth of 𝑎𝑖 for all 𝑖 = 1, . . . , 𝑘. Also,
the equality holds if and only if the arc 𝑎𝑖 is not the conclusion of an of course
or pax link.

We now give a useful characterization for the notion of depth of a link or of
an arc, which has the quality of not involving boxes.

Proposition 1.1. The depth of a link or of an arc in 𝑅 is 𝑝 if and only if the descending
path issued by that link or arc crosses the premises of exactly 𝑝 of course or pax links of
𝑅.

Proof. Since the depth of a link is always equal to the depth of its conclusion, it
is enough to consider the case of an arc 𝑎. Let 𝑎0 . . . 𝑎𝑘 be the descending path
issued by 𝑎. We start by proving the reverse implication of the statement. Our
hypothesis is that 𝑎0 . . . 𝑎𝑘 crosses the premises of precisely 𝑝 of course or pax
links. Suppose that these links are 𝑛1 , . . . , 𝑛𝑝 and that 𝑛𝑖−1 is crossed before 𝑛𝑖
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for 𝑖 = 2, . . . , 𝑝. Let 𝐵1 , . . . , 𝐵𝑝 be the unique associated boxes. For 𝑖 = 2, . . . , 𝑝,
since 𝐵𝑖 is a proof structure, it must contain the premise of 𝑛𝑖−1. By the nesting
condition, the box 𝐵𝑖−1 is included in 𝐵𝑖 . Moreover, this is a strict inclusion: by
remark 1.9, the depth of 𝑛𝑖−1 is strictly greater than that of 𝑛𝑖 , hence 𝑛𝑖−1 and 𝑛𝑖

cannot be two doors of the same box by lemma 1.1. Now assume that 𝐵 is a box
containing 𝑎. Since 𝑎𝑘 is not contained in a box, we can consider the first index
𝑖 ∈ {1, . . . , 𝑘} such that 𝑎𝑖 is not contained in 𝐵. Then 𝑎𝑖−1 is contained in 𝐵 and
this entails that 𝑎𝑖 is a conclusion of 𝐵. Thus, the arc 𝑎𝑖−1 is the premise of an of
course or pax link 𝑛, which is in particular a door of 𝐵. However, we must have
𝑛 = 𝑛 𝑗 for some 𝑗 ∈ {1, . . . , 𝑝} and therefore 𝐵 = 𝐵 𝑗 , because the box associated
to a door is unique. We have then proven that there is no other box containing
𝑎 aside from 𝐵1 , . . . , 𝐵𝑝 . Hence, the depth of 𝑎 is 𝑝.

The direct implication is now immediate: obviously, for some non negative
integer 𝑞, the path 𝑎0 . . . 𝑎𝑘 crosses the premises of precisely 𝑞 of course or pax
links of 𝑅. Then, by the reverse implication, the depth of 𝑎 is 𝑞. The hypotheses
impose 𝑝 = 𝑞 and we are done. □

We have the following characterization of exponential boxes in the absence
of weakening links.

Proposition 1.2. Let 𝑅 be an ACC proof net, let �̄� be an undirected closure of 𝑅 with
the same labels as 𝑅 on vertices and let 𝑚 and 𝑛 be two of course or pax links of 𝑅 with
depth 𝑝. Then 𝑚 and 𝑛 are doors of the same box if and only if there is a path 𝑎0 . . . 𝑎𝑘
of �̄� such that the tail of 𝑎0 is 𝑚, the head of 𝑎𝑘 is 𝑛 and every link crossed by this path
has depth strictly greater than 𝑝.

Proof. By definition of ACC proof net, if 𝑚 and 𝑛 are doors of a box 𝐵, then the
maximal proof structure 𝑅′ contained in that box is an ACC proof net. Thus, its
undirected closure �̄�′ with the same labels as 𝑅′ on vertices is connected. Then
there exists a path 𝑎0 . . . 𝑎𝑘 of �̄�′ such that the tail of 𝑎0 is 𝑚 and the head of 𝑎𝑘
is 𝑛. In addition, since the depth of 𝐵 is 𝑝 by lemma 1.1, any link crossed by the
path 𝑎0 . . . 𝑎𝑘 has depth strictly greater than 𝑝. Lastly, this path is in �̄�, because
�̄�′ is a subgraph of �̄�.

We then prove the reverse implication. Let 𝐵 be the box associated with 𝑚.
From now on, if (𝑢, 𝑣) is an arc of 𝑅, we say that (𝑣, 𝑢) is contained in 𝐵 if (𝑢, 𝑣)
is. Then we claim that 𝑎𝑖 is contained in 𝐵 for every index 𝑖 = 0, . . . , 𝑘. In fact, if
this were not the case, we could consider an index ℎ ∈ {0, . . . , 𝑘} such that 𝑎𝑖 is
contained in 𝐵 for all 𝑖 = 0, . . . , ℎ − 1 and 𝑎ℎ is not contained in 𝐵. Since the tail
of 𝑎0 is 𝑚, we must have ℎ ≥ 1. We can then observe that 𝑎ℎ−1 is the premise of
a door of 𝐵 with conclusion 𝑎ℎ . This door is a link with depth 𝑝 by lemma 1.1,
hence we have a contradiction with our hypotheses. We can conclude that 𝑎𝑘 is
contained in 𝐵. By the hypothesis that the head of 𝑎𝑘 is 𝑛, it is also contained in
the box 𝐵′ associated with 𝑛. Since 𝐵 and 𝐵′ satisfy the nesting condition, they
are necessarily included one in the other. Finally, since they both have depth 𝑝
by lemma 1.1, we must have 𝐵 = 𝐵′. □

We now need another general definition about graphs.
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Definition 1.9. Let 𝑎 = (𝑢, 𝑤) be an arc of a graph 𝐺. The graph obtained from
𝐺 by splitting 𝑎 is the graph we get by deleting 𝑎, adding an unlabeled vertex 𝑣
and the arcs (𝑢, 𝑣) and (𝑣, 𝑤), each with the same labels as 𝑎.

The analogous of remark 1.2 holds.

Definition 1.10. Let 𝑛 be a terminal link of 𝑅 and let 𝑅′ be a graph. We say that
𝑅′ is obtained from 𝑅 by removal of 𝑛 if it is produced by splitting the premises
of 𝑛, then suppressing 𝑛 and ordering the arcs which are not premises of a link
in such a way that:

• If 𝑎 and 𝑏 are conclusions of 𝑅 and not conclusions of 𝑛, then 𝑎 precedes
𝑏 in 𝑅′ whenever this happens in 𝑅.

• If 𝑎 is a conclusion of 𝑅 and 𝑏 is a premise of 𝑛, then 𝑎 precedes 𝑏 in 𝑅′ if
and only if 𝑎 precedes the conclusion of 𝑛 in 𝑅.

• If 𝑛 is a par or tensor link with left premise 𝑎 and right premise 𝑏, then 𝑎
precedes 𝑏 in 𝑅′.

Remark 1.10. If 𝑅 is a pseudo proof structure or a proof structure, then so is 𝑅′.

Definition 1.11. The open graph of a pseudo proof structure 𝑅 is defined as the
graph O(𝑅) we get by splitting the conclusions of the axiom links of 𝑅 and by
suppressing the labeled vertices (necessarily with the two incident arcs) of any
axiom link of 𝑅.

Remark 1.11. In some cases, we want to “forget” that a specific proof structure
𝑅 verifies the conditions on boxes. In other words, we do not want to consider
the proof structure 𝑅, but rather the underlying pseudo proof structure, which
we denote P(𝑅). Intuitively, we can visualize P(𝑅) as the graph we produce by
erasing the rectangular frames of all boxes of 𝑅. The major difference is that in
P(𝑅) we do not know anymore which of course and pax links are the doors of
the same box.

Notation. For simplicity, we denote OP(𝑅) the open graph of P(𝑅).
Remark 1.12. There are evident bĳections associating with any path of 𝑅 a path
of P(𝑅) and one of OP(𝑅). Besides, these bĳections preserve descending paths.
Hence, thanks to proposition 1.1, the depth of a link or of an arc is well defined
in each of these graphs and coincides with the depth in 𝑅.

Definition 1.12. The distance in 𝑅 of an arc 𝑎 from an initial link is the smallest
non negative integer 𝑘 for which there exists a path 𝑎0 . . . 𝑎𝑘 of 𝑅 such that 𝑎0 is
a conclusion of an initial link and 𝑎𝑘 = 𝑎.

Remark 1.13. A path as in the previous definition always exists, by definition of
proof structure. In addition, notice that the distance of 𝑎 from an initial link is
zero if and only if 𝑎 is a conclusion of an initial link.
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Definition 1.13. If 𝑛 is a link of 𝑅 with conclusion 𝑎, the tree of 𝑎 in 𝑅, denoted
𝑇𝑅
𝑎 or just 𝑇𝑎 if there is no ambiguity, is defined as follows, by induction on the

distance 𝑑 of 𝑎 from an initial link:

• If 𝑑 = 0, then the tree of 𝑎 in 𝑅 is just 𝑎.

• If 𝑑 ≥ 1 then, for some integer 𝑘 ≥ 1, the arc 𝑎 is the conclusion of a link 𝑛
with premises 𝑎1 , . . . , 𝑎𝑘 . The tree of 𝑎 in 𝑅 is the graph produced by first
taking the disjoint union of the graphs 𝑇𝑎1 , . . . , 𝑇𝑎𝑘 and of the link 𝑛, then
identifying the premise 𝑎𝑖 of 𝑛 with the corresponding arc of 𝑇𝑎𝑖 for each
index 𝑖 = 1, . . . , 𝑘.

Remark 1.14. Let 𝑎 and 𝑏 be arcs of 𝑅. Then one can easily prove, by induction
on the distance of 𝑎 from an initial link, that the following properties hold:

(i) The graph 𝑇𝑎 is a tree, that is, connected and acyclic.

(ii) The graph 𝑇𝑎 is a subgraph of OP(𝑅).
(iii) If 𝑏 is an arc of 𝑇𝑎 , then 𝑇𝑏 is a subgraph of 𝑇𝑎 .

(iv) If 𝑏 is an arc of 𝑇𝑎 , there exists a path 𝑎0 . . . 𝑎𝑘 of 𝑅 with 𝑎0 = 𝑏 and 𝑎𝑘 = 𝑎.

(v) A path 𝑎0 . . . 𝑎𝑘 of 𝑅 with 𝑎𝑘 = 𝑎 is a path of 𝑇𝑎 .

In addition to these:

(vi) The graphs 𝑇𝑎 and 𝑇𝑏 do not share any arc if and only if 𝑎 is not an arc of
𝑇𝑏 and 𝑏 is not an arc of 𝑇𝑎 (by properties (iv), (v) and remark 1.8).

(vii) If 𝑎 and 𝑏 are two distinct conclusions of 𝑅, then the graphs 𝑇𝑎 and 𝑇𝑏 are
disjoint in OP(𝑅) (by properties (iv) and (vi)).

(viii) If 𝑎1 , . . . , 𝑎𝑘 are the conclusions of 𝑅, then OP(𝑅) is the disjoint union of
the graphs 𝑇𝑎1 , . . . , 𝑇𝑎𝑘 (by properties (ii), (v) and (vii)).



Chapter 2

Injectivity and obsessionality

We deal with the question of injectivity for the multiplicative and exponential
fragment of linear logic, which was tackled by Lorenzo Tortora de Falco in his
article [TdF03]. This will be our primary reference in this chapter. We precisely
state our problem in mathematical terms and then we revisit the main results,
providing extra details, examples and missing proofs. As in our reference, we
restrict our study to the coherent multiset based semantics of linear logic. This
is justified by a proposition, suggested by Thomas Ehrhard and established in
the paper [TdF00], which allows to extend all positive results about injectivity
to the case of relational semantics.

We focus on the key notion of obsessional experiment, thanks to which we
get a sufficient condition of local injectivity: if 𝑅 is a (standard) ACC proof net
and there exists an experiment of 𝑅 with some particular properties, then 𝑅 is
“alone” in its semantic equivalence class, that is, there are no other (standard)
ACC proof nets with the same semantics as 𝑅.

This tool is used in [TdF03] to provide a positive or negative answer to the
question of injectivity in specific fragments of linear logic. Notably, the author
proves that the answer is positive in the “weakly polarized” fragment of linear
logic, which contains the simply typed lambda calculus. On the other hand, he
builds a counterexample to the injectivity of coherent semantics in the general
case.

The chapter is structured as follows. The first section is aimed at providing
the ingredients we need to precisely state the question of injectivity. We recall,
in particular, the definitions of coherent space and experiment and we give an
original definition which formalizes occurrences of subformula. In section 2.2,
we provide a positive answer to the question of injectivity in the multiplicative
fragment of linear logic. In section 2.3, we introduce obsessional experiments,
we fix some ambiguities in the statement of lemma 2.2.1 of [TdF03] and finally
provide an original proof of this result. In section 2.4, we then review another
crucial result of [TdF03] and we give some details on intermediary results. We
finally review, in section 2.5, a sufficient condition of local injectivity and then
we comment on the result achieved.

15
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2.1 Preliminaries

In order to formally state the question of injectivity, we have to precisely define
the two equivalence relations we want to compare. First and foremost, we give
some definitions.

Definition 2.1. We say that a cut free pseudo proof structure 𝑅 is standard if all
conclusions of axiom links of 𝑅 have atomic types and if every conclusion of a
structural link is not a premise of a pax or contraction link.

Remark 2.1. One easily proves that, by performing 𝜂-expansions of axioms, by
erasing structural links and by commuting them with pax links, every cut free
pseudo proof structure can be translated into a unique standard pseudo proof
structure. In particular, we can turn any proof structure into a unique standard
proof structure.
Remark 2.2. Because of the position of the structural links in a standard pseudo
proof structure, all premises of pax or contraction links must be conclusions of
pax or dereliction links.

The previous remark justifies the following definition.

Definition 2.2. Suppose that 𝑎 is the conclusion of a pax or dereliction link 𝑚
in a standard pseudo proof structure 𝑅. The dereliction link above 𝑎 (or above
𝑚) is the dereliction link with conclusion 𝑐0 for which there are a non negative
integer ℎ and ℎ arcs 𝑐1 , . . . , 𝑐ℎ such that 𝑐0 . . . 𝑐ℎ is a path of 𝑅, 𝑐ℎ = 𝑎 and 𝑐𝑖 is
the conclusion of a pax link for all indices 𝑖 = 1, . . . , ℎ − 1. If 𝑎 is the conclusion
of a contraction link 𝑚 with premises 𝑎1 , . . . , 𝑎𝑘 , we call dereliction links above
𝑚 the dereliction links above 𝑎1 , . . . , 𝑎𝑘 .

In some cases, it is important to stress the difference between subformulas
and occurrences of subformula: if on one hand 𝐴 is a subformula of 𝐴 ⊗ 𝐴, we
have two distinct occurrences of 𝐴 in 𝐴 ⊗ 𝐴, in short the one on the left and the
one on the right. This difference is actually crucial in the sequel, which is why
we provide a specific definition to formalize our intuition.

Definition 2.3. Let 𝐴 be an MELL formula. The set of occurrences of subformula
of 𝐴 is a subset osf (𝐴) of the cartesian product of the set of MELL formulas and
the set of finite words over the alphabet {L,C,R}, determined by means of the
following inductive definition:

• If 𝐴 is an atomic formula, then osf (𝐴) := {(𝐴, 𝜀)}.
• If 𝐴 = 𝐵 ` 𝐶 or 𝐴 = 𝐵 ⊗ 𝐶, then osf (𝐴) is the set whose elements are the

ordered pair (𝐴, 𝜀), every pair (𝐹, L𝑤) such that (𝐹, 𝑤) ∈ osf (𝐵) and every
couple (𝐹,R𝑤) such that (𝐹, 𝑤) ∈ osf (𝐶).

• If 𝐴 = !𝐵 or 𝐴 = ?𝐵, then osf (𝐴) is the set whose elements are the ordered
pair (𝐴, 𝜀) and every couple (𝐹,C𝑤) such that (𝐹, 𝑤) ∈ osf (𝐵).

We now recall the notions of coherent space and experiment.
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Definition 2.4. A coherent space 𝒜 is an ordered pair (|𝒜|,¨) where |𝒜| is a set
called web and ¨ is a binary reflexive and symmetric relation on the web called
coherence. Let 𝑥, 𝑦 ∈ |𝒜|. We adopt the following terminologies and notations:

• We say that 𝑥 and 𝑦 are coherent and we write 𝑥 ¨ 𝑦[𝒜] if (𝑥, 𝑦) ∈ ¨.

• We say that 𝑥 and 𝑦 are strictly coherent and we write 𝑥 ˝ 𝑦[𝒜] if they are
coherent and 𝑥 ≠ 𝑦.

• We say that 𝑥 and 𝑦 are incoherent and we write 𝑥 ˚ 𝑦[𝒜] if they are not
strictly coherent.

• We say that 𝑥 and 𝑦 are strictly incoherent and we write 𝑥 ˇ 𝑦[𝒜] if 𝑥 and
𝑦 are not coherent.

In addition, we call clique of 𝒜 any finite multiset of elements of |𝒜| which are
pairwise coherent. Finally, suppose that it is given an interpretation of atomic
formulas of MELL by coherent spaces, that is a function associating a coherent
space 𝒜 with every atomic formula 𝐴 of MELL. Then we can extend this map
on the set of all MELL formulas, by the following inductive definition:

• If 𝒜 is a coherent space, then we define 𝒜⊥ as the coherent space whose
web is |𝒜| and such that, for all elements 𝑥, 𝑦 ∈ |𝒜|, we have 𝑥 ¨ 𝑦[𝒜⊥]
if and only if 𝑥 ˚ 𝑦[𝒜].

• If 𝒜 and ℬ are coherent spaces, then 𝒜 ⊗ ℬ is the coherent space having
the cartesian product of |𝒜| and |ℬ| as web and such that, when we have
𝑥, 𝑥′ ∈ |𝒜| and 𝑦, 𝑦′ ∈ |ℬ|, the condition (𝑥, 𝑦) ¨ (𝑥′, 𝑦′)[𝒜 ⊗ ℬ] holds if
and only if 𝑥 ¨ 𝑥′[𝒜] and 𝑦 ¨ 𝑦′[ℬ].

• If 𝒜 and ℬ are coherent spaces, then 𝒜 ` ℬ is just (𝒜⊥ ⊗ ℬ⊥)⊥.

• If 𝒜 is a coherent space, then !𝒜 is the coherent space whose web is the
set of cliques of 𝒜 and such that, whenever 𝑥 and 𝑦 are cliques of 𝒜, we
have 𝑥 ¨ 𝑦[!𝒜] if and only if

⋃{𝑥, 𝑦} is a clique of 𝒜.

• If 𝒜 is a coherent space, then ?𝒜 is just (!𝒜⊥)⊥.

Remark 2.3. Let 𝒜 and ℬ be two coherent spaces. An immediate consequence
of the previous definition is that, when we have 𝑥, 𝑥′ ∈ |𝒜| and 𝑦, 𝑦′ ∈ |ℬ|, the
condition (𝑥, 𝑦) ¨ (𝑥′, 𝑦′)[𝒜 ` ℬ] holds if and only if either (𝑥, 𝑦) = (𝑥′, 𝑦′), or
𝑥 ˝ 𝑥′[𝒜], or 𝑦 ˝ 𝑦′[ℬ].
Convention. From now on, unless expressly stated otherwise, we stick to the
following notations:

• We denote the arcs of a proof structure or of a pseudo proof structure by
lowercase latin letters 𝑎, 𝑏, 𝑐, . . .

• We denote the types of these arcs by using the corresponding uppercase
latin letters 𝐴, 𝐵, 𝐶, . . .
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• We denote the coherent spaces associated with MELL formulas by using
the corresponding calligraphic latin letters 𝒜 ,ℬ , 𝒞 , . . .

Also, if 𝑛 is a positive integer and Γ = 𝐴1 , . . . , 𝐴𝑛 is a list of MELL formulas, we
define by induction on 𝑛 the formula `Γ produced by linking all formulas of Γ
with par connectors:

• If 𝑛 = 1, then `Γ := 𝐴1.

• If 𝑛 ≥ 1 and Δ := 𝐴1 , . . . , 𝐴𝑛−1, then `Γ := (`Δ)` 𝐴𝑛 .

In addition, we slightly abuse notation by also denoting `Γ the coherent space
interpreting this formula. On the other hand, if Γ is the empty list, the notation
`Γ only refers to the unique coherent space with an empty web.

Definition 2.5. Let 𝑅 be a proof structure and let 𝑝 be the box complexity of 𝑅.
An experiment of 𝑅 is a map which associates with every arc 𝑎 of type 𝐴 of 𝑅 a
multiset of elements of |𝒜|, defined by induction on 𝑝 as follows:

• If 𝑝 = 0, every arc 𝑎 of 𝑅 must satisfy the following conditions:

⋄ If 𝑎 is a conclusion of an axiom link of 𝑅 and the other conclusion of
this link is 𝑏, then 𝑒(𝑎) = 𝑒(𝑏) and this set is a singleton.

⋄ If 𝑎 is a premise of a cut link of 𝑅 and we call 𝑏 the other premise of
this link, then 𝑒(𝑎) = 𝑒(𝑏) and this set is a singleton.

⋄ If 𝑎 is the conclusion of a par or tensor link of 𝑅 with left premise 𝑎1
and right premise 𝑎2, then we have 𝑒(𝑎) = {(𝑥1 , 𝑥2)} with 𝑥1 ∈ 𝑒(𝑎1)
and 𝑥2 ∈ 𝑒(𝑎2).

⋄ If 𝑎 is the conclusion of a dereliction link and we call 𝑎1 the premise
of this link, then 𝑒(𝑎) = {{𝑥1}} with 𝑥1 ∈ 𝑒(𝑎1).

⋄ If 𝑎 is the conclusion of a weakening link, then 𝑒(𝑎) = {∅}.
⋄ If 𝑎 is the conclusion of a contraction link of arity 𝑘 ≥ 2 and we call

𝑎1 , . . . , 𝑎𝑘 the premises of this link then, provided that 𝑥𝑖 ∈ 𝑒(𝑎𝑖) for
all indices 𝑖 = 1, . . . , 𝑘, we have 𝑒(𝑎) = {⋃{𝑥1 , . . . , 𝑥𝑘}}.

• If 𝑝 ≥ 1, all arcs of 𝑅 with depth 0 must meet the previous requirements.
In addition, every box 𝐵 of 𝑅 with depth 0 must satisfy what follows. Let
𝑐 and 𝑐′ be the conclusion and the premise respectively of the front door
of 𝐵. Also assume that 𝑎1 , . . . , 𝑎𝑚 and 𝑎′1 , . . . , 𝑎

′
𝑚 are the conclusions and

the premises respectively of the pax doors of 𝐵. Then let 𝑅′ be the biggest
proof structure contained in 𝐵. There exist a unique non negative integer
ℎ and a unique multiset {𝑒1 , . . . , 𝑒ℎ} of experiments of 𝑅′ which meet the
following conditions:

⋄ For every arc 𝑎 of 𝑅′, we have 𝑒(𝑎) = ⋃{𝑒1(𝑎), . . . , 𝑒ℎ(𝑎)}.
⋄ We have 𝑒(𝑐) = {{𝑥1 , . . . , 𝑥ℎ}} with 𝑥 𝑗 ∈ 𝑒 𝑗(𝑐′) for every 𝑗 = 1, . . . , ℎ.



CHAPTER 2. INJECTIVITY AND OBSESSIONALITY 19

⋄ For all 𝑖 = 1, . . . , 𝑚, if 𝑥 𝑖𝑗 ∈ 𝑒 𝑗(𝑎′𝑖) for all indices 𝑗 = 1, . . . , ℎ, we have:

𝑒(𝑎𝑖) = ⋃{𝑥 𝑖1 , . . . , 𝑥 𝑖ℎ}

In addition, if 𝑛 is a positive integer, if Γ = 𝐴1 , . . . , 𝐴𝑛 is the conclusion of 𝑅, if
𝑎1 , . . . , 𝑎𝑛 are the conclusions of 𝑅, if 𝑒 is an experiment of 𝑅 and 𝑥𝑖 ∈ 𝑒(𝑎𝑖) for
all indices 𝑖 = 1, . . . , 𝑛, the element1 (𝑥1 , . . . , 𝑥𝑛) of |`Γ| is called the conclusion
or result of 𝑒.

An experiment can be understood and represented as a labeling of the arcs
of a proof structure. However, in contrast with the definition of [Gir87] which
only concerns the multiplicative case, an experiment here associates with each
arc a finite number of labels (possibly zero or more than one).
Remark 2.4. The definition of experiment implicitly requires that the following
coherence conditions are also satisfied:

(i) If 𝑎 is the conclusion of a pax or contraction link of 𝑅 with depth 0 and if
?𝐵 is its type, then 𝑒(𝑎) is an element of |?ℬ|, that is a clique of ℬ⊥.

(ii) If 𝑎 is the conclusion of an of course link of 𝑅 with depth 0 and if !𝐵 is its
type, then 𝑒(𝑎) is an element of !ℬ, that is a clique of ℬ.

Definition 2.6. Let 𝑅 be a proof structure with conclusion Γ. The interpretation
of 𝑅 is the subset J𝑅K of |`Γ| whose elements are the results of the experiments
of 𝑅.

Remark 2.5. The interpretation of a proof structure 𝑅 depends on the coherent
spaces which are associated with the atomic subformulas of the conclusions of
𝑅.

Definition 2.7. Let 𝑅 and 𝑅′ be proof structures with the same conclusions, let
𝑅0 and 𝑅′

0 be the unique standard proof structures corresponding to 𝑅 and 𝑅′
respectively. We say that 𝑅 and 𝑅′ are syntactically equivalent or 𝛽𝜂-equivalent if
𝑅0 = 𝑅′

0, semantically equivalent when J𝑅K = J𝑅′K for all choices of the coherent
spaces of the atomic subformulas which are associated with the conclusions of
𝑅.

Convention. In what follows, we just write J𝑅K = J𝑅′K meaning that 𝑅 and 𝑅′
are semantically equivalent.

Remark 2.6. One can prove that J𝑅K = J𝑅0K. Then two proof structures with the
same conclusions are semantically equivalent if and only if the standard proof
structures associated with them are. This property allows to restrict our study
to standard proof structures without loss of generality.

Convention. For the rest of this chapter, we refer to standard proof structures
just as proof structures and to standard proof nets just as proof nets.

1We are slightly abusing notation by omitting some parentheses.
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We can now precisely state what we mean by injectivity.

Definition 2.8. Let 𝐹 be a fragment of MELL. We say that the coherent multiset
based semantics is:

• Locally injective for 𝐹 in a proof net 𝑅 of 𝐹 if, for all proof nets 𝑅′ of 𝐹 with
the same conclusions as 𝑅 and such that J𝑅K = J𝑅′K, we have 𝑅 = 𝑅′.

• Injective for 𝐹 if it is locally injective for 𝐹 in all proof nets of 𝐹.

We finally introduce some definitions about experiments.

Definition 2.9. Let 𝐹 be a fragment of MELL and let 𝑅 be a proof net of 𝐹. An
experiment of 𝑅 with result 𝛾 contains all information about 𝑅 with respect to
𝐹 when, for every proof net 𝑅′ of 𝐹 having the same conclusions as 𝑅, with the
same choice of the coherent spaces associated with the atomic subformulas of
the conclusions and 𝛾 ∈ J𝑅′K, we have 𝑅 = 𝑅′.

Remark 2.7. If such an experiment exists, then the semantics is locally injective
for 𝐹 in 𝑅.

Definition 2.10. Let 𝐹 be a fragment of MELL and let 𝑅 be a proof structure of
𝐹. We say that an experiment 𝑒 of 𝑅 is injective (respectively, simple) if we have
𝑒(𝑎) ≠ 𝑒(𝑎′) (respectively, 𝑒(𝑎) = 𝑒(𝑎′)) for all distinct arcs 𝑎 and 𝑎′ of 𝑅 with the
same atomic type.

2.2 The multiplicative fragment

We prove that the question of injectivity has a positive answer if we restrict to
proof nets of MLL. The proof of this result suggests the path to follow in order
to address the problem in the general case.

The first result expresses the fact that a proof structure of MLL is uniquely
determined once its conclusions and axiom links are known. Furthermore, an
experiment is uniquely determined by its result. These properties can easily be
proven by induction on the number of links of 𝑅. To be completely precise, we
need the following preliminary definition.

Definition 2.11. Let 𝑅 and 𝑅′ be proof structures. An isomorphism Φ between
OP(𝑅) and OP(𝑅′) identifies an experiment 𝑒 of 𝑅 and an experiment 𝑒′ of 𝑅′ if
we have 𝑒 = 𝑒′ ◦Φ. If such an isomorphism exists, we write 𝑒 = 𝑒′.

Here is the aforementioned result.

Lemma 2.1. If 𝑅 and 𝑅′ are proof structures of MLL with the same conclusions, then
we have O(𝑅) = O(𝑅′). Moreover, if 𝑒 and 𝑒′ are experiments of 𝑅 and 𝑅′ respectively
with the same result, then 𝑒 = 𝑒′.

Theorem 2.1. If 𝑒 is an injective experiment of a proof net 𝑅 of MLL, then 𝑒 contains
all information about 𝑅 with respect to MLL.
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Proof. Let 𝛾 be the result of 𝑒 and let 𝑅′ be a proof net of MLL having the same
conclusions as 𝑅 and 𝛾 ∈ J𝑅′K. Then there is an experiment 𝑒′ of 𝑅′ with result
𝛾. By the previous lemma, there is an isomorphism Φ between O(𝑅) and O(𝑅′)
such that 𝑒 = 𝑒′ ◦Φ.

Now notice that, by injectivity of 𝑒, for every arc 𝑎 of O(𝑅) with atomic type
𝑋 there is a unique arc 𝑎′ of O(𝑅) of type 𝑋⊥ such that 𝑒(𝑎) = 𝑒(𝑎′). This entails
that 𝑎 and 𝑎′ are the conclusions of an axiom link of 𝑅. Notice that 𝑎′ is also the
unique arc 𝑏 of O(𝑅) such that 𝑒′(Φ(𝑎)) = 𝑒′(Φ(𝑏)), hence Φ(𝑎) and Φ(𝑎′) are the
conclusions of an axiom link of 𝑅′. Now Φ induces an isomorphism between 𝑅
and 𝑅′, that is 𝑅 = 𝑅′. □

Remark 2.8. If 𝑅 is a proof structure of MLL with exactly ℎ axiom links then, for
every choice of the coherent spaces we associate with the atomic subformulas
of the conclusions of 𝑅, if the cardinality of each of their webs is at least ℎ, then
there is an injective experiment of 𝑅 (this is easily verified by induction on the
number of links of 𝑅).

Corollary 2.1. The coherent multiset based semantics is injective for MLL.

Proof. Immediate consequence of remarks 2.7, 2.8 and theorem 2.1. □

2.3 Obsessional results

It turns out that, for most of the proofs we see in this chapter, we do not use the
correctness of proof nets. In other words, these results hold more generally for
proof structures, which justifies the following convention.

Convention. From now on, unless otherwise stated, it is intended that 𝑅 and
𝑅′ are proof structures.

We introduce the main tool of our analysis: obsessional experiments.

Definition 2.12. Let 𝑛 be a positive integer and let 𝑒 be an experiment of 𝑅. We
say that 𝑒 is 𝑛-obsessional if the following conditions hold:

• For every edge 𝑎 of 𝑅 with atomic type 𝑋, if 𝑥, 𝑦 ∈ 𝑒(𝑎), then 𝑥 = 𝑦.

• For each edge 𝑐 of 𝑅 with type !𝐴, the multiset 𝑒(𝑐) is not empty and each
of its elements has cardinality 𝑛.

In addition, if 𝑛 = 1, then we prefer to call 𝑒 a 1-experiment.

We now want to generalize what we did in the previous section to the more
interesting case of proof structures of MELL. One of the primary ingredients is
the following result.

Proposition 2.1. Let 𝑅 and 𝑅′ be proof structures with the same conclusions. If 𝑒 and
𝑒′ are experiments of 𝑅 and 𝑅′ respectively with the same result and 𝑒 is 𝑛-obsessional,
then 𝑒′ is 𝑛-obsessional.
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In other words, we can “read the obsessional feature of an experiment in its
result”. We do not go over all the auxiliary results used in [TdF03] to establish
the previous proposition, but we do revisit one of them, for which a proof was
not provided. Also, this result is not used exclusively to prove proposition 2.1,
which leads us to believe that it may turn out to be useful in future research on
the topic. Since its proof is not particularly simple and even the statement was
not completely precise in the source, we first provide some original definitions
and remarks. To begin with, remark 1.8 and item (iv) of remark 1.14 justify the
following definition.

Definition 2.13. Let 𝑎 be an arc of 𝑅 and let 𝑐 be an arc of 𝑇𝑎 . We call distance of
𝑐 from 𝑎 the non negative integer 𝑘 for which there is a path 𝑎0 . . . 𝑎𝑘 of 𝑅 with
𝑎0 = 𝑐 and 𝑎𝑘 = 𝑎.

Definition 2.14. Let 𝑎 be an arc of 𝑅 and let 𝑐 be an arc of 𝑇𝑎 . The address of 𝑐 is
a finite word adr𝑅𝑎 (𝑐) over the alphabet {L,C,R}, denoted adr𝑎(𝑐) when there is
no ambiguity and defined as follows, by induction on the distance 𝑑 of 𝑐 from
𝑎:

• If 𝑑 = 0, we define adr𝑎(𝑐) := 𝜀.

• If 𝑑 ≥ 1, let 𝑏 be the conclusion of the link 𝑛 of which 𝑐 is a premise.

◦ If 𝑛 is a par or tensor link, we define adr𝑎(𝑐) := adr𝑎(𝑏)L if 𝑐 is the left
premise of 𝑛, otherwise adr𝑎(𝑐) := adr𝑎(𝑏)R.

◦ If 𝑛 is an of course or dereliction link, we define adr𝑎(𝑐) := adr𝑎(𝑏)C.
◦ If 𝑛 is a pax or contraction link, we define adr𝑎(𝑐) := adr𝑎(𝑏).

Remark 2.9. We compute the address of 𝑐 in 𝑏, where 𝑏 is the conclusion of the
link 𝑛 of which 𝑐 is a premise:

• If 𝑛 is a par or tensor link, we have adr𝑏(𝑐) = L if 𝑐 is the left premise of 𝑛,
otherwise adr𝑏(𝑐) = R.

• If 𝑛 is an of course or dereliction link, then adr𝑏(𝑐) = C.

• If 𝑛 is a pax or contraction link, then adr𝑏(𝑐) = 𝜀.

In particular, we have adr𝑎(𝑐) = adr𝑎(𝑏)adr𝑏(𝑐). This identity is no longer trivial
if we want to consider any arc 𝑏 crossed by the path from 𝑐 to 𝑎, which justifies
the two following results.

Lemma 2.2. Let 𝑎0 . . . 𝑎𝑘 be a path of 𝑅. Then we have adr𝑎𝑘 (𝑎0) = adr𝑎𝑘 (𝑎𝑖)adr𝑎𝑖 (𝑎0)
for all 𝑖 = 0, . . . , 𝑘.

Proof. We reason by induction on 𝑘. The statement is obvious if 𝑘 = 0 or 𝑖 = 0.
Suppose 𝑖 ≥ 1 (in particular, the inequality 𝑘 ≥ 1 holds). By remark 2.9 and by
inductive hypothesis, we have:

adr𝑎𝑘 (𝑎0) = adr𝑎𝑘 (𝑎1)adr𝑎1(𝑎0)
= adr𝑎𝑘 (𝑎𝑖)adr𝑎𝑖 (𝑎1)adr𝑎1(𝑎0) = adr𝑎𝑘 (𝑎𝑖)adr𝑎𝑖 (𝑎0) □
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Lemma 2.3. Let 𝑎 be an arc of 𝑅, let 𝑏 be an arc of 𝑇𝑎 and let 𝑐 be an arc of 𝑇𝑏 . Then we
have adr𝑎(𝑐) = adr𝑎(𝑏)adr𝑏(𝑐).
Proof. The result easily follows from the previous lemma and from item (iv) of
remark 1.14. □

The following result reveals a very natural relationship between addresses
of arcs and occurrences of subformulas.

Lemma 2.4. Let 𝑎 be an arc of 𝑅. If 𝑐 is an arc of 𝑇𝑎 with address 𝑤, then (𝐶, 𝑤) is an
occurrence of subformula of 𝐴.

Proof. We reason by induction on the distance 𝑑 of 𝑐 from 𝑎. If 𝑑 = 0, the result
is trivial. Suppose 𝑑 ≥ 1 and let 𝑏 be the premise of the link 𝑛 with conclusion
𝑎 such that 𝑐 is an arc of 𝑇𝑏 . If we define 𝑣 := adr𝑏(𝑐), we know that (𝐶, 𝑣) is an
occurrence of subformula of 𝐵 by inductive hypothesis. By lemma 2.3, we have
𝑤 = adr𝑎(𝑏)𝑣. Finally, by remark 2.9, we have the following possibilities:

• If adr𝑎(𝑏) = L, then 𝑛 is a par or tensor link and 𝑏 is its left premise. Thus,
we have 𝐴 = 𝐵 ` 𝐷 or 𝐴 = 𝐵 ⊗ 𝐷 for some MELL formula 𝐷 and we can
conclude, by definition 2.3, that (𝐶, 𝑤) is an occurrence of subformula of
𝐴. The case adr𝑎(𝑏) = R is completely analogous.

• If adr𝑎(𝑏) = C, then 𝑛 is an of course or dereliction link. In particular, we
must have 𝐴 = !𝐵 or 𝐴 = ?𝐵. In both cases, by definition 2.3 we obtain the
desired conclusion.

• If adr𝑎(𝑏) = 𝜀, then 𝑛 is a pax or contraction link. But then we have 𝐴 = 𝐵
and we are done. □

We now revisit a definition given in [TdF03].

Definition 2.15. Let 𝐴 be an MELL formula and 𝑥 ∈ |𝒜|. The multiset projection
of 𝑥 on an occurrence of subformula (𝐹, 𝑤) of 𝐴 is the multiset |𝑥 |𝐹,𝑤 we define
as follows, by induction on the length of 𝑤:

• If 𝑤 = 𝜀, then |𝑥 |𝐹,𝑤 := {𝑥}.
• If 𝑤 = L𝑢 (respectively, 𝑤 = R𝑢) for some finite word 𝑢 over the alphabet

{L,C,R}, then either 𝐴 = 𝐵 ` 𝐶 or 𝐴 = 𝐵 ⊗ 𝐶 and (𝐹, 𝑢) is an occurrence
of subformula of 𝐵 (respectively, 𝐶). By definition of par or tensor of two
coherent spaces, there are 𝑦 ∈ |ℬ|, 𝑧 ∈ |𝒞| such that 𝑥 = (𝑦, 𝑧). Hence, we
can define |𝑥 |𝐹,𝑤 := |𝑦 |𝐹,𝑢 (respectively, |𝑥 |𝐹,𝑤 := |𝑧 |𝐹,𝑢).

• If 𝑤 = C𝑢 for some finite word 𝑢 over {L,C,R}, we have either 𝐴 = !𝐵 or
𝐴 = ?𝐵 and (𝐹, 𝑢) is an occurrence of subformula of 𝐵. Therefore, we can
define |𝑥 |𝐹,𝑤 :=

⋃{|𝑦 |𝐹,𝑢 : 𝑦 ∈ 𝑥}.
Remark 2.10. If 𝐴 is an MELL formula, if (𝐵, 𝑢) is an occurrence of subformula
of 𝐴 and (𝐶, 𝑣) is an occurrence of subformula of 𝐵 then one easily verifies, by
induction on the length of 𝑢, that the following properties hold:
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(i) The ordered pair (𝐶, 𝑢𝑣) is an occurrence of subformula of 𝐴.

(ii) For all 𝑥 ∈ |𝒜| and 𝑧 ∈ |𝒞|, we have 𝑧 ∈ |𝑥 |𝐶,𝑢𝑣 if and only if 𝑧 ∈ |𝑦 |𝐶,𝑣 for
some 𝑦 ∈ |𝑥 |𝐵,𝑢 .

As a straightforward consequence of property (ii), we have:

(iii) For all 𝑥, 𝑥′ ∈ |𝒜|, the inclusion |𝑥 |𝐵,𝑢 ⊆ |𝑥′ |𝐵,𝑢 implies |𝑥 |𝐶,𝑢𝑣 ⊆ |𝑥′ |𝐶,𝑢𝑣 .

We can finally state and prove the result we mentioned at the beginning of
this section.

Proposition 2.2. Let 𝑎 be an arc of 𝑅, let 𝐵 be an MELL formula which is not a why
not formula and let 𝑤 be a finite word over the alphabet {L,C,R}. If 𝑒 is an experiment
of 𝑅 then, for every 𝑥 ∈ |ℬ|, the two following statements are equivalent:

⟨1⟩ There exists an arc 𝑏 of type 𝐵 and address 𝑤 in 𝑇𝑎 such that 𝑥 ∈ 𝑒(𝑏).
⟨2⟩ The ordered couple (𝐵, 𝑤) is an occurrence of subformula of 𝐴 and, for a certain

𝑦 ∈ 𝑒(𝑎), we have 𝑥 ∈ |𝑦 |𝐵,𝑤 .

Proof. We first prove that ⟨1⟩ implies ⟨2⟩. By lemma 2.4, we know that (𝐵, 𝑤) is
an occurrence of subformula of 𝐴. In order to prove that 𝑥 ∈ |𝑦 |𝐵,𝑤 for a certain
𝑦 ∈ 𝑒(𝑎), we reason by induction on the distance 𝑘 of 𝑏 from 𝑎. If 𝑘 = 0, then we
have 𝑎 = 𝑏 and thus, by picking 𝑦 := 𝑥, we are done. Now assume 𝑘 ≥ 1 and let
𝑎0 . . . 𝑎𝑘 be the path of 𝑅 with 𝑎0 = 𝑏 and 𝑎𝑘 = 𝑎. Since 𝑎 ≠ 𝑏, we have 𝑤 = 𝑤0𝑢
for some letter 𝑤0 and for some finite word 𝑢 over the alphabet {L,C,R}. Let ℎ
be the biggest index 𝑖 ∈ {1, . . . , 𝑘} with 𝐴𝑖−1 ≠ 𝐴𝑖 . Observe that such an index
exists because 𝐴0 ≠ 𝐴1 by the hypothesis that 𝐵 is not a why not formula. Now,
since 𝐴𝑖−1 = 𝐴𝑖 for each 𝑖 = ℎ + 1, . . . , 𝑘, the arc 𝑎𝑖 is the conclusion of a pax or
contraction link. Similarly, since 𝐴ℎ−1 ≠ 𝐴ℎ , we know that 𝑎ℎ is the conclusion
of a par, tensor, of course or dereliction link. By lemma 2.2 and remark 2.9, we
then have adr𝑎(𝑎ℎ−1) = 𝑤0 and adr𝑎ℎ−1(𝑏) = 𝑢. Notice that the distance of 𝑏 from
𝑎ℎ−1 is ℎ − 1 < 𝑘. We can then apply the inductive hypothesis, which provides
an element 𝑧 ∈ 𝑒(𝑎ℎ−1) such that 𝑥 ∈ |𝑧 |𝐵,𝑢 . We can now consider the following
possibilities:

• If 𝑎ℎ is the conclusion of a par or tensor link, then ℎ = 𝑘. Suppose 𝑤0 = L.
Then 𝑎𝑘−1 is the left premise of that link. If 𝑎′ is the right premise, there is
𝑧′ ∈ 𝑒(𝑎′) such that 𝑦 := (𝑧, 𝑧′) ∈ 𝑒(𝑎), by definition of experiment. Hence
we have |𝑦 |𝐵,𝑤 = |𝑧 |𝐵,𝑢 , by definition 2.15. The case 𝑤0 = R is completely
analogous.

• If 𝑎ℎ is the conclusion of an of course link, then ℎ = 𝑘 and 𝑤0 = C. There
is an element 𝑦 ∈ 𝑒(𝑎) such that 𝑧 ∈ 𝑦, by definition of experiment. Then,
by definition 2.15, we get 𝑥 ∈ |𝑦 |𝐵,𝑤 .

• If 𝑎ℎ is the conclusion of a dereliction link, we have 𝑤0 = C. By definition
of experiment, there exist two elements 𝑧′ ∈ 𝑒(𝑎ℎ) and 𝑦 ∈ 𝑒(𝑎) such that
𝑧 ∈ 𝑧′ ⊆ 𝑦. Therefore, by definition 2.15, we can conclude that 𝑥 ∈ |𝑦 |𝐵,𝑤 .
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We now prove that ⟨2⟩ implies ⟨1⟩. We reason by induction on the length of
𝑤. If 𝑤 = 𝜀, then 𝐴 = 𝐵 and 𝑥 = 𝑦, so we can pick 𝑏 := 𝑎 and we are done. Now
assume that 𝑤 = 𝑤0𝑢 for a certain letter 𝑤0 and for some finite word 𝑢 over the
alphabet {L,C,R}. We now distinguish the following cases:

• Suppose that 𝑎 is the conclusion of a par or tensor link with left premise
𝑎′ and right premise 𝑎′′. By definition of experiment, we know that there
exist 𝑦′ ∈ 𝑒(𝑎′) and 𝑦′′ ∈ 𝑒(𝑎′′) such that 𝑦 = (𝑦′, 𝑦′′). If 𝑤0 = L, then (𝐵, 𝑢)
is an occurrence of subformula of 𝐴′ by definition 2.3 and |𝑦 |𝐵,𝑤 = |𝑦′ |𝐵,𝑢
by definition 2.15. By inductive hypothesis, there exists an arc 𝑏 of type 𝐵
and address 𝑢 in 𝑇𝑎′ such that 𝑥 ∈ 𝑒(𝑏). Moreover, by remark 2.9, we have
adr𝑎(𝑎′) = 𝑤0 and so, by lemma 2.3, the address of 𝑏 in 𝑇𝑎 is 𝑤. We use the
same argument if 𝑤0 = R.

• If 𝑎 is the conclusion of an of course link with premise 𝑎′, we have 𝑤0 = C
and, by definition 2.3, the couple (𝐵, 𝑢) is an occurrence of subformula of
𝐴′. Moreover, by definition 2.15, there exists 𝑧 ∈ 𝑦 such that 𝑥 ∈ |𝑧 |𝐵,𝑢 . By
definition of experiment we have 𝑧 ∈ 𝑒(𝑎′), too. By inductive hypothesis,
there is an arc 𝑏 of type 𝐵 and address 𝑢 in 𝑇𝑎′ such that 𝑥 ∈ 𝑒(𝑏). Now we
can use remark 2.9 and lemma 2.3 exactly as we did above to obtain that
the address of 𝑏 in 𝑇𝑎 is 𝑤.

• If 𝑎 is the conclusion of a pax or dereliction link and if 𝑎′ is the premise of
the dereliction link above 𝑎, then we can repeat the same argument as in
the previous case. We just point out that proving 𝑧 ∈ 𝑒(𝑎′) is not as trivial
as before. However, this is not really an obstacle, as it can be easily done
by induction on the distance of 𝑎′ from 𝑎.

• We finally consider the case in which 𝑎 is the conclusion of a contraction
link with premises 𝑎1 , . . . , 𝑎𝑘 . Once again, we necessarily have 𝑤0 = C. If
the type of 𝑎 is ?𝐴′, then the couple (𝐵, 𝑢) is an occurrence of subformula
of 𝐴′ by definition 2.3 and 𝑥 ∈ |𝑧 |𝐵,𝑢 for some 𝑧 ∈ 𝑦 by definition 2.15. We
now apply the definition of experiment to get an index 𝑖 ∈ {1, . . . , 𝑘} and
an element 𝑦𝑖 ∈ 𝑒(𝑎𝑖) such that 𝑧 ∈ 𝑦𝑖 . Notice that 𝑎𝑖 is the conclusion of a
pax or dereliction link. Thus, if 𝑎′ is the conclusion of the dereliction link
above 𝑎𝑖 , we have 𝑧 ∈ 𝑒(𝑎′) as we saw before. This is enough to conclude,
as usual. □

Remark 2.11. The hypothesis that 𝐵 is not a why not formula is not necessary in
the proof that ⟨2⟩ implies ⟨1⟩.
Corollary 2.2. Let 𝑎 be a conclusion of 𝑅, let 𝑒 be an experiment of 𝑅, let (𝐵, 𝑤) be an
occurrence of subformula of 𝐴 and let 𝑏1 , . . . , 𝑏ℎ be all arcs of type 𝐵 and address 𝑤 in
𝑇𝑎 . If 𝐵 is not a why not formula and 𝑒(𝑎) = {𝑦}, we get |𝑦 |𝐵,𝑤 = 𝑒(𝑏1) ∪ · · · ∪ 𝑒(𝑏ℎ).
Proof. Straightforward consequence of the previous proposition. □
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2.4 Open pseudo proof structures

We prove that the interpretation of 𝑅 determines 𝑅 “up to the axiom links and
the boxes”. We revisit the result in [TdF03] expressing this property, providing
some supplementary details. We start with the following definition.

Definition 2.16. If 𝑘 is the maximal arity of the contraction links of 𝑅, then the
contraction size of 𝑅 is defined as the non negative integer:

ℎ(𝑅) :=

{
max{1, 𝑘} if 𝑅 has at least a box
0 otherwise

We borrow from [TdF03] a very useful proposition, which expresses one of
the fundamental properties of 𝑛-obsessional experiments.

Proposition 2.3. Let 𝑒 be an 𝑛-obsessional experiment of 𝑅. If 𝑎 is an arc of 𝑅 having
depth 𝑝, then 𝑒(𝑎) is a multiset containing exactly 𝑛𝑝 occurrences of the same element.

The following definition is now justified.

Definition 2.17. Let 𝑒 be an 𝑛-obsessional experiment of 𝑅 and let 𝑎 be an arc
of 𝑅. The repeated element of 𝑒(𝑎), denoted ⟨𝑒(𝑎)⟩, is any element of 𝑒(𝑎).
Remark 2.12. If 𝑒 is an 𝑛-obsessional experiment of 𝑅 and 𝑎 is the conclusion of
an of course link of 𝑅 with premise 𝑎′ then, by definition of experiment, we get
⟨𝑒(𝑎)⟩ = {𝑛[⟨𝑒(𝑎′)⟩]}.

We then recall the following result, proven in [TdF03]. It is the analogue for
MELL of lemma 2.1.

Proposition 2.4. Let 𝑅 and 𝑅′ be proof structures with the same conclusions and let
𝑛 > max{ℎ(𝑅), ℎ(𝑅′)}. Suppose that 𝑒 and 𝑒′ are 𝑛-obsessional experiments of 𝑅 and
𝑅′ respectively with the same result. Then 𝑒 = 𝑒′ and in particular OP(𝑅) = OP(𝑅′).

We prove in detail the following lemma.

Lemma 2.5. Let 𝑒 be an 𝑛-obsessional experiment of 𝑅 and let 𝑎 and 𝑎′ be arcs of 𝑅 of
type 𝐴. If ⟨𝑒(𝛼)⟩ = ⟨𝑒(𝛼′)⟩ for all arcs 𝛼 of 𝑇𝑎 and 𝛼′ of 𝑇𝑎′ with the same atomic type,
then ⟨𝑒(𝑎)⟩ ˚ ⟨𝑒(𝑎′)⟩[𝒜].
Proof. First, define 𝑝 as the sum of the number of arcs of 𝑇𝑎 and the number of
arcs of 𝑇𝑎′ . We reason by induction on 𝑝. If 𝑝 = 2, then 𝑎 and 𝑎′ are conclusions
of initial links, hence we have ⟨𝑒(𝑎)⟩ = ⟨𝑒(𝑎′)⟩ by hypothesis or by definition of
experiment. If 𝑝 ≥ 3 and the statement is true for every integer 𝑞 < 𝑝, let 𝑚 be
the link of 𝑅 with conclusion 𝑎 and let 𝑚′ be the link of 𝑅 with conclusion 𝑎′. If
the premises of 𝑚 are 𝑎1 , . . . , 𝑎𝑘 and those of 𝑚′ are 𝑎′1 , . . . , 𝑎

′
ℎ , we can suppose

𝑘 ≥ 1 without loss of generality.
Observe that 𝐴 cannot be an atomic formula. If 𝐴 is not a why not formula,

then 𝑚 and 𝑚′ are the same kind of link and we get 𝑘 = ℎ. We can distinguish
the following possibilities:
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• In the case of a par link, we have 𝑘 = 2 and 𝐴 = 𝐴1 ` 𝐴2. By applying the
inductive hypothesis, we get ⟨𝑒(𝑎𝑖)⟩ ˚ ⟨𝑒(𝑎′𝑖)⟩[𝒜𝑖] for 𝑖 = 1, 2. Hence, we
have (⟨𝑒(𝑎1)⟩, ⟨𝑒(𝑎2)⟩) ¨ (⟨𝑒(𝑎′1)⟩, ⟨𝑒(𝑎′2)⟩)[𝒜⊥

1 ⊗ 𝒜⊥
2 ] and this implies the

desired result by definition of coherent space.

• In the case of a tensor link, we have 𝑘 = 2 and 𝐴 = 𝐴1 ⊗ 𝐴2. As before, we
get ⟨𝑒(𝑎𝑖)⟩ ¨ ⟨𝑒(𝑎′𝑖)⟩[𝒜⊥

𝑖 ] for 𝑖 = 1, 2. If we have strict coherence for 𝑖 = 1
or 𝑖 = 2, we have (⟨𝑒(𝑎1)⟩, ⟨𝑒(𝑎2)⟩) ¨ (⟨𝑒(𝑎′1)⟩, ⟨𝑒(𝑎′2)⟩)[𝒜⊥

1 `𝒜⊥
2 ], else we

get ⟨𝑒(𝑎𝑖)⟩ = ⟨𝑒(𝑎′𝑖)⟩ for 𝑖 = 1, 2. In both cases, we are done.

• In the case of an of course link, we have 𝑘 = 1 and 𝐴 = !𝐴1. By inductive
hypothesis, we get ⟨𝑒(𝑎1)⟩ ˚ ⟨𝑒(𝑎′1)⟩[𝒜1]. If ⟨𝑒(𝑎1)⟩ = ⟨𝑒(𝑎′1)⟩, then we are
done, otherwise we have ⟨𝑒(𝑎1)⟩ ˇ ⟨𝑒(𝑎′1)⟩[𝒜1]. In this case, the multiset
{𝑛[⟨𝑒(𝑎1)⟩], 𝑛[⟨𝑒(𝑎′1)⟩]} is not a clique of 𝒜1. However, this is the same as
the condition {𝑛[⟨𝑒(𝑎1)⟩]} ˇ {𝑛[⟨𝑒(𝑎′1)⟩]}[!𝒜1], which is exactly what we
wanted to achieve.

If 𝐴 = ?𝐵 for a certain MELL formula 𝐵, assume that 𝑚′ is a weakening link
and let 𝑏1 , . . . , 𝑏𝑘 be the premises of the 𝑘 dereliction links above 𝑚. We know
that, for some non negative integers 𝑝1 , . . . , 𝑝𝑘 , the repeated element of 𝑒(𝑎) is
the multiset {𝑛𝑝1[⟨𝑒(𝑏1)⟩], . . . , 𝑛𝑝𝑘 [⟨𝑒(𝑏𝑘)⟩]}. By induction hypothesis, we have
⟨𝑒(𝑏𝑖)⟩ ˚ ⟨𝑒(𝑏 𝑗)⟩[ℬ] for all indices 𝑖 , 𝑗 = 1, . . . , 𝑘. Thus, the previous multiset is
a clique of ℬ, or equivalently ⟨𝑒(𝑎)⟩ ˚ ∅[𝒜], which is the desired result.

We then consider the possibility that 𝑚 and 𝑚′ are dereliction links. In this
case, we have 𝑘 = 1 and 𝐵 = 𝐴1. Once again, we have ⟨𝑒(𝑎1)⟩ ¨ ⟨𝑒(𝑎′1)⟩[𝒜⊥

1 ] by
inductive hypothesis, so {⟨𝑒(𝑎1)⟩} ¨ {⟨𝑒(𝑎′1)⟩}[!𝒜⊥

1 ] and we are done.
We finally assume, without loss of generality, that 𝑚 is a pax or contraction

link and observe that, for all 𝑖 , 𝑗 = 1, . . . , 𝑘, we have ⟨𝑒(𝑎𝑖)⟩ ˚ ⟨𝑒(𝑎 𝑗)⟩[𝒜]. Also,
by inductive hypothesis, we have ⟨𝑒(𝑎𝑖)⟩ ˚ ⟨𝑒(𝑎′)⟩[𝒜]. Therefore, the multiset
⟨𝑒(𝑎1)⟩ ∪ · · · ∪ ⟨𝑒(𝑎𝑘)⟩ ∪ ⟨𝑒(𝑎′)⟩ is a clique of 𝒜⊥, which immediately gives the
desired conclusion. □

We can now establish the following result.

Proposition 2.5. For every integer 𝑛 ≥ 1, there is a simple 𝑛-obsessional experiment
𝑒 of 𝑅.

Proof. We reason by induction on the number 𝑝 of links of 𝑅. If 𝑅 only contains
one link, then it is an initial link. If it is a weakening link with conclusion 𝑎, we
define 𝑒(𝑎) := {∅} and we are done. Otherwise, the proof structure 𝑅 is just an
axiom link with conclusions 𝑎 and 𝑎′. In this case, we just pick 𝒜 as a coherent
space with at least one element 𝑥 and we define 𝑒(𝑎) := 𝑒(𝑎′) := {𝑥}.

Now suppose 𝑝 ≥ 1 and assume that every proof structure with 𝑝 − 1 links
possesses a simple 𝑛-obsessional experiment. Since 𝑅 is cut free, there exists a
terminal link 𝑚 of 𝑅. Let 𝑅′ be a proof structure obtained by removal of 𝑚. By
induction hypothesis, there is a simple 𝑛-obsessional experiment 𝑒′ of 𝑅′. This
induces a simple 𝑛-obsessional experiment 𝑒 of 𝑅. We justify this claim only in
the case in which 𝑚 is a contraction link, because all other cases are obvious. If
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𝑎1 , . . . , 𝑎𝑘 are the premises of 𝑚 and 𝑎 is its conclusion, then 𝑒(𝑎𝑖) only contains
one element 𝑦𝑖 for all 𝑖 = 1, . . . , 𝑘, because the depth of terminal links of 𝑅 is 0.
We can then define 𝑒(𝑏) := 𝑒′(𝑏) for each arc 𝑏 of 𝑅′ and 𝑒(𝑎) := {𝑦1 ∪ · · · ∪ 𝑦𝑘}.
If 𝑒 is an experiment of 𝑅, it is simple and 𝑛-obsessional, because 𝑒′ is. Hence,
we only need to make sure that 𝑒 really is an experiment of 𝑅. It is sufficient to
check that 𝑦1 ∪ · · · ∪ 𝑦𝑘 is an element of |𝐴|. Since 𝑚 is a contraction link, there
is an MELL formula 𝐶 such that 𝐴 = ?𝐶. By lemma 2.5, we have 𝑦𝑖 ˚ 𝑦 𝑗[𝒜] for
all indices 𝑖 , 𝑗 = 1, . . . , 𝑘. Therefore, the multiset 𝑦1 ∪ · · · ∪ 𝑦𝑘 is a clique of 𝒞⊥,
that is an element of |𝐴|. □

We finally state and prove the result we mentioned at the beginning of this
section.

Theorem 2.2. If 𝑅 and 𝑅′ are proof structures with the same conclusions and we have
J𝑅K = J𝑅′K, then OP(𝑅) = OP(𝑅′).
Proof. Let 𝑛 > max{ℎ(𝑅), ℎ(𝑅′)}. By proposition 2.5, we can consider a simple
𝑛-obsessional experiment 𝑒 of 𝑅. Since J𝑅K = J𝑅′K, there is an experiment 𝑒′ of
𝑅′ with the same result as 𝑒. By proposition 2.1, we know that the experiment
𝑒′ is 𝑛-obsessional. By proposition 2.4, we conclude that OP(𝑅) = OP(𝑅′). □

2.5 Local injectivity

We finally review the result of local injectivity in [TdF03] and, in doing so, we
highlight analogies and differences with the multiplicative case. The following
abuse of notation is justified by proposition 2.3.

Convention. If 𝑒1 is a 1-experiment of 𝑅 and 𝑎 is an arc of 𝑅, then the unique
element of 𝑒1(𝑎) is denoted 𝑒1(𝑎) as well.

Definition 2.18. If 𝑒1 is a 1-experiment of 𝑅, an 𝑛-obsessional experiment 𝑒𝑛 of
𝑅 is induced by 𝑒1 when ⟨𝑒𝑛(𝑎)⟩ = 𝑒1(𝑎) for all arcs 𝑎 of 𝑅 with atomic type.

Remark 2.13. If 𝑒1 is injective, then 𝑒𝑛 is injective, too.
Remark 2.14. One might be tempted to think that ⟨𝑒𝑛(𝑎)⟩ = 𝑒1(𝑎) for all arcs 𝑎 of
𝑅, but this is not the case in general. It is easy to fabricate a counterexample by
using the fact that, by definition, if 𝑐 is the conclusion of an of course link of 𝑅,
then ⟨𝑒𝑛(𝑐)⟩ contains 𝑛 elements, whereas 𝑒1(𝑎) only contains one element.

We borrow from [TdF03] the following results.

Lemma 2.6. Let 𝑒 be an 𝑛-obsessional experiment of 𝑅 and let 𝑚 be a link of 𝑅 with
conclusion 𝑎. If 𝑛 > ℎ(𝑅) and the type of 𝑎 is ?𝐵, then the following statements hold:

(i) We have that 𝑚 is a weakening link if and only if ⟨𝑒(𝑎)⟩ = ∅.

(ii) We have that 𝑚 is a dereliction link if and only if ⟨𝑒(𝑎)⟩ is a singleton.

(iii) We have that 𝑚 is a pax link if and only if the cardinality of ⟨𝑒(𝑎)⟩ is 𝑛𝑝 for some
positive integer 𝑝.
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(iv) We have that 𝑚 is a contraction link with arity 𝑘 if and only if the cardinality of
⟨𝑒(𝑎)⟩ is 𝑛𝑝1 + · · · + 𝑛𝑝𝑘 for some non negative integers 𝑝1 , . . . , 𝑝𝑘 .

Lemma 2.7. Let 𝑎 and 𝑎′ be two different arcs of 𝑅 with type 𝐴, let 𝑒1 be an injective
1-experiment of 𝑅 and let 𝑒𝑛 be an 𝑛-obsessional experiment induced by 𝑒1. If we have
𝑛 > ℎ(𝑅) ≥ 1, then the following statements hold:

(i) If there exists an arc 𝛼 of 𝑅 with atomic type such that 𝛼 is an arc of 𝑇𝑎 or 𝑇𝑎′ , we
have ⟨𝑒𝑛(𝑎)⟩ ≠ ⟨𝑒𝑛(𝑎′)⟩.

(ii) Otherwise, either we have 𝑇𝑎 = 𝑇𝑎′ and then ⟨𝑒𝑛(𝑎)⟩ = ⟨𝑒𝑛(𝑎′)⟩, or 𝑇𝑎 ≠ 𝑇𝑎′ and
then ⟨𝑒𝑛(𝑎)⟩ ˇ ⟨𝑒𝑛(𝑎′)⟩.

Lemma 2.8. Let 𝑎 and 𝑎′ be different arcs of 𝑅 with type 𝐴 and let 𝑒1 be an injective
1-experiment of 𝑅. Then the following statements hold:

(i) If 𝑎 is an arc of 𝑇𝑎′ or 𝑎′ is an arc of 𝑇𝑎 , then we have 𝑒1(𝑎) = 𝑒1(𝑎′) if and only if
𝑎 and 𝑎′ are not conclusions of contraction links of 𝑅.

(ii) If 𝑇𝑎 and 𝑇𝑎′ do not share any arc and there exists an arc 𝛼 of 𝑅 with atomic type
such that 𝛼 is an arc of 𝑇𝑎 or 𝑇𝑎′ , then 𝑒1(𝑎) ≠ 𝑒1(𝑎′).

(iii) If 𝑇𝑎 and 𝑇𝑎′ do not share any arc and there exists no arc 𝛼 of 𝑅 with atomic type
such that 𝛼 is an arc of 𝑇𝑎 or 𝑇𝑎′ , then 𝑒1(𝑎) ˚ 𝑒1(𝑎′).

Remark 2.15. Observe that item (iii) of the previous result is a straightforward
consequence of lemma 2.5.
Remark 2.16. By item (vi) of remark 1.14, the three statements of lemma 2.8 are
mutually exclusive.
Remark 2.17. Obviously, the size of the type labeling the conclusion of a link is
greater than or equal to the maximal size of the types which label the premises
of that link. Moreover, equality holds if and only if we are considering a pax or
contraction link. In particular, if 𝑎0 . . . 𝑎𝑘 is a path of 𝑅, then for all 𝑖 = 1, . . . , 𝑘
the size of 𝐴𝑖−1 is smaller than or equal to the size of 𝐴𝑖 and we have equality if
and only if 𝐴𝑖 is the conclusion of a pax or contraction link.

We provide details for the following result.

Lemma 2.9. Let 𝑎 and 𝑎′ be two different arcs of 𝑅 with type 𝐴, let 𝑒1 be an injective
1-experiment of 𝑅 and let 𝑒𝑛 be an 𝑛-obsessional experiment induced by 𝑒1. If we have
𝑛 > ℎ(𝑅) ≥ 1, then 𝑒1(𝑎) ˇ 𝑒1(𝑎′) implies ⟨𝑒𝑛(𝑎)⟩ ˇ ⟨𝑒𝑛(𝑎′)⟩.
Proof. If 𝑝 is the sum of the number of arcs of 𝑇𝑎 and the number of arcs of 𝑇𝑎′ ,
we can reason by induction on 𝑝. Suppose 𝑝 = 2. Then 𝑎 and 𝑎′ are conclusions
of initial links. Either they are both conclusions of weakening links and then it
is not the case that 𝑒1(𝑎) ˇ 𝑒1(𝑎′) because, by definition of experiment, we have
𝑒1(𝑎) = ∅ = 𝑒1(𝑎′), or they are both arcs with atomic type. In the latter case, we
have 𝑒1(𝑎) = ⟨𝑒𝑛(𝑎)⟩ and 𝑒1(𝑎′) = ⟨𝑒𝑛(𝑎′)⟩ by definition 2.18, hence we are done.
If 𝑝 ≥ 3 and the statement holds for any integer 𝑞 < 𝑝, then 𝐴 is not an atomic
formula. We can define 𝑚 as the link of 𝑅 with conclusion 𝑎 and 𝑚′ as the link



CHAPTER 2. INJECTIVITY AND OBSESSIONALITY 30

of 𝑅 with conclusion 𝑎′. If the premises of 𝑚 are 𝑎1 , . . . , 𝑎𝑘 and those of 𝑚′ are
𝑎′1 , . . . , 𝑎

′
ℎ , we can assume 𝑘 ≥ 1 without loss of generality.

We first consider the case in which 𝐴 is not a why not formula. Since 𝑚 and
𝑚′ need to be the same kind of link, we have 𝑘 = ℎ and we can distinguish the
following possibilities:

• In the case of a par link, we have 𝑘 = 2 and 𝐴 = 𝐴1 ` 𝐴2. Our hypothesis
𝑒1(𝑎) ˇ 𝑒1(𝑎′)[𝒜] entails 𝑒1(𝑎𝑖) ˚ 𝑒1(𝑎′𝑖)[𝒜𝑖] for 𝑖 = 1, 2 and 𝑒1(𝑎) ≠ 𝑒1(𝑎′).
We can suppose 𝑒1(𝑎1) ≠ 𝑒1(𝑎′1) without loss of generality. Hence we have
𝑒1(𝑎1) ˇ 𝑒1(𝑎1)[𝒜1]. Therefore, by applying the inductive hypothesis, we
obtain the condition ⟨𝑒𝑛(𝑎1)⟩ ˇ ⟨𝑒𝑛(𝑎′1)⟩[𝒜1]. In particular, we must have
⟨𝑒𝑛(𝑎)⟩ ≠ ⟨𝑒𝑛(𝑎′)⟩. Now, if 𝑒1(𝑎2) ≠ 𝑒1(𝑎′2), then by the same argument we
get the condition ⟨𝑒𝑛(𝑎2)⟩ ˇ ⟨𝑒𝑛(𝑎′2)⟩[𝒜2] and we are done. Suppose that
𝑒1(𝑎2) = 𝑒1(𝑎′2) and notice that, by remark 2.17, we cannot be in case (i) of
lemma 2.8. Consequently, by remark 2.16, we are in case (iii). This allows
us to apply item (ii) of lemma 2.7, which implies ⟨𝑒𝑛(𝑎2)⟩ ˚ ⟨𝑒𝑛(𝑎′2)⟩[𝒜2].
With this, we get the desired conclusion.

• In the case of a tensor link, we get 𝑘 = 2 and 𝐴 = 𝐴1 ⊗ 𝐴2. This time, our
hypothesis 𝑒1(𝑎) ˇ 𝑒1(𝑎′)[𝒜] implies 𝑒1(𝑎𝑖) ˇ 𝑒1(𝑎′𝑖)[𝒜𝑖] for 𝑖 = 1 or 𝑖 = 2.
Then, by inductive hypothesis, we have ⟨𝑒𝑛(𝑎𝑖)⟩ ˇ ⟨𝑒𝑛(𝑎′𝑖)⟩[𝒜𝑖] for either
𝑖 = 1 or 𝑖 = 2 and we are done.

• In the case of an of course link, we get 𝑘 = 1 and 𝐴 = !𝐴1. Notice that, by
remark 2.12, we get the four conditions 𝑒1(𝑎) = {𝑒1(𝑎1)}, 𝑒1(𝑎′) = {𝑒1(𝑎′1)},
⟨𝑒𝑛(𝑎)⟩ = {𝑛[⟨𝑒𝑛(𝑎1)⟩]} and lastly ⟨𝑒𝑛(𝑎′)⟩ = {𝑛[⟨𝑒𝑛(𝑎′1)⟩]}. Now, by using
our hypothesis, we immediately get 𝑒1(𝑎1) ˇ 𝑒1(𝑎′1)[𝒜1] and this implies
⟨𝑒𝑛(𝑎1)⟩ ˇ ⟨𝑒𝑛(𝑎′1)⟩[𝒜1] by inductive hypothesis. With this, we are done.

If 𝐴 = ?𝐵 for a certain MELL formula 𝐵 and 𝑚′ is a weakening link, then we
have ⟨𝑒𝑛(𝑎′)⟩ = ∅ and ⟨𝑒𝑛(𝑎)⟩ ˚ ∅[𝒜] by definition of experiment. In addition,
since 𝑚 is not a weakening link by the hypothesis 𝑝 ≥ 3, we get ⟨𝑒𝑛(𝑎)⟩ ≠ ∅ by
lemma 2.6 and so we are done.

Lastly, if 𝑚 and 𝑚′ are dereliction, pax or contraction links, let 𝑏1 , . . . , 𝑏𝑘 be
the premises of the dereliction links above 𝑚 and let 𝑏′1 , . . . , 𝑏

′
ℎ be the premises

of the dereliction links above 𝑚′. Then we have, for some non negative integers
𝑝1 , . . . , 𝑝𝑘 , 𝑞1 , . . . , 𝑞ℎ , the following conditions:

𝑒1(𝑎) = {𝑒1(𝑏1), . . . , 𝑒1(𝑏𝑘)}
𝑒1(𝑎′) = {𝑒1(𝑏′1), . . . , 𝑒1(𝑏′ℎ)}

⟨𝑒𝑛(𝑎)⟩ = {𝑛𝑝1[⟨𝑒𝑛(𝑏1)⟩], . . . , 𝑛𝑝𝑘 [⟨𝑒𝑛(𝑏𝑘)⟩]}
⟨𝑒𝑛(𝑎′)⟩ = {𝑛𝑞1[⟨𝑒𝑛(𝑏′1)⟩], . . . , 𝑛𝑞ℎ [⟨𝑒𝑛(𝑏′𝑘)⟩]}

Our hypothesis 𝑒1(𝑎) ˇ 𝑒1(𝑎′)[𝒜] now implies the condition 𝑒1(𝑏𝑖) ˇ 𝑒1(𝑏′𝑗)[ℬ]
for some indices 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , ℎ}. By inductive hypothesis, we
must have ⟨𝑒𝑛(𝑏𝑖)⟩ ˇ ⟨𝑒𝑛(𝑏′𝑗)⟩[ℬ], which entails the desired conclusion. □

One can consequently prove the following proposition from [TdF03].
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Proposition 2.6. If 𝑛 > ℎ(𝑅) and there exists an injective 1-experiment 𝑒1 of 𝑅, then
there exists an injective 𝑛-obsessional experiment 𝑒𝑛 of 𝑅 induced by 𝑒1.

If we consider ACC proof nets rather than just proof structures, then we get
the following result.

Proposition 2.7. If 𝑅 and 𝑅′ are ACC proof nets with the same conclusions and such
that P(𝑅) = P(𝑅′), then 𝑅 = 𝑅′.

Proof. Immediate consequence of proposition 1.2: our hypothesis P(𝑅) = P(𝑅′)
implies �̄� = �̄�′, which guarantees that the boxes of 𝑅 and 𝑅′ are the same. □

At last, we can express a sufficient condition of local injectivity.

Theorem 2.3. Let 𝑅 be a proof structure for which there is an injective 1-experiment.
If 𝑅′ is a proof structure having the same conclusions as 𝑅 and such that J𝑅K = J𝑅′K,
then P(𝑅) = P(𝑅′).
Proof. Let 𝑛 > max{ℎ(𝑅), ℎ(𝑅′)}. We know, by proposition 2.6, that there is an
injective 𝑛-obsessional experiment 𝑒 of 𝑅. Let 𝛾 be the result of 𝑒. Observe that
𝛾 ∈ J𝑅K = J𝑅′K, hence there is an experiment 𝑒′ of 𝑅′ with result 𝛾. In addition,
by proposition 2.1, we know that 𝑒′ is 𝑛-obsessional. Then, by proposition 2.4,
there is an isomorphism Φ between OP(𝑅) and OP(𝑅′) such that 𝑒 = 𝑒′ ◦Φ.

We now repeat the argument we saw in the proof of theorem 2.1: since 𝑒 is
injective, for every arc 𝑎 of OP(𝑅) with atomic type 𝑋 there is a unique arc 𝑎′ of
OP(𝑅) of type 𝑋⊥ such that 𝑒(𝑎) = 𝑒(𝑎′). Then we necessarily have that 𝑎 and 𝑎′
are conclusions of the same axiom link of 𝑅. Moreover, the arc 𝑎′ is the only arc
𝑏 of OP(𝑅) such that 𝑒′(Φ(𝑎)) = 𝑒′(Φ(𝑏)), hence Φ(𝑎) and Φ(𝑎′) are conclusions
of the same axiom link of 𝑅′. We can conclude that Φ induces an isomorphism
between P(𝑅) and P(𝑅′), that is P(𝑅) = P(𝑅′). □

Corollary 2.3. Let 𝑅 be an ACC proof net for which an injective 1-experiment exists.
The coherent multiset based semantics is locally injective for ACC proof nets in 𝑅.

Proof. Consider an ACC proof net 𝑅′ with the same conclusions as 𝑅 and such
that J𝑅K = J𝑅′K. By theorem 2.3, we get P(𝑅) = P(𝑅′). Then, by proposition 2.7,
we can conclude that 𝑅 = 𝑅′. □

Remark 2.18. It is important to see that the injective 𝑛-obsessional experiment 𝑒
in the proof of theorem 2.3 heavily depends on the proof structure 𝑅′, because
the integer 𝑛 does. It is natural to ask if it would be possible, in a certain sense,
to make 𝑒 independent of 𝑅′. More precisely, we would like to know if it is the
case that, for any proof net 𝑅 possessing an injective 1-experiment, there is an
experiment of 𝑅 which contains all information about 𝑅 with respect to MELL.
For sure, we have a negative answer if we look at the general case of AC proof
nets. To prove this, we just exhibit a counterexample: let 𝑅 be the AC proof net
in figure 2.1. We can observe that, if 𝑒 is an experiment of 𝑅, then it must be an
𝑛-obsessional experiment for some positive integer 𝑛. This happens due to our
choice of 𝑅 and item (i) of remark 2.4. Thus, the experiment 𝑒 labels the arcs of
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Figure 2.1: The AC proof net 𝑅 and any experiment 𝑒 of 𝑅.
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Figure 2.2: The AC proof net 𝑅′ and a particular experiment of 𝑅′ with the same
result as 𝑒. The ellipsis between the axiom links on the left indicates that there are

actually 𝑛 copies of them and, in particular, both contraction links of 𝑅′ have arity 𝑛.
These two contraction links disappear in the particular case 𝑛 = 1.

𝑅 as it is shown in the previous figure, with 𝑥 ∈ |𝒜| and 𝑦 ∈ |ℬ|. In particular,
if we pick 𝑛 = 1 and 𝑥 ≠ 𝑦, then we get an injective 1-experiment of 𝑅. Now we
observe that 𝑒 does not contain all information about 𝑅 with respect to MELL.
In fact, there are an AC proof net 𝑅′ with P(𝑅) ≠ P(𝑅′) and an experiment of 𝑅′
with the same result as 𝑒, as depicted in figure 2.2. We can observe that there is
no contradiction with the argument we saw in the proof of theorem 2.3: if one
chooses 𝑥 ≠ 𝑦, then 𝑒 is an injective 𝑛-obsessional experiment of 𝑅 but, on the
other hand, we have max{ℎ(𝑅), ℎ(𝑅′)} = 𝑛 because, when 𝑛 > 1, there are two
contraction links with arity 𝑛 in 𝑅′, while in the case 𝑛 = 1 the equality is true
due to the presence of boxes in 𝑅 and 𝑅′. Clearly, the counterexample we have
just produced also ensures that the analogue of theorem 2.1 is false in the case
of AC proof nets of MELL: there exists an AC proof net 𝑅 of MELL such that no
experiment of 𝑅 contains all information about 𝑅 with respect to MELL.

However, what we have just discussed does not exclude the possibility that
we could have a different answer if we restrict to ACC proof nets. Actually, this
is an open problem. The interest of ACC proof nets is that they lie between the
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subsystem of MELL which corresponds to lambda calculus and the full MELL
fragment. What we know is that the analogue of theorem 2.1 holds for lambda
calculus: if 𝑅 is a proof net representing a 𝜆-term 𝑡, an injective 1-experiment 𝑒
of 𝑅 contains all information about 𝑅 with respect to the subsystem of lambda
calculus because, in this particular case, the result of 𝑒 allows to rebuild 𝑡. This
useful property was suggested by Laurent Regnier and a proof can be found in
the paper [LT04].

On the other hand, in the framework of relational semantics, we know that
the 2-point of the Taylor expansion of an ACC proof net 𝑅 allows to distinguish
𝑅 from all other proof nets. This was shown in the paper [GPT16]. Beware, this
is a totally different setting in which the 2-point is the result not of an injective
2-obsessional experiment, but of an experiment which is not at all obsessional
and is injective in a stronger sense: not only the labels associated with different
axiom links are different, but also those of the same axiom link, corresponding
to different copies of that axiom produced by a box, are pairwise distinct. Then
the analogue of theorem 2.1 is certainly true for ACC proof nets in the context
of relational semantics: if 𝑅 is an ACC proof net, an experiment that is injective
in the sense specified above and that takes two copies of each box of 𝑅 contains
all information about 𝑅 with respect to ACC proof nets. If one could prove that
the result of such an experiment belongs to the interpretation of 𝑅 by coherent
semantics, then one would have answered the problem in the coherent case as
well.



Chapter 3

Taylor expansion of 𝝀-terms

As suggested by the concluding remark of chapter 2, another important tool to
study the question of injectivity besides obsessional experiments is the Taylor
expansion of a proof net, allowing to write a proof net as an infinite series of its
linear approximations. It was used by Daniel de Carvalho in his article [Car15]
to conclude that the relational model is injective for the proof nets of MELL, by
showing that different proof nets of this fragment are associated with different
Taylor expansions.

In this chapter, though, we take a step back and study the Taylor expansion
of 𝜆-terms, which was introduced for the first time by Ehrhard and Regnier in
their article [ER03] on differential lambda calculus. Choosing lambda calculus
over proof nets seems natural if we consider that differentiation was originally
understood in mathematical analysis as an operation on functions and lambda
calculus claims to be a general theory of functions. Obviously, this choice does
not prevent, in principle, a transposition of results obtained in this framework
to the case of differential proof nets.

This innovative tool allows to prove a quite natural and expected property:
the Taylor support commutes with head reduction. This result provides a new
technique to establish the following fact, called the head reduction theorem: if
a 𝜆-term 𝑀 is convertible to a head normal form, then the head reduction of 𝑀
terminates. This approach, which was extensively studied in the literature, for
instance in the articles [ER06], [ER08] and [CPT11], is revisited here. There are
only two alternative proofs of the head reduction theorem, to our knowledge:
one which uses Curry’s standardization theorem, as shown in [Bar84] and one
using a factorization argument involving the definition of a parallel reduction,
as explained in [Tak95].

In the sequel, our main reference is the article [Vau19]. The only difference
and simplification is that we restrict ourselves to the “qualitative” setting, that
is, we forget the semiring of coefficients and we simply consider the support of
Taylor expansions. More precisely, we choose the ring of integers modulo 2 as
the semiring of coefficients, which allows us to consider sets of resource terms
rather than formal linear combinations of resource terms.

On the other hand, we adopt definitions and notations of the book [Bar84]

34



CHAPTER 3. TAYLOR EXPANSION OF 𝜆-TERMS 35

when dealing with usual 𝜆-terms. In particular, we use the symbol ≡ to denote
syntactic equality of 𝜆-terms and we extend this convention to resource terms
and resource monomials.

In section 3.1, we provide some basic definitions and properties of resource
lambda calculus. In section 3.2, we prove the already mentioned commutation
of head reduction and Taylor support. Finally, in section 3.3, we introduce the
resource reduction relation and study its properties. As a consequence, we get
a proof of the head reduction theorem mentioned above.

3.1 Resource terms

We first give some basic definitions. The core idea of resource lambda calculus
is that the usual application of a 𝜆-term 𝑀 to a 𝜆-term 𝑁 is replaced by a more
fine grained construction in which a resource term 𝑠 takes a certain number of
resource terms 𝑡1 , . . . , 𝑡𝑛 as arguments. Now, if 𝑠 is an abstraction 𝜆𝑥𝑡 and the
variable 𝑥 occurs precisely 𝑛 times in 𝑡 then, in the evaluation, each argument
𝑡𝑖 replaces exactly one occurrence of 𝑥 in 𝑡.

Convention. From now on, we denote V an infinite set, the elements of which
are called variables.

Definition 3.1. Consider the alphabet A made up of the variables, the brackets
[ and ], the angle brackets ⟨ and ⟩, the punctuation symbol , and the symbol 𝜆.
We define inductively a set Δ of finite words over A, whose elements are called
resource terms:

• If 𝑥 is a variable, then 𝑥 ∈ Δ.

• If 𝑥 is a variable and 𝑠 ∈ Δ, then 𝜆𝑥𝑠 ∈ Δ.

• If 𝑛 ≥ 0 is an integer and 𝑠, 𝑡1 , . . . , 𝑡𝑛 ∈ Δ, then ⟨𝑠⟩[𝑡1 , . . . , 𝑡𝑛] ∈ Δ.

The set of resource monomials, denoted !Δ, is the set of factors of resource terms
of the form [𝑡1 , . . . , 𝑡𝑛] for some integer 𝑛 ≥ 0 and for some 𝑡1 , . . . , 𝑡𝑛 ∈ Δ. The
integer 𝑛 is called degree of the resource monomial [𝑡1 , . . . , 𝑡𝑛] and it is denoted
deg[𝑡1 , . . . , 𝑡𝑛].
Convention. For all 𝑠 ∈ Δ and for all 𝑡1 , . . . , 𝑡𝑛 ∈ !Δ, we denote ⟨𝑠⟩𝑡1 . . . 𝑡𝑛 the
resource term ⟨. . . ⟨𝑠⟩𝑡1 . . . ⟩𝑡𝑛 . Moreover, we denote 𝑠𝑛 the resource monomial
[𝑠, . . . , 𝑠] where 𝑠 occurs exactly 𝑛 times. In addition, we call resource expression
either a resource term or a resource monomial and we write (!)Δ for either Δ or
!Δ. Finally, if we adopt this notation several times in the same context, then we
consistently refer every time to the same notion.

For all variables 𝑥1 , . . . , 𝑥𝑛 and for all 𝑠1 , . . . , 𝑠𝑛 ∈ Δ, we define as usual the
resource expression 𝑒(𝑥1 := 𝑠1 , . . . , 𝑥𝑛 := 𝑠𝑛) which is produced by performing
a simultaneous substitution of 𝑠𝑖 to every occurrence of 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛 in a
resource expression 𝑒. Free and bound occurrences of variables are defined as
expected, too. We can also say that a variable occurs free (respectively, bound)
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in a subset 𝑆 of Δ when it occurs free (respectively, bound) in a certain resource
term 𝑠 ∈ 𝑆.

Convention. In the sequel, resource terms are considered up to 𝛼-equivalence
and resource monomials up to permutations of their components. This means
that, if 𝑥 is a variable and if 𝑠 ∈ Δ, then the resource term 𝜆𝑥𝑠 is identified with
𝜆𝑦𝑠(𝑥 := 𝑦) for all variables 𝑦 which do not occur free in 𝑠 and, if 𝑡1 , . . . , 𝑡𝑛 are
resource terms and if 𝜎 is a permutation over 1, . . . , 𝑛, the resource monomials
[𝑡1 , . . . , 𝑡𝑛] and [𝑡𝜎(1) , . . . , 𝑡𝜎(𝑛)] are identified.

We now introduce some notations.

Definition 3.2. Let 𝑆1 , . . . , 𝑆𝑛 be subsets of Δ. We define:

[𝑆1 , . . . , 𝑆𝑛] := {[𝑠1 , . . . , 𝑠𝑛] : 𝑠1 ∈ 𝑆1 , . . . , 𝑠𝑛 ∈ 𝑆𝑛}
Now consider a subset 𝑆 of Δ, a subset 𝑇 of !Δ and a variable 𝑥. Denote 𝑆𝑛 the
set [𝑆, . . . , 𝑆] in which 𝑆 occurs precisely 𝑛 times. We define the following sets:

𝜆𝑥𝑆 := {𝜆𝑥𝑠 : 𝑠 ∈ 𝑆}
⟨𝑆⟩𝑇 := {⟨𝑠⟩𝑡 : 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}

𝑆! :=
⋃{𝑆𝑛 : 𝑛 ∈ N}

In addition, if 𝑇1 , . . . , 𝑇𝑛 are subsets of !Δ, then we define the set ⟨𝑆⟩𝑇1 . . . 𝑇𝑛 by
induction on 𝑛 as follows:

• If 𝑛 = 0, then ⟨𝑆⟩𝑇1 . . . 𝑇𝑛 := 𝑆.

• If 𝑛 ≥ 1, then ⟨𝑆⟩𝑇1 . . . 𝑇𝑛 := ⟨⟨𝑆⟩𝑇1 . . . 𝑇𝑛−1⟩𝑇𝑛 .

Now, if 𝑒 is a resource expression, if 𝑥1 , . . . , 𝑥𝑛 are variables and 𝑆1 , . . . , 𝑆𝑛
are subsets of Δ, we can clearly define the set 𝑒(𝑥1 := 𝑆1 , . . . , 𝑥𝑛 := 𝑆𝑛) which is
obtained by simultaneously replacing all occurrences of 𝑥𝑖 by 𝑆𝑖 for all indices
𝑖 = 1, . . . , 𝑛.

Definition 3.3. Let 𝑥1 , . . . , 𝑥𝑛 be variables, let 𝑆1 , . . . , 𝑆𝑛 be subsets of Δ and let
𝐸 be a subset of (!)Δ. We define:

𝐸(𝑥1 := 𝑆1 , . . . , 𝑥𝑛 := 𝑆𝑛) :=
⋃{𝑒(𝑥1 := 𝑆1 , . . . , 𝑥𝑛 := 𝑆𝑛) : 𝑒 ∈ 𝐸}

We then define a notion of partial differentiation as follows.

Definition 3.4. If 𝑠 and 𝑢 are resource terms and 𝑥 is a variable, then the partial
derivative of 𝑠 in 𝑢 with respect to 𝑥, denoted (𝜕𝑠/𝜕𝑥) · 𝑢, is a subset of Δ given
by the following inductive definition:

• If 𝑠 is the variable 𝑥, then (𝜕𝑠/𝜕𝑥) · 𝑢 := {𝑢}.
• If 𝑠 is a variable 𝑦 different from 𝑥, then (𝜕𝑠/𝜕𝑥) · 𝑢 is the empty set.

• If 𝑠 is an abstraction, we can assume that 𝑠 ≡ 𝜆𝑦𝑟, where the variable 𝑦 is
distinct from 𝑥 and not occurring free in 𝑢 without loss of generality. We
can then define (𝜕𝑠/𝜕𝑥) · 𝑢 := 𝜆𝑦(𝜕𝑟/𝜕𝑥) · 𝑢.
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• If 𝑠 ≡ ⟨𝑟⟩[𝑡1 , . . . , 𝑡𝑛], then (𝜕𝑠/𝜕𝑥) · 𝑢 is the set:⋃{〈 𝜕𝑟
𝜕𝑥

· 𝑢
〉
[𝑡1 , . . . , 𝑡𝑛],⋃{

⟨𝑟⟩
[
𝑡1 , . . . ,

𝜕𝑡𝑖
𝜕𝑥

· 𝑢, . . . , 𝑡𝑛
]

: 𝑖 = 1, . . . , 𝑛
}}

Also, if 𝑡1 , . . . , 𝑡𝑛 are resource terms, we define the following subset of !Δ:

𝜕[𝑡1 , . . . , 𝑡𝑛]
𝜕𝑥

:=
⋃{[

𝑡1 , . . . ,
𝜕𝑡𝑖
𝜕𝑥

· 𝑢, . . . , 𝑡𝑛
]

: 𝑖 = 1, . . . , 𝑛
}

Finally, if 𝑈 is a subset of Δ and 𝐸 is a subset of (!)Δ, we define:

𝜕𝐸
𝜕𝑥

·𝑈 :=
⋃{ 𝜕𝑒

𝜕𝑥
· 𝑢 : 𝑒 ∈ 𝐸, 𝑢 ∈ 𝑈

}
Remark 3.1. If 𝑟 and 𝑢 are resource terms, if 𝑡 is a resource monomial and 𝑥 is a
variable then, as an immediate consequence of the previous definition, we get:

𝜕⟨𝑟⟩𝑡
𝜕𝑥

· 𝑢 =
⋃{〈 𝜕𝑟

𝜕𝑥
· 𝑢

〉
𝑡 , ⟨𝑟⟩

( 𝜕𝑡
𝜕𝑥

· 𝑢
)}

Remark 3.2. Let 𝑢 be a resource term, let 𝑒 be a resource expression and let 𝑥 be
a variable. If 𝑥 does not occur free in 𝑒, then (𝜕𝑒/𝜕𝑥) · 𝑢 is the empty set. This is
proven by induction on 𝑒 when 𝑒 is a resource term and then it is immediately
extended to the case of resource expressions.
Remark 3.3. Let 𝑢 be a resource term, let 𝑡 be a resource monomial and let 𝑥 be
a variable. Then all resource monomials in (𝜕𝑡/𝜕𝑥) · 𝑢 have the same degree as
𝑡.

The following result is easily established: one gives a proof by induction in
the case of a resource term and then the result is easily generalized to the case
of resource expressions.

Lemma 3.1. Let 𝑢 and 𝑣 be resource terms, let 𝑒 be a resource expression, let 𝑥 and 𝑦
be variables. If 𝑥 does not occur free in 𝑣, then:

𝜕

𝜕𝑦

( 𝜕𝑒
𝜕𝑥

· 𝑢
)
· 𝑣 =

⋃{ 𝜕

𝜕𝑥

( 𝜕𝑒
𝜕𝑦

· 𝑣
)
· 𝑢, 𝜕𝑒

𝜕𝑥
·
(𝜕𝑢
𝜕𝑦

· 𝑣
)}

We now have the analogous of Schwarz’s lemma stating that, under certain
assumptions, the order of partial derivatives is irrelevant.

Proposition 3.1. Assume that 𝑢 and 𝑣 are resource terms, 𝑒 is a resource expression,
𝑥 and 𝑦 are variables. If 𝑥 does not occur free in 𝑣 and 𝑦 does not occur free in 𝑢, then:

𝜕

𝜕𝑦

( 𝜕𝑒
𝜕𝑥

· 𝑢
)
· 𝑣 =

𝜕

𝜕𝑥

( 𝜕𝑒
𝜕𝑦

· 𝑣
)
· 𝑢

Proof. Immediate consequence of lemma 3.1 and remark 3.2. □

Definition 3.5. Let 𝑢1 , . . . , 𝑢𝑛 be resource terms, let 𝑒 be a resource expression
and let 𝑦 be a variable. If 𝑦 does not occur free in 𝑢1 , . . . , 𝑢𝑛 , then we define the
set (𝜕𝑛𝑒/𝜕𝑦𝑛) · (𝑢1 , . . . , 𝑢𝑛) by induction on 𝑛 as follows:
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• If 𝑛 = 0, then (𝜕𝑛𝑒/𝜕𝑦𝑛) · (𝑢1 , . . . , 𝑢𝑛) = {𝑒}.
• If 𝑛 ≥ 1, we have:

𝜕𝑛𝑒
𝜕𝑦𝑛

· (𝑢1 , . . . , 𝑢𝑛) := 𝜕

𝜕𝑦

( 𝜕𝑛−1𝑒
𝜕𝑦𝑛−1 · (𝑢1 , . . . , 𝑢𝑛−1)

)
· 𝑢𝑛

Now, if 𝑦 does not occur free in 𝑒 , 𝑢1 , . . . , 𝑢𝑛 and if 𝑥 is any variable, we define:

𝜕𝑛𝑒
𝜕𝑥𝑛

· (𝑢1 , . . . , 𝑢𝑛) :=
(𝜕𝑛𝑒[𝑥 := 𝑦]

𝜕𝑦𝑛
· (𝑢1 , . . . , 𝑢𝑛)

)
[𝑦 := 𝑥]

The previous definition is correct: exactly as in the quantitative framework,
it does not depend on the choice of the variable 𝑦. Recall that, in mathematical
analysis, Taylor expansions involve iterated derivatives in zero. The following
definition is then justified.

Definition 3.6. Let 𝑡 = [𝑡1 , . . . , 𝑡𝑛] be a resource monomial, let 𝑒 be a resource
expression and let 𝑥 be a variable. Then we define the partial derivative of 𝑒 in
𝑡 with respect to 𝑥 as the following set:

𝜕𝑛𝑒
𝜕𝑥𝑛

· 𝑡 := 𝜕𝑛𝑒
𝜕𝑥𝑛

· (𝑡1 , . . . , 𝑡𝑛)

The 𝑛-linear substitution of 𝑡 for 𝑥 in 𝑒 is the set:

𝜕𝑥𝑒 · 𝑡 :=
( 𝜕𝑛𝑒
𝜕𝑥𝑛

· 𝑡
)
[𝑥 := ∅]

Finally, if 𝑇 is a subset of !Δ and 𝐸 is a subset of (!)Δ, we define:

𝜕𝑥𝐸 · 𝑇 :=
⋃{𝜕𝑥𝑒 · 𝑡 : 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇}

By proposition 3.1, the previous definition is correct.

Convention. If 𝑆1 , . . . , 𝑆𝑛 are subsets of Δ and if 𝑠1 , . . . , 𝑠𝑚 are resource terms,
we denote [𝑆1 , . . . , 𝑆𝑛 , 𝑠1 , . . . , 𝑠𝑚] the set [𝑆1 , . . . , 𝑆𝑛 , {𝑠1}, . . . , {𝑠𝑚}]. Similarly,
if 𝑠 is a resource term, 𝑡 is a resource monomial, 𝑒 is a resource expression, 𝑥 is
a variable, 𝑆 is a subset of Δ and 𝑇 is a subset of !Δ, then the sets ⟨𝑆⟩{𝑡}, ⟨{𝑠}⟩𝑇
and 𝜕𝑥{𝑒} · 𝑇 are denoted ⟨𝑆⟩𝑡, ⟨𝑠⟩𝑇 and 𝜕𝑥𝑒 · 𝑇 respectively.

We now recall the following properties of multilinear substitutions. We do
not provide the proofs, which follow the same pattern described in [Vau19].

Lemma 3.2. Let 𝑆 and 𝑇 be subsets of Δ and let 𝑥 be a variable. Then:

𝑆![𝑥 := 𝑇] = (𝑆[𝑥 := 𝑇])!

Lemma 3.3. If 𝑅 is a subset of Δ and 𝑥 is a variable, we have the following conditions:

(i) The identity 𝜕𝑥𝑥 · 𝑅! = 𝑅 holds.

(ii) If 𝑦 is a variable different from 𝑥, then 𝜕𝑥𝑦 · 𝑅! = {𝑦}.
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(iii) If 𝑆 is a subset of Δ and if 𝑦 is a variable different from 𝑥 and not occurring free
in 𝑅, then 𝜕𝑥𝜆𝑦𝑆 · 𝑅! = 𝜆𝑦𝜕𝑥𝑆 · 𝑅!.

(iv) If 𝑆 is a set of resource terms and 𝑇 set of resource monomials, then the identity
𝜕𝑥 ⟨𝑆⟩𝑇 · 𝑅! = ⟨𝜕𝑥𝑆 · 𝑅!⟩𝜕𝑥𝑇 · 𝑅! holds.

Lemma 3.4. If 𝑆 is a subset of Δ, if 𝐸 is a subset of (!)Δ and if 𝑥 is a variable, we have:

𝐸[𝑥 := 𝑆] = 𝜕𝑥𝐸 · 𝑆!

As a consequence, we get the following result.

Lemma 3.5. Let 𝑆 and 𝑇 be subsets of Δ and let 𝑥 be a variable. Then:

𝜕𝑥𝑆! · 𝑇 ! = (𝜕𝑥𝑆 · 𝑇 !)!

Proof. We have:

𝜕𝑥𝑆! · 𝑇 ! = 𝑆![𝑥 := 𝑇] by lemma 3.4,
= (𝑆[𝑥 := 𝑇])! by lemma 3.2,
= (𝜕𝑥𝑆 · 𝑇 !)! by lemma 3.4. □

3.2 Head reduction and Taylor support

In the sequel we rely on the following well known result on the syntactic form
of usual 𝜆-terms, which can easily be generalized to the case of resource terms.

Proposition 3.2. If 𝑀 is a 𝜆-term then, for some variables 𝑥, 𝑥1 , . . . , 𝑥𝑛 and for some
𝜆-terms 𝑁1 , . . . , 𝑁𝑘 , exactly one of the two following possibilities holds:

• 𝑀 ≡ 𝜆𝑥1 . . .𝜆𝑥𝑛𝑥𝑁1 . . . 𝑁𝑘 .

• 𝑀 ≡ 𝜆𝑥1 . . .𝜆𝑥𝑛(𝜆𝑥𝑃)𝑁𝑁1 . . . 𝑁𝑘 for some 𝜆-terms 𝑃 and 𝑁 .

Proof. See corollary 8.3.8 of [Bar84]. □

Definition 3.7. The one step head reduction on 𝜆-terms is the function H which
maps 𝜆-terms to 𝜆-terms and is defined as follows:

H(𝜆𝑥1 . . .𝜆𝑥𝑛(𝜆𝑥𝑃)𝑁𝑁1 . . . 𝑁𝑘) := 𝜆𝑥1 . . .𝜆𝑥𝑛𝑃[𝑥 := 𝑁]𝑁1 . . . 𝑁𝑘

H(𝜆𝑥1 . . .𝜆𝑥𝑛𝑥𝑁1 . . . 𝑁𝑘) := 𝜆𝑥1 . . .𝜆𝑥𝑛𝑥𝑁1 . . . 𝑁𝑘

We can then define the one step head reduction function on resource terms
as follows.

Definition 3.8. We call one step head reduction on resource terms the function H
which maps resource terms to sets of resource terms and is defined as follows:

H(𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝜆𝑥𝑠⟩𝑡𝑡1 . . . 𝑡𝑘) := 𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝜕𝑥𝑠 · 𝑡⟩𝑡1 . . . 𝑡𝑘
H(𝜆𝑥1 . . .𝜆𝑥𝑛𝑥𝑡1 . . . 𝑡𝑘) := {𝜆𝑥1 . . .𝜆𝑥𝑛𝑥𝑡1 . . . 𝑡𝑘}

In addition, if 𝑆 is a subset of Δ, we define:

H(𝑆) :=
⋃{H(𝑠) : 𝑠 ∈ 𝑆}
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Finally, we define the Taylor support function on 𝜆-terms.

Definition 3.9. The Taylor support is the function T which maps 𝜆-terms to sets
of resource terms and is defined inductively as follows:

T(𝑥) := {𝑥}
T(𝜆𝑥𝑀) := 𝜆𝑥T(𝑀)
T(𝑀𝑁) := ⟨T(𝑀)⟩T(𝑁)!

We now prove the following key result.

Lemma 3.6. If 𝑀 and 𝑁 are 𝜆-terms and if 𝑥 is a variable, then we get the condition:

T(𝑀[𝑥 := 𝑁]) = 𝜕𝑥T(𝑀) · T(𝑁)!

Proof. We reason by induction on the structure of 𝑀 as 𝜆-term:

• If 𝑀 is the variable 𝑥, then we have:

T(𝑀[𝑥 := 𝑁]) = T(𝑁)
= 𝜕𝑥𝑥 · T(𝑁)! by lemma 3.3, item (i)
= 𝜕𝑥T(𝑀) · T(𝑁)! by definition 3.9

• If 𝑀 is a variable 𝑦 different from 𝑥, then:

T(𝑀[𝑥 := 𝑁]) = {𝑦} by definition 3.9
= 𝜕𝑥𝑦 · T(𝑁)! by lemma 3.3, item (ii)
= 𝜕𝑥T(𝑀) · T(𝑁)! by definition 3.9

• If 𝑀 is an abstraction, we can suppose 𝑀 ≡ 𝜆𝑦𝑃 with 𝑦 different from 𝑥
and not occurring free in T(𝑁) without loss of generality. Hence, we get:

T(𝑀[𝑥 := 𝑁]) = T(𝜆𝑦𝑃[𝑥 := 𝑁])
= 𝜆𝑦T(𝑃[𝑥 := 𝑁]) by definition 3.9
= 𝜆𝑦𝜕𝑥T(𝑃) · T(𝑁)! by inductive hypothesis
= 𝜕𝑥𝜆𝑦T(𝑃) · T(𝑁)! by lemma 3.3, item (iii)
= 𝜕𝑥T(𝑀) · T(𝑁)! by definition 3.9

• If 𝑀 ≡ 𝑃𝑄, then:

T(𝑀[𝑥 := 𝑁])
= T(𝑃[𝑥 := 𝑁]𝑄[𝑥 := 𝑁])
= ⟨T(𝑃[𝑥 := 𝑁])⟩T(𝑄[𝑥 := 𝑁])! by definition 3.9
= ⟨𝜕𝑥T(𝑃) · T(𝑁)!⟩(𝜕𝑥T(𝑄) · T(𝑁)!)! by inductive hypothesis
= ⟨𝜕𝑥T(𝑃) · T(𝑁)!⟩𝜕𝑥T(𝑄)! · T(𝑁)! by lemma 3.5
= 𝜕𝑥 ⟨T(𝑃)⟩T(𝑄)! · T(𝑁)! by lemma 3.3, item (iv)
= 𝜕𝑥T(𝑀) · T(𝑁)! by definition 3.9 □
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We can finally prove that the Taylor support “commutes” with the one step
head reduction. Notice that, in the following statement, the symbol H denotes
two distinct functions: one acting on resource terms, the other acting on usual
𝜆-terms.

Proposition 3.3. Let 𝑀 be a 𝜆-term. Then we have H(T(𝑀)) = T(H(𝑀)).
Proof. By corollary 8.3.8 of [Bar84], there exist variables 𝑥, 𝑥1 , . . . , 𝑥𝑛 and there
are 𝜆-terms 𝑃, 𝑁, 𝑁1 , . . . , 𝑁𝑘 such that one of the following possibilities holds:

• We have 𝑀 ≡ 𝜆𝑥1 . . .𝜆𝑥𝑛𝑥𝑁1 . . . 𝑁𝑘 . In this case, we immediately obtain:

H(T(𝑀)) = H(𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝑥⟩T(𝑁1)! . . .T(𝑁𝑘)!)
=
⋃{H(𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝑥⟩𝑡1 . . . 𝑡𝑘) : 𝑡1 ∈ T(𝑁1)! , . . . , 𝑡𝑘 ∈ T(𝑁𝑘)!}

=
⋃{{𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝑥⟩𝑡1 . . . 𝑡𝑘} : 𝑡1 ∈ T(𝑁1)! , . . . , 𝑡𝑘 ∈ T(𝑁𝑘)!}

= 𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝑥⟩T(𝑁1)! . . .T(𝑁𝑘)! = T(𝑀) = T(H(𝑀))

• We have 𝑀 ≡ 𝜆𝑥1 . . .𝜆𝑥𝑛(𝜆𝑥𝑃)𝑁𝑁1 . . . 𝑁𝑘 . Then, by lemma 3.6, we have
the following identities, where it is intended that the index 𝑖 ranges from
1 to 𝑘:

H(T(𝑀)) = H(𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝜆𝑥T(𝑃)⟩T(𝑁)!T(𝑁1)! . . .T(𝑁𝑘)!)
=
⋃{H(𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝜆𝑥𝑠⟩𝑡𝑡1 . . . 𝑡𝑘) : 𝑠 ∈ T(𝑃), 𝑡 ∈ T(𝑁)! , 𝑡𝑖 ∈ T(𝑁𝑖)!}

=
⋃{𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝜕𝑥𝑠 · 𝑡⟩𝑡1 . . . 𝑡𝑘 : 𝑠 ∈ T(𝑃), 𝑡 ∈ T(𝑁)! , 𝑡𝑖 ∈ T(𝑁𝑖)!}

= 𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝜕𝑥T(𝑃) · T(𝑁)!⟩T(𝑁1)! . . .T(𝑁𝑘)!
= 𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨T(𝑃[𝑥 := 𝑁])⟩T(𝑁1)! . . .T(𝑁𝑘)!
= T(𝜆𝑥1 . . .𝜆𝑥𝑛𝑃[𝑥 := 𝑁]𝑁1 . . . 𝑁𝑘) = T(H(𝑀)) □

3.3 The head reduction theorem

We recall the some standard notions.

Definition 3.10. A 𝜆-term 𝜆𝑥1 . . .𝜆𝑥𝑛𝑥𝑁1 . . . 𝑁𝑘 (respectively, a resource term
𝜆𝑥1 . . .𝜆𝑥𝑛𝑥𝑡1 . . . 𝑡𝑘), where 𝑁1 , . . . , 𝑁𝑘 are 𝜆-terms (respectively, 𝑡1 , . . . , 𝑡𝑘 are
resource terms) and 𝑥, 𝑥1 , . . . , 𝑥𝑛 are variables, is called a head normal form. We
say that a 𝜆-term 𝑀 has a head normal form if it is convertible (in other words,
𝛽-equivalent)1 to a head normal form. On the other hand, we say that the head
reduction of 𝑀 terminates if there is a non negative integer 𝑘 such that H𝑘(𝑀)
is a head normal form.

Remark 3.4. Obviously, if the head reduction of a 𝜆-term 𝑀 terminates, then 𝑀
has a head normal form.

The converse of the previous remark holds. Our goal is to prove this using
the tools we developed in this chapter. We first provide a definition of resource
reduction in the qualitative setting.

1See proposition 3.2.1 of [Bar84].
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Convention. In what follows, if 𝑠 is a resource term and 𝑆 is a subset of Δ, we
write 𝑠 →𝜕 𝑆 actually meaning {𝑠} →𝜕 𝑆.

Definition 3.11. The relation →𝜕 on the set of resource terms is determined by
the following inductive definition:

• If 𝑠 ∈ Δ and 𝑡 ∈ !Δ, then ⟨𝜆𝑥𝑠⟩𝑡 →𝜕 𝜕𝑥𝑠 · 𝑡.
• If 𝑠 ∈ Δ, if 𝑡 ∈ !Δ and if 𝑆 is a subset of Δ such that 𝑠 →𝜕 𝑆, then we have

the conditions 𝜆𝑥𝑠 →𝜕 𝜆𝑥𝑆 and ⟨𝑠⟩𝑡 →𝜕 ⟨𝑆⟩𝑡.
• If 𝑠, 𝑡0 , 𝑡1 , . . . , 𝑡𝑛 ∈ Δ and if 𝑇 is a subset of Δ such that 𝑡0 →𝜕 𝑇, then the

condition ⟨𝑠⟩[𝑡0 , 𝑡1 , . . . , 𝑡𝑛] →𝜕 ⟨𝑠⟩[𝑇, 𝑡1 , . . . , 𝑡𝑛] holds.

The one step resource reduction, still denoted →𝜕 with a slight abuse of notation,
is the binary relation on the set of subsets of Δ which is given by the following
condition: whenever 𝑠0 , . . . , 𝑠𝑛 are resource terms (not distinct, in general) and
whenever 𝑆0 , . . . , 𝑆𝑛 are subsets of Δ such that 𝑠0 →𝜕 𝑆0 and 𝑠𝑖 →𝜕

? 𝑆𝑖 for each
index 𝑖 = 1, . . . , 𝑛, we get {𝑠0 , . . . , 𝑠𝑛} →𝜕

⋃{𝑆𝑖 : 𝑖 = 0, . . . , 𝑛}. We call resource
reduction the reflexive transitive closure of the one step resource reduction.

Moreover, we say that a resource term is normal or a normal form if it has no
factor of the shape ⟨𝜆𝑥𝑠⟩𝑡, with 𝑥 a variable, 𝑠 a resource term and 𝑡 a resource
monomial. Such a factor is called a redex and 𝜕𝑥𝑠 · 𝑡 is its contractum. A normal
subset of Δ is a set of normal resource terms.

Remark 3.5. Let 𝑠 be a resource term. One can immediately check, by induction
on 𝑠, that 𝑠 →𝜕 𝑆 for some set 𝑆 of resource terms if and only if 𝑠 is not normal.
In addition, that set 𝑆 is finite. Similarly, if 𝑇 is a subset of Δ, we get 𝑇 →𝜕 𝑆 for
some set 𝑆 of resource terms if and only if 𝑇 is not normal. Moreover, the set 𝑆
contains all normal resource terms of 𝑇.
Remark 3.6. The condition 𝑠0 →𝜕 𝑆0 appearing in the definition of the one step
resource reduction is not crucial in the sense that we could also ask 𝑠0 →𝜕

? 𝑆0
and go on with pretty much the same arguments. We can justify our choice by
noticing that the alternative requirement 𝑠0 →𝜕

? 𝑆0 would make the reduction
relation on subsets of Δ reflexive. This seems quite unpleasant: intuitively, the
computational process never terminates. On the other hand, as we observed in
the previous remark, the definition we actually gave ensures that, when 𝑇 is a
normal subset of Δ, there is no set of resource terms 𝑆 such that 𝑇 →𝜕 𝑆.
Remark 3.7. Let 𝑠 ∈ Δ and let 𝑇, 𝑇′, 𝑇1 , . . . , 𝑇𝑛 be finite subsets of Δ. If 𝑇 →𝜕 𝑇′,
then we have ⟨𝑠⟩[𝑇, 𝑇1 , . . . , 𝑇𝑛] →𝜕 ⟨𝑠⟩[𝑇′, 𝑇1 , . . . , 𝑇𝑛]. In particular, if 𝑡1 , . . . , 𝑡𝑛
are resource terms such that 𝑡𝑖 →𝜕

∗ 𝑇𝑖 for every 𝑖 = 1, . . . , 𝑛, then the condition
⟨𝑠⟩[𝑡1 , . . . , 𝑡𝑛] →𝜕

∗ ⟨𝑠⟩[𝑇1 , . . . , 𝑇𝑛] holds.
Remark 3.8. If 𝑆, 𝑆′, 𝑇, 𝑇′ are finite subsets of Δ such that 𝑆 →𝜕 𝑆′ and 𝑇 →𝜕 𝑇′,
then we get

⋃{𝑆, 𝑇} →𝜕
⋃{𝑆′, 𝑇′}. Evidently, the same holds for the reflexive

closure of the one step resource reduction and this can be generalized to finite
unions of subsets of Δ.
Remark 3.9. If 𝑆 is a finite subset of Δ, then we have 𝑆 →𝜕

? H(𝑆). In particular,
the set H(𝑆) is finite as well, by remark 3.5.
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The following result is easily established as in the quantitative case. See, for
instance, the proof of lemma 3.11 of [Vau19].

Lemma 3.7. Let 𝑟 be a resource term and let 𝑆 and𝑇 be subsets of Δ such that 𝑟 →𝜕 𝑆
and 𝑟 →𝜕 𝑇. Then there is a subset 𝑈 of Δ such that 𝑆 →𝜕

? 𝑈 and 𝑇 →𝜕
? 𝑈 .

Remark 3.10. One easily generalizes the previous result to the case in which we
have 𝑟 →𝜕

? 𝑆 and 𝑟 →𝜕
? 𝑇. For instance, if 𝑆 = {𝑟}, then we just choose 𝑈 := 𝑇

and we are done.
As a consequence, we obtain the following lemma.

Lemma 3.8. Let 𝑅, 𝑆 and 𝑇 be sets of resource terms such that 𝑅 →𝜕 𝑆 and 𝑅 →𝜕 𝑇.
Then there is a subset 𝑈 of Δ such that 𝑆 →𝜕

? 𝑈 and 𝑇 →𝜕
? 𝑈 .

Proof. By definition 3.11, for some resource terms 𝑠0 , . . . , 𝑠𝑛 , 𝑡0 , . . . , 𝑡𝑚 and for
some subsets 𝑆0 , . . . , 𝑆𝑛 , 𝑇0 , . . . , 𝑇𝑚 of Δ, we have 𝑠0 →𝜕 𝑆0, 𝑡0 →𝜕 𝑇0, 𝑠𝑖 →𝜕

? 𝑆𝑖

for every 𝑖 = 1, . . . , 𝑛, 𝑡 𝑗 → 𝑇𝑗 for every 𝑗 = 1, . . . , 𝑚 and we get the conditions:

𝑅 = {𝑠0 , . . . , 𝑠𝑛} = {𝑡0 , . . . , 𝑡𝑚}
𝑆 =

⋃{𝑆𝑖 : 𝑖 = 0, . . . , 𝑛}
𝑇 =

⋃{𝑇𝑗 : 𝑗 = 0, . . . , 𝑚}
Now consider, for all indices 𝑖 = 0, . . . , 𝑛, the set 𝐽𝑖 := { 𝑗 ∈ {0, . . . , 𝑚} : 𝑠𝑖 = 𝑡 𝑗}.
For all indices 𝑗 ∈ 𝐽𝑖 there is, by either lemma 3.7 or remark 3.10, a subset𝑈𝑖 𝑗 of
Δ such that 𝑆𝑖 →𝜕

? 𝑈𝑖 𝑗 and 𝑇𝑗 →𝜕
? 𝑈𝑖 𝑗 . Since {0, . . . , 𝑚} = ⋃{𝐽𝑖 : 𝑖 = 0, . . . , 𝑛},

the following conditions hold:

𝑆 =
⋃{𝑆𝑖 : 𝑗 ∈ 𝐽𝑖 , 𝑖 = 0, . . . , 𝑛}

𝑇 =
⋃{𝑇𝑗 : 𝑗 ∈ 𝐽𝑖 , 𝑖 = 0, . . . , 𝑛}

Then, by remark 3.8, we are done by picking:

𝑈 :=
⋃{𝑈𝑖 𝑗 : 𝑗 ∈ 𝐽𝑖 , 𝑖 = 0, . . . , 𝑛} □

Remark 3.11. The analogous of remark 3.10 holds. In other words, the reflexive
closure of the one step resource reduction satisfies the diamond property: if 𝑅,
𝑆 and 𝑇 are sets of resource terms such that 𝑅 →𝜕

? 𝑆 and 𝑅 →𝜕
? 𝑇, there exists

a subset 𝑈 of Δ such that 𝑆 →𝜕
? 𝑈 and 𝑇 →𝜕

? 𝑈 .
Recall that, if the diamond property is satisfied by a binary relation, then it

is also satisfied by its transitive closure (lemma 3.2.2 of [Bar84]). Therefore, by
the previous remark, we get the following result.

Proposition 3.4. Resource reduction satisfies the diamond property: if 𝑅, 𝑆 and 𝑇 are
sets of resource terms such that 𝑅 →𝜕

∗ 𝑆 and 𝑅 →𝜕
∗ 𝑇, there is a subset 𝑈 of Δ such

that 𝑆 →𝜕
∗ 𝑈 and 𝑇 →𝜕

∗ 𝑈 .

We now define a notion of size on resource expressions.

Definition 3.12. The size of a resource term 𝑠, denoted s(𝑠), is a strictly positive
integer defined inductively as follows:
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• If 𝑠 is a variable 𝑥, then s(𝑠) := 1.

• If 𝑠 ≡ 𝜆𝑥𝑟, then s(𝑠) := 1 + s(𝑟).
• If 𝑠 ≡ ⟨𝑟⟩[𝑡1 , . . . , 𝑡𝑛], then s(𝑠) := 1 + s(𝑟) + s(𝑡1) + · · · + s(𝑡𝑛).

In addition, the size of a resource monomial 𝑡 = [𝑡1 , . . . , 𝑡𝑛] is the non negative
integer defined by s(𝑡) := s(𝑡1) + · · · + s(𝑡𝑛).

If we restrict to finite sets of resource terms, we can extend the definition of
size.

Definition 3.13. The size of a finite set of resource terms 𝑆 is the non negative
integer defined by the condition:

s(𝑆) := sup{s(𝑠) : 𝑠 ∈ 𝑆}

In addition, we define the non negative integer n(𝑆) as the number of resource
terms 𝑠 ∈ 𝑆 such that s(𝑠) = s(𝑆).

We do not prove the following result, which is the analogous of lemma 3.12
of [Vau19].

Lemma 3.9. Let 𝑠 ∈ Δ and let 𝑆 be a subset of Δ such that 𝑠 →𝜕 𝑆. Then s(𝑆) < s(𝑠).
We consequently have the following lemma.

Lemma 3.10. Let 𝑠 be a resource term. Then s(𝑟) ≤ s(𝑠) for all 𝑟 ∈ H(𝑠). In addition,
for every such 𝑟, equality holds if and only if 𝑠 is a head normal form.

Proof. If 𝑠 is a head normal form, we get 𝑟 ≡ 𝑠 by definition 3.8. Otherwise, we
must have 𝑠 →𝜕 H(𝑠). By lemma 3.9, we can then conclude that s(𝑟) < s(𝑠). □

By remark 3.9, it is meaningful to compare the size of a finite set of resource
terms 𝑆 with the size of H(𝑆).
Lemma 3.11. Let 𝑆 be a finite subset of Δ. Then s(H(𝑆)) ≤ s(𝑆). Moreover, if 𝑆 is not
empty and contains no head normal forms, the strict inequality holds.

Proof. The result is trivial if H(𝑆) is empty. On the other hand, if this set is not
empty, then 𝑆 is not empty as well. Let 𝑠0 be a resource term of maximal size in
H(𝑆) and let 𝑠1 ∈ 𝑆 be a resource term such that 𝑠0 ∈ H(𝑠1). By lemma 3.10 and
by definition 3.13, we obtain the following inequalities:

s(H(𝑆)) = s(𝑠0) ≤ s(𝑠1) ≤ s(𝑆)

Finally, if 𝑆 contains no head normal forms then, for sure, its element 𝑠1 is not a
head normal form either. Hence, by lemma 3.10, the first inequality above is a
strict inequality and we are done. □

We now prove that resource reduction enjoys weak normalization.



CHAPTER 3. TAYLOR EXPANSION OF 𝜆-TERMS 45

Proposition 3.5. Let 𝑆 be a finite subset of Δ. Then there exist a non negative integer
𝑛 and a normal subset 𝑇 of Δ such that 𝑆 →𝜕

𝑛 𝑇.

Proof. For any subset 𝑅 of Δ, we denote �̃� the set of non normal resource terms
of 𝑅. We reason by lexicographical induction on the pair (s(�̃�), n(�̃�)).

• Base of the induction. If s(�̃�) = 0, then 𝑆 is normal. Thus, by picking 𝑛 := 0
and 𝑇 := 𝑆, we are done.

• Inductive step. We can suppose s(�̃�) ≥ 1. Consider a non normal resource
term 𝑠0 ∈ �̃� of maximal size. By remark 3.5, there is a subset 𝑆0 of Δ such
that 𝑠0 →𝜕 𝑆0. Then, by definition 3.11, we get 𝑆 →𝜕 𝑅, where we define:

𝑅 :=
⋃{𝑆\{𝑠0}, 𝑆0}

By lemma 3.9, the size of 𝑆0 is strictly smaller than the size of 𝑠0. We then
have two possibilities:

⋄ If n(�̃�) = 1, then s(�̃�) < s(�̃�).
⋄ If n(�̃�) ≥ 2, then s(�̃�) = s(�̃�) but n(�̃�) < n(�̃�).

In both cases, we can apply the inductive hypothesis, which yields a non
negative integer 𝑘 and a normal subset 𝑇 of Δ satisfying 𝑅 →𝜕

𝑘 𝑇. Then,
by picking 𝑛 := 𝑘 + 1, we are done. □

Remark 3.12. Resource reduction does not enjoy at all strong normalization, as
we have plenty of counterexamples of non terminating reduction sequences: if
we just consider a resource term 𝑠 and a subset 𝑆 of Δ such that 𝑠 →𝜕 𝑆, we get
𝑇 →𝜕 𝑇 by picking 𝑇 :=

⋃{𝑆, {𝑠}}.
On the other hand, the following result is good news.

Proposition 3.6. If 𝑆 is a finite subset of Δ, then there exists a unique normal subset
𝑇 of Δ such that 𝑆 →𝜕

∗ 𝑇.

Proof. The existence of such a subset of Δ is guaranteed by proposition 3.5. If 𝑅
and 𝑇 are normal subsets of Δ such that 𝑆 →𝜕

∗ 𝑅 and 𝑆 →𝜕
∗ 𝑇 then, thanks to

proposition 3.4, we also have a subset𝑈 of Δ such that 𝑅 →𝜕
∗ 𝑈 and 𝑇 →𝜕

∗ 𝑈 .
Observe that, by remark 3.5, we must have 𝑅 = 𝑈 = 𝑇 and so we are done. □

The following definition is now justified.

Definition 3.14. Let 𝑆 be a finite subset of Δ. The unique normal subset 𝑇 of Δ
such that 𝑆 →𝜕

∗ 𝑇 is called normal form of 𝑆 and denoted NF(𝑆).
Convention. For the sake of simplicity, if 𝑠 is a resource term, we write NF(𝑠)
actually meaning NF({𝑠}).

We now have the following results.

Lemma 3.12. Let 𝑠 be a resource term such that NF(𝑠) is not empty. Then there exists
a non negative integer 𝑘 such that H𝑘(𝑠) contains a head normal form.
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Proof. We notice that, if H𝑛(𝑠) were empty for some positive integer 𝑛, then we
would have 𝑠 →𝜕

∗ H𝑛(𝑠) and thus NF(𝑠) = H𝑛(𝑠) = ∅, which is a contradiction
with our hypotheses. Therefore, the set H𝑛(𝑠) is not empty for all non negative
integers 𝑛.

We now choose 𝑘 as a non negative integer such that s(H𝑘(𝑠)) is minimal in
the set {s(H𝑛(𝑠)) : 𝑛 ∈ N}. We notice that, by lemma 3.11 and by the choice of 𝑘,
the condition s(H𝑘(𝑠)) = s(H𝑘+1(𝑠)) holds. Hence, by using lemma 3.11 and the
fact that H𝑘(𝑠) is not empty, we can conclude that the set H𝑘(𝑠) contains a head
normal form. □

Theorem 3.1. Let 𝑀 be a 𝜆-term. If NF(𝑠) is not empty for some 𝑠 ∈ T(𝑀), the head
reduction of 𝑀 terminates.

Proof. By lemma 3.12, we know that there exists a non negative integer 𝑘 such
that H𝑘(𝑠) contains a head normal form. For the sake of contradiction, assume:

H𝑘(𝑀) ≡ 𝜆𝑥1 . . .𝜆𝑥𝑛(𝜆𝑥𝑃)𝑁𝑁1 . . . 𝑁𝑘

By using the hypothesis that 𝑠 ∈ T(𝑀) and by applying proposition 3.3, we get
the condition:

H𝑘(𝑠) ⊆ H𝑘(T(𝑀)) = T(H𝑘(𝑀))
= 𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝜆𝑥T(𝑃)⟩T(𝑁)!T(𝑁1)! . . .T(𝑁𝑘)!

This contradicts the fact that H𝑘(𝑠) contains a head normal form. We can then
conclude that H𝑘(𝑀) is a head normal form and thus the head reduction of 𝑀
terminates. □

Lemma 3.13. Let 𝑀 and 𝑁 be 𝜆-terms. If 𝑀 →𝛽 𝑁 and 𝑡 ∈ T(𝑁), then there exist a
resource term 𝑠 ∈ T(𝑀) and a set of resource terms 𝑆 such that 𝑠 →𝜕

∗ 𝑆 and 𝑡 ∈ 𝑆.

Proof. We reason by induction on the one step 𝛽-reduction 𝑀 →𝛽 𝑁 .

• If 𝑀 ≡ (𝜆𝑥𝑃)𝑄 and 𝑁 ≡ 𝑃[𝑥 := 𝑄] then, by lemma 3.5, we get 𝑡 ∈ 𝜕𝑥𝑢 · �̄�
for a certain 𝑢 ∈ T(𝑃) and for some �̄� ∈ T(𝑄)!. We now obtain the desired
conclusion by picking 𝑠 := ⟨𝜆𝑥𝑢⟩�̄� and 𝑆 := 𝜕𝑥𝑢 · �̄�.

• If 𝑀 ≡ 𝜆𝑥𝑃, 𝑁 ≡ 𝜆𝑥𝑄 and 𝑃 →𝛽 𝑄, then 𝑡 ≡ 𝜆𝑥𝑢 for some 𝑢 ∈ T(𝑄). By
inductive hypothesis, there exist a resource term 𝑟 ∈ T(𝑃) and a subset 𝑅
of Δ such that 𝑟 →𝜕

∗ 𝑅 and 𝑢 ∈ 𝑅. Then we are done by picking 𝑠 := 𝜆𝑥𝑟
and 𝑆 := 𝜆𝑥𝑅.

• If 𝑀 ≡ 𝑃𝑂, 𝑁 ≡ 𝑄𝑂 and 𝑃 →𝛽 𝑄, we get 𝑡 ≡ ⟨𝑢⟩�̄� for a certain 𝑢 ∈ T(𝑄)
and for some �̄� ∈ T(𝑂)!. The inductive hypothesis yields a resource term
𝑟 ∈ T(𝑃) and a subset 𝑅 of Δ such that 𝑟 →𝜕

∗ 𝑅 and 𝑢 ∈ 𝑅. We then have
the desired result by picking 𝑠 := ⟨𝑟⟩�̄� and 𝑆 := ⟨𝑅⟩�̄�.



CHAPTER 3. TAYLOR EXPANSION OF 𝜆-TERMS 47

• If 𝑀 ≡ 𝑂𝑃, 𝑁 ≡ 𝑂𝑄 and 𝑃 →𝛽 𝑄, then we have 𝑡 ≡ ⟨𝑢⟩[𝑣1 , . . . , 𝑣𝑛] for a
certain 𝑢 ∈ T(𝑂) and for some 𝑣1 , . . . , 𝑣𝑛 ∈ T(𝑄). For 𝑖 = 1, . . . , 𝑛 we get,
by inductive hypothesis, an element 𝑟𝑖 ∈ T(𝑃) and a subset 𝑅𝑖 of Δ which
satisfy 𝑟𝑖 →𝜕

∗ 𝑅𝑖 and 𝑣𝑖 ∈ 𝑅𝑖 . Thus, by remark 3.7, it is enough to choose
𝑠 := ⟨𝑢⟩[𝑟1 , . . . , 𝑟𝑛] and 𝑆 := ⟨𝑢⟩[𝑅1 , . . . , 𝑅𝑛]. □

We recall one last result about usual lambda calculus.

Lemma 3.14. If 𝑀 and 𝑁 are 𝛽-equivalent 𝜆-terms, then there exists a 𝜆-term 𝑃 such
that 𝑀 →𝛽

∗ 𝑃 and 𝑁 →𝛽
∗ 𝑃.

Proof. See theorem 3.2.8 of [Bar84]. □

We can now prove the following theorem.

Theorem 3.2. Let 𝑀 be a 𝜆-term. If 𝑀 has a head normal form, then the set NF(𝑠) is
not empty for some resource term 𝑠 ∈ T(𝑀).
Proof. By hypothesis, the 𝜆-term 𝑀 is convertible to a head normal form 𝑁 . By
lemma 3.14, we get a 𝜆-term 𝑃 such that 𝑀 →𝛽

∗ 𝑃 and 𝑁 →𝛽
∗ 𝑃. In particular,

the 𝜆-term 𝑃 is a head normal form. This means that:

𝑃 ≡ 𝜆𝑥1 . . .𝜆𝑥𝑛(𝑥)𝑃1 . . . 𝑃𝑘

We define the following resource term (it is intended that there are precisely 𝑘
occurrences of resource monomials):

𝑡 := 𝜆𝑥1 . . .𝜆𝑥𝑛 ⟨𝑥⟩[ ] . . . [ ]

Then 𝑡 ∈ T(𝑃) and so, by lemma 3.13, there exist a resource term 𝑠 ∈ T(𝑀) and
a set of resource terms 𝑆 satisfying 𝑠 →𝜕

∗ 𝑆 and 𝑡 ∈ 𝑆. Now, by proposition 3.4
and by definition 3.14, we must have the condition 𝑆 →𝜕

𝑛 NF(𝑠) for some non
negative integer 𝑛. Finally, since 𝑡 is a normal resource term, by remark 3.5 we
obtain 𝑡 ∈ NF(𝑠) and so we are done. □

We can finally establish the head reduction theorem as an easy corollary of
the previous results.

Corollary 3.1. Let 𝑀 be a 𝜆-term. If 𝑀 has a head normal form, the head reduction of
𝑀 terminates.

Proof. Immediate consequence of theorems 3.1 and 3.2. □



Conclusion

Driven by the fundamental question of identity of proofs, we got interested in
three equivalence relations on proof nets and the relationships between them:
the syntactic, semantic and observational equivalences. The former is intrinsic
to computation, whereas the others depend on the model or on the observable
value we choose. If the syntactic and semantic equivalences coincide, then we
say that the model is injective. If the syntactic and observational equivalences,
instead, coincide, then the question of separability has a positive answer (with
respect to the considered observable value).

We chose to investigate the semantic equivalences induced by the coherent
multiset based model and the relational model. We turned our attention to the
multiplicative and exponential fragment of linear logic. In this framework, we
revisited the key notion of obsessional experiment and reviewed the results in
the paper [TdF03] leading us to a sufficient condition of local injectivity. Then,
motivated by the recent result of injectivity in [Car15], we shifted our attention
to the Taylor expansion of 𝜆-terms. We first established that the Taylor support
commutes with head reduction, then we focused on the properties of resource
reduction in a qualitative setting and we employed them to establish the head
reduction theorem.

We now retrieve and update the table in section 4.3 of the paper [TdF03] to
sum up the state of the art concerning the question of injectivity. First of all, we
introduce the following notations:

• We denote MELL\{?𝑤} the fragment of MELL which contains every link
except the weakening link. It corresponds to the subsystem of ACC proof
nets.

• We define positive and negative formulas by mutual induction:

⋄ If 𝑋 is an atomic formula, then !𝑋 is a positive formula and ?𝑋⊥ is a
negative formula.

⋄ If 𝐴 and 𝐵 are positive formulas, then 𝐴 ⊗ 𝐵 is a positive formula.
⋄ If 𝐴 and 𝐵 are negative formulas, then 𝐴` 𝐵 is a negative formula.
⋄ If 𝐴 is a negative formula, then !𝐴 is a positive formula.
⋄ If 𝐴 is a positive formula, then ?𝐴 is a negative formula.

48
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J Kcohs J Kcohm J Krel

MELL NO NO YES
MELL\{?𝑤} ? (yes) ? (yes) YES

LLpol ? (no) ? (no) YES
(?`)LL ? (yes) YES YES

Table 1: The question of injectivity: answers and open problems.

We say that an AC proof net 𝑅 is polarized if the types of the conclusions
of 𝑅 are all subformulas of a positive or of a negative formula. We denote
LLpol the system of polarized proof nets.

• We define inductively the set of (?`)LL formulas:

⋄ If 𝑋 is an atomic formula, then 𝑋 is a (?`)LL formula.
⋄ If 𝐴 and 𝐵 are two (?`)LL formulas, then ?𝐴` 𝐵, 𝐴` ?𝐵, 𝐴` 𝐵 and

𝐴 ⊗ 𝐵 are (?`)LL formulas.
⋄ If 𝐴 is a (?`)LL formula, then so is !𝐴.

We say that an AC proof net is in (?`)LL if the types of its conclusions are
all subformulas of (?`)LL formulas. We also denote (?`)LL the system of
(?`)LL proof nets.

• The set based coherent semantics, the multiset based coherent semantics
and relational semantics are denoted by J Kcohs, J Kcohm, J Krel respectively.

The current situation in the study of these subsystems of MELL is summed
up in table 1. We wrote in capital letters the answers we already possess and in
small letters the conjectures. The last column was updated thanks to Daniel de
Carvalho’s proof of injectivity in [Car15]. In addition, the row concerning LLpol
was also updated, following a private communication of Damiano Mazza and
Michele Pagani. On the other hand the case of MELL\{?𝑤}, which would help
to understand the relation between connectivity and coherence, is still an open
problem. There are at least two strategies to prove injectivity for this fragment:

(A) Proving the existence of an injective 1-experiment for all ACC proof nets.

(B) Proving, for any ACC proof net 𝑅, the existence of a 2-point that belongs
to the interpretation of 𝑅 by coherent semantics and which is injective in
the relational sense.

If we manage to carry out strategy (A), then we obtain a weaker result than the
one we would get with strategy (B): for any ACC proof net 𝑅 we would have an
injective 1-experiment and in particular, for all positive integers 𝑛, an injective
𝑛-obsessional experiment. So, for each proof net 𝑅′ with the same conclusions
as 𝑅, we would be able to find a sufficiently large integer 𝑛 such that the result
of an 𝑛-obsessional experiment of 𝑅 is not in the interpretation of 𝑅′. However,
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we would not have found a 2-point that contains all information about 𝑅 with
respect to ACC proof nets, which is something we would find instead by using
strategy (B).
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