Monadic second order logic

Raffaele Di Donna

June 15, 2021

TAble of CONTENTS

Introduction

MSO games

Expressibility of queries

Graph queries and EMSO games

INTRODUCTION

BASIC NOTIONS

SO logic extends the definition of FO logic with SO variables ranging over relations on the universe of any arity, and quantification over such variables.

BASIC NOTIONS

SO logic extends the definition of FO logic with SO variables ranging over relations on the universe of any arity, and quantification over such variables.

Universal SO logic, or USO, is defined as the restriction of SO that consists of formulas of the form:

$$
\forall X_{1} \ldots \forall X_{n} \varphi
$$

where X_{1}, \ldots, X_{n} are SO variables and φ is a FO formula.

BASIC NOTIONS

SO logic extends the definition of FO logic with SO variables ranging over relations on the universe of any arity, and quantification over such variables.
Existential SO logic, or ESO, is defined as the restriction of SO that consists of formulas of the form:

$$
\exists X_{1} \ldots \exists X_{n} \varphi
$$

where X_{1}, \ldots, X_{n} are SO variables and φ is a FO formula.

BASIC NOTIONS

Monadic SO logic, or MSO, is the restriction of SO where all second order variables have arity 1.

BASIC NOTIONS

Monadic SO logic, or MSO, is the restriction of SO where all second order variables have arity 1.

Universal MSO, or UMSO, is the intersection of USO and MSO. In literature, this is also called monadic Π_{1}^{1} or monadic coNP.

BASIC NOTIONS

Monadic SO logic, or MSO, is the restriction of SO where all second order variables have arity 1.

Existential MSO, or EMSO, is the intersection of ESO and MSO. In literature, this is also called monadic Σ_{1}^{1} or monadic NP.

EVEN CARDINALITY QUERY

Example.

The even cardinality query, or EC, is ESO-expressible by using the following sentence:

EVEN CARDINALITY QUERY

Example.

The even cardinality query, or EC, is ESO-expressible by using the following sentence:

$$
\exists U_{1} \exists U_{2} \exists F \varphi
$$

where φ is a FO formula in $\mathcal{L}=\left\{U_{1}, U_{2}, F\right\}$ stating that U_{1} and U_{2} form a partition of the universe and that $F \subseteq U_{1} \times U_{2}$ is functional and bijective.

EVEN CARDINALITY QUERY

Example.

The even cardinality query, or EC, is ESO-expressible by using the following sentence:

$$
\exists U_{1} \exists U_{2} \exists F \varphi
$$

where φ is a FO formula in $\mathcal{L}=\left\{U_{1}, U_{2}, F\right\}$ stating that U_{1} and U_{2} form a partition of the universe and that $F \subseteq U_{1} \times U_{2}$ is functional and bijective. This sentence is not in MSO.

EVEN CARDINALITY QUERY

Example.

The even cardinality query, or EC, is ESO-expressible by using the following sentence:

$$
\exists U_{1} \exists U_{2} \exists F \varphi
$$

where φ is a FO formula in $\mathcal{L}=\left\{U_{1}, U_{2}, F\right\}$ stating that U_{1} and U_{2} form a partition of the universe and that $F \subseteq U_{1} \times U_{2}$ is functional and bijective. This sentence is not in MSO. However, we will see that EC is MSO-expressible.

MSO GAMES

PRELIMINARIES

We are given:

PRELIMINARIES

We are given:

- Structures \mathfrak{A} and \mathfrak{B} for a finite relational language \mathcal{L}.

We are given:

- Structures \mathfrak{A} and \mathfrak{B} for a finite relational language \mathcal{L}.
- Two q-tuples $\vec{a}_{0} \in A^{q}$ and $\vec{b}_{0} \in B^{q}$.

We are given:

- Structures \mathfrak{A} and \mathfrak{B} for a finite relational language \mathcal{L}.
- Two q-tuples $\vec{a}_{0} \in A^{q}$ and $\vec{b}_{0} \in B^{q}$.
- Two t-tuples $\vec{V}_{0} \in \mathcal{P}(A)^{t}$ and $\vec{U}_{0} \in \mathcal{P}(B)^{t}$.

PRELIMINARIES

We are given:

- Structures \mathfrak{A} and \mathfrak{B} for a finite relational language \mathcal{L}.
- Two q-tuples $\vec{a}_{0} \in A^{q}$ and $\vec{b}_{0} \in B^{q}$.
- Two t-tuples $\vec{V}_{0} \in \mathcal{P}(A)^{t}$ and $\vec{U}_{0} \in \mathcal{P}(B)^{t}$.

Let $\mathfrak{A}^{\prime}:=\left(\mathfrak{A}, \vec{a}_{0}, \vec{V}_{0}\right)$ be the structure for $\mathcal{L} \cup\left\{\vec{c}_{0}, \vec{R}_{0}\right\}$ with:

PRELIMINARIES

We are given:

- Structures \mathfrak{A} and \mathfrak{B} for a finite relational language \mathcal{L}.
- Two q-tuples $\vec{a}_{0} \in A^{q}$ and $\vec{b}_{0} \in B^{q}$.
- Two t-tuples $\vec{V}_{0} \in \mathcal{P}(A)^{t}$ and $\vec{U}_{0} \in \mathcal{P}(B)^{t}$.

Let $\mathfrak{A}^{\prime}:=\left(\mathfrak{A}, \vec{a}_{0}, \vec{V}_{0}\right)$ be the structure for $\mathcal{L} \cup\left\{\vec{c}_{0}, \vec{R}_{0}\right\}$ with:

- \vec{c}_{0} a q-tuple of new constant symbols, naturally interpreted with the elements of the q-tuple \vec{a}_{0}.

PRELIMINARIES

We are given:

- Structures \mathfrak{A} and \mathfrak{B} for a finite relational language \mathcal{L}.
- Two q-tuples $\vec{a}_{0} \in A^{q}$ and $\vec{b}_{0} \in B^{q}$.
- Two t-tuples $\vec{V}_{0} \in \mathcal{P}(A)^{t}$ and $\vec{U}_{0} \in \mathcal{P}(B)^{t}$.

Let $\mathfrak{A}^{\prime}:=\left(\mathfrak{A}, \vec{a}_{0}, \vec{V}_{0}\right)$ be the structure for $\mathcal{L} \cup\left\{\vec{c}_{0}, \vec{R}_{0}\right\}$ with:

- \vec{c}_{0} a q-tuple of new constant symbols, naturally interpreted with the elements of the q-tuple \vec{a}_{0}.
- \vec{R}_{0} a t-tuple of new relation symbols of arity 1 , naturally interpreted with the objects of the t-tuple \vec{V}_{0}.

Preliminaries

We are given:

- Structures \mathfrak{A} and \mathfrak{B} for a finite relational language \mathcal{L}.
- Two q-tuples $\vec{a}_{0} \in A^{q}$ and $\vec{b}_{0} \in B^{q}$.
- Two t-tuples $\vec{V}_{0} \in \mathcal{P}(A)^{t}$ and $\vec{U}_{0} \in \mathcal{P}(B)^{t}$.

Let $\mathfrak{A}^{\prime}:=\left(\mathfrak{A}, \vec{a}_{0}, \vec{V}_{0}\right)$ be the structure for $\mathcal{L} \cup\left\{\vec{c}_{0}, \vec{R}_{0}\right\}$ with:

- \vec{c}_{0} a q-tuple of new constant symbols, naturally interpreted with the elements of the q-tuple \vec{a}_{0}.
- \vec{R}_{0} a t-tuple of new relation symbols of arity 1 , naturally interpreted with the objects of the t-tuple \vec{V}_{0}.

Analogously, we define $\mathfrak{B}^{\prime}:=\left(\mathfrak{B}, \vec{b}_{0}, \vec{U}_{0}\right)$.

RULES OF THE GAME

Two players, the spoiler and the duplicator, play on \mathfrak{A}^{\prime} and \mathfrak{B}^{\prime} with two different kind of moves:

RULES OF THE GAME

Two players, the spoiler and the duplicator, play on \mathfrak{A}^{\prime} and \mathfrak{B}^{\prime} with two different kind of moves:

Point move. This is the same move as in the Ehrenfeucht-Fraïssé game for FO. The spoiler chooses a structure, \mathfrak{A}^{\prime} or \mathfrak{B}^{\prime} and an element of that structure. The duplicator responds with an element in the other structure.

RULES OF THE GAME

Two players, the spoiler and the duplicator, play on \mathfrak{A}^{\prime} and \mathfrak{B}^{\prime} with two different kind of moves:

Point move. This is the same move as in the Ehrenfeucht-Fraïssé game for FO. The spoiler chooses a structure, \mathfrak{A}^{\prime} or \mathfrak{B}^{\prime} and an element of that structure. The duplicator responds with an element in the other structure.

Set move. The spoiler chooses a structure, \mathfrak{A}^{\prime} or \mathfrak{B}^{\prime} and a subset of that structure. The duplicator responds with a subset of the other structure.

Winning condition

Let c_{1}, \ldots, c_{n} be the constant symbols of \mathcal{L}.

Winning condition

Let c_{1}, \ldots, c_{n} be the constant symbols of \mathcal{L}. Suppose that, in a k-round game, we have:

Winning condition

Let c_{1}, \ldots, c_{n} be the constant symbols of \mathcal{L}. Suppose that, in a k-round game, we have:

- Point moves $\vec{a} \in A^{P}$ and $\vec{b} \in B^{P}$.

Winning condition

Let c_{1}, \ldots, c_{n} be the constant symbols of \mathcal{L}. Suppose that, in a k-round game, we have:

- Point moves $\vec{a} \in A^{p}$ and $\vec{b} \in B^{p}$.
- Set moves $\vec{V} \in \mathcal{P}(A)^{k-p}$ and $\vec{U} \in \mathcal{P}(B)^{k-p}$.

Winning condition

Let c_{1}, \ldots, c_{n} be the constant symbols of \mathcal{L}. Suppose that, in a k-round game, we have:

- Point moves $\vec{a} \in A^{p}$ and $\vec{b} \in B^{p}$.
- Set moves $\vec{V} \in \mathcal{P}(A)^{k-p}$ and $\vec{U} \in \mathcal{P}(B)^{k-p}$.

The duplicator wins the k-round game if the function:

$$
\left(c_{1}^{\mathfrak{A}}, \ldots, c_{n}^{\mathfrak{A}}, \vec{a}_{0}, \vec{a}\right) \mapsto\left(c_{1}^{\mathfrak{B}}, \ldots, c_{n}^{\mathfrak{B}}, \vec{b}_{0}, \vec{b}\right)
$$

is a partial isomorphism between $\left(\mathfrak{A}^{\prime}, \vec{V}\right)$ and $\left(\mathfrak{B}^{\prime}, \vec{U}\right)$.

Winning condition

Let c_{1}, \ldots, c_{n} be the constant symbols of \mathcal{L}. Suppose that, in a k-round game, we have:

- Point moves $\vec{a} \in A^{P}$ and $\vec{b} \in B^{p}$.
- Set moves $\vec{V} \in \mathcal{P}(A)^{k-p}$ and $\vec{U} \in \mathcal{P}(B)^{k-p}$.

The duplicator wins the k-round game if the function:

$$
\left(c_{1}^{\mathfrak{A}}, \ldots, c_{n}^{\mathfrak{A}}, \vec{a}_{0}, \vec{a}\right) \mapsto\left(c_{1}^{\mathfrak{B}}, \ldots, c_{n}^{\mathfrak{B}}, \vec{b}_{0}, \vec{b}\right)
$$

is a partial isomorphism between $\left(\mathfrak{A}^{\prime}, \vec{V}\right)$ and $\left(\mathfrak{B}^{\prime}, \vec{U}\right)$.
A player has a winning strategy for the k-round game if he can guarantee he wins regardless of how the other player plays.

EXAMPLE

We will play games on these two graphs.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

Let us play first a standard Ehrenfeucht-Fraïssé game.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

This tells us that $\mathfrak{A} \equiv_{5} \mathfrak{B}$ but $\mathfrak{A} \neq{ }_{6} \mathfrak{B}$.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

We will now play an MSO game on the same structures.

Spoiler and duplicator moves will be red and blue respectively.

EXAMPLE

This suggests that $\mathfrak{A} \equiv{ }_{3}^{\text {MSO }} \mathfrak{B}$ but $\mathfrak{A} \not \equiv \overline{4}_{4}^{\text {MSO }} \mathfrak{B}$.

Spoiler and duplicator moves will be red and blue respectively.

LOGICAL CHARACTERIZATION

Theorem.
For every $k \geqslant 0$, the following are equivalent:

LOGICAL CHARACTERIZATION

Theorem.
For every $k \geqslant 0$, the following are equivalent:

1. The duplicator has a winning strategy for k-round MSO games on \mathfrak{A} and \mathfrak{B}.

LOGICAL CHARACTERIZATION

Theorem.
For every $k \geqslant 0$, the following are equivalent:

1. The duplicator has a winning strategy for k-round MSO games on \mathfrak{A} and \mathfrak{B}.
2. $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$, i.e. \mathfrak{A} and \mathfrak{B} agree on MSO sentences of quantifier rank less than or equal to k.

LOGICAL CHARACTERIZATION

Theorem.
For every $k \geqslant 0$, the following are equivalent:

1. The duplicator has a winning strategy for k-round MSO games on \mathfrak{A} and \mathfrak{B}.
2. $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$, i.e. \mathfrak{A} and \mathfrak{B} agree on MSO sentences of quantifier rank less than or equal to k.

The proof is essentially the same as for EF games.

EXPRESSIBILITY OF QUERIES

COMPOSITION LEMMA

Let \mathcal{L} be a finite relational language with no constant symbols.

COMPOSITION LEMMA

Let \mathcal{L} be a finite relational language with no constant symbols.
Let \mathfrak{A}_{1} and \mathfrak{A}_{2} be two structures for \mathcal{L} with disjoint domains.

COMPOSITION LEMMA

Let \mathcal{L} be a finite relational language with no constant symbols.
Let \mathfrak{A}_{1} and \mathfrak{A}_{2} be two structures for \mathcal{L} with disjoint domains.
We define the disjoint union of $\left(\mathfrak{A}_{1}, \vec{a}_{1}, V_{1}, \ldots, V_{s}\right)$ and
$\left(\mathfrak{A}_{2}, \vec{a}_{2}, W_{1}, \ldots, W_{s}\right)$ as the structure:

COMPOSITION LEMMA

Let \mathcal{L} be a finite relational language with no constant symbols.
Let \mathfrak{A}_{1} and \mathfrak{A}_{2} be two structures for \mathcal{L} with disjoint domains.
We define the disjoint union of $\left(\mathfrak{A}_{1}, \vec{a}_{1}, V_{1}, \ldots, V_{S}\right)$ and
$\left(\mathfrak{A}_{2}, \vec{a}_{2}, W_{1}, \ldots, W_{s}\right)$ as the structure:

$$
\left(\mathfrak{A}, \vec{a}_{1}, \vec{a}_{2}, V_{1} \cup W_{1}, \ldots, V_{s} \cup W_{s}\right)
$$

where \mathfrak{A} is the structure for \mathcal{L} whose domain is $A_{1} \cup A_{2}$ and interpreting as $R^{\mathfrak{L}_{1}} \cup R^{\mathfrak{L}_{2}}$ each relation symbol R of \mathcal{L}.

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively.

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.
By induction on $k \geqslant 0$.

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step.

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\mathrm{MSO}}$.

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\mathrm{MSO}}$. Assume the spoiler makes a point move.

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\text {MSO }}$. Assume the spoiler makes a point move.

$$
\mathfrak{A}_{1} \quad \equiv_{k}^{\text {MSO }} \quad \mathfrak{B}_{1} \quad, \mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2} \quad \mathfrak{A} \quad \mathfrak{B}
$$

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\text {MSO }}$. Assume the spoiler makes a point move.

$$
\mathfrak{A}_{1} \quad \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1} \quad, \mathfrak{A}_{2} \equiv \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2} \quad \begin{gathered}
(\mathfrak{A}, a) \\
\\
\\
\\
\\
\\
\\
\text { spoiler }
\end{gathered}
$$

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\mathrm{MSO}}$. Assume the spoiler makes a point move.

$$
\left(\mathfrak{A}_{1}, a\right) \quad \mathfrak{B}_{1} \quad, \mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2} \quad(\mathfrak{A}, a) \quad \mathfrak{B}
$$

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\text {MSO }}$. Assume the spoiler makes a point move.

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\mathrm{MSO}}$. Assume the spoiler makes a point move.

$$
\left(\mathfrak{A}_{1}, a\right) \quad\left(\mathfrak{B}_{1}, b\right), \mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2} \quad(\mathfrak{A}, a) \quad(\mathfrak{B}, b)
$$

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\mathrm{MSO}}$. Assume the spoiler makes a point move.

$$
\left(\mathfrak{A}_{1}, a\right) \equiv \equiv_{k-1}^{\mathrm{MSO}}\left(\mathfrak{B}_{1}, b\right), \mathfrak{A}_{2} \equiv_{k}^{\mathrm{MSO}} \mathfrak{B}_{2} \quad(\mathfrak{A}, a) \quad(\mathfrak{B}, b)
$$

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\mathrm{MSO}}$. Assume the spoiler makes a point move.

$$
\left(\mathfrak{A}_{1}, a\right) \equiv_{k-1}^{\mathrm{MSO}}\left(\mathfrak{B}_{1}, b\right), \mathfrak{A}_{2} \equiv_{k-1}^{\mathrm{MSO}} \mathfrak{B}_{2} \quad(\mathfrak{A}, a) \quad(\mathfrak{B}, b)
$$

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\text {MSO }}$. Assume the spoiler makes a point move.

$$
\begin{aligned}
\left(\mathfrak{A}_{1}, a\right) \equiv \equiv_{k-1}^{\mathrm{MSO}}\left(\mathfrak{B}_{1}, b\right), \mathfrak{A}_{2} & \equiv{ }_{k-1}^{\mathrm{MSO}} \mathfrak{B}_{2} \\
& \Longrightarrow(\mathfrak{A}, a) \equiv_{k-1}^{\mathrm{MSO}}(\mathfrak{B}, b) \\
& \text { inductive hypothesis }
\end{aligned}
$$

COMPOSITION LEMMA

Lemma.

Let \mathfrak{A} and \mathfrak{B} be the disjoint unions of \mathfrak{A}_{1} and $\mathfrak{A}_{2}, \mathfrak{B}_{1}$ and \mathfrak{B}_{2} respectively. If $\mathfrak{A}_{1} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1}$ and $\mathfrak{A}_{2} \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}$, then $\mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}$.

Proof.

By induction on $k \geqslant 0$. As the base case is trivial, we will only see the inductive step. We will use the game characterization of $\equiv_{k}^{\text {MSO }}$. Assume the spoiler makes a point move.

$$
\left(\mathfrak{A}_{1}, a\right) \equiv_{k-1}^{\text {MSO }}\left(\mathfrak{B}_{1}, b\right), \mathfrak{A}_{2} \equiv_{k-1}^{\text {MSO }} \mathfrak{B}_{2} \Longrightarrow \mathfrak{A} \equiv_{k}^{\text {MSO }} \mathfrak{B}
$$

COMPOSITION LEMMA

Now suppose the spoiler makes a set move.

COMPOSITION LEMMA

Now suppose the spoiler makes a set move.

$$
\mathfrak{A}_{1} \quad \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1} \quad, \mathfrak{A}_{2} \quad \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}
$$

COMPOSITION LEMMA

Now suppose the spoiler makes a set move.

$$
\mathfrak{A}_{1} \quad \equiv_{k}^{\text {MSO }} \mathfrak{B}_{1} \quad, \mathfrak{A}_{2} \quad \equiv_{k}^{\text {MSO }} \mathfrak{B}_{2}
$$

COMPOSITION LEMMA

Now suppose the spoiler makes a set move.
$\begin{array}{ccc}\left(\mathfrak{A}_{1}, V_{1}\right) \\ \uparrow & \mathfrak{B}_{1} & ,\left(\mathfrak{A}_{2}, V_{2}\right) \\ \uparrow & & \\ \text { 个 }\end{array}$
$V \cap A_{1}$
$V \cap A_{2}$
($\mathfrak{A}, ~ V)$
\mathfrak{B}

COMPOSITION LEMMA

Now suppose the spoiler makes a set move.
$\left(\mathfrak{A}_{1}, V_{1}\right)$
$\left(\mathfrak{B}_{1}, U_{1}\right),\left(\mathfrak{A}_{2}, V_{2}\right)$
$\left(\mathfrak{B}_{2}, \mathrm{U}_{2}\right)$

duplicator
\uparrow
duplicator
($\mathfrak{A}, ~ V)$
\mathfrak{B}

COMPOSITION LEMMA

Now suppose the spoiler makes a set move.

$$
\left(\mathfrak{A}_{1}, V_{1}\right) \quad\left(\mathfrak{B}_{1}, U_{1}\right),\left(\mathfrak{A}_{2}, V_{2}\right) \quad\left(\mathfrak{B}_{2}, U_{2}\right)
$$

$(\mathfrak{A}, ~ V)$
(\mathfrak{B}, U)
\uparrow
$U_{1} \cup U_{2}$

COMPOSITION LEMMA

Now suppose the spoiler makes a set move.

$$
\left(\mathfrak{A}_{1}, V_{1}\right) \equiv_{k-1}^{\text {MSO }}\left(\mathfrak{B}_{1}, U_{1}\right),\left(\mathfrak{A}_{2}, V_{2}\right) \equiv \equiv_{k-1}^{\operatorname{MSO}}\left(\mathfrak{B}_{2}, U_{2}\right)
$$

($\mathfrak{A}, ~ V)$
(\mathfrak{B}, U)

COMPOSITION LEMMA

Now suppose the spoiler makes a set move.

$$
\left(\mathfrak{A}_{1}, V_{1}\right) \equiv_{k-1}^{\mathrm{MSO}}\left(\mathfrak{B}_{1}, U_{1}\right),\left(\mathfrak{A}_{2}, V_{2}\right) \equiv_{k-1}^{\mathrm{MSO}}\left(\mathfrak{B}_{2}, U_{2}\right)
$$

$$
\begin{aligned}
& \quad \Longrightarrow(\mathfrak{A}, V) \equiv_{R-1}^{\mathrm{MSO}}(\mathfrak{B}, U) \\
& \text { inductive hypothesis }
\end{aligned}
$$

COMPOSITION LEMMA

Now suppose the spoiler makes a set move.

$$
\left(\mathfrak{A}_{1}, V_{1}\right) \equiv_{k-1}^{\mathrm{MSO}}\left(\mathfrak{B}_{1}, U_{1}\right),\left(\mathfrak{A}_{2}, V_{2}\right) \equiv_{k-1}^{\mathrm{MSO}}\left(\mathfrak{B}_{2}, U_{2}\right)
$$

$$
\Longrightarrow \mathfrak{A} \quad \equiv_{k}^{\text {MsO }} \mathfrak{B}
$$

Fix $\mathcal{L}=\varnothing$.

EvEN CARDINALITY QUERY

Fix $\mathcal{L}=\varnothing$. If \mathfrak{A} is a structure for \mathcal{L}, then \mathfrak{A} is just its domain A.

EvEN CARDINALITY QUERY

Fix $\mathcal{L}=\varnothing$. If \mathfrak{A} is a structure for \mathcal{L}, then \mathfrak{A} is just its domain A. Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Even Cardinality query

Fix $\mathcal{L}=\varnothing$. If \mathfrak{A} is a structure for \mathcal{L}, then \mathfrak{A} is just its domain A.
Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.
Corollary.
EC is not MSO-expressible in \mathcal{L}.

EvEN CARDINALITY QUERY

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

EvEN CARDINALITY QUERY

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$.

EvEN CARDINALITY QUERY

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial.

EvEN CARDINALITY QUERY

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$.

EVEN CARDINALITY QUERY

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

Even Cardinality query

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

EVEN CARDINALITY QUERY

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

$$
1.1|V|=|U|
$$

EVEN CARDINALITY QUERY

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

$$
1.1|V|=|U| \Longrightarrow V \cong U
$$

EVEN CARDINALITY QUERY

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

$$
1.1|V|=|U| \Longrightarrow V \cong U \Longrightarrow V \equiv_{k-1}^{\text {MSO }} U
$$

EVEN CARDINALITY QUERY

Proposition.

If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

$$
\text { 1.1 }|V|=|U| \Longrightarrow V \cong U \Longrightarrow V \equiv_{k-1}^{\text {MsO }} U \Longrightarrow(V, V) \equiv_{k-1}^{\text {MSO }}(U, U)
$$

EVEN CARDINALITY QUERY

Proposition.
If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.
$1.1(V, V) \equiv_{k-1}^{\text {MsO }}(U, U)$

EVEN CARDINALITY QUERY

Proposition.

If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

$$
1.1(V, V) \equiv_{k-1}^{\text {MSO }}(U, U)
$$

$$
1.2|A \backslash V|,|B \backslash U| \geqslant 2^{R-1}
$$

EVEN CARDINALITY QUERY

Proposition.

If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

$$
\begin{aligned}
& 1.1(V, V) \equiv_{k-1}^{\text {MSO }}(U, U) \\
& 1.2|A \backslash V|,|B \backslash U| \geqslant 2^{R-1} \Longrightarrow A \backslash V \equiv_{k-1}^{\text {MsO }} B \backslash U
\end{aligned}
$$

EVEN CARDINALITY QUERY

Proposition.

If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

$$
\begin{array}{ll}
1.1 \begin{array}{l}
(V, V) \equiv_{k-1}^{\text {MSO }}(U, U) \\
1.2|A \backslash V|,|B \backslash U| \geqslant 2^{k-1}
\end{array} & \Longrightarrow A \backslash V \equiv_{k-1}^{\text {MSO }} B \backslash U \\
& \Longrightarrow(A \backslash V, \varnothing) \equiv_{k-1}^{\text {MsO }}(B \backslash U, \varnothing)
\end{array}
$$

EVEN CARDINALITY QUERY

Proposition.

If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

$$
\begin{aligned}
& 1.1(V, V) \equiv_{k-1}^{\text {MSO }}(U, U) \\
& 1.2(A \backslash V, \varnothing) \equiv_{k-1}^{\text {MSO }}(B \backslash U, \varnothing)
\end{aligned}
$$

EVEN CARDINALITY QUERY

Proposition.

If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.
$1.1(V, V) \equiv_{k-1}^{\text {MSO }}(U, U)$
$1.2(A \backslash V, \varnothing) \equiv_{k-1}^{\mathrm{MSO}}(B \backslash U, \varnothing)$
By the composition lemma, we get $(A, V) \equiv_{k-1}^{\mathrm{MSO}}(B, U)$.

EvEN CARDINALITY QUERY

Proposition.

If A and B are structures for \mathcal{L} with $|A|,|B| \geqslant 2^{k}$, then $A \equiv_{k}^{\text {MSO }} B$.

Proof.

By induction on $k \geqslant 0$. The base case is trivial. Now we are given A and B with $|A|,|B| \geqslant 2^{k}$. Suppose the spoiler plays $V \subseteq A$.

1. If $|V| \leqslant 2^{k-1}$, then the duplicator picks $U \subseteq B$ with $|U|=|V|$.

$$
\begin{aligned}
& 1.1(V, V) \equiv_{k-1}^{\text {MSO }}(U, U) \\
& 1.2(A \backslash V, \varnothing) \equiv_{k-1}^{\text {MSO }}(B \backslash U, \varnothing)
\end{aligned}
$$

By the composition lemma, we get $(A, V) \equiv_{k-1}^{\mathrm{MSO}}(B, U)$.
Therefore $A \equiv_{k}^{\text {MSO }} B$.

Even cardinality query

2. The case $|A \backslash V| \leqslant 2^{k-1}$ is analogous.

EvEN CARDINALITY QUERY

2. The case $|A \backslash V| \leqslant 2^{k-1}$ is analogous.
3. Assume $|V|,|A \backslash V|>2^{k-1}$.

EvEN CARDINALITY QUERY

2. The case $|A \backslash V| \leqslant 2^{k-1}$ is analogous.
3. Assume $|V|,|A \backslash V|>2^{k-1}$. Since $|B| \geqslant 2^{k}$, the duplicator can play $U \subseteq B$ with $|U|,|B \backslash U| \geqslant 2^{k-1}$.

EvEN CARDINALITY QUERY

2. The case $|A \backslash V| \leqslant 2^{k-1}$ is analogous.
3. Assume $|V|,|A \backslash V|>2^{k-1}$. Since $|B| \geqslant 2^{k}$, the duplicator can play $U \subseteq B$ with $|U|,|B \backslash U| \geqslant 2^{k-1}$. By inductive hypothesis:

EvEN CARDINALITY QUERY

2. The case $|A \backslash V| \leqslant 2^{k-1}$ is analogous.
3. Assume $|V|,|A \backslash V|>2^{k-1}$. Since $|B| \geqslant 2^{k}$, the duplicator can play $U \subseteq B$ with $|U|,|B \backslash U| \geqslant 2^{k-1}$. By inductive hypothesis:
$3.1 \mathrm{~V} \equiv_{k-1}^{\mathrm{MSO}} U$
3.2 $A \backslash V \equiv_{k-1}^{\text {MSO }} B \backslash U$

EvEN CARDINALITY QUERY

2. The case $|A \backslash V| \leqslant 2^{k-1}$ is analogous.
3. Assume $|V|,|A \backslash V|>2^{k-1}$. Since $|B| \geqslant 2^{k}$, the duplicator can play $U \subseteq B$ with $|U|,|B \backslash U| \geqslant 2^{k-1}$. By inductive hypothesis:
$3.1 V \equiv_{k-1}^{\text {MSO }} U \Longrightarrow(V, V) \equiv_{k-1}^{\text {MSO }}(U, U)$
3.2 $A \backslash V \equiv_{k-1}^{\text {MSO }} B \backslash U \Longrightarrow(A \backslash V, \varnothing) \equiv_{k-1}^{\text {MSO }}(B \backslash U, \varnothing)$

EvEN CARDINALITY QUERY

2. The case $|A \backslash V| \leqslant 2^{k-1}$ is analogous.
3. Assume $|V|,|A \backslash V|>2^{k-1}$. Since $|B| \geqslant 2^{k}$, the duplicator can play $U \subseteq B$ with $|U|,|B \backslash U| \geqslant 2^{k-1}$. By inductive hypothesis:
$3.1(\mathrm{~V}, \mathrm{~V}) \equiv \equiv_{k-1}^{\text {MSO }}(U, U)$
$3.2(A \backslash V, \varnothing) \equiv_{k-1}^{\text {MSO }}(B \backslash \cup, \varnothing)$

EVEN CARDINALITY QUERY

2. The case $|A \backslash V| \leqslant 2^{k-1}$ is analogous.
3. Assume $|V|,|A \backslash V|>2^{k-1}$. Since $|B| \geqslant 2^{k}$, the duplicator can play $U \subseteq B$ with $|U|,|B \backslash U| \geqslant 2^{k-1}$. By inductive hypothesis:
$3.1(V, V) \equiv \equiv_{k-1}^{\text {MSO }}(U, U)$
$3.2(A \backslash V, \varnothing) \equiv_{k-1}^{\text {MSO }}(B \backslash U, \varnothing)$
By the composition lemma, we get $(A, V) \equiv_{k-1}^{\operatorname{MSO}}(B, U)$.

Even Cardinality query

2. The case $|A \backslash V| \leqslant 2^{k-1}$ is analogous.
3. Assume $|V|,|A \backslash V|>2^{k-1}$. Since $|B| \geqslant 2^{k}$, the duplicator can play $U \subseteq B$ with $|U|,|B \backslash U| \geqslant 2^{k-1}$. By inductive hypothesis:
$3.1(V, V) \equiv_{k-1}^{\text {MsO }}(U, U)$
$3.2(A \backslash V, \varnothing) \equiv_{k-1}^{\text {MSO }}(B \backslash U, \varnothing)$
By the composition lemma, we get $(A, V) \equiv_{k-1}^{\mathrm{MSO}}(B, U)$. Therefore $A \equiv_{k}^{\text {MSO }} B$.

EvEN CARDINALITY QUERY

If the spoiler plays $a \in A$, the duplicator will play any $b \in B$.

Even cardinality query

If the spoiler plays $a \in A$, the duplicator will play any $b \in B$.
i. $(\{a\}, a) \equiv_{k-1}^{\mathrm{MSO}}(\{b\}, b)$

EvEN CARDINALITY QUERY

If the spoiler plays $a \in A$, the duplicator will play any $b \in B$.
i. $(\{a\}, a) \equiv_{k-1}^{\mathrm{MSO}}(\{b\}, b)$
ii. $|A \backslash\{a\}|,|B \backslash\{b\}| \geqslant 2^{k-1}$

EvEN CARDINALITY QUERY

If the spoiler plays $a \in A$, the duplicator will play any $b \in B$.
i. $(\{a\}, a) \equiv \equiv_{k-1}^{\mathrm{MSO}}(\{b\}, b)$
ii. $|A \backslash\{a\}|,|B \backslash\{b\}| \geqslant 2^{k-1} \Longrightarrow A \backslash\{a\} \equiv_{k-1}^{\operatorname{MSO}} B \backslash\{b\}$

EvEN CARDINALITY QUERY

If the spoiler plays $a \in A$, the duplicator will play any $b \in B$.
i. $(\{a\}, a) \equiv \equiv_{k-1}^{\mathrm{MSO}}(\{b\}, b)$
ii. $A \backslash\{a\} \equiv_{k-1}^{\text {MSO }} B \backslash\{b\}$

EvEN CARDINALITY QUERY

If the spoiler plays $a \in A$, the duplicator will play any $b \in B$.
i. $(\{a\}, a) \equiv \equiv_{k-1}^{\mathrm{MSO}}(\{b\}, b)$
ii. $A \backslash\{a\} \equiv_{k-1}^{\text {MSO }} B \backslash\{b\}$

By the composition lemma, we get $(A, a) \equiv_{k-1}^{\mathrm{MSO}}(B, b)$.

EvEN CARDINALITY QUERY

If the spoiler plays $a \in A$, the duplicator will play any $b \in B$.
i. $(\{a\}, a) \equiv \equiv_{k-1}^{\mathrm{MSO}}(\{b\}, b)$
ii. $A \backslash\{a\} \equiv_{k-1}^{\text {MSO }} B \backslash\{b\}$

By the composition lemma, we get $(A, a) \equiv_{k-1}^{\mathrm{MSO}}(B, b)$. As usual, this implies $A \equiv_{k}^{\text {MSO }} B$.

EvEN CARDINALITY QUERY

Now consider $\mathcal{L}=\{<\}$, where $<$ is a binary relation symbol.

EvEN CARDINALITY QUERY

Now consider $\mathcal{L}=\{<\}$, where $<$ is a binary relation symbol. Remark.

EC is MSO-expressible in \mathcal{L} over finite linear orders.

Even Cardinality query

Now consider $\mathcal{L}=\{<\}$, where $<$ is a binary relation symbol. Remark.
$E C$ is MSO-expressible in \mathcal{L} over finite linear orders.
Proof.
Let us consider a finite linear order:

$$
a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<\cdots<a_{n-2}<a_{n-1}<a_{n}
$$

Even Cardinality query

Now consider $\mathcal{L}=\{<\}$, where $<$ is a binary relation symbol.
Remark.
$E C$ is MSO-expressible in \mathcal{L} over finite linear orders.
Proof.
Let us consider a finite linear order:

$$
a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<\cdots<a_{n-2}<a_{n-1}<a_{n}
$$

The set X of elements with odd index contains a_{n} if and only if n is odd.

Even Cardinality query

Now consider $\mathcal{L}=\{<\}$, where $<$ is a binary relation symbol.
Remark.
$E C$ is MSO-expressible in \mathcal{L} over finite linear orders.
Proof.
Let us consider a finite linear order:

$$
a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<\cdots<a_{n-2}<a_{n-1}<a_{n}
$$

The set X of elements with odd index contains a_{n} if and only if n is odd. Then we can just pick an MSO sentence expressing the existence of X such that $a_{n} \notin X$.

EvEN CARDINALITY QUERY

We can easily write this sentence:

EvEN CARDINALITY QUERY

We can easily write this sentence:

Even cardinality query

We can easily write this sentence:

$$
\exists x(\quad \forall x(\operatorname{first}(x) \rightarrow X(x))
$$

Even cardinality query

We can easily write this sentence:

$$
\exists x\left(\begin{array}{c}
\forall x(f i r s t(x) \rightarrow X(x)) \\
\wedge \forall x(\operatorname{last}(x) \rightarrow \neg X(x))
\end{array}\right.
$$

EvEN CARDINALITY QUERY

We can easily write this sentence:

$$
\exists x\left(\begin{array}{c}
\forall x(\operatorname{first}(x) \rightarrow X(x)) \\
\wedge \forall x(\operatorname{last}(x) \rightarrow \neg X(x)) \\
\wedge \forall x \forall y(\operatorname{succ}(x, y) \rightarrow(X(x) \leftrightarrow \neg X(y)))
\end{array}\right)
$$

Even Cardinality query

We can easily write this sentence:

$$
\exists x\left(\begin{array}{c}
\forall x(\text { first }(x) \rightarrow X(x)) \\
\wedge \forall x(\operatorname{last}(x) \rightarrow \neg X(x)) \\
\wedge \forall x \forall y(\operatorname{succ}(x, y) \rightarrow(X(x) \leftrightarrow \neg X(y)))
\end{array}\right)
$$

where:

1. first (x) stands for $\forall y(x<y \vee x=y)$.
2. Last (x) stands for $\forall y(y<x \vee x=y)$.
3. $\operatorname{succ}(x, y)$ stands for $(x<y) \wedge \neg \exists z(x<z \wedge z<y)$.

Graph queries and EMSO Games

GRAPH QUERIES

Proposition.
Graph connectivity is expressible in UMSO, but not in EMSO.

GRAPH QUERIES

Proposition.
Graph connectivity is expressible in UMSO, but not in EMSO.
Proof.
We can express the property of being a disconnected graph by using the following formula:

GRAPH QUERIES

Proposition.
Graph connectivity is expressible in UMSO, but not in EMSO.
Proof.
We can express the property of being a disconnected graph by using the following formula:

$$
\exists x\binom{(\exists x X(x) \wedge \exists x-X(x))}{\wedge \forall x \forall y((X(x) \wedge \neg X(y)) \rightarrow \neg E(x, y))}
$$

GRAPH QUERIES

Proposition.
Graph connectivity is expressible in UMSO, but not in EMSO.
Proof.
We can express the property of being a connected graph by using the following formula:

$$
\forall X\binom{(\exists x X(x) \wedge \exists x \neg X(x))}{\rightarrow \exists x \exists y(X(x) \wedge \neg X(y) \wedge E(x, y))}
$$

GRAPH QUERIES

Proposition.
Graph connectivity is expressible in UMSO, but not in EMSO.
Proof.
We can express the property of being a connected graph by using the following formula:

$$
\forall X\binom{(\exists x X(x) \wedge \exists x \neg X(x))}{\rightarrow \exists x \exists y(X(x) \wedge \neg X(y) \wedge E(x, y))}
$$

For the converse, one may use Hanf-locality.

GRAPH QUERIES

The (s, t)-reachability query asks whether there is a path from s to t in a given graph.

GRAPH QUERIES

The (s, t)-reachability query asks whether there is a path from s to t in a given graph.

Proposition.
For undirected graphs without loops, (s, t)-reachability is EMSO-expressible.

GRAPH QUERIES

The (s, t)-reachability query asks whether there is a path from s to t in a given graph.

Proposition.
For undirected graphs without loops, (s, t)-reachability is EMSO-expressible.

Theorem.
Reachability for directed graphs is not EMSO-expressible.

EMSO GAMES

The l,k-Fagin game on two structures \mathfrak{A} and \mathfrak{B} is played as follows.

EMSO GAMES

The l,k-Fagin game on two structures \mathfrak{A} and \mathfrak{B} is played as follows. The spoiler selects $/$ subsets U_{1}, \ldots, U_{l} of A.

EMSO GAMES

The l, k-Fagin game on two structures \mathfrak{A} and \mathfrak{B} is played as follows. The spoiler selects $/$ subsets U_{1}, \ldots, U_{l} of A. Then the duplicator selects $/$ subsets V_{1}, \ldots, V_{l} of B.

EMSO GAMES

The l, k-Fagin game on two structures \mathfrak{A} and \mathfrak{B} is played as follows. The spoiler selects l subsets U_{1}, \ldots, U_{l} of A. Then the duplicator selects $/$ subsets V_{1}, \ldots, V_{l} of B.

After that, the spoiler and the duplicator play k rounds of the Ehrenfeucht-Fraïssé game on $\left(\mathfrak{A}, U_{1}, \ldots, U_{l}\right)$ and $\left(\mathfrak{B}, V_{1}, \ldots, V_{l}\right)$.

EMSO GAMES

The l, k-Fagin game on two structures \mathfrak{A} and \mathfrak{B} is played as follows. The spoiler selects I subsets U_{1}, \ldots, U_{l} of A. Then the duplicator selects $/$ subsets V_{1}, \ldots, V_{l} of B.

After that, the spoiler and the duplicator play k rounds of the Ehrenfeucht-Fraïssé game on $\left(\mathfrak{A}, U_{1}, \ldots, U_{l}\right)$ and $\left(\mathfrak{B}, V_{1}, \ldots, V_{l}\right)$.

The winning condition for the duplicator is that the elements played on $\left(\mathfrak{A}, U_{1}, \ldots, U_{l}\right)$ and $\left(\mathfrak{B}, V_{1}, \ldots, V_{l}\right)$ form a partial isomorphism between these two structures.

EMSO GAMES

Let \mathcal{P} be a property of structures.

EMSO GAMES

Let \mathcal{P} be a property of structures. The \mathcal{P}, l, k-Ajtai-Fagin game is played as follows:

EMSO GAMES

Let \mathcal{P} be a property of structures. The \mathcal{P}, l, R-Ajtai-Fagin game is played as follows:

1. The duplicator selects a structure $\mathfrak{A} \in \mathcal{P}$.

EMSO GAMES

Let \mathcal{P} be a property of structures. The \mathcal{P}, l, k-Ajtai-Fagin game is played as follows:

1. The duplicator selects a structure $\mathfrak{A} \in \mathcal{P}$.
2. The spoiler selects I subsets U_{1}, \ldots, U_{l} of A.

EMSO GAMES

Let \mathcal{P} be a property of structures. The \mathcal{P}, l, k-Ajtai-Fagin game is played as follows:

1. The duplicator selects a structure $\mathfrak{A} \in \mathcal{P}$.
2. The spoiler selects $/$ subsets U_{1}, \ldots, U_{l} of A.
3. The duplicator selects a structure $\mathfrak{B} \notin \mathcal{P}$ and $/$ subsets V_{1}, \ldots, V_{l} of B.

EMSO GAMES

Let \mathcal{P} be a property of structures. The \mathcal{P}, l, k-Ajtai-Fagin game is played as follows:

1. The duplicator selects a structure $\mathfrak{A} \in \mathcal{P}$.
2. The spoiler selects $/$ subsets U_{1}, \ldots, U_{l} of A.
3. The duplicator selects a structure $\mathfrak{B} \notin \mathcal{P}$ and l subsets V_{1}, \ldots, V_{l} of B.
4. The spoiler and the duplicator play k rounds of the EF game on $\left(\mathfrak{A}, U_{1}, \ldots, U_{l}\right)$ and $\left(\mathfrak{B}, V_{1}, \ldots, V_{l}\right)$.

EMSO GAMES

Let \mathcal{P} be a property of structures. The \mathcal{P}, l, k-Ajtai-Fagin game is played as follows:

1. The duplicator selects a structure $\mathfrak{A} \in \mathcal{P}$.
2. The spoiler selects I subsets U_{1}, \ldots, U_{l} of A.
3. The duplicator selects a structure $\mathfrak{B} \notin \mathcal{P}$ and l subsets V_{1}, \ldots, V_{l} of B.
4. The spoiler and the duplicator play k rounds of the EF game on $\left(\mathfrak{A}, U_{1}, \ldots, U_{l}\right)$ and $\left(\mathfrak{B}, V_{1}, \ldots, V_{l}\right)$.

The winning condition for the duplicator is that the elements played on $\left(\mathfrak{A}, U_{1}, \ldots, U_{l}\right)$ and $\left(\mathfrak{B}, V_{1}, \ldots, V_{l}\right)$ form a partial isomorphism between these two structures.

References

围 Miklos Ajtai and Ronald Fagin.
Reachability is harder for directed than for undirected finite graphs.
Journal of Symbolic Logic, pages 113-150, 1990.
固 Leonid Libkin.
Elements of finite model theory.
Springer Science \& Business Media, 2013.

