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INTRODUCTION



BASIC NOTIONS

SO logic extends the definition of FO logic with SO variables
ranging over relations on the universe of any arity, and
quantification over such variables.

Universal SO logic, or USO, is defined as the restriction of SO
that consists of formulas of the form:

∀X1 . . . ∀Xnφ

where X1, . . . , Xn are SO variables and φ is a FO formula.
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BASIC NOTIONS

Monadic SO logic, or MSO, is the restriction of SO where all
second order variables have arity 1.

Universal MSO, or UMSO, is the intersection of USO and MSO.
In literature, this is also called monadic Π11 or monadic coNP.
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EVEN CARDINALITY QUERY

Example.
The even cardinality query, or EC, is ESO-expressible by using
the following sentence:

∃U1∃U2∃Fφ

where φ is a FO formula in L = {U1,U2, F} stating that U1 and U2
form a partition of the universe and that F ⊆ U1 × U2 is
functional and bijective. This sentence is not in MSO.

However, we will see that EC is MSO-expressible.
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MSO GAMES



PRELIMINARIES

We are given:

- Structures A and B for a finite relational language L.
- Two q-tuples a⃗0 ∈ Aq and b⃗0 ∈ Bq.
- Two t-tuples V⃗0 ∈ P(A)t and U⃗0 ∈ P(B)t.

Let A ′ := (A, a⃗0, V⃗0) be the structure for L ∪ {⃗c0, R⃗0} with:

- c⃗0 a q-tuple of new constant symbols, naturally
interpreted with the elements of the q-tuple a⃗0.

- R⃗0 a t-tuple of new relation symbols of arity 1, naturally
interpreted with the objects of the t-tuple V⃗0.

Analogously, we define B ′ := (B, b⃗0, U⃗0).
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RULES OF THE GAME

Two players, the spoiler and the duplicator, play on A ′ and B ′

with two different kind of moves:

Point move. This is the same move as in the
Ehrenfeucht-Fraïssé game for FO. The spoiler chooses a
structure, A ′ or B ′ and an element of that structure. The
duplicator responds with an element in the other structure.

Set move. The spoiler chooses a structure, A ′ or B ′ and a
subset of that structure. The duplicator responds with a subset
of the other structure.
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WINNING CONDITION

Let c1, . . . , cn be the constant symbols of L.

Suppose that, in a
k-round game, we have:

- Point moves a⃗ ∈ Ap and b⃗ ∈ Bp.
- Set moves V⃗ ∈ P(A)k−p and U⃗ ∈ P(B)k−p.

The duplicator wins the k-round game if the function:

(cA1 , . . . , cAn , a⃗0, a⃗) 7→ (cB1 , . . . , cBn , b⃗0, b⃗)

is a partial isomorphism between (A ′, V⃗) and (B ′, U⃗).

A player has a winning strategy for the k-round game if he can
guarantee he wins regardless of how the other player plays.

6



WINNING CONDITION

Let c1, . . . , cn be the constant symbols of L. Suppose that, in a
k-round game, we have:

- Point moves a⃗ ∈ Ap and b⃗ ∈ Bp.
- Set moves V⃗ ∈ P(A)k−p and U⃗ ∈ P(B)k−p.

The duplicator wins the k-round game if the function:

(cA1 , . . . , cAn , a⃗0, a⃗) 7→ (cB1 , . . . , cBn , b⃗0, b⃗)

is a partial isomorphism between (A ′, V⃗) and (B ′, U⃗).

A player has a winning strategy for the k-round game if he can
guarantee he wins regardless of how the other player plays.

6



WINNING CONDITION

Let c1, . . . , cn be the constant symbols of L. Suppose that, in a
k-round game, we have:

- Point moves a⃗ ∈ Ap and b⃗ ∈ Bp.

- Set moves V⃗ ∈ P(A)k−p and U⃗ ∈ P(B)k−p.

The duplicator wins the k-round game if the function:

(cA1 , . . . , cAn , a⃗0, a⃗) 7→ (cB1 , . . . , cBn , b⃗0, b⃗)

is a partial isomorphism between (A ′, V⃗) and (B ′, U⃗).

A player has a winning strategy for the k-round game if he can
guarantee he wins regardless of how the other player plays.

6



WINNING CONDITION

Let c1, . . . , cn be the constant symbols of L. Suppose that, in a
k-round game, we have:

- Point moves a⃗ ∈ Ap and b⃗ ∈ Bp.
- Set moves V⃗ ∈ P(A)k−p and U⃗ ∈ P(B)k−p.

The duplicator wins the k-round game if the function:

(cA1 , . . . , cAn , a⃗0, a⃗) 7→ (cB1 , . . . , cBn , b⃗0, b⃗)

is a partial isomorphism between (A ′, V⃗) and (B ′, U⃗).

A player has a winning strategy for the k-round game if he can
guarantee he wins regardless of how the other player plays.

6



WINNING CONDITION

Let c1, . . . , cn be the constant symbols of L. Suppose that, in a
k-round game, we have:

- Point moves a⃗ ∈ Ap and b⃗ ∈ Bp.
- Set moves V⃗ ∈ P(A)k−p and U⃗ ∈ P(B)k−p.

The duplicator wins the k-round game if the function:

(cA1 , . . . , cAn , a⃗0, a⃗) 7→ (cB1 , . . . , cBn , b⃗0, b⃗)

is a partial isomorphism between (A ′, V⃗) and (B ′, U⃗).

A player has a winning strategy for the k-round game if he can
guarantee he wins regardless of how the other player plays.

6



WINNING CONDITION

Let c1, . . . , cn be the constant symbols of L. Suppose that, in a
k-round game, we have:

- Point moves a⃗ ∈ Ap and b⃗ ∈ Bp.
- Set moves V⃗ ∈ P(A)k−p and U⃗ ∈ P(B)k−p.

The duplicator wins the k-round game if the function:

(cA1 , . . . , cAn , a⃗0, a⃗) 7→ (cB1 , . . . , cBn , b⃗0, b⃗)

is a partial isomorphism between (A ′, V⃗) and (B ′, U⃗).

A player has a winning strategy for the k-round game if he can
guarantee he wins regardless of how the other player plays.

6



EXAMPLE

We will play games on these two graphs.
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Spoiler and duplicator moves will be red and blue respectively.
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EXAMPLE

This tells us that A ≡5 B but A 6≡6 B.
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EXAMPLE

We will now play an MSO game on the same structures.
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EXAMPLE

This suggests that A ≡MSO
3 B but A 6≡MSO

4 B.
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LOGICAL CHARACTERIZATION

Theorem.
For every k ⩾ 0, the following are equivalent:

1. The duplicator has a winning strategy for k-round MSO
games on A and B.

2. A ≡MSO
k B, i.e. A and B agree on MSO sentences of

quantifier rank less than or equal to k.

The proof is essentially the same as for EF games.

8
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EXPRESSIBILITY OF QUERIES



COMPOSITION LEMMA

Let L be a finite relational language with no constant symbols.

Let A1 and A2 be two structures for L with disjoint domains.
We define the disjoint union of (A1, a⃗1, V1, . . . , Vs) and
(A2, a⃗2,W1, . . . ,Ws) as the structure:

(A, a⃗1, a⃗2, V1 ∪W1, . . . , Vs ∪Ws)

where A is the structure for L whose domain is A1 ∪ A2 and
interpreting as RA1 ∪ RA2 each relation symbol R of L.
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COMPOSITION LEMMA

Lemma.
Let A and B be the disjoint unions of A1 and A2, B1 and B2
respectively.

If A1 ≡MSO
k B1 and A2 ≡MSO

k B2, then A ≡MSO
k B.

Proof.
By induction on k ⩾ 0. As the base case is trivial, we will only
see the inductive step. We will use the game characterization
of ≡MSO

k . Assume the spoiler makes a point move.

(

A1

,a) ≡MSO (

B1

, )

, A2 ≡MSO B2
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COMPOSITION LEMMA

Now suppose the spoiler makes a set move.

(

A1

, V1
↑

V ∩ A1

) ≡MSO
k (

B1

,U1
↑

duplicator

)

,

(

A2

, V2
↑

V ∩ A2

) ≡MSO
k (

B2

,U2
↑

duplicator

)

=⇒
↑

inductive hypothesis

(

A

, V
↑

spoiler

) ≡MSO
k−1 (

B

,U
↑

U1 ∪ U2

)
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EVEN CARDINALITY QUERY

Fix L = ∅.

If A is a structure for L, then A is just its domain A.

Proposition.

If A and B are structures for L with |A|, |B| ⩾ 2k, then A ≡MSO
k B.

Corollary.
EC is not MSO-expressible in L.
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EVEN CARDINALITY QUERY

Proposition.

If A and B are structures for L with |A|, |B| ⩾ 2k, then A ≡MSO
k B.

Proof.
By induction on k ⩾ 0. The base case is trivial. Now we are
given A and B with |A|, |B| ⩾ 2k. Suppose the spoiler plays V ⊆ A.

1. If |V| ⩽ 2k−1, then the duplicator picks U ⊆ B with |U| = |V|.
1.1 |V| = |U| =⇒ V ∼= U =⇒ V ≡MSO

k−1 U =⇒ (V, V) ≡MSO
k−1 (U,U)

1.2 |A\V|, |B\U| ⩾ 2k−1 =⇒ A\V ≡MSO
k−1 B\U

=⇒ (A\V,∅) ≡MSO
k−1 (B\U,∅)

By the composition lemma, we get (A, V) ≡MSO
k−1 (B,U).

Therefore A ≡MSO
k B.
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EVEN CARDINALITY QUERY

2. The case |A\V| ⩽ 2k−1 is analogous.

3. Assume |V|, |A\V| > 2k−1. Since |B| ⩾ 2k, the duplicator can
play U ⊆ B with |U|, |B\U| ⩾ 2k−1. By inductive hypothesis:
3.1 V ≡MSO

k−1 U
3.2 A\V ≡MSO

k−1 B\U

By the composition lemma, we get (A, V) ≡MSO
k−1 (B,U).

Therefore A ≡MSO
k B.
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EVEN CARDINALITY QUERY

If the spoiler plays a ∈ A, the duplicator will play any b ∈ B.

i. ({a},a) ≡MSO
k−1 ({b},b)

ii.

A\{a} ≡MSO
k−1 B\{b}

By the composition lemma, we get (A,a) ≡MSO
k−1 (B,b). As usual,

this implies A ≡MSO
k B.
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EVEN CARDINALITY QUERY

Now consider L = {<}, where < is a binary relation symbol.

Remark.
EC is MSO-expressible in L over finite linear orders.

Proof.
Let us consider a finite linear order:

a1 < a2 < a3 < a4 < a5 < · · · < an−2 < an−1 < an

The set X of elements with odd index contains an if and only if
n is odd. Then we can just pick an MSO sentence expressing
the existence of X such that an /∈ X.
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EVEN CARDINALITY QUERY

We can easily write this sentence:

∃X



∀x(first(x) → X(x))
∧ ∀x(last(x) → ¬X(x))
∧ ∀x∀y

(
succ(x, y) → (X(x) ↔ ¬X(y))

)



where:

1. first(x) stands for ∀y(x < y∨ x = y).
2. last(x) stands for ∀y(y < x∨ x = y).
3. succ(x, y) stands for (x < y)∧ ¬∃z(x < z∧ z < y).
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GRAPH QUERIES AND EMSO GAMES



GRAPH QUERIES

Proposition.
Graph connectivity is expressible in UMSO, but not in EMSO.

Proof.
We can express the property of being a disconnected graph by
using the following formula:

∃X
( (

∃x X(x)∧ ∃x¬X(x)
)

∧ ∀x∀y
(
(X(x)∧ ¬X(y)) → ¬E(x, y)

) )

For the converse, one may use Hanf-locality.
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GRAPH QUERIES

The (s, t)-reachability query asks whether there is a path from
s to t in a given graph.

Proposition.
For undirected graphs without loops, (s, t)-reachability is
EMSO-expressible.

Theorem.
Reachability for directed graphs is not EMSO-expressible.
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EMSO GAMES

The l,k-Fagin game on two structures A and B is played as
follows.

The spoiler selects l subsets U1, . . . ,Ul of A. Then the
duplicator selects l subsets V1, . . . , Vl of B.

After that, the spoiler and the duplicator play k rounds of the
Ehrenfeucht-Fraïssé game on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl).

The winning condition for the duplicator is that the elements
played on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl) form a partial
isomorphism between these two structures.

20



EMSO GAMES

The l,k-Fagin game on two structures A and B is played as
follows. The spoiler selects l subsets U1, . . . ,Ul of A.

Then the
duplicator selects l subsets V1, . . . , Vl of B.

After that, the spoiler and the duplicator play k rounds of the
Ehrenfeucht-Fraïssé game on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl).

The winning condition for the duplicator is that the elements
played on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl) form a partial
isomorphism between these two structures.

20



EMSO GAMES

The l,k-Fagin game on two structures A and B is played as
follows. The spoiler selects l subsets U1, . . . ,Ul of A. Then the
duplicator selects l subsets V1, . . . , Vl of B.

After that, the spoiler and the duplicator play k rounds of the
Ehrenfeucht-Fraïssé game on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl).

The winning condition for the duplicator is that the elements
played on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl) form a partial
isomorphism between these two structures.

20



EMSO GAMES

The l,k-Fagin game on two structures A and B is played as
follows. The spoiler selects l subsets U1, . . . ,Ul of A. Then the
duplicator selects l subsets V1, . . . , Vl of B.

After that, the spoiler and the duplicator play k rounds of the
Ehrenfeucht-Fraïssé game on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl).

The winning condition for the duplicator is that the elements
played on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl) form a partial
isomorphism between these two structures.

20



EMSO GAMES

The l,k-Fagin game on two structures A and B is played as
follows. The spoiler selects l subsets U1, . . . ,Ul of A. Then the
duplicator selects l subsets V1, . . . , Vl of B.

After that, the spoiler and the duplicator play k rounds of the
Ehrenfeucht-Fraïssé game on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl).

The winning condition for the duplicator is that the elements
played on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl) form a partial
isomorphism between these two structures.

20



EMSO GAMES

Let P be a property of structures.

The P,l,k-Ajtai-Fagin game is
played as follows:

1. The duplicator selects a structure A ∈ P.
2. The spoiler selects l subsets U1, . . . ,Ul of A.
3. The duplicator selects a structure B /∈ P and l subsets
V1, . . . , Vl of B.

4. The spoiler and the duplicator play k rounds of the EF
game on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl).

The winning condition for the duplicator is that the elements
played on (A,U1, . . . ,Ul) and (B, V1, . . . , Vl) form a partial
isomorphism between these two structures.
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