PARADOX AND NORMALIZATION FAILURE

Raffaele Di Donna, Luis Sánchez Polo August 12, 2022

Proofs, Arguments and Dialogues: History, Epistemology and Logic of Justification Practices Summer School, University of Tübingen, Carl Friedrich von Weizsäcker Zentrum An informal introduction

An attempt of formalization

Objections

AN INFORMAL INTRODUCTION

A paradox is usually related to the concepts of:

- Self-reference
- Cyclic reference
- Semantic closure ...

A paradox is usually related to the concepts of:

- Self-reference
- Cyclic reference
- Semantic closure ...

Famous examples include:

- Russel's paradox
- Liar's paradox ...

Paradoxical \neq Inconsistent

$A \land \neg A$	$A \land \neg A$
А	¬Α

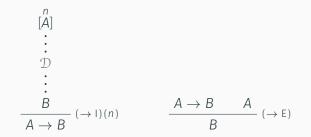
Paradoxical \neq Inconsistent

$A \land \neg A$	$A \land \neg A$
А	¬Α
	\bot

Paradoxical = Inconsistent + ???

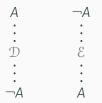
AN ATTEMPT OF FORMALIZATION

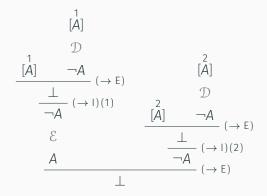
We consider the implicative fragment of natural deduction:

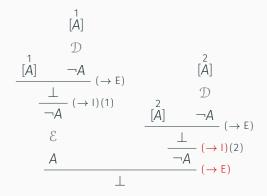


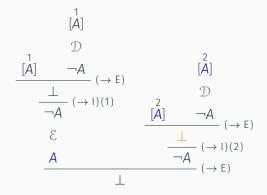
We can then define $\neg A := A \rightarrow \bot$.

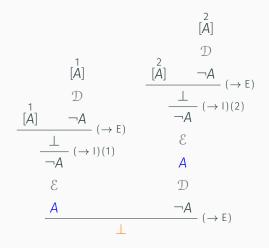
Assume that:

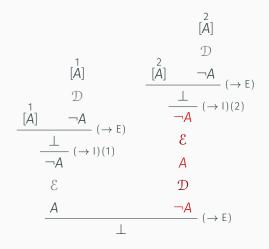


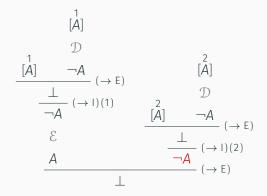












Paradoxical = Inconsistent + Not normalizing

Prawitz extended implicative natural deduction to express the unrestricted axiom of comprehension in naive set theory:

$$\frac{A[y/x]}{y \in \{x : A\}} (\in I) \qquad \frac{y \in \{x : A\}}{A[y/x]} (\in E)$$

These rules display the harmony property but the natural deduction systems containing them fail to normalize.

By picking $A(x) := x \notin x$ and $y := \{x : x \notin x\}$ we get:

$$\frac{y \notin y}{y \in y} (\in I) \qquad \frac{y \in y}{y \notin y} (\in E)$$

As we saw, this leads to normalization failure.

OBJECTIONS

In the normalization loop a step of \in -reduction is hidden:

$$\frac{A[y/x]}{\underbrace{y \in \{x : A\}}_{A[y/x]} (\in E)} \quad \rightsquigarrow_{\in} \quad A[y/x]$$

We can mimic this behavior in propositional logic:

$$\frac{\neg A \qquad \neg A \rightarrow A}{A} \xrightarrow{(\rightarrow E)} A \rightarrow \neg A \xrightarrow{(\rightarrow E)} \neg A$$

The looping normalization would not depend on the extra-logical possibility to move, for a certain formula A, from A to $\neg A$ and vice versa, but on the logical feature that we can move, for any formula A, from $A \leftrightarrow \neg A$ to absurdity.

The looping normalization would not depend on the extra-logical possibility to move, for a certain formula A, from A to \neg A and vice versa, but on the logical feature that we can move, for any formula A, from $A \leftrightarrow \neg A$ to absurdity.

Then, is it actually the case that non-normalizability is the distinctive feature of paradoxical expressions?

- Peter Schroeder-Heister and Luca Tranchini. "Ekman's paradox". In: Notre Dame Journal of Formal Logic 58.4 (2017), pp. 567–581.
- Neil Tennant. "Proof and paradox". In: *Dialectica* (1982), pp. 265–296.