INJECTIVITY IN LINEAR LOGIC

Raffaele Di Donna 27 June 2022

Aix-Marseille University

Table of contents

Introduction

Injectivity and obsessionality

Taylor expansion of lambda terms

What is a proof?

Girard

Recent techniques

How to build a proof net?

How to build a proof net?

Proof structure

AC proof net

All correctness graphs are acyclic

ACC proof net

All correctness graphs are acyclic and connected

Standard proof structure

There are no cut links, conclusions of axiom links have atomic types and conclusions of weakening and contraction links are not premises of pax or contraction links.

Coherent space

Undirected graph $\mathcal{A}=(|\mathcal{A}|, \bigcirc)$ associated with a formula A. The set $|\mathcal{A}|$ is called web, the binary relation \bigcirc on the web is called coherence.

Experiment

n-obsessional experiment

- Any two labels of an arc with an atomic type are the same.
- The multiset of labels associated with the conclusion of any of course link is not empty and each of its elements has cardinality *n*.

1-experiment

- Any two labels of an arc with an atomic type are the same.
- The multiset of labels associated with the conclusion of any of course link is not empty and each of its elements has cardinality 1.

Example: 2-obsessional experiment.

Example: 1-experiment.

Injective experiment

Multisets of labels associated with distinct arcs having the same atomic type are different.

Example: injective experiment when $\{x, z\} \neq \{y, w\}$.

Example: injective experiment when $x \neq y$.

Let $[\![R]\!]$ be the set of the results of any experiment of an AC proof net R. Let F be a set of AC proof nets and assume $R \in F$.

Let $[\![R]\!]$ be the set of the results of any experiment of an AC proof net R. Let F be a set of AC proof nets and assume $R \in F$.

Local injectivity for *F* **in** *R*

For all $R' \in F$ with the same conclusions as R and [R] = [R'], we have R = R'.

Let $[\![R]\!]$ be the set of the results of any experiment of an AC proof net R. Let F be a set of AC proof nets and assume $R \in F$.

Local injectivity for *F* **in** *R*

For all $R' \in F$ with the same conclusions as R and [R] = [R'], we have R = R'.

Injectivity for F

For all $R \in F$, local injectivity for F in R.

LET F BE THE SET OF ACC PROOF NETS. IF $R \in F$ AND

LEIF DE THE SET OF ACC PROOF NETS. IF N E FANT

THERE EXISTS AN INJECTIVE 1-EXPERIMENT OF R, WE

HAVE LOCAL INJECTIVITY FOR F IN R.

F	Answer
MELL	NO

Counterexample: a particular R and any experiment of R.

A particular R' and an experiment of R' with the same result.

F	Answer
MELL	NO
	_

F	Answer
MELL	NO
MLL	YES

F	Answer
MELL	NO
λ-terms	YES
MLL	YES

F	Answer
MELL	NO
ACC proof nets	
λ-terms	YES
MLL	YES

F	Answer
MELL	NO
ACC proof nets	?
λ-terms	YES
MLL	YES

TAYLOR EXPANSION OF LAMBDA TERMS

Resource terms

A set Δ defined inductively:

- If x is a variable, then $x \in \Delta$.
- If x is a variable and $s \in \Delta$, then $\lambda xs \in \Delta$.
- If $n \ge 0$ and $s, t_1, \ldots, t_n \in \Delta$, then $\langle s \rangle [t_1, \ldots, t_n] \in \Delta$.

The string $[t_1, ..., t_n]$ is called a resource monomial.

Evaluation intuitively

Evaluation intuitively

Evaluation intuitively

Multilinear substitution

```
We define \partial_x s \cdot [t_1, \ldots, t_n] as the set: \{s(t_{\sigma(1)}, \ldots, t_{\sigma(n)}/x) \colon \sigma \text{ permutation over } 1, \ldots, n\}
```

Resource reduction

The base case is $\langle \lambda xs \rangle[t_1, \ldots, t_n] \to_{\partial} \partial_x s \cdot [t_1, \ldots, t_n]$ and this is extended to contexts as in usual lambda calculus. In addition, whenever we have $s_0, \ldots, s_n \in \Delta$ and $S_0, \ldots, S_n \subseteq \Delta$ such that $s_0 \to_{\partial} S_0$ and $s_i \to_{\partial} S_i$ for all $i = 1, \ldots, n$, we also have $\{s_0, \ldots, s_n\} \to_{\partial} S_0 \cup \cdots \cup S_n$.

Properties

- Resource reduction enjoys weak normalization.
- The relation \rightarrow_0^* satisfies the diamond property.

Properties

- Resource reduction enjoys weak normalization.
- The relation $\rightarrow_{\mathfrak{d}}^*$ satisfies the diamond property.
 - \implies Every $S \subseteq \Delta$ has a unique normal form **NF**(S).

Taylor support

Let $S^!$ be the set of resource monomials of the form $[s_1, ..., s_n]$ for some $n \ge 0$, $s_1, ..., s_n \in S$. We define inductively on usual lambda terms the following set of resource terms:

$$\mathbf{T}(x) := \{x\}$$

$$\mathbf{T}(\lambda x M) := \lambda x \mathbf{T}(M)$$

$$\mathbf{T}(MN) := \langle \mathbf{T}(M) \rangle \mathbf{T}(N)^{!}$$

Head reduction

If **H** is the head reduction function on lambda terms or resource terms, then for all lambda terms *M*:

$$\mathbf{H}(\mathbf{T}(M)) = \mathbf{T}(\mathbf{H}(M))$$

Corollary

- If **NF**(s) is not empty for some $s \in T(M)$, then there exists $k \ge 0$ such that $\mathbf{H}^k(M)$ is a head normal form.
- If M is β -equivalent to a head normal form, then NF(s) is not empty for some $s \in T(M)$.

Corollary

- If **NF**(s) is not empty for some $s \in \mathbf{T}(M)$, then there exists $k \ge 0$ such that $\mathbf{H}^k(M)$ is a head normal form.
- If M is β -equivalent to a head normal form, then NF(s) is not empty for some $s \in T(M)$.
 - \implies If M is β-equivalent to a head normal form, then there exists $k \ge 0$ such that $\mathbf{H}^k(M)$ is a head normal form.

- Olivier Laurent and Lorenzo Tortora de Falco. "Slicing polarized additive normalization". In: *Linear Logic in Computer Science*. Ed. by Thomas Ehrhard et al. Vol. 316. London Mathematical Society Lecture Note Series. Cambridge University Press, Nov. 2004, pp. 247–282.
- Michele Pagani. "Proofs, denotational semantics and observational equivalences in multiplicative linear logic". In: *Mathematical Structures in Computer Science* 17.2 (2007), pp. 341–359.
- Lorenzo Tortora de Falco. "Obsessional experiments for linear logic proof-nets". In: Mathematical Structures in Computer Science 13.6 (2003), pp. 799–855.
- Lionel Vaux Auclair. "Normalizing the Taylor expansion of non-deterministic λ-terms, via parallel reduction of resource vectors". In: *Logical Methods in Computer Science* 15 (2019).