Cut-elimination for the circular modal mu-calculus: linear logic and super exponentials to the rescue

Esaïe Bauer joint work with Alexis Saurin

Université Paris-Cité Formath

February 12, 2024

Table of contents

Context

- 2 Cut-elimination for μLL^{∞} and μLK^{∞}
- **(3)** Modal Linear Logic and translations of μLK_{\Box}^{∞}
- Super exponentials
 Extension to µsuperLL[∞]
- 5 Back to μLL_{\Box}^{∞}

Formulas and derivation rules of μLK^{∞}_{\Box}

$$\phi, \psi ::= \phi \lor \psi \mid \phi \land \psi \mid \phi \to \psi \mid T \mid F \mid X \in \mathcal{V} \mid \Box \phi \mid \Diamond \phi \mid \mu X.\phi \mid \nu X.\phi.$$

Derivation rules are those of LK together with two rules for the modalities:

$$\frac{\Gamma, \mathcal{A} \vdash \Delta}{\Box \Gamma, \Diamond \mathcal{A} \vdash \Diamond \Delta} \Diamond \quad \frac{\Gamma \vdash \mathcal{A}, \Delta}{\Box \Gamma \vdash \Box \mathcal{A}, \Diamond \Delta} \Box$$

and four rules for fixpoints:

$$\frac{\Gamma, A[X \coloneqq \mu X.A] \vdash \Delta}{\Gamma, \mu X.A \vdash \Delta} \mu_{I} \quad \frac{\Gamma \vdash A[X \coloneqq \mu X.A], \Delta}{\Gamma \vdash \mu X.A, \Delta} \mu_{r}$$

$$\frac{\Gamma, A[X \coloneqq \nu X.A] \vdash \Delta}{\Gamma, \nu X.A \vdash \Delta} \nu_{I} \quad \frac{\Gamma \vdash A[X \coloneqq \nu X.A], \Delta}{\Gamma \vdash \nu X.A, \Delta} \nu_{r}$$

Context

Cut-elimination for µLL[∞] and µLK[∞] Modal Linear Logic and translations of µLK[∞] Super exponentials Back to µLL[™] Conclusion

Some example of infinite proofs

 $Nat := \mu X . \top \lor X$

Inhabitant of natural number type

Cont ext

Cut-elimination for µLL[∞] and µLK[∞] Modal Linear Logic and translations of µLK[∞] Super exponentials Back to µLL[™] Conclusion

Example with modalities

Taking $F \coloneqq \nu X . \Diamond X$:

Context

Cut-elimination for μLL[∞] and μLK[∞] Modal Linear Logic and translations of μLK[∞] Super exponentials Back to μLL[∞] Conclusion

Cut-elimination for μLK^{∞}_{\Box}

Several results:

Mints & Studer '12, Brünnler & Studer '12

Cut-elimination for fragment modal μ -calculus with ω -rule.

Niwiński & Walukiewicz '96

Cut-free non-wellfounded system with a completness theorem.

Afshari & Leigh '16

Cut-free cyclic proof system without cut-elimination procedure.

Kloibhofer '23

Incompleteness of Afshari & Leigh's system.

Formulas and derivation rules of $\mu \mathsf{MALL}^\infty$

$$\phi, \psi \coloneqq \phi \Im \psi \mid \phi \otimes \psi \mid \phi \& \psi \mid \phi \oplus \psi \mid \bot \mid 1 \mid \top \mid 0 \mid X \in \mathcal{V} \mid \mu X.\phi \mid \nu X.\phi.$$

$$\frac{-H_{A}, A^{\perp}}{-H_{A}, A^{\perp}} ax \qquad \frac{-H_{A}, \Gamma - H_{A}^{\perp}, \Delta}{-H_{A}, \Delta} cut$$

$$\frac{-H_{A}, \Delta_{1}}{-H_{A}, A^{\perp}} B, \Delta_{2}}{-H_{A}, A, A} \otimes \frac{-H_{A}, B, \Gamma}{-H_{A}, B, \Gamma} \Im$$

$$\frac{-H_{A}, \Gamma}{-H_{A}, A, \Gamma} \oplus^{1} \qquad \frac{-H_{A}, \Gamma}{-H_{A}, B, \Gamma} \oplus^{2} \qquad \frac{-H_{A}, \Gamma}{-H_{A}, B, \Gamma} \otimes \frac{-H_{A}, \Gamma}{-H_{A}, B, \Gamma} \otimes \frac{-H_{A}, \Gamma}{-H_{A}, B, \Gamma} \otimes \frac{-H_{A}, \Gamma}{-H_{A}, B, \Gamma} \psi$$

$$\frac{-H_{A}, \Gamma}{-H_{A}, M} \oplus \frac{-H_{A}, \Gamma}{-H_{A}, K} \psi$$

ヘロト ヘロト ヘヨト ヘヨト э 7 / 36

Cont ext

Cut-elimination for µLL[∞] and µLK[∞] Modal Linear Logic and translations of µLK[∞] Super exponentials Back to µLL[∞] Conclusion

Multi-cut rule

Multi-cut

In order to prove the cut-elimination theorem, we use the multi-cut rule:

$$\frac{\vdash \Gamma_1, \Delta_1 \quad \dots \quad \vdash \Gamma_n, \Delta_n}{\vdash \Gamma_1, \dots, \Gamma_n}$$
 mcut

with $\Delta_1, \ldots, \Delta_n$ being the *cut-formulas* and satisfying an acyclicity and connexity condition (relative to the cut relation).

$$\begin{array}{c} \mathcal{C} & \xrightarrow{\pi_1} & \pi_2 \\ & \vdash \mathcal{C}, \Gamma_1 & \vdash \mathcal{C}^{\perp}, \Gamma_2 \\ & \vdash \Gamma_1, \Gamma_2 \\ & \vdash \Delta \end{array} \text{ cut } \sim \underbrace{\mathcal{C} & \vdash \mathcal{C}, \Gamma_1 & \vdash \mathcal{C}^{\perp}, \Gamma_2 \\ & \vdash \Delta \end{array} \text{ mcut}$$

Context

Cut-elimination for μLL[∞] and μLK[∞] Modal Linear Logic and translations of μLK[∞] Super exponentials Back to μLL[−] Conclusion

Multi-cut reduction rule

・ロト・西ト・西ト・西・ 日・ うらの

Context

Cut-elimination for μLL[∞] and μLK[∞] Modal Linear Logic and translations of μLK[∞] Super exponentials Back to μLL[−] Conclusion

Multi-cut in action

Taking
$$F \coloneqq \nu X.X \otimes X$$

<ロト < 合 ト < 言 ト < 言 ト 言 の へ () 10 / 36

Multi-cut in action

Taking $F \coloneqq \nu X \cdot X \otimes X$

<ロ> <同> <同> <同> <同> < 同> < 同> < 2 10/36

Multi-cut in action

Taking
$$F \coloneqq \nu X.X \otimes X$$

Multi-cut in action

Taking
$$F \coloneqq \nu X.X \otimes X$$

Multi-cut in action

Taking
$$F \coloneqq \nu X . X \otimes X$$

Multi-cut in action

Taking
$$F \coloneqq \nu X . X \otimes X$$

Multi-cut in action

Taking
$$F \coloneqq \nu X \cdot X \otimes X$$

Multi-cut in action

Taking
$$F \coloneqq \nu X \cdot X \otimes X$$

Multi-cut in action

Taking
$$F \coloneqq \nu X \cdot X \otimes X$$

Multi-cut in action

Taking
$$F := \nu X \cdot X \otimes X$$

Multi-cut in action

Taking
$$F := \nu X \cdot X \otimes X$$

Multi-cut in action

Taking
$$F \coloneqq \nu X \cdot X \otimes X$$

Multi-cut in action

Taking $F \coloneqq \nu X \cdot X \otimes X$

$$\frac{\overline{\vdash F, F^{\perp}} \text{ ax } \overline{\vdash F, F^{\perp}} \text{ ax } \overline{\vdash F, F^{\perp}} \text{ ax } (F, F^{\perp}, F^{\perp}) = F, F^{\perp} \text{ ax } (F, F^{\perp}, F^{$$

<ロ> <部> <部> <き> <き> < 2

Context

Cut-elimination for μLL[∞] and μLK[∞] Modal Linear Logic and translations of μLK[∞] Super exponentials Back to μLL[−] Conclusion

Multi-cut in action

Taking $F := \nu X \cdot X \otimes X$

<ロト < (引) < 注) < 注) < 注) < 注) < 注) < つへ() 10 / 36

Cont ext

Cut-elimination for µLL[∞] and µLK[∞] Modal Linear Logic and translations of µLK[∞] Super exponentials Back to µLL[∞] Conclusion

Cut-elimination theorems

Cut-elimination of μALL^{∞} (Fortier & Santocanale 2013)

The cut-rule is admissible for Additive Linear Logic with fixpoints.

Cut-elimination of μ MALL^{∞} (Baelde et al. 2016)

Each fair multi-cut reduction sequences of $\mu {\rm MALL}^\infty$ are converging to a $\mu {\rm MALL}^\infty\text{-}{\rm cut-free}$ proof.

Cut-elimination of μLL^{∞} (Saurin 2023)

Each fair multi-cut reduction sequences of μLL^{∞} are converging to a μLL^{∞} -cut-free proof.

Context

Cut-elimination for µLL[∞] and µLK[∞] Modal Linear Logic and translations of µLK[∞] Super exponentials Back to µLL[∞] Conclusion

Goal

<ロト < 部 ト < 言 ト < 言 ト 言 の へ () 13 / 36

Exponentials

We add exponentials to $\mu MALL^{\infty}$:

?A and !A

As well as the corresponding rules:

$$\frac{\vdash \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{w}} \qquad \frac{\vdash ?A, ?A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{c}} \qquad \frac{\vdash A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{d}} \qquad \frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma} !_{\mathsf{p}}$$

This system is called μLL^{∞}

Cut-elimination steps of μLL^{∞}

$$\frac{\stackrel{\pi_{1}}{\vdash \Gamma_{1}}, \stackrel{\pi_{2}}{\vdash P_{1}, \Gamma_{1}}, \stackrel{\pi_{2}}{\vdash P_{1}, \Gamma_{2}}}{\vdash \Gamma_{1}, \Gamma_{2}} \stackrel{\mu}{\vdash \Gamma_{1}} \stackrel{\pi_{1}}{\vdash \Gamma_{1}, \Gamma_{2}} \stackrel{\pi_{1}}{\vdash \Gamma_{1}} \stackrel{\pi_{1}}{\vdash \Gamma_{1}} \stackrel{\pi_{1}}{\vdash \Gamma_{1}, \Gamma_{2}} \stackrel{\pi_{1}}{\vdash \Gamma_{1}} \stackrel{\pi_{2}}{\vdash \Gamma_{1}, \Gamma_{2}}$$

・ロト・日本・日本・ 日本・ 人口・

Translation of μLL^{∞} in $\mu MALL^{\infty}$

$$\frac{\vdash \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{w}} \qquad \frac{\vdash ?A, ?A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{c}} \qquad \frac{\vdash A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{d}} \qquad \frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma} !$$

Translation of formulas

$$(?A)^{\bullet} = \mu X.A^{\bullet} \oplus (\bot \oplus (X \ \mathfrak{N} X)) \quad (!A)^{\bullet} = \nu X.A^{\bullet} \& (1 \& (X \otimes X))$$

Translation of weakening

$$\frac{\vdash \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{w}} \sim \underbrace{\frac{\vdash \Gamma^{\bullet}}{\vdash \bot, \Gamma^{\bullet}} \bot}_{\vdash \bot \oplus ((?A)^{\bullet} \mathfrak{N} (?A)^{\bullet}), \Gamma^{\bullet}} \oplus^{1}}_{\vdash \mu X.A^{\bullet} \oplus (\bot \oplus ((?A)^{\bullet} \mathfrak{N} (?A)^{\bullet})), \Gamma^{\bullet}} \mu^{\oplus 2}$$

୬ ୧.୯ 16 / 36

Translation of μLL^{∞} in $\mu MALL^{\infty}$

$$\frac{\vdash \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{w}} \qquad \frac{\vdash ?A, ?A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{c}} \qquad \frac{\vdash A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{d}} \qquad \frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma} !$$

Translation of formulas

$$(?A)^{\bullet} = \mu X.A^{\bullet} \oplus (\bot \oplus (X \stackrel{\mathcal{H}}{\to} X)) \quad (!A)^{\bullet} = \nu X.A^{\bullet} \& (1 \& (X \otimes X))$$

Translation of contraction

$$\frac{\vdash ?A, ?A, \Gamma}{\vdash ?A, \Gamma} ?_{c} \sim \underbrace{\frac{\vdash (?A)^{\bullet}, (?A)^{\bullet}, \Gamma^{\bullet}}{\vdash (?A)^{\bullet} \Im (?A)^{\bullet}, \Gamma^{\bullet}} \Im}_{\vdash \bot \oplus ((?A)^{\bullet} \Im (?A)^{\bullet}), \Gamma^{\bullet}} \oplus^{2}}_{\vdash \mu X.A^{\bullet} \oplus (\bot \oplus (X \Im X)), \Gamma^{\bullet}} \oplus^{2}}_{\mu}$$

Translation of μLL^{∞} in $\mu MALL^{\infty}$

$$\frac{\vdash \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{w}} \qquad \frac{\vdash ?A, ?A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{c}} \qquad \frac{\vdash A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{d}} \qquad \frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma} !$$

Translation of formulas

$$(?A)^{\bullet} = \mu X.A^{\bullet} \oplus (\bot \oplus (X \stackrel{\mathcal{B}}{\to} X)) \quad (!A)^{\bullet} = \nu X.A^{\bullet} \& (1 \& (X \otimes X))$$

Translation of dereliction

$$\frac{\vdash A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{d}} \sim \underbrace{\frac{\vdash A^{\bullet} \oplus (\bot \oplus ((?A)^{\bullet} \Re (?A)^{\bullet})), \Gamma^{\bullet}}{\vdash \mu X.A^{\bullet} \oplus (\bot \oplus (X \Re X)), \Gamma^{\bullet}}}_{\vdash \mu X.A^{\bullet} \oplus (\bot \oplus (X \Re X)), \Gamma^{\bullet}} \mu$$

.) 40

Translation of μLL^{∞} in $\mu MALL^{\infty}$

$$\frac{\vdash \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{w}} \qquad \frac{\vdash ?A, ?A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{c}} \qquad \frac{\vdash A, \Gamma}{\vdash ?A, \Gamma} ?_{\mathsf{d}} \qquad \frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma} !$$

Translation of formulas

$$(?A)^{\bullet} = \mu X.A^{\bullet} \oplus (\bot \oplus (X \mathcal{B} X)) \quad (!A)^{\bullet} = \nu X.A^{\bullet} \& (1 \& (X \otimes X))$$

Translation of promotion

$$\begin{array}{c} \stackrel{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma} ! \rightsquigarrow \stackrel{\vdash A^{\bullet}, (?\Gamma)^{\bullet}}{\vdash !I, (?\Gamma)^{\bullet}} ?_{\mathsf{w}}^{\bullet} & \stackrel{\stackrel{\vdash (?A)^{\bullet}, (?\Gamma)^{\bullet}}{\vdash (?A)^{\bullet} \otimes (?A)^{\bullet}, (?\Gamma)^{\bullet}, (?\Gamma)^{\bullet}}{\vdash (?A)^{\bullet} \otimes (?A)^{\bullet}, (?\Gamma)^{\bullet}} ?_{\mathsf{c}}^{\bullet} \\ \hline \stackrel{\vdash A^{\bullet} \& (1 \& ((?A)^{\bullet} \otimes (?A)^{\bullet})), (?\Gamma)^{\bullet}}{\vdash \nu X.A^{\bullet} \& (1 \& (X \otimes X)), (?\Gamma)^{\bullet}} \nu \\ \hline \end{array}$$

Translation of μLK^{∞} in μLL^{∞}

$$(\mu X.A)^{\bullet} := !\mu X.?A^{\bullet} \qquad (\nu X.A)^{\bullet} := !\nu X.?A^{\bullet} (A_1 \lor A_2)^{\bullet} := !(?A_1^{\bullet} \oplus ?A_2^{\bullet}) \qquad (A_1 \land A_2)^{\bullet} := !(?A_1^{\bullet} \& ?A_2^{\bullet}) F^{\bullet} := !0 \qquad T^{\bullet} := !T X^{\bullet} := !X \qquad a^{\bullet} := !a (A_1 \to A_2)^{\bullet} := !(?A_1^{\bullet} \multimap ?A_2^{\bullet}) \qquad (\Gamma \vdash \Delta)^{\bullet} := \Gamma^{\bullet} \vdash ?\Delta^{\bullet}$$

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta} \land_r \approx \frac{\frac{\Gamma^{\bullet} \vdash ?A^{\bullet}, ?\Delta^{\bullet} \qquad \Gamma^{\bullet} \vdash ?B^{\bullet}, ?\Delta^{\bullet}}{\frac{\Gamma^{\bullet} \vdash ?A^{\bullet} \& ?B^{\bullet}, ?\Delta^{\bullet}}{\Gamma^{\bullet} \vdash ?!(?A^{\bullet} \& ?B^{\bullet}), ?\Delta^{\bullet}} ?_{\mathsf{d}}, !_{\mathsf{p}}} \&_r$$

Cut-elimination for μLK^{∞}

Cut-elimination for μLK^{∞} Saurin 2023

The cut-elimination system of μLK^{∞} is weakly normalizing.

Naïve extension of the translation and issue with it

Let's consider the <u>two-sided</u> system μLL^{∞} together with the two modal rules:

$$\frac{\Gamma, A \vdash \Delta}{\Box \Gamma, \Diamond A \vdash \Diamond \Delta} \Diamond \quad \frac{\Gamma \vdash A, \Delta}{\Box \Gamma \vdash \Box A, \Diamond \Delta} \Box$$

We extend the translation, to get a translation from μLK_{\Box}^{∞} to μLL_{\Box}^{∞} :

$$(\Box A)^{\bullet} := ! \Box ? A^{\bullet} \qquad (\Diamond A)^{\bullet} := ! \Diamond ? A^{\bullet}$$

20 / 36

Problem

Promotion rule

$$\frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma} !$$

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B} \Box$$

We start with the sequent:

 \vdash ?! \Box ? A^{\bullet} , ?! \Diamond ? B^{\bullet}

Problem

Promotion rule

$$\frac{\vdash A, ?\Gamma}{\vdash !A, ?\Gamma}$$

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B} \Box$$

We apply a dereliction a promotion:

$$\frac{(H_{\mathsf{C}}^{\mathsf{P}}) \cap (\mathcal{A}^{\mathsf{P}}, \Diamond) \cap \mathcal{B}^{\mathsf{P}}}{(H_{\mathsf{C}}) \cap (\mathcal{A}^{\mathsf{P}}, \circ) \cap (\mathcal{A}^{\mathsf{P}}, \circ) \cap (\mathcal{A}^{\mathsf{P}})} ?_{\mathsf{d}}, !$$

Problem

Promotion rule

$$\vdash A, ?\Gamma$$

 $\vdash !A, ?\Gamma$

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B} \Box$$

We apply a dereliction again:

$$\frac{ \vdash ! \square ?A^{\bullet}, \Diamond ?B^{\bullet} }{ \vdash ?! \square ?A^{\bullet}, \Diamond ?B^{\bullet} } ?_{\mathsf{d}} \vdash ?! \square ?A^{\bullet}, ?! \Diamond ?B^{\bullet} } ?_{\mathsf{d}}, !$$

And we are blocked.

・ロ・・雪・・雨・・雨・・日・ つへで

Solution

Promotion rule

$$\vdash A, ?\Gamma, \Diamond \Delta \vdash !A, ?\Gamma, \Diamond \Delta$$

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B} \Box$$

We apply a dereliction again:

$$\frac{\begin{array}{c} \vdash ! \Box ?A^{\bullet}, \Diamond ?B^{\bullet} \\ \hline \vdash ?! \Box ?A^{\bullet}, \Diamond ?B^{\bullet} \\ \hline \vdash ?! \Box ?A^{\bullet}, ?! \Diamond ?B^{\bullet} \end{array} ?_{\mathsf{d}}}{P_{\mathsf{d}} ?_{\mathsf{d}} ?_{\mathsf{d}} ?_{\mathsf{d}} . !}$$

э

ヘロト ヘロト ヘヨト ヘヨト

Solution

Promotion rule

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta} !$$

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B} \Box$$

Now, we can apply our promotion:

$$\frac{\vdash \Box; A^{\bullet}, \Diamond; B^{\bullet}}{\vdash ! \Box; A^{\bullet}, \Diamond; B^{\bullet}} !$$

$$\vdash ?! \Box; A^{\bullet}, \Diamond; B^{\bullet}} ?_{\mathsf{d}}$$

$$\vdash ?! \Box; A^{\bullet}, ?! \Diamond; B^{\bullet}} ?_{\mathsf{d}} !$$

21 / 36

3

Solution

Promotion rule

$$\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta} !$$

We want to translate:

$$\frac{\vdash A, B}{\vdash \Box A, \Diamond B} \Box$$

And finally our modal rule:

$$\frac{\begin{array}{c} \vdash ?A^{\bullet}, ?B^{\bullet} \\ \hline \vdash \Box ?A^{\bullet}, \Diamond ?B^{\bullet} \end{array}}{\vdash ! \Box ?A^{\bullet}, \Diamond ?B^{\bullet}} \Box \\ \hline \vdash ! \Box ?A^{\bullet}, \Diamond ?B^{\bullet} \end{array}$$

21 / 36

æ

Solution

Promotion rule

$$\begin{array}{c} \vdash A, ?\Gamma, \Diamond \Delta \\ \vdash !A, ?\Gamma, \Diamond \Delta \end{array}$$

<ロ> <同> <同> <同> <同> < 同> < 同> <

2

21 / 36

But what does it imply for this system?

Extension to μ superLL $^\infty$

Super exponential system (TLLA '21)

Exponential signatures

An exponential signature is a boolean function on the set of rule names:

 $\{?_{\mathbf{m}_i},?_{\mathbf{c}_i} \mid i \in \mathbb{N}\}.$

Formulas

Given a set of exponential signatures \mathcal{E} , we get the exponential formulas of μ superLL^{∞}(\mathcal{E}) (with $\sigma \in \mathcal{E}$):

$$\phi, \psi \coloneqq \phi \And \psi \mid \phi \otimes \psi \mid \phi \otimes \psi \mid \phi \oplus \psi \mid \bot \mid 1 \mid \top \mid \mathbf{0}$$

 $|X \in \mathcal{V} | \mu X.\phi | \nu X.\phi | ?_{\sigma}\phi | !_{\sigma}\phi.$

$$\frac{\overbrace{(n, \dots, A, \Gamma)}^{n} \sigma(?_{m_{i}})}{\vdash ?_{\sigma}A, \Gamma} ?_{m_{i}} \xrightarrow{(n, \dots, ?_{\sigma}A, \Gamma)}^{n} \sigma(?_{c_{i}})}{\vdash ?_{\sigma}A, \Gamma} ?_{c_{i}} ?_{$$

Extension to μ superLL $^\infty$

Promotion rules

Given three relations \leq_g, \leq_f and \leq_u on \mathcal{E} , we have the promotion rules of μ superLL^{∞}($\mathcal{E}, \leq_g, \leq_f, \leq_u$):

$$\frac{\vdash A, ?_{\vec{\sigma'}}\Delta \qquad \sigma \leq_{\mathsf{g}} \vec{\sigma'}}{\vdash !_{\sigma}A, ?_{\vec{\sigma'}}\Delta} \mathsf{!}_{\mathsf{g}} \quad \frac{\vdash A, \Delta \qquad \sigma \leq_{\mathsf{f}} \vec{\sigma'}}{\vdash !_{\sigma}A, ?_{\vec{\sigma'}}\Delta} \mathsf{!}_{\mathsf{f}} \quad \frac{\vdash A, B \qquad \sigma_{1} \leq_{\mathsf{u}} \sigma_{2}}{\vdash !_{\sigma_{1}}A, ?_{\sigma_{2}}B} \mathsf{!}_{\mathsf{u}}$$

Extension to μ superLL $^\infty$

Instances of superLL

ELL

Elementary Linear Logic (ELL) is a variant of LL where we remove $(?_d)$ and $(!_g)$ and add the functorial promotion:

$$\frac{\vdash A, \Gamma}{\vdash !A, ?\Gamma}$$

superLL(
$$\mathcal{E}, \leq_g, \leq_f, \leq_u$$
) is ELL where:
 $\mathcal{E} = \{\bullet\};$
 $\bullet(?_{c_2}) = \bullet(?_{m_0}) = true (and (\bullet)(r) = false otherwise);$
 $\leq_g = \leq_u = \emptyset$ and $\bullet \leq_f \bullet$.

superLL subsume many existing system of linear logic such as LL, LL with shifts, ELL, LLL, SLL or seLL.

Extension to μ superLL $^\infty$

Cut-elimination axioms

$\sigma \leq_{\mathbf{g}} \sigma'$	\Rightarrow	$\sigma(?\mathbf{m}_i)$	\Rightarrow	$\overline{\sigma'(?_{c_i})}$	$i \ge 0$	(axgmpx)
$\sigma \leq_{S} \sigma'$	\Rightarrow	$\sigma(?_{\mathbf{m}_{i}})$	\Rightarrow	$\bar{\sigma'}(?\mathbf{m}_i)$	$i \ge 0$ and $s \neq g$	(axfumpx)
$\sigma \leq_{s} \sigma'$	\Rightarrow	$\sigma(\mathbf{c}_i)$	\Rightarrow	$\bar{\sigma'}(\mathbf{\hat{r}_i})$	$i \ge 2$	(axcontr)
$\sigma \leq_{S} \sigma'$	\Rightarrow	$\sigma' \leq_{s} \sigma''$	\Rightarrow	$\sigma \leq_{s} \sigma''$		(ax Trans)
$\sigma \leq_{\mathbf{g}} \sigma'$	\Rightarrow	$\sigma' \leq_s \sigma''$	\Rightarrow	$\sigma \leq_{\mathbf{g}} \sigma''$		(axleqgs)
$\sigma \leq \sigma'$	\Rightarrow	$\sigma' \leq_{\mathbf{u}} \sigma''$	\Rightarrow	$\sigma \leq \sigma''$		(axleqfu)
$\sigma \leq \sigma'$	\Rightarrow	$\sigma' \leq_{\mathbf{g}} \sigma''$	\Rightarrow	$(\sigma \leq_{\mathbf{g}} \sigma'' \land (\sigma \leq_{\mathbf{f}} \sigma''' \Rightarrow (\sigma \leq_{\mathbf{g}} \sigma''' \land \sigma'''(\mathbf{m_1})))$		(axleqfg)
σ≤ ⊔ σ′	\Rightarrow	$\sigma' \leq_{s} \sigma''$	\Rightarrow	$\sigma \leq_{s} \sigma''$		(axle qus)

with $s \in \{g, f, u\}$, all the axioms are universally quantified.

Instances of superLL satisfies cut-elimination axioms

LL, LL with shifts, ELL, LLL, SLL, seLL satisfy cut-elimination axioms.

Extension to μ superLL $^\infty$

Cut-elimination for superLL

Let's consider the following axiom:

$$\sigma \leq_{\mathsf{g}} \sigma' \quad \Rightarrow \quad \sigma' \leq_{\mathsf{f}} \sigma'' \quad \Rightarrow \quad \sigma \leq_{\mathsf{g}} \sigma'' \qquad (\mathsf{axleqgs})$$

We use it for the following cut-elimination step:

$$\frac{\vdash A, ?_{\vec{\tau}} \Gamma \qquad \sigma \leq_{\mathbf{g}} \vec{\tau}, \tau}{\vdash !_{\sigma} A, ?_{\vec{\tau}} \Gamma, ?_{\tau} C} |_{\mathbf{g}} \qquad \frac{\vdash C, \Delta \qquad \tau \leq_{\mathbf{f}} \vec{\rho}}{\vdash !_{\tau} C^{\perp}, ?_{\vec{\rho}} \Delta} |_{\mathbf{f}} \sim \\ \frac{\vdash A, ?_{\vec{\tau}} \Gamma \qquad \frac{\vdash C, \Delta \qquad \tau \leq_{\mathbf{f}} \vec{\rho}}{\vdash !_{\tau} C^{\perp}, ?_{\vec{\rho}} \Delta} |_{\mathbf{f}}}{\frac{\vdash A, ?_{\vec{\tau}} \Gamma, ?_{\vec{\rho}} \Delta}{\vdash !_{\tau} C^{\perp}, ?_{\vec{\rho}} \Delta} |_{\mathbf{f}}} |_{\mathbf{f}}$$

superLL eliminates cuts

Extension to μ superLL $^\infty$

Cut-eliminations (B. & Laurent '21)

As soon as the 8 cut-elimination axioms are satisfied, cut elimination holds for superLL($\mathcal{E}, \leq_g, \leq_f, \leq_u$).

Extension to μ superLL $^\infty$

Cut-elimination steps

Example
If $ \frac{ \begin{array}{c} \pi \\ +A,?_{\vec{\tau}}\Delta & \sigma \leq_{g} \vec{\tau} \\ \hline & - !_{\sigma}A,?_{\vec{\tau}}\Delta \end{array}}{ \begin{array}{c} F \\ + !_{\sigma}A,?_{\vec{\rho}}\Gamma \end{array}} \operatorname{mcut}(\iota, \mathbb{I}) $ is a usuper I I $^{\infty}(\mathcal{E} \subset \mathcal{E} \subset \mathcal{E})$ proof then
is a μ superLL ($\mathcal{C}, \leq_g, \leq_f, \leq_u$)-proof then π
$\frac{(-A,?_{\vec{\tau}}\Delta) \qquad \mathcal{C}^{!}}{(-A,?_{\vec{\rho}}\Gamma)} \operatorname{mcut}(\iota, \mathbb{1}) \qquad \sigma \leq_{\mathbf{g}} \vec{\rho} \qquad \qquad$

is also a μ superLL^{∞}($\mathcal{E}, \leq_g, \leq_f, \leq_u$)-proof.

Context Cut-elimination for μLL∞ and Context Modal Linear Logic and translations of μLK∞ Super exponentials Back to μLL⊒ Conclusion

Extension to μ superLL $^\infty$

Translation of μ superLL^{∞} into μ LL^{∞}

Translation of formulas

We translate formulas by induction using:

$$(!_{\sigma}A)^{\circ} := !A^{\circ} \qquad (?_{\sigma}A)^{\circ} := ?A^{\circ}$$

$$\xrightarrow{\stackrel{n}{\vdash A^{\circ}, \dots, A, \Gamma}}_{\stackrel{n}{\vdash ?_{\sigma}A, \Gamma}} \sigma(?_{m_{i}}) ?_{m_{i}} \xrightarrow{\sim} \xrightarrow{\stackrel{i}{\vdash A^{\circ}, \dots, A^{\circ}, \Gamma^{\circ}}}_{\stackrel{i}{\vdash ?A^{\circ}, \dots, ?A^{\circ}, \Gamma^{\circ}}} ?_{d} \times i$$

$$\xrightarrow{\stackrel{n}{\vdash ?_{\sigma}A, \dots, ?_{\sigma}A, \Gamma}}_{\stackrel{n}{\vdash ?_{\sigma}A, \Gamma}} \sigma(?_{c_{i}}) ?_{c_{i}} \xrightarrow{\sim} \xrightarrow{\stackrel{i}{\vdash ?A^{\circ}, \dots, ?A^{\circ}, \Gamma^{\circ}}}_{\stackrel{i}{\vdash ?A^{\circ}, \dots, ?A^{\circ}, \Gamma^{\circ}}} ?_{c} \times i$$

・ロト・日本・日本・日本・日本・日本・日本・日本

Extension to μ superLL $^\infty$

Translation of μ superLL^{∞} into μ LL^{∞}

$$\frac{i \in [1, n]}{i \in [1, n]} \xrightarrow{i \in [1, n]}_{g} \xrightarrow{\sim} \frac{i \in [1, n]}{i \cap [A_{1}^{\circ}, \dots, ?A_{n}^{\circ}, A_{n}, I_{\sigma}^{\circ}]}_{g} \xrightarrow{\sim} \frac{i \cap [A_{1}^{\circ}, \dots, ?A_{n}^{\circ}, A_{n}^{\circ}]}{i \cap [A_{1}^{\circ}, \dots, ?A_{n}^{\circ}, A_{n}, I_{\sigma}^{\circ}]}_{g} |_{p}$$

$$\frac{i \in [[1, n]]}{i \in [[1, n]]} \xrightarrow{i \in [[1, n]]}_{f} \xrightarrow{\sim} \frac{i \cap [A_{1}^{\circ}, \dots, A_{n}^{\circ}, A_{n}^{\circ}]}{i \cap [A_{1}^{\circ}, \dots, ?A_{n}^{\circ}, A_{n}, I_{\sigma}^{\circ}]}_{g} |_{p}$$

$$\frac{i \in [A_{1}^{\circ}, \dots, A_{n}^{\circ}, A_{n}^{\circ}]}{i \cap [A_{1}^{\circ}, \dots, ?A_{n}^{\circ}, A_{n}, I_{\sigma}^{\circ}]}_{g} |_{p}$$

$$\frac{i \in B, A = \sigma_{1} \leq u \sigma_{2}}{i \cap ?\sigma_{2}B, I_{\sigma_{1}}A} |_{u} \xrightarrow{\sim} \frac{i - B^{\circ}, A^{\circ}}{i \cap ?B^{\circ}, IA^{\circ}} |_{p}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ●

Extension to μ superLL $^{\infty}$

Cut-elimination for μ superLL^{∞}

Cut-elimination reduction system correctness

For every μ superLL^{∞} ($\mathcal{E}, \leq_g, \leq_f, \leq_u$) reduction sequences $(\pi_i)_{i \in \mathbb{N}}$, there exists a μ LL^{∞} reduction sequence $(\theta_i)_{i \in \mathbb{N}}$ such that for each *i*, there exists *j* such that π_i° is equal to θ_i up to rule-permutations.

Cut-elimination reduction system completeness

If there is a μLL^{∞} -redex \mathcal{R} sending π° to π'° then there is also a μ superLL $^{\infty}(\mathcal{E}, \leq_{g}, \leq_{f}, \leq_{u})$ -redex \mathcal{R}' sending π to a proof π'' , such that in the translation of $\mathcal{R}', \mathcal{R}$ is reduced.

Cut-elimination theorem for μ superLL^{∞}

Every fair (mcut)-reduction sequence of μ superLL^{∞}($\mathcal{E}, \leq_g, \leq_f, \leq_u$) converges to a μ superLL^{∞}($\mathcal{E}, \leq_g, \leq_f, \leq_u$) cut-free proof.

Solution

Promotion rule

$$\begin{array}{c} \vdash A, ?\Gamma, \Diamond \Delta \\ \vdash !A, ?\Gamma, \Diamond \Delta \end{array}$$

32 / 36

But what does it imply for this system?

Solution

Promotion rule

$$\frac{\vdash A, ?_{\bullet}\Gamma, ?_{\star}\Delta}{\vdash !_{\bullet}A, ?_{\bullet}\Gamma, ?_{\star}\Delta} !$$

But what does it imply for this system?

Solution

Promotion rule

$$\frac{\vdash A, ?_{\bullet}\Gamma, ?_{\star}\Delta}{\vdash !_{\bullet}A, ?_{\bullet}\Gamma, ?_{\star}\Delta} \stackrel{\bullet \leq_{g} \star}{!_{g}}$$

But what does it imply for this system?

Solution

Promotion rule

$$\frac{\vdash A, ?_{\bullet}\Gamma, ?_{\star}\Delta}{\vdash !_{\bullet}A, ?_{\bullet}\Gamma, ?_{\star}\Delta} \stackrel{\bullet \leq_{g} \star}{\models} !_{g}$$

But what does it imply for this system? Axiom

$$\sigma \leq_{g} \sigma' \quad \Rightarrow \quad \sigma(?_{\mathsf{m}_{i}}) \quad \Rightarrow \quad \bar{\sigma'}(?_{\mathsf{c}_{i}}) \qquad i \geq 0 \quad (\operatorname{axgmpx})$$

for i = 0 and i = 1 give us

$$\frac{\vdash \Delta}{\vdash ?_{\star}A, \Delta} ?_{c_0} \qquad \qquad \frac{\vdash ?_{\star}A, \Delta}{\vdash ?_{\star}A, \Delta} ?_{c_1}$$

3

<ロ> <同> <同> <同> <同> < 同> < 同> <

Solution

Promotion rule

$$\frac{\vdash A, ?_{\bullet}\Gamma, ?_{\star}\Delta}{\vdash !_{\bullet}A, ?_{\bullet}\Gamma, ?_{\star}\Delta} \stackrel{\bullet \leq_{g} \star}{\models} !_{g}$$

But what does it imply for this system? Axiom

$$\sigma \leq_{g} \sigma' \implies \sigma(?_{c_{i}}) \implies \overline{\sigma'}(?_{c_{i}}) \qquad i \geq 2 \quad (\text{axcontr})$$

for $i = 2$, gives us:
$$\frac{\vdash ?_{\star}A, ?_{\star}A, \Delta}{\vdash ?_{\star}A, \Delta} c$$

32 / 36

Solution

Promotion rule

 $\frac{\vdash A, ?\Gamma, \Diamond \Delta}{\vdash !A, ?\Gamma, \Diamond \Delta} !$

Consequences

$$\frac{\vdash \Delta}{\vdash \Diamond A, \Delta} w \qquad \frac{\vdash \Diamond A, \Diamond A, \Delta}{\vdash \Diamond A, \Delta} c$$

$\mu \mathsf{LL}^\infty_\square$ as an instance of $\mu \mathsf{superLL}^\infty$

The system μLL_{\Box}^{∞} is the system $\mu superLL^{\infty}(\mathcal{E}, \leq_{g}, \leq_{f}, \leq_{u})$ such that:

The set of signatures contains two elements $\mathcal{E} := \{\bullet, \star\}$.

 $?_{c_2}(\bullet) = ?_{c_2}(\star) = true ?_{m_1}(\bullet) = true, ?_{m_0}(\bullet) = ?_{m_0}(\star) = true, and all the other elements have value false for both signatures.$

 $\bullet \leq_g \bullet$; $\bullet \leq_g \star, \, \star \leq_f \star,$ and all couples for the three relations \leq_g, \leq_f and \leq_u being false.

This system is μLL_{\Box}^{∞} when taking:

$$?_{\bullet} := ?, !_{\bullet} := !, ?_{\star} := \Diamond \text{ and } !_{\star} := \Box.$$

Moreover, the system satisfy cut-elimination axioms.

・ロト・日本・日本・日本・日本・日本

Translation from μLL^{∞}_{\Box} to μLL^{∞}

Translation from μLL_{\Box}^{∞} to μLL^{∞} and cut-elimination for μLL_{\Box}^{∞}

We define:

$$(\Diamond A)^{\circ} \rightarrow ?A^{\circ} \text{ and } (\Box A)^{\circ} \rightarrow !A^{\circ}.$$

We easily get weakening and contractions of \Diamond with weakening and contraction of ?. For the modality rule, we have:

$$\frac{\vdash A, \Gamma}{\vdash \Box A, \Diamond \Gamma} \Box \sim \frac{\vdash A^{\circ}, \Gamma^{\circ}}{\vdash A^{\circ}, ?\Gamma^{\circ}} ?_{\mathsf{d}}$$

Translation from μLL^{∞}_{\Box} to μLL^{∞}

Translation from μLL_{\Box}^{∞} to μLL^{∞} and cut-elimination for μLL_{\Box}^{∞}

We define:

$$(\Diamond A)^{\circ} \rightarrow ?A^{\circ} \text{ and } (\Box A)^{\circ} \rightarrow !A^{\circ}.$$

We easily get weakening and contractions of \Diamond with weakening and contraction of ?. For the modality rule, we have:

$$\frac{\vdash A, \Gamma}{\vdash \Box A, \Diamond \Gamma} \Box \sim \frac{\vdash A^{\circ}, \Gamma^{\circ}}{\vdash A^{\circ}, ?\Gamma^{\circ}} ?_{\mathsf{d}}$$

Cut-elimination theorems

Using $(-)^{\circ}$, we obtain cut-elimination for μLL_{\Box}^{∞} . Using $(-)^{\bullet}$, we get a proof of μLL_{\Box}^{∞} , from which we can eliminate cuts, we then can come back to μLK_{\Box}^{∞} and get a cut-free proof of μLL_{\Box}^{∞} .

Conclusion & future works

Summary

We proved a (syntactic) cut-elimination theorem for a general parametrized linear logic system μ superLL^{∞}.

Conclusion & future works

Summary

We proved a (syntactic) cut-elimination theorem for a general parametrized linear logic system μ superLL^{∞}.

We proved a syntactic cut-elimination theorem for the modal $\mu\text{-calculus.}$

Conclusion & future works

Summary

We proved a (syntactic) cut-elimination theorem for a general parametrized linear logic system μ superLL^{∞}.

We proved a syntactic cut-elimination theorem for the modal μ -calculus.

We proved a cut-elimination procedure for the circular version of the modal $\mu\text{-}calculus$ with sequents as sets.

Future works

Integrate the digging rule (axiom S4) or the co-dereliction rules (axiom T)

Conclusion & future works

Summary

We proved a (syntactic) cut-elimination theorem for a general parametrized linear logic system μ superLL^{∞}.

We proved a syntactic cut-elimination theorem for the modal μ -calculus.

We proved a cut-elimination procedure for the circular version of the modal $\mu\text{-}calculus$ with sequents as sets.

Future works

Integrate the digging rule (axiom S4) or the co-dereliction rules (axiom T)

Prove cut-elimination for the system that was, actually, presented in TLLA '21.