Provability of Functionnal Reactive Programming type system

Esaïe Bauer and Alexis Saurin
IRIF – Université de Paris – CNRS – INRIA

December 2, 2021
<table>
<thead>
<tr>
<th></th>
<th>Table des matières</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka - 2013)</td>
</tr>
<tr>
<td>3</td>
<td>Linear Temporal Logic (Kojima and Igarashi - 2011)</td>
</tr>
<tr>
<td>4</td>
<td>Kripke semantic</td>
</tr>
<tr>
<td>5</td>
<td>Future works</td>
</tr>
</tbody>
</table>
1. Introduction

2. Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka - 2013)

3. Linear Temporal Logic (Kojima and Igarashi - 2011)

4. Kripke semantic

5. Future works
Functionnal Reactive programming

History

Eliott and Hudak introduced it in 1997 with Functionnal Reactive animation
Functionnal Reactive programming

History
Eliott and Hudak introduced it in 1997 with Functionnal Reactive animation.

Program paradigm concerned by propagating a reactive input (such as stream) to ensure properties or modify values over time.
Elliott and Hudak introduced it in 1997 with Functionnal Reactive animation. Program paradigm concerned by propagating a reactive input (such as stream) to ensure properties or modify values over time. Exemple: Spreadsheet, graphical interface, web app.
Linear Temporal Logic

Connectives:

- $\circ A$
- $\Diamond A$
- $\square A$
- $A U B$
Linear Temporal Logic

Connectives:

- $\bigcirc A$
- $\lozenge A$
- $\Box A$
- $A \mathbin{\lor} B$

Pnueli used temporal logic to reason on reactive programs in 1977.
Linear Temporal Logic

Connectives:

\(\circ A\) \(\lozenge A\) \(\square A\) \(A \cup B\)

Pnueli used temporal logic to reason on reactive programs in 1977

Yuse and Igarashi use temporal logic to encode multi-level generating code extensions with persistent code
<table>
<thead>
<tr>
<th></th>
<th>Table of contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka - 2013)</td>
</tr>
<tr>
<td>3</td>
<td>Linear Temporal Logic (Kojima and Igarashi - 2011)</td>
</tr>
<tr>
<td>4</td>
<td>Kripke semantic</td>
</tr>
<tr>
<td>5</td>
<td>Future works</td>
</tr>
</tbody>
</table>
Functionnal Reactive Programming typed by a Linear Temporal Logic system

We will name this system FRP (for Fair Reactive Programming)
Functionnal Reactive Programming typed by a Linear Temporal Logic system

We will name this system FRP (for Fair Reactive Programming)

Types of FRP

\[
\mathcal{F} ::= \text{Var} \mid \mathcal{F} \lor \mathcal{F} \mid \mathcal{F} \land \mathcal{F} \mid \mathcal{F} \rightarrow \mathcal{F} \mid \bigcirc \mathcal{F} \mid \mu X. \mathcal{F} \mid \nu X. \mathcal{F} \mid 1
\]
Functionnal Reactive Programming typed by a Linear Temporal Logic system

We will name this system FRP (for Fair Reactive Programming)

Types of FRP

\[\mathcal{F} ::= \text{Var} \mid \mathcal{F} \lor \mathcal{F} \mid \mathcal{F} \land \mathcal{F} \mid \mathcal{F} \rightarrow \mathcal{F} \mid \bigcirc \mathcal{F} \mid \mu X. \mathcal{F} \mid \nu X. \mathcal{F} \mid 1 \]

\[\square A ::= \nu X. A \land \bigcirc X \]

\[\Diamond A ::= \mu X. A \lor \bigcirc X \]

\[A \cup B ::= \mu X. (B \lor (A \land \bigcirc X)) \]
Temporal terms and derivation rules

\[\bullet t : \bigcirc A \quad \text{let} \quad \bullet x = t \ \text{in} \quad t_2 : C \]
Temporal terms and derivation rules

\[\bullet t : \bigcirc A \quad \text{let} \quad \bullet x = t \text{ in } t_2 : C \]

Sequents

\[\Theta; \Gamma \vdash A \]
Temporal terms and derivation rules

\[\begin{align*}
 \bullet t & : \bigcirc A \\
 \text{let } \bullet x = t & \text{ in } t_2 : C
\end{align*} \]

Sequents

\[\Theta; \Gamma \vdash A \]

Typing rules

\[\frac{\Theta; \Gamma \vdash t : A}{\Theta; \Gamma \vdash \bullet t : \bigcirc A} \quad (\bigcirc i) \]

\[\frac{\Theta; \Gamma \vdash t_1 : \bigcirc A}{\Theta; \Gamma \vdash \text{let } \bullet x = t_1 \text{ in } t_2 : B} \quad (\bigcirc e) \]
Causality

Causality

\[f(s_1, \ldots, s_n, s_{n+1}, \ldots) = f(s_1, \ldots, s_n, s'_{n+1}, \ldots) \] at time \(n \)
Causality

\[f(s_1, \ldots, s_n, s_{n+1}, \ldots) = f(s_1, \ldots, s_n, s'_{n+1}, \ldots) \] at time \(n \)

\[\circ A \rightarrow A \]

should no be provable:

\[\text{predictor1}(x : \circ A) := \text{let } \bullet x' = x \text{ in } x' \]
Causality

\[f(s_1, \ldots, s_n, s_{n+1}, \ldots) = f(s_1, \ldots, s_n, s'_{n+1}, \ldots) \text{ at time } n \]

\[\bigcirc A \rightarrow A \]

should no be provable:

\[
\text{predictor1}(x : \bigcirc A) := \text{let } \bullet x' = x \text{ in } x'
\]

\[\bigcirc (A \lor B) \rightarrow \bigcirc A \lor \bigcirc B \]

should not be provable:

\[
\text{predictor2 } (x : \bigcirc (A \lor B)) = \text{let } \bullet x' = x \text{ in case } x' \text{ of }
\begin{align*}
| \text{inl } a & \rightarrow \text{inl } (\bullet a) \\
| \text{inr } b & \rightarrow \text{inr } (\bullet b)
\end{align*}
\]
Other rejected formula

$A \rightarrow \odot A$

would not break causality, but we refute it anyway. (accepted in Krishnaswami and Benton 2011 but rejected in Krishnaswami 2013 paper for managing space)

import $(x : A) = \bullet x$
Some example of implementation

Type of Temporal Streams on $A : \square A$ (namely $\nu X. A \land \Diamond X$)
Some example of implementation

Type of Temporal Streams on \(A : \square A \) (namely \(\nu X. A \land \bigcirc X \))

\[
\text{coit app } f \ a : \square (A \to B) \to \square A \to \square B := \\
\text{let } ha, hf = \text{hd } a, \text{hd } f \text{ in} \\
\text{let } \bullet ta, \bullet tf = \text{tl } a, \text{tl } f \text{ in } (hf \ ha, \bullet \text{app } tf \ ta)
\]
Table of contents

1. Introduction

2. Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka - 2013)

3. Linear Temporal Logic (Kojima and Igarashi - 2011)

4. Kripke semantic

5. Future works
Linear Temporal Logic from Kojima and Igarashi (LJ\(\bigcirc\)) - 2011

No \(\lozenge\), \(\Box\) and fixpoint, only \(\bigcirc\) to deal with time
No ◇, □ and fixpoint, only ◯ to deal with time

Sequents are made of formulas indexed with a natural number
Sequents are made of formulas indexed with a natural number

\[
\frac{\Gamma^\vec{m}, A^{n+1} \vdash B^m}{\Gamma^\vec{m}, (\Diamond A)^n \vdash B^m} \quad \Diamond I
\]

\[
\frac{\Gamma^\vec{m} \vdash A^{n+1}}{\Gamma^\vec{m} \vdash (\Diamond A)^n} \quad \Diamond R
\]
Thanks to the side condition,

\[\#(A \lor B) \rightarrow (\#A \lor \#B) \]

is not provable in the system.
Causality

\[\Gamma \vec{m}, A^n \vdash C^m \quad \Gamma \vec{m}, B^n \vdash C^m \quad n \leq m \]
\[\Gamma \vec{m}, (A \lor B)^n \vdash C^m \quad \lor_I \]

Thanks to the side condition, \((\bigcirc (A \lor B)) \rightarrow (\bigcirc A \lor \bigcirc B)\) is not provable in the system.
Same sequents than LJ°.
Same sequents than LJ°.

Additional side conditions:

\[
\begin{align*}
\Gamma^\vec{m}, A^n & \vdash C^m & \Gamma^\vec{m}, B^n & \vdash C^m & n \leq m, \vec{m} & \quad \vee_l \\
\Gamma^\vec{m}, (A \lor B)^n & \vdash C^m
\end{align*}
\]

\[
\begin{align*}
\Gamma^\vec{m}, A^n & \vdash B^n & n \leq \vec{m} & \quad \rightarrow_r \\
\Gamma^\vec{m} & \vdash (A \rightarrow B)^n
\end{align*}
\]
Same sequents than LJ°.

Additional side conditions:

\[
\begin{align*}
\Gamma \vec{m}, A^n & \vdash C^m & \Gamma \vec{m}, B^n & \vdash C^m & n \leq m, \vec{m} \\
\Gamma \vec{m}, (A \lor B)^n & \vdash C^m
\end{align*}
\]

\[
\begin{align*}
\Gamma \vec{m}, A^n & \vdash B^n & n \leq \vec{m} \\
\Gamma \vec{m} & \vdash (A \rightarrow B)^n
\end{align*}
\]

μ and ν-free FRP is provably equivalent to FRP°.
Same sequents than LJ^\bigcirc.

Additional side conditions:

\[
\begin{align*}
\Gamma \vec{m}, A^n &\vdash C^m &
\Gamma \vec{m}, B^n &\vdash C^m & n \leq m, \vec{m} \\
\Gamma \vec{m}, (A \lor B)^n &\vdash C^m & \lor_l
\end{align*}
\]
\[
\begin{align*}
\Gamma \vec{m}, A^n &\vdash B^n & n \leq \vec{m} & \rightarrow_r \\
\Gamma \vec{m} &\vdash (A \rightarrow B)^n
\end{align*}
\]

μ and ν-free FRP is provably equivalent to FRP^\bigcirc.

$\text{FRP} \not\vdash (\bigcirc A \rightarrow \bigcirc B) \rightarrow \bigcirc (A \rightarrow B)$
<table>
<thead>
<tr>
<th></th>
<th>Table of contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka - 2013)</td>
</tr>
<tr>
<td>3</td>
<td>Linear Temporal Logic (Kojima and Igarashi - 2011)</td>
</tr>
<tr>
<td>4</td>
<td>Kripke semantic</td>
</tr>
<tr>
<td>5</td>
<td>Future works</td>
</tr>
</tbody>
</table>
Kripke models

IM-frame

Quadruplet \((W, \leq, R, \models)\) such that:

1. \(W\) is a non-empty set,
2. \(\leq\) is a partial order on \(W\),
3. \(R\) is a binary relation on \(W\),
4. \(\models\) is a relation between elements of \(W\) and propositional variables.

Interpretation of formulas

\(w \models A \rightarrow B \iff (\forall w' \geq w, (w' \models A) \Rightarrow (w' \models B))\)

\(w \models \#A \iff (\forall v, w R v \Rightarrow v \models A)\)
Kripke models

IM-frame

Quadruplet \((W, \leq, R, \models)\) such that:

- \(W\) is a non-empty set,
Kripke models

IM-frame

Quadruplet \((W, \leq, R, \models)\) such that:

- \(W\) is a non-empty set,
- \(\leq\) is a partial order on \(W\),
- \(R\) is a binary relation on \(W\).

Interpretation of formulas:

- \(w \models A \iff (\forall w' \geq w, (w' \models A) \Rightarrow (w' \models B))\)
- \(w \models \#A \iff (\forall v, w R v \Rightarrow v \models A)\)
Kripke models

IM-frame

Quadruplet \((W, \leq, R, \models)\) such that:

- \(W\) is a non-empty set,
- \(\leq\) is a partial order on \(W\),
- \(R\) is a binary relation on \(W\),
- \(\models\) is a relation between elements of \(W\) and propositionnal variables.

Interpretation of formulas:

- \(w \models A \rightarrow B \iff (\forall w' \geq w, (w' \models A) \Rightarrow (w' \models B))\)

- \(w \models \#_A \iff (\forall v, w R v \Rightarrow v \models A)\)
Kripke models

IM-frame

Quadruplet \((W, \leq, R, \models)\) such that:
- \(W\) is a non-empty set,
- \(\leq\) is a partial order on \(W\),
- \(R\) is a binary relation on \(W\),
- \(\models\) is a relation between elements of \(W\) and propositionnal variables.
Kripke models

IM-frame

Quadruplet \((W, \leq, R, \models)\) such that:

- \(W\) is a non-empty set,
- \(\leq\) is a partial order on \(W\),
- \(R\) is a binary relation on \(W\),
- \(\models\) is a relation between elements of \(W\) and propositionnal variables

Interpretation of formulas

\(w \models A \rightarrow B \iff (\forall w' \geq w, (w' \models A) \Rightarrow (w' \models B))\)
Kripke models

IM-frame

Quadruplet \((W, \leq, R, \models)\) such that:
- \(W\) is a non-empty set,
- \(\leq\) is a partial order on \(W\),
- \(R\) is a binary relation on \(W\),
- \(\models\) is a relation between elements of \(W\) and propositionnal variables

Interpretation of formulas

\[
\begin{align*}
w \models A \rightarrow B & \iff (\forall w' \geq w, (w' \models A) \Rightarrow (w' \models B)) \\
w \models \bigcirc A & \iff (\forall v, w R v \Rightarrow v \models A)
\end{align*}
\]
Correctness and Completeness

Two axioms:

axiom 1:
\[(\leq, R, \leq) = R\]

axiom 2:
\[\forall w, v, w R v \rightarrow (\exists w', w \leq w' \text{ and } \forall u, (w' R u) \iff (v \leq u))\]
Correctness and Completeness

Two axioms:

axiom 1:

$$(\leq, R, \leq) = R$$

axiom 2:

$$\forall w, v, w R v \rightarrow (\exists w', w \leq w' \text{ and } \forall u, (w' R u) \iff (v \leq u))$$

Correctness and Completeness for LJ\Box (Kojima and Igarashi - 2011)

IM-frame together with axiom 1 and 2 are correct and complete relatively to LJ\Box.
Correctness and Completeness

Two axioms:

axiom 1:

\[(\leq, R, \leq) = R \]

axiom 2:

\[\forall w, v, w R v \rightarrow (\exists w', w \leq w' \text{ and } \forall u, (w' R u) \iff (v \leq u)) \]

Correctness and Completeness for LJ\(\Box\) (Kojima and Igarashi - 2011)

IM-frame together with axiom 1 and 2 are correct and complete relatively to LJ\(\Box\).

Correctness and Completeness for FRP\(\Box\)

IM-frame satisfying axiom 1 are correct and complete relatively to FRP\(\Box\).
Kripke models

\[R = \text{Id} \]
Kripke models

R = Id

Intuitionistic logic
Kripke models

Intuitionistic logic

$R = \text{Id}$

$\leq = \text{Id}$
Kripke models

\[R = \text{Id} \]

\[\leq = \text{Id} \]

Intuitionistic logic

Modal Logic K
Kripke models

Intuitionistic logic

Modal Logic K

$R = \text{Id}$

$\leq = \text{Id}$
Kripke models

\[R = Id \]

Intuitionistic logic

\[\leq = Id \]

Modal Logic K

Classical Logic

Intuitionistic logic

Classical Logic

Modal Logic K
Kripke models

Intuitionistic logic

Modal Logic K

Classical Logic

\[R = \text{Id} \quad \leq \text{Id} \]

axiom 1
Kripke models

Intuitionistic logic

Classical Logic

Modal Logic K

FRP

R = Id

≤ = Id

axiom 1

Intuitionistic logic
Kripke models

Intuitionistic logic

Modal Logic K

Classical Logic

axiom 1

axiom 2

R = Id

<= Id

FRP
Kripke models

- Intuitionistic logic
 - axiom 1
 - FRP
 - $\leq = \text{Id}$
- Modal Logic K
 - axiom 2
 - LJ
 - Classical Logic
 - $R = \text{Id}$
Kripke models

- **Intuitionistic logic**
 - R = Id
 - ≤ = Id

- **Modal Logic K**
 - Classical Logic

- **axiom 1**
 - LJ

- **axiom 2**
 - FRP
1. Introduction

2. Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka - 2013)

3. Linear Temporal Logic (Kojima and Igarashi - 2011)

4. Kripke semantic

5. Future works
Future works

Extending our results to full FRP (with fixpoints)
Future works

Extending our results to full FRP (with fixpoints)

Consider a classical setting for FRP ($\lambda\mu - calculus$ from Parigot)