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Who am I ?

Today

PhD student under the direction of Alexis Saurin & Thomas

Ehrhard.

Internships

Worked with Marie Kerjean & Olivier Laurent.
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Informal de�nitions

Temporal logic is a logic system where formulas have a truth value

evolving over time.

Reactive programming is a programm paradigm concerned by

propagating a reactive input (such as stream) to ensure properties

or modify value over time.

Example : spreadsheet, graphical interface, web app
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Temporal logic

Three connectives

We introduce three connectives :

#A, 3A and 2A

Formulas

F ::= Var | F ∨ F | F ∧ F|F → F | #F | µX .F | νX .F | ⊥ | 1
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Fixed point

Constructions with �xed point

3A ::= µX .A ∨#X or 2A ::= νX .A ∧#X

or A UB ::= µX .((A ∧#X ) ∨ B)

Fixed point over 2 and 3

23A and νX .µY .((A ∧#X ) ∨#Y )

both express that there will be an in�nite number of A
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Reactive programming and causality

Causality

f (s1, . . . , sn, sn+1, . . . ) = f (s1, . . . , sn, s
′
n+1

, . . . ) at time n

#(A ∨ B) → #A ∨#B

should not be provable.
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FRP (Cave, Ferreira, Panangaden & Pientka)

let • x = t1 in t2 • t

Sequents

Θ; Γ ⊢ A

Typing rules

; Θ ⊢ t : A
#i

Θ; Γ ⊢ •t : #A
Θ; Γ ⊢ t1 : #A Θ, x : A; Γ ⊢ t2 : B

#e
Θ; Γ ⊢ let • x = t1 in t2 : B
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Reduction rules and normalization

Règle de réduction

let • x = •t1 in t2 → t2[x := t1]
•

Strong Normalization

If Θ; Γ ⊢ t : A is provable then t is strongly normalizing
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Transforming FRP

FRP typing system seen as a sequent calculus, with step-indexed

formula led to :

;#A → #B ⊬ #(A → B)

Transforming FRP into a λ̄µ-FRP

Problem : in classical LTL, #(A ∨ B) ⊢ #A ∨#B is a theorem.
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Circular proofs

Circular proofs

Circular proofs is a way of formalizing induction and coinduction in

rule system.

Formalizing such a system in a Coq Library

13 / 13



Context
Line of work

Circular proofs

Circular proofs

Circular proofs is a way of formalizing induction and coinduction in

rule system.

Formalizing such a system in a Coq Library

13 / 13


	Context
	Line of work

