
Context
Line of work

Curry-Howard Correspondance between Temporal
Logic and Reactive Programming

Esaïe Bauer

Alexis Saurin & Thomas Ehrhard

13 octobre 2021

1 / 13

Context
Line of work

Who am I ?

Today

PhD student under the direction of Alexis Saurin & Thomas

Ehrhard.

Internships

Worked with Marie Kerjean & Olivier Laurent.

2 / 13

Context
Line of work

Who am I ?

Today

PhD student under the direction of Alexis Saurin & Thomas

Ehrhard.

Internships

Worked with Marie Kerjean & Olivier Laurent.

2 / 13

Context
Line of work

Table des matières

1 Context

2 Line of work

3 / 13

Context
Line of work

Table des matières

1 Context

2 Line of work

4 / 13

Context
Line of work

Informal de�nitions

Temporal logic is a logic system where formulas have a truth value

evolving over time.

Reactive programming is a programm paradigm concerned by

propagating a reactive input (such as stream) to ensure properties

or modify value over time.

Example : spreadsheet, graphical interface, web app

5 / 13

Context
Line of work

Informal de�nitions

Temporal logic is a logic system where formulas have a truth value

evolving over time.

Reactive programming is a programm paradigm concerned by

propagating a reactive input (such as stream) to ensure properties

or modify value over time.

Example : spreadsheet, graphical interface, web app

5 / 13

Context
Line of work

Temporal logic

Three connectives

We introduce three connectives :

#A, 3A and 2A

Formulas

F ::= Var | F ∨ F | F ∧ F|F → F | #F | µX .F | νX .F | ⊥ | 1

6 / 13

Context
Line of work

Temporal logic

Three connectives

We introduce three connectives :

#A, 3A and 2A

Formulas

F ::= Var | F ∨ F | F ∧ F|F → F | #F | µX .F | νX .F | ⊥ | 1

6 / 13

Context
Line of work

Fixed point

Constructions with �xed point

3A ::= µX .A ∨#X or 2A ::= νX .A ∧#X

or A UB ::= µX .((A ∧#X) ∨ B)

Fixed point over 2 and 3

23A and νX .µY .((A ∧#X) ∨#Y)

both express that there will be an in�nite number of A

7 / 13

Context
Line of work

Reactive programming and causality

Causality

f (s1, . . . , sn, sn+1, . . .) = f (s1, . . . , sn, s
′
n+1

, . . .) at time n

#(A ∨ B) → #A ∨#B

should not be provable.

8 / 13

Context
Line of work

Reactive programming and causality

Causality

f (s1, . . . , sn, sn+1, . . .) = f (s1, . . . , sn, s
′
n+1

, . . .) at time n

#(A ∨ B) → #A ∨#B

should not be provable.

8 / 13

Context
Line of work

FRP (Cave, Ferreira, Panangaden & Pientka)

let • x = t1 in t2 • t

Sequents

Θ; Γ ⊢ A

Typing rules

; Θ ⊢ t : A
#i

Θ; Γ ⊢ •t : #A
Θ; Γ ⊢ t1 : #A Θ, x : A; Γ ⊢ t2 : B

#e
Θ; Γ ⊢ let • x = t1 in t2 : B

9 / 13

Context
Line of work

Reduction rules and normalization

Règle de réduction

let • x = •t1 in t2 → t2[x := t1]
•

Strong Normalization

If Θ; Γ ⊢ t : A is provable then t is strongly normalizing

10 / 13

Context
Line of work

Reduction rules and normalization

Règle de réduction

let • x = •t1 in t2 → t2[x := t1]
•

Strong Normalization

If Θ; Γ ⊢ t : A is provable then t is strongly normalizing

10 / 13

Context
Line of work

Table des matières

1 Context

2 Line of work

11 / 13

Context
Line of work

Transforming FRP

FRP typing system seen as a sequent calculus, with step-indexed

formula led to :

;#A → #B ⊬ #(A → B)

Transforming FRP into a λ̄µ-FRP

Problem : in classical LTL, #(A ∨ B) ⊢ #A ∨#B is a theorem.

12 / 13

Context
Line of work

Transforming FRP

FRP typing system seen as a sequent calculus, with step-indexed

formula led to :

;#A → #B ⊬ #(A → B)

Transforming FRP into a λ̄µ-FRP

Problem : in classical LTL, #(A ∨ B) ⊢ #A ∨#B is a theorem.

12 / 13

Context
Line of work

Transforming FRP

FRP typing system seen as a sequent calculus, with step-indexed

formula led to :

;#A → #B ⊬ #(A → B)

Transforming FRP into a λ̄µ-FRP

Problem : in classical LTL, #(A ∨ B) ⊢ #A ∨#B is a theorem.

12 / 13

Context
Line of work

Circular proofs

Circular proofs

Circular proofs is a way of formalizing induction and coinduction in

rule system.

Formalizing such a system in a Coq Library

13 / 13

Context
Line of work

Circular proofs

Circular proofs

Circular proofs is a way of formalizing induction and coinduction in

rule system.

Formalizing such a system in a Coq Library

13 / 13

	Context
	Line of work

