
T H E S I S

presented at

Paris 7 University – Denis Diderot

to obtain the title of

Doctor of Science
Computer Science specialty

Theory, conception and realisation
of a programming language adapted to XML

presented by

Alain Frisch

on 13 December 2004, in front of a jury composed of:

Mr. Pierre-Louis Curien President
Mr. Giuseppe Castagna Thesis director
Messrs. Giorgio Ghelli

Martin Odersky Referees
Mrs. Mariangiola Dezani Examiner
Mr. Xavier Leroy Examiner

2

Abstract

This thesis describes the theoretical foundations of a type-safe and higher-order
functional language, adapted to the manipulation of XML documents. The first
part presents the semantic foundations: a type algebra with recursive types,
boolean combinations, arrow and product constructors; the definition of a se-
mantic subtyping relation via a set-theoretic model notion for types; and a
description of the functional core of the language, in particular its type sys-
tem and its type-driven dynamic semantics. The second part focuses on the
algorithmic aspects: computing the subtyping relation and compiling pattern
matching with optimizations. The third part presents the CDuce language, built
on top of the functional core, as well as some of the novel techniques used in its
implementation.

3

Acknowledgements

My thanks go, first of all, to Giuseppe Castagna who kindly supervised my
thesis and my DEA internship. He left me free to choose the directions in which
to orient my work, and the way to approach them; he always knew how to
show me great confidence and he advised and encouraged me during decisive
moments. Thanks to him, these years of thesis were a great enrichment for me,
and I developed a taste for research. I also thank Véronique Benzaken who
accompanied my thesis work.

Giorgio Ghelli and Martin Odersky have done me the honor of being referees
for this thesis. I am very grateful to them for having accepted this heavy task,
despite the language barrier. I would also like to thank Mariangiola Dezani,
Pierre-Louis Curien, and Xavier Leroy for agreeing to participate in my jury.

This thesis could not have been completed without the flexibility of the
General Council of Information Technologies and the research department of
Télécom Paris, which authorized me to carry out my research work in parallel
with a specially arranged engineering training. INRIA should also be thanked
for allowing me to devote my first weeks within it to finishing the writing of the
thesis.

The CDuce language, whose theoretical foundations are presented in this
thesis, is a team effort. Giuseppe Castagna and Véronique Benzaken partic-
ipated in defining the language and writing the documentation. Some parts
of the implementation were carried out by other students: Cédric Miachon for
the CQL query language integrated in CDuce, Stefano Zacchiroli for the XML
Schema support, and Julien Demouth for the interface with the Objective Caml
language. The researchers and students who contributed in one way or another
to CDuce, as well as the small community of early users, helped create a positive
dynamic around the project.

My office colleagues at the ENS deserve credit for putting up with me. I
would like to thank them for the nice atmosphere of this office under the roofs
where it is however so easy to bang your head. Francesco Zappa-Nardelli pro-
posed the name CDuce; I haven’t decided yet if I should thank him for it.

My parents are responsible for my existence, and therefore, in a way, for
that of this thesis. I never had the opportunity to thank them "formally" for
everything they have done for me, for the taste for knowledge and the effort they
have transmitted to me, for their encouragement and their love. So I thank them
for all of this. Likewise, I thank my friends, and Abbey in particular, for their
moral support and everything.

4 Acknowledgements

5

Foreword

This memoir presents the research work I did in the Languages team of the
Computer Science Department of École Normale Supérieure de Paris under the
guidance of Giuseppe Castagna (DEA intership: April-August 2001; thesis: Oc-
tober 2002 - September 2004). During that time, I also worked at the University
of Turin (one week), at Microsoft Research Cambridge (three months), and at
the PSD Laboratory in Tokyo (one week); the final writing for this memoir was
achieved at project Cristal in INRIA Rocquencourt. The list of publications I
contributed to is given below (some of the result obtained are not presented in
this memoir).

Convention This memoir is written in the first-person plural "we", except for
introduction and conclusion chapters, where the first-person singular is used to
give a more personal tone.

Publications

[BCF02] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: a
white paper. In Programming Languages Technologies for XML (PLAN-
X), 2002.

[BCF03] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: An
XML-centric general-purpose language. In ACM International Conference
on Functional Programming (ICFP), 2003.

[CF04] Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic
subtyping. In Second workshop on Programmable Structured Documents,
2004.

[DCFGM02] Mariangiola Dezani-Ciancaglini, Alain Frisch, Elio Giovannetti, and Yoko
Motohama. The relevance of semantic subtyping. In Intersection Types
and Related Systems (ITRS). Electronic Notes in Theoretical Computer
Science, 2002.

[Fri01] Alain Frisch. Types récursifs, combinaisons booléennes et fonctions sur-
chargées: application au typage de XML, 2001. Rapport de DEA (Uni-
versité Paris 7).

[Fri04] Alain Frisch. Regular tree language recognition with static information.
In 3rd IFIP International Conference on Theoretical Computer Science
(TCS), 2004. A preliminary version appeared in the PLAN-X 2004 work-
shop.

6 Foreword

[FC04] Alain Frisch and Luca Cardelli. Greedy regular expression matching. In
31st International Colloquium on Automata, Languages and Programming
(ICALP), 2004. A preliminary version appeared in the PLAN-X 2004
workshop.

[FCB02] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic
Subtyping. In Proceedings of the 17th IEEE Symposium on Logic in
Computer Science (LICS), pages 137–146. IEEE Computer Society Press,
2002.

[HFC05] Haruo Hosoya, Alain Frisch, and Giuseppe Castagna. Parametric poly-
morphism for XML. In Proceedings of the 32st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 2005.

7

Contents

Abstract 2

Acknowledgements 3

Foreword 5

Table of figures 13

Notations 15

Introduction 19

1 Introduction 19
1.1 Motivations, goals . 19

1.1.1 Programming languages 19
1.1.2 XML . 20
1.1.3 Programming with XML 21

1.2 XDuce . 23
1.2.1 Overview . 23
1.2.2 Internal encoding . 24

1.3 Quick overview of the thesis . 26
1.3.1 Theoretical and semantic foundations 26
1.3.2 Algorithmic aspects . 28
1.3.3 The CDuce language . 28

1.4 Main contributions . 29
1.4.1 Higher-order functions and set-theoretic subtyping 29
1.4.2 Typing pattern matching 30
1.4.3 Efficient compilation of pattern-matching 31
1.4.4 The subtyping algorithm 31
1.4.5 XML attributes . 32
1.4.6 A calculus for overloaded functions 33

8 CONTENTS

I Theoretic and semantic foundations 35

2 A formal framework for recursive syntaxes 37
2.1 Motivation . 37
2.2 The category of F -coalgebras . 39
2.3 Congruences, quotients . 41
2.4 Regularity and recursivity . 42

2.4.1 Regularity . 43
2.4.2 Recursivity . 43
2.4.3 Application: transfer between signatures 46

2.5 Constructions . 48
2.5.1 Optimal sharing . 49
2.5.2 Minimal sharing . 51
2.5.3 Sharing modulo renaming and extension 53

3 Type algebra 57
3.1 Boolean combinations . 57

3.1.1 Motivation . 57
3.1.2 Finite boolean combinations in normal disjunctive form . 58

3.2 Algebras with recursive types and boolean combinations 60
3.3 The minimal algebra . 60

4 Semantic subtyping 63
4.1 Base types . 65
4.2 Models . 65
4.3 Set-theoretic inclusions . 67
4.4 Subtyping analysis . 69
4.5 Universal model . 71
4.6 Non-universal models . 75
4.7 Notation conventions . 77
4.8 Semantic reasonings . 78

4.8.1 Decompositions . 78
4.8.2 Building equivalent models 80

4.9 Equation systems ∨∨∨××× . 84

5 Calculus 87
5.1 Syntax . 87
5.2 Type system . 88
5.3 Syntactic properties of the typing 90
5.4 Values . 92
5.5 Semantics . 95
5.6 Type safety . 96
5.7 Type inference . 99

CONTENTS 9

5.7.1 Filters, schemas . 99
5.7.2 Typing the operators . 102
5.7.3 Typing algorithm . 103
5.7.4 Set-theoretic interpretation of schemas 105

5.8 Operators . 106
5.9 Variant of the calculus without overloaded functions 108

6 Pattern matching 111
6.1 Patterns . 111
6.2 Semantics . 112
6.3 Typing . 112
6.4 Extension of the calculus . 116
6.5 Normalization . 119

6.5.1 Method . 119
6.5.2 Elimination of the intersection 120

II Algorithmic aspects 123

7 Subtyping algorithm 125
7.1 Computation of an inductive predicate 125

7.1.1 Formulas, systems, induction 125
7.1.2 Cache . 127
7.1.3 Removing backtracking 130
7.1.4 Application: emptiness checking for a tree automaton . . 138

7.2 Subtyping algorithm . 139
7.3 Variant and optimization . 140

7.3.1 Other formulas . 140
7.3.2 Approximations . 143

8 Pattern matching compilation 145
8.1 Naive evaluation . 145
8.2 Optimization ideas . 146
8.3 Formalization . 148

8.3.1 Queries . 149
8.3.2 Results . 149
8.3.3 Query compilation . 150
8.3.4 Target language: syntax 151
8.3.5 Target language: semantics 152
8.3.6 Static information . 154
8.3.7 Strategy development . 155
8.3.8 Examples of constructions 160

8.4 Factorization of captures . 163

10 CONTENTS

III The CDuce language 165

9 Records 167
9.1 Types . 167

9.1.1 Algebra of types . 167
9.1.2 Models . 168
9.1.3 Subtyping . 168
9.1.4 Decomposition, projection 171

9.2 Patterns . 172
9.3 Calculus . 173
9.4 Concatenation operator . 174
9.5 Partial functions . 179

10 Presentation of the language 181
10.1 Base types, constants . 181
10.2 Types, patterns . 182
10.3 Sequences, regular expressions . 183

10.3.1 Sequences . 184
10.3.2 Type and pattern regular expressions 184
10.3.3 Translation of regular expressions 184
10.3.4 Decompilation of sequence types 187
10.3.5 Operators . 187
10.3.6 Strings . 190

10.4 XML . 190
10.5 Derivative constructions . 191
10.6 Imperative traits . 192
10.7 An example . 193

11 Implementation techniques 197
11.1 Typechecker . 197
11.2 Representation of values . 200
11.3 Representation of Boolean combinations 202

11.3.1 Simplification by boolean tautologies 202
11.3.2 Disjoint atoms . 203
11.3.3 Alternative representation: decision trees 203
11.3.4 Representation of base types 205

11.4 Interface with Objective Caml . 205
11.5 Performance . 208

CONTENTS 11

Conclusion 211

12 Conclusion and outlook 211
12.1 Perspectives . 212
12.2 Around CDuce . 215

12 CONTENTS

13

List of Figures

4.1 Axiomatizing the typing of functional application 81

5.1 Expressions (terms) of the calculus 87
5.2 Type system . 89
5.3 Typing algorithm . 104
5.4 Axiomatizing the typing of the first projection 107

6.1 Semantics of pattern matching 113

7.1 Algorithm with cache . 128
7.2 Algorithm without backtracking 133

8.1 Semantics of the target language 153
8.2 Production of target expressions 156
8.3 Strategy production . 157
8.4 Target expression production skeleton 159

9.1 Axiomatisation of the type of the operator ⊕⊕⊕t 178

10.1 A program CDuce . 194

14 LIST OF FIGURES

15

Notations

Symbol Description Section
:= Definition of an object or a notation
P(X) Set of parts of X
Pf (X) Set of finite parts of X
Set Category of sets and total functions
X + Y Disjoint union of two sets
X
Y Set-theoretic complement of X with respect to Y

N,Z Non-negative integers (resp. relative)
iX,Y Canonical injection X ⊆ Y
i = 1..n i ∈ {1, . . . , n}
AlgF Category of F coalgebras 2.2
B "Boolean combinations" functor 3.1
∨∨∨,∧∧∧,\\\,¬¬¬ Boolean operators on types 3.1
i Socle 3.3
T Type algebra 3.2
T Set of type nodes 3.2
T̂ Set of type expressions 3.2
τ Description of type nodes τ : T → T̂ 3.2
TA,Tu Type atoms (resp. type atoms of kind u) 3.2
B Base types 3.3
C Constants 4.1
×××,→→→ Type constructors 3.3
0,1 Empty type (resp. universal) 3.1
1prod Universal product type 1prod = 1×××1 6.5.2
J_K Set-theoretic interpretation 3.1
EJ_K Extensional interpretation associated with J_K 4.2
π(t) Decomposition into a finite union of products 4.8
π1[t], π2[t] Type projections 5.8
Dom(t), ρ(t) Decomposition of functional types 4.8
G "Pattern" functor 6.1
P Pattern algebra 6.1
P Set of pattern nodes 6.1

16 Notations

Symbol Description Section
P̂ Set of pattern expressions 6.1
σ Description of pattern nodes σP → P̂ 6.1
|||,&&& Pattern constructors (alternation and conjunction) 6.1
Var(p) Capture variables of the pattern p 6.1
v/p Result of applying the pattern p to the value v 6.2
Ω Pattern matching failure, type error 6.2
|,⊕ Combination of pattern matching results 6.2
LpM,*p+ Set of values accepted by p 6.3
*p+ Types of values accepted by p 6.3
(t//p)(x) Result of applying p to the type t 6.3
(t///p)(x) Type of the result of applying p to the type t 6.3
E Set of expressions of the calculus 5.1
O Set of operators 5.1
app Functional application operator 5.1
V Set of valeurs 5.4
o : t1→→→t2 Axiomatic typing of the o operator 5.2
v

o
;;; e Semantics of the o operator 5.5

(o : t1 =⇒ t2) Semantic typing of the o operator 5.6
>,?,⊗ Constructors and operators on schemas 5.7
{{{t}}} Filter defined by the schema t 5.7
F Boolean formulas 7.1.1
p

t−→ x Factorization of a capture variable 8.3
L Set of record labels 9
L c→ Z Quasi-constant functions from L to Z 9
Dom(r) Domain of a record 9
def(r) Infinitely repeated field of a record 9

17

Introduction

19

Chapter 1

Introduction

1.1 Motivations, goals
The initial goal of the research work presented in this thesis was to propose a
functional programming language adapted to the manipulation of XML [XML]
documents, with some general-purpose traits. This work continues the research
work started in Hosoya’s thesis [Hos01]. It led to the definition of the CDuce lan-
guage and to its implementation. This thesis presents the theoretical semantic
and algorithmic bases on which this language is founded.

1.1.1 Programming languages
When developing a software application, one of the questions that arise is choice
of the programming language. This choice can be guided, among others, by the
following considerations:
— Expressive power of the language regarding the domain application: is it

easy in this language to express the operations and computations needed
by the application?

— Safety: is the language helping the programmer in avoiding programming
errors (for example, by using automatic verification, or by encouraging a
certain style of programming)?

— Efficiency: are the applications developed in the language fast enough to
be used in the way they are intended to be?

These questions are generally not completely independent. Greater expres-
sive power in a language usually comes from high-level constructions, which are
very declarative. These constructions allow the programmer to express complex
operations in a concise and idiomatic way, without worrying about low-level
problems, and to focus on the architecture and correction of their program.
These high-level constructions pose interesting compilation and efficiency chal-
lenges: their declarative aspect makes necessary the use of an efficient evaluation
strategy. Finally, static analysis techniques used to check program safety can
give precise information to the compiler to "understand" programs and compile
them more efficiently.

This thesis starts from the idea that a domain-specific language, or at least
a language built for a specific usage, can manipulate some specific concepts in
a more adapted way than an all-purpose language can. A variant of this point

20 Chapter 1. Introduction

of view consists in saying that when studying what is specific to a domain, one
can better comprehend this domain, which can inspire extensions to all-purpose
languages, or encourage a certain development method for this domain.

The domain considered in this thesis is the one of applications manipulating
XML documents.

1.1.2 XML

Extensible Markup Language [XML] is a file format designed to represent tree
data in a textual form. We can consider XML as a concrete syntax for an
abstract tree model. There is no consensus on the exact nature of that type
of document, but in a simplified point of view, XML trees are trees of variable
arity, whose nodes (called elements) are labelled and possess each a finite set of
textual attributes, and whose leafs are characters.

Here is an example of XML document:

<animal kind="insect">
<name>Bumble bee</name>
<comment>There are about 19 different species

of bumblebee.</comment>
</animal>

In this example, animal, name, comment and strong are labels (tags). The
tags <...> and </...> signal respectively the beginning and end of an el-
ement. One of the conditions of well-formedness of XML documents is the
well-parenthesizing of those tags, which allows us to see documents as trees. In
the example above, the root is the element labelled animal, which possesses
two children nodes name and comment, as well as space characters. The ele-
ment comment possess as children characters and a strong element. The root
also has an attribute kind whose value is the character string "insect". In a
well-formed XML document, the same element cannot define the same attribute
twice.

The XML specification does not attribute any semantic meaning to the doc-
uments, to the labels of their elements, or to their attributes. It simply specifies
which characters strings effectively represent an XML tree. By doing so, it en-
courages a specific abstract document model (trees). An application which is
able to represent its data as an XML tree can use XML as an external storage
format. Similarly, two applications which need to exchange tree-structured data
can use XML as an exchange format. In both cases, applications do not work
on any kind of XML documents, instead they both only work on a certain class
of them, defined by the labels authorized for their elements, by the possibly
nested structures required, by the attributes that need to be defined, by the
form of their values, by the possible presence of textual data (characters) in
certain places, . . .

There are two levels of correction that can be distinguished for XML docu-
ments:
— a concept of syntactic well-formedness, defined by the XML specification,

and which is the necessary and sufficient condition in order to interpret a
document as an XML tree;

1.1. Motivations, goals 21

— a concept of validity regarding a certain amount of constraints on the
structure and content of some documents, specific to an application or to
a group of applications subjecting themselves to a standard.

A set of validity constraints is called a schema, or XML type. Validity
presupposes a well-formedness, since the constraints apply to the abstract model
(tree) and not on the textual representation of XML documents. Separating
between those two correction concepts allows one to develop generic tools, which
work on any type of XML documents (such as parsers, editors, request tools,
transformations, page layout, . . .), and which act at a sufficiently abstract level
(trees) in order to express the constraints of schemas. Syntactic questions, such
as the way to write comments, to include external fragments, to encode character
sets, or to protect special characters, are set up once and for all by the XML
specification, and applications that want to use XML can position themselves
at the right conceptual level of the abstract model.

Although generic XML tools work, by nature, on arbitrary XML documents,
applications which use XML as a storage format or in order to exchange infor-
mation usually work with one or more XML types. Describing these types in a
formal way (or a certain approximation of the constraints put on the documents)
allows one to see them as non ambiguous specifications, and, for example, to
use validation or edition tools that take XML types into account. There are
a few languages that formally describe XML types : DTD (an integral part of
the XML specification), XML-Schema [SCH], Relax-NG [REL], . . . In a DTD,
the labels denoting authorized elements are specified, and for each label, some
optional or mandatory attributes are given, and the content is constrained by
a regular expression (with a hard constraint of non-ambiguity on regular ex-
pressions). In an XML-Schema specification, the content model does not only
depend on the labels of the elements, but also on their position (their context)
in the tree; it allows one to specify more precise constraints. XML-Schema also
possess a notion of "simple type", to specify the form of atomic values in doc-
uments (attributes, for example) and the way to interpret them (as an integer,
as a date, . . .).

1.1.3 Programming with XML
When developing an application that manipulates XML documents, there are
different conceptual levels which can be used to assess the documents:
— Level 0: the application considers XML documents as text files. Parsers

operate at this level, verifying the well-formedness constraints of XML
documents, and exposing their structure to the rest of the application. It
is impossible to do any other interesting treatment at that level without
breaking the abstraction of the abstract document model. Hence, a simple
text search in an XML document cannot be done at this level, because
the same text could be represented in many different ways in an XML
document.

— Level 1: the application considers XML documents that have gone through
a parsing step, but without taking into account XML types. This level
provides an interface to access documents and their structure. For exam-
ple, DOM [DOM] allows us to see XML documents as graphs, to navigate
these, and to modify them in-place. The SAX interface exposes to the
application a flow of syntactic events encountered in the XML document

22 Chapter 1. Introduction

(like the beginning or the end of an XML element, or of a text box), that
is to say a series of commands that would allow progressive reconstruction
of the XML tree associated to the document. However, the application is
free to treat this tree as a "stream", without explicitly reconstructing it.

— Level 2: the application handles XML documents while knowing their
type. The programming language must be able to understand those types
during the execution of the program, either by translating XML types into
generalist types (for general-purpose languages), or by taking directly into
account the XML types (domain specific languages). The application uses
the type system of the language to ensure certain properties on the type
of the handled documents.

Usually, an application developed in a classic language can operate on level
0 or 1. If it uses an XML validating parser, then it will be able to verify that
the inputted documents have the expected type, but this information is then
forgotten. Thus the application only sees an ordinary generic XML tree and it
cannot take advantage of the fact that this document is well-typed. It is also
possible to work on level 2 with a general-purpose language: one has to establish
a correspondence between XML types and those of the programming language.
It is the data-binding approach, which consists in using the constructions of a
general-purpose language to represent XML data according to their type. An
external tool can for instance take an XML type specification (DTD, XML-
Schema, . . .), and produce type declarations (or classes) in the programming
language. This translation of the types usually introduces more structure in
the data than in their XML representation, which limits the flexibility of XML
types, and often imposes important approximations. For example, it is possible
to specify in a regular expression that a sequence is non-empty (by replacing a
Kleene star ∗ with +), but if in the language we want to use the same oper-
ations to manipulate some potentially empty sequences with some non-empty
sequences, then these two categories of objects will have to be represented with
the same data type, which means that we will forget one of the constraints spec-
ified by the XML type. It is sometimes possible to use one of the particularities
of the host language (parametric polymorphism, overloading, . . .) to encode
more precisely the constraints arising from the XML types.

Another approach consists in defining a new language with a type system
conceived from the beginning to represent XML type constraints. It is the
approach we take in this thesis. Once the language traits and the type system
adapted to XML are sufficiently well-understood, we will consider how to extend
an existing language and its type-system to make it benefit from these new
characteristics.

Consider a simple scenario for an XML application. This application takes an
XML document as input, and does some computations before finally producing
a new XML document. The specification of this application gives an XML type
t1 for the input documents, and an XML type t2 for the output. It is a contract
with the exterior world: the exterior world agrees to provide documents of type
t1, and if that is the case, the application commits to producing a document of
type t2. In practice, since it is never possible to trust the exterior world, the
application will start by verifying that the document received really has type
t1, and will raise an error if that is not the case.

If the application is written on level 2, as seen above, it becomes possible
to use the type system of the language to verify statically, when compiling the

1.2. XDuce 23

application, that the transformation verifies that contract (which can be written
as t1→→→t2). In fact, if the type system of the language is not adapted enough
to XML in order to exactly represent the constraints of XML types t1 and t2,
then it will be necessary to use an approximation, and to ensure a less binding
contract, but it will give us a certain static guarantee anyway.

1.2 XDuce

1.2.1 Overview
This thesis follows the lead of the research initiated by Hosoya in his the-
sis [Hos01] and in the XDuce project [HP00, HVP00, HP03]. XDuce is a
programming language dedicated to XML, built on a type algebra of regular
expressions, close to the classic XML schema languages (DTD, XML-Schema,
Relax-NG). It is based on:
— an internal encoding [HVP00] of XML documents that makes it possible to

treat typing problems with methods derived from regular tree algorithms;
— a type-system similar to DTD, but in which the content of an element

is not only restricted by its label, but also by its position, and that does
away with the determinism restriction of DTD;

— an interpretation of types as sets of documents, leading to a natural defini-
tion of subtyping ≤ as the inclusion of such denoted sets (this is semantic
– or set-theoretic – subtyping);

— a pattern-matching operation [HP01, HP02], with a pattern algebra adapted
to the extraction of information from XML documents.

XDuce is a functional language, as programs are essentially expressions to
evaluate. The results of the computations are values which, in this case, are
XML trees.

In XDuce, types are interpreted as sets of values. This vision of types is not
usual in the world of programming languages, where types are usually considered
as a specification of the form of values, of their physical representation, and of
their behavior. However it is very natural in the context of XML: indeed,
types represent constraints on the structure of documents, but documents exist
independently from their types, and some generic operations have a meaning
on any XML type. Therefore, XML types are only there to specify, sometimes
partially, the structure of XML documents. One has to be able to see the
same document under different types, as it only consists in remembering more
or less constraints about it. A consequence of this vision is a set-theoretic
subtyping relation: a type t1 is said to be a subtype of t2 if the set of values
of type t1 is included in the set of values of type t2, or, in other words, if the
constraints expressed by t1 are at least as strong as the constraints expressed
by t2. The type-system of the language is therefore built in such a way that the
programmer can use an expression of type t1 in any case where an expression
of type t2 is expected. This is done in a transparent way, without having to
explicitly introduce a type coercion.

In particular, all the the equational theory of regular expressions can be
used in a transparent way. A value of type A+ can freely be seen as a value
of type A A∗ or of type A ∗ A, meaning that given a non-empty sequence, it is
possible to isolate either its first element, or its last element. These three types

24 Chapter 1. Introduction

are equivalent, and a function defined on one of them can be applied on the two
others.

The computation model of XDuce is functional: a program is a set of mu-
tually recursive functions, each of them being defined with pattern-matching
operations, inspired from ML. In the same way that in ML pattern-matching
constructors correspond to the constructors of types and values, in XDuce, pat-
terns are a generalization of types: they are regular expressions, with capture
variables. This promotes a programming style in which applications are struc-
tured around the type of XML data that they must treat. Recursive functions
correspond to the definitions of recursive XML types, and every pattern-match
can inspect a sub-tree (its roots, its children, . . .). Pattern-matching is an
example of those declarative high-level operations, which I was mentioning in
Section 1.1.1.

This thesis takes the ideas of XDuce, solves some of the open problems
mentioned in Hosoya’s thesis, and proposes a new language, called CDuce, which
extends XDuce in a certain number of ways. I will not talk a lot about XML in
this thesis. The link between XML and CDuce is the same that exists between
XML and XDuce, and I invite the interested reader to review the work on
XDuce.

1.2.2 Internal encoding
XDuce works with two representations for XML documents. The external rep-
resentation represents documents as trees of arbitrary arity; the internal rep-
resentation uses binary trees, which is more pleasant on a technical level (see
also [MSV00]). The latter is defined by the following syntax (we consider a set
of element labels, and we denote by l a generic element of this set):

v ::= ε | l(v, v)

These objects represent sequences of elements; the empty sequence is denoted
by ε, and l(v1, v2) is the sequence which starts by an element of tag l, of content
v1, followed by the sequence v2.

For example, the document:

<person>
<name></name>
<email></email>

</person>

is encoded in the internal representation by:

person(name(ε, email(ε, ε)), ε)

Types are expressions that represent sets of element sequences. Types also
have two representations in XDuce. In the external form, the syntax of types
is:

T ::=
() empty sequence

| X declared type
| l[T] XML element
| T, T concatenation
| T|T union

1.2. XDuce 25

For every type name X, we assume that a declaration of the following form was
given:

type X = T

The interpretation of these types as sets of sequences is clear, and it is possible
to define the Kleene star as syntactic sugar in that representation.

For the internal representation, we use binary tree automata. We denote
by X,X0, X1, . . . the states, and assume that for each of them we are given a
description of its transitions, which is an internal type. The types of the internal
algebra are defined by the following productions:

T ::=
∅ empty type

| ε empty sequence singleton
| l(X,X) XML element
| T |T union

For example, consider the automaton with states X0, X1, X2, defined by:

M(X0) = ε
M(X1) = name(X0, X2)
M(X2) = email(X0, X2) | ε

The type person(X1, X0) represents sequences made up of a single element
person, which has for children exactly one empty element name, followed by
any number of empty elements email. In other words, this type corresponds to
the person element defined by the DTD:

<!ELEMENT person (name,email*)>
<!ELEMENT name EMPTY>
<!ELEMENT email EMPTY>

The internal representation of the documents and types of XDuce is quite
specific to XML, in which labels play a particular role. In fact, the internal rep-
resentation only uses well-known concepts of type theory: singleton base types
(for the labels and the empty sequence), product types (for the tree structure),
recursive types, and union types (to encode regular expressions). We could rein-
terpret the underlying theory of XDuce in terms of product types, union types,
and recursive types. Instead of writing l(X1, X2), we would write l×××X1×××X2,
where l is a singleton base type, and ××× is the type constructor of the cartesian
product. The type example above would be written:

person× (name× ε× (µα.(email× ε× α) ∨ ε))× ε

where the notation µα. . . . introduces a recursive type.
CDuce works directly at the level of the internal representation, and uses

general-purpose constructions, like the cartesian product type constructor, or
the record type (to represent the XML attributes). XML notations are only
seen as syntactic sugar. Section 10.4 presents the encoding of XML in CDuce.

26 Chapter 1. Introduction

1.3 Quick overview of the thesis

1.3.1 Theoretical and semantic foundations
One of the major contributions of CDuce compared to XDuce is the addition
of first-class functions, and of an arrow type constructor→→→, without stratifying
the types so that arrow types and XML types can freely be mixed. I have chosen
to work directly on the level of the internal representation of types in XDuce, in
which XML types are represented by union types, product types and recursive
types.

This led me to study a λ-calculus with arrow types, product types, union
types and recursive types. The main difficulty was to preserve the set-theoretic
approach to define the subtyping. This set-theoretic approach, which consists
in defining subtyping as set inclusion, allows us to carry out in a comfortable
way the meta-theoretical study of the system. In order to do that, we adopt a
purely set-theoretic model notion.

In order to add a pattern-matching operation inspired from the one of
XDuce, which can perform type checks during execution, this calculus has a
type-check operation. The semantics is therefore driven by types, and in order
to express this at the type level, the calculus and the type algebra implement
overloaded functions. Intuitively, if we interpret the type t→→→s set-theoretically
as the set of functions whose result is of type s as soon as their argument is
of type t, then it is natural to define the overloading of functions by a simple
intersection. A function of type (t1→→→s1)∧∧∧(t2→→→s2) is simply an overloaded func-
tion, which verifies both the type constraint (t1→→→s1) and the type constraint
(t2→→→s2). If we are going to reason set-theoretically, by introducing intersection
for arrow types, then it seems natural to try to work uniformly with arbitrary
boolean combinations (union, intersection, difference) of all type constructors.
In XDuce, the intersection and difference operators are used internally in the
type inference algorithm for pattern-matching; exposing them in the type alge-
bra also simplifies the presentation of this algorithm.

The first four technical chapters of this thesis study this type algebra and
the corresponding calculus. This study constitutes the theoretical foundations
of the CDuce language.

Chapter 2 introduces some abstract formalism to manipulate recursive type
algebras (or other kinds of recursive objects). This formalism allows us to get
rid of implementation and optimization details (such as the more or less ad-
vanced sharing of cyclical structures) and cumbersome presentation specificities
(syntactic representation with recursive binders, and the associated renaming
problems; environments with global recursive definitions that have to be treated
in every statement).

Chaper 3 defines the type algebra, using a non-syntactic representation.
Recursion is handled with the formalism of Chapter 2, and boolean combinations
are represented using a form that allows us to give a pleasant presentation of the
algorithms. This representation is chosen so that every finite set of types can be
saturated into a finite set stable by boolean combination and by decomposition
of the constructors (arrow and product).

Chapter 4 tackles the definition of a set-theoretic subtyping relation for the
type algebra. The challenge posed by higher-order functions comes from the
circularity introduced between the type system, the subtyping relation, and the

1.3. Quick overview of the thesis 27

set-theoretic definition of types. In XDuce, it is possible to directly give a set-
theoretic semantic for types as value sets, because types are nothing more than
tree automata. Subtyping then simply corresponds to inclusion between regular
tree languages, and we can use it to type the calculus itself. In CDuce, the
values and expressions of the calculus are closely linked; indeed, functions are
values, but in order to know if a function is in the interpretation of a type, it
is necessary to have the type system in its entirety (in order to be able to type
the body of the function).

I remove that circularity by introducing a set-theoretic model notion for the
type algebra, allowing us to consider set-theoretic interpretations before even
introducing the calculus (and its type system). This model definition captures
the intuition behind the behavior of functions (in fact, of arrow types), without
specifying the concrete nature of the model elements. In order to be a model, a
set-theoretic interpretation must capture the semantic properties of the calculus
that are important for typing. All reasoning about the subtyping relation is
done semantically, by working with models, and it allows us to separate the
algorithmic aspects tied to the computation of this relation with its use in
the type system. In particular, the meta-theoretical analysis of the subtyping
relation and its associated operators can be done without considering the very
complex rules of the subtyping algorithm.

Chapter 5 finally introduces the calculus itself, its type-system (which uses
the subtyping relation), and its semantics (which is type-driven). Apart from
the usual type safety results (type preservation through reduction, and no type
errors during execution), the main theorem (Theorem 5.6) is that the set of
values of the calculus is indeed a model, for the definition of Chapter 4, and
that it induces the same subtyping relation as the one that was used to define the
type-system. In other words, we have come full cycle, as the subtyping relation
corresponds indeed a posteriori to inclusion between sets of values denoted by
types.

Chapter 6 adds to the calculus a pattern-matching operation, which comes
from the corresponding operation in XDuce. In fact, this operation generalizes
the dynamic type-check present in the calculus, and does not fundamentally
change the typing of the calculus or the properties of its semantics. The pat-
terns are, like types, recursive objects, and the formalism of Chapter 2 is used
again in order to define the pattern algebra. The pattern algebra of XDuce is
extended with conjunction or intersection patterns (which do not change the ex-
pressive power, but allow us to write more compact patterns), and with constant
patterns (which accept any value and output a constant binding for a specific
variable). Furthermore, the linearity condition on capture variables is softened,
which allows us to encode capture variables for sub-sequences (inside a regu-
lar expression) which can be repeated, meaning that they can appear multiple
times or under a Kleene star; the semantics then consists in concatenating all
the captured sub-sequences. I obtain an exact typing algorithm, including for
sub-sequence capture variables in non-terminal position, which solves an open
problem from Hosoya’s thesis (which he has solved independently since then,
with a similar technique, see Section 1.4.2).

28 Chapter 1. Introduction

1.3.2 Algorithmic aspects
One of the major contributions of project XDuce is the development of an
efficient and practical subtyping algorithm, even though it corresponds to the
algorithmically complex problem of inclusion between regular tree languages.

Chapter 7 studies the algorithmic aspect of the subtyping relation intro-
duced in Chapter 4, for a certain class of universal models (those that induce
the largest subtyping relation). This subtyping relation can be seen as a general-
ization of the one of XDuce. In fact, the subtyping algorithm has been prepared
in Chapter 4, where the subtyping relation in universal models is characterized
using coinduction (via a concept of simulation). The complementary of this re-
lation is therefore simply an inductive predicate, and we present two algorithms
that can autonomously compute an inductive predicate defined by logical for-
mulas. The first uses the same principle used in the algorithm of XDuce, based
on memoization, which is usual in subtyping algorithms with recursive types. I
give another algorithm, which completely avoids any backtracking, by keeping
trace of the dependencies between assumptions that are not yet surely verified,
and deducted consequences. The subtyping algorithm itself is obtained by using
either one of these algorithms, and logical formulas that are directly inspired
from the simulation concept of Chapter 4. I also present alternative formulas,
and optimizations. Having presented the computation of inductive predicates
as a resolution engine separate from logical formulas allows us to decouple the
problems and to avoid doing redundant proofs when considering those variants.

Chapter 8 considers the efficient evaluation of pattern-matching. Because of
the recursivity of patterns and types, the pattern matching operation is more
akin to the evaluation of a tree automaton than to ML-style pattern matching
which only extracts subcomponents from values of finite depth. I work at the
compilation level, where it is acceptable to carry out possibly costly calculations
on the patterns to prepare for an efficient evaluation of these during execution. I
present a fairly general framework to express several evaluation and optimization
strategies. I am particularly interested in optimizations made possible by type
information gained on pattern matched values, given by the static type system
of the language.

1.3.3 The CDuce language
The CDuce language is defined on top of the calculus of Chapter 5. I do not
give the concrete syntax of the language, or even an exhaustive description. I
only indicate how the main features of the language can be expressed as part of
the calculus.

Chapter 9 shows how to extend the calculus, the type algebra and the pattern
algebra with extensible records. These records are used in CDuce to encode
the attribute sets of an XML element. It is of course necessary to extend the
set-theoretic approach for subtyping, and typing the concatenation operator
gives rise to a non-trivial semantic development, in order to semantically and
accurately characterize the approximation that is done in its typing.

Chapter 10 briefly presents the language, in particular how the types and
regular expression patterns are encoded in the corresponding algebra of the
calculus.

Chapter 11 presents some more practical aspects of the implementation of

1.4. Main contributions 29

CDuce, such as how to implement the type-checker to get localized error mes-
sages, techniques for representing values during execution in order to optimize
some operations, variants for representing boolean combinations internally in
the type-checker, or an interface system (which preserves the types) with the
Objective Caml language.

1.4 Main contributions
The work on XDuce is the starting point of the research presented in this thesis.
I have offered solutions to some open problems presented in Hosoya’s thesis, as
well as extensions of the theory.

1.4.1 Higher-order functions and set-theoretic subtyping
This thesis started with the observation of the absence of first-class functions
in XDuce, even though the language looks roughly like a functional language
of the ML family. Having first-class functions, which can be passed as argu-
ments to other functions, returned as a result, or stored in data structures
would make it possible, for example, to define XML transformations parame-
terized by elementary transformations on certain parts of the documents, or to
factorize similar transformations. For example, if AddrBook is an XML schema
used to represent a address book, made up of elements of type Person and el-
ements of type Company, then we may want to write a generic layout function
(Person→→→Html)→→→(Company→→→Html)→→→AddrBook→→→Html, where Html is the type
of XHTML document fragments. This generic function takes as an argument
two layout functions for basic entries, and outputs a layout function for address
books. Therefore we can reuse this generic function to create multiple different
presentations.

In addition to this use of higher-order functions within the framework of
XML applications, it seems interesting, from a theoretical point of view, to
understand how the set-theoretic type interpretation of XDuce and the type
interpretation of the λ-calculus interact.

We have chosen to completely integrate arrow types into the type algebra,
which makes it possible to use boolean combinations of arrow types. Other
works have taken a lighter approach to integrate the regular expression types
of XDuce into a language with higher-order functions or objects. The XHaskell
language [LS04b] is an extension of Haskell with the regular expression types
of XDuce. The type algebra is stratified: arrow types cannot appear inside of
regular expressions, which makes it possible to define subtyping for these arrow
types in a purely axiomatic way. The Xtatic language [GP03] extends the
object-oriented language C# with regular expression types. In Xtatic, regular
expression types and object types (classes) are stratified, but mutually recursive.
However, the definition of the subtyping relation remains easy as the typing of
objects is done by nominal typing, with an explicitly declared subtyping relation
(inheritance).

Damm [Dam94] studies a type algebra with union, intersection and recursive
types, and product and arrow constructors. This algebra is very close to ours,
but it has no set difference operator (which we need to precisely type the pattern
matching operation). Damm also uses a semantic approach, by introducing two

30 Chapter 1. Introduction

type interpretations: a semantic interpretation of types in a model with ideals
(ideals are stable by union and intersection, but not by complement), and an
encoding of types as regular tree languages. By relating these two type interpre-
tations, he reduces the subtyping problem (on the semantic side) to an inclusion
between regular tree languages. This approach uses denotational semantics tools
(domains, complete metric spaces), whereas the approach presented in this the-
sis is purely set-theoretic and fully compatible with an operational semantics of
the calculus. Insofar as the semantics of CDuce is type-driven, it is not obvious
to see how the denotational approach of Damm could be used in this context.
Indeed, there are several different subtyping relations that can be deduced from
models; the calculi built on these relations will have different semantics, and we
can therefore clearly see that it is not possible to start, as Damm does, from an
a priori semantics to define the subtyping relation.

In order to reduce the problem to regular languages, Damm encodes an ar-
row type as a set of sequences that represent all the possible graphs of finite
approximations of functions of such a type. We avoid this encoding and these
approximations by directly interpreting an arrow type as a set of graphs (Def-
inition 4.2). This more direct interpretation makes it possible, using simple
set-theoretic computations, to deduce the rule of the subtyping algorithm for
the case of boolean combinations of arrow types (in a universal model). This
allows us to extend the subtyping algorithm of XDuce, which has proven its
effectiveness.

Vouillon and MelliÃ¨s [VM04] present a generalization of the ideal model
for polymorphic recursive types. Their goal is to interpret types as sets of terms
of their calculus (and not as sets of values), i.e. to classify terms according
to their types. They are not interested in the effective study of the subtyping
relation. The union type operator is an approximation (closure) with regard to
set-theoretc union. A more in-depth study of the links between the system of
Vouillon and MelliÃ¨s and the one presented in this thesis remains to be carried
out.

1.4.2 Typing pattern matching
The type inference algorithm for pattern matching, presented in Hosoya’s the-
sis [Hos01], does not give an exact type for sequence capture variables that are
not in terminal position in a regular expression pattern. This comes from the
translation of capture variables from the external syntax (regular expressions)
to the internal pattern algebra (automata). In the translation of XDuce, one se-
quence capture variable gives rise to two variables in the internal representation,
in order to represent the beginning and the end of the captured sub-sequence.
The dependency between these two variables is lost, and it forces us to infer a
type that is possibly too large for the capture variable. I solved this problem
by adopting a different translation of sequence capture variables in regular ex-
pressions: they are now propagated on all the elements they capture (and no
longer just a start and end mark) in the regular expression, by using the same
variable name. This preserves the dependency between all these variables. The
semantics of internal patterns is defined so that this translation provides the
right capture semantics: when we apply a pattern (q1, q2) to a value (v1, v2),
and each qi captures a value v′i for the same variable x, the result for x in the
pattern (q1, q2) is (v′1, v′2).

1.4. Main contributions 31

Hosoya has solved this problem independently. He proposes another seman-
tics [Hos03] for patterns, which rejects ambiguous patterns (which simplifies
things by avoiding to introduce differences in order to take into account the
first-match policy of the alternation |||). The inference algorithm he proposes
in this case is exact (for non-ambiguous patterns). The technique consists in
using a concept of automaton with transitions annotated by capture variables
(that register elements activating these transitions). The translation of regular
expression patterns to these automata propagate, as I do, the capture variables
up to the transitions. Therefore the two solutions are very similar, and the one
of Hosoya could be easily adapted to ambiguous patterns and to the first-match
policy.

1.4.3 Efficient compilation of pattern-matching
Hosoya’s thesis evokes an optimization technique for pattern evaluation, which
makes it possible in some cases to only consider the label of an XML element
instead of considering all the corresponding sub-trees, by using the information
provided by the type system of the language. I present in this thesis some
efficient techniques for pattern evaluation, that make it possible to express those
kind of optimizations. The formalism introduced allows us to precisely keep
track of type information (provided by the static system, or obtained during
computation), and to express parallel computations, in order to avoid multiple
passes on the matched value.

Levin and Pierce [Lev03, LP04] have studied in parallel some similar efficient
evaluation methods for patterns in XDuce-like languages, by taking into account
type information. They introduce a concept of matching automata that could
serve as a target language for the compilation algorithm I present here. Their
optimization algorithm, driven by types [LP04], is not described formally, hence
it is difficult to compare it to the one I propose.

In previous work [Fri04], I presented an optimization algorithm for pat-
tern matching without capture variables. The target language (non-uniform
automata) imposes a sequential left-right traversal order for trees, and the
algorithm corresponds to the left-right strategy presented in this thesis (Sec-
tion 8.3.8). In addition to that, it has an invariance property when patterns (in
fact, types, since there are no variables) are replaced with equivalent patterns;
this comes from a canonical decomposition of types in the form of a minimal
union of product types whose first components are disjoint. This ingredient
could be added to the formalism in this thesis if we modified the normal form
of patterns (Section 6.5.2) to use this canonical form, at least for types (to treat
capture patterns, in general, we would need to study pattern equivalence, and
I have not studied this problem; but we can settle with the detection of some
equivalences).

1.4.4 The subtyping algorithm
Amadia and Cardelli [AC93] have proposed a subtyping algorithm in a system
with arrow types and recursive types. This algorithm is a variant of the one
without recursive types; it operates by keeping track (memoization) of type
pairs encountered in the recursive descent. This method is used in most work
on recursive types to ensure the termination of algorithms. The coinductive

32 Chapter 1. Introduction

aspect of Amadio and Cardelli’s algorithm was highlighted by Brandt and Hen-
glein [BH97]. Kozen, Palsbergy and Schwartzbachy [KPMI95] propose a method
which uses finite automata to optimize the complexity of Amadio and Cardelli’s
algorithm. Their base ascertainment is that if we consider the product con-
structor ××× (covariant in both of his arguments) instead of the arrow constructor
(contravariant in its first argument), then Amadio and Cardelli’s algorithm is in
fact a classic algorithm for deciding inclusion between finite automata. To take
into account the contravariance of the arrow, this algorithm needs to be adapted
to inverse the order of the arguments on the contravariant side. Gapeyev et
al. [GLP00] do a review of these works.

XDuce’s subtyping algorithm can be seen as an extension of Amadio and
Cardelli’s algorithm. It continues the coinductive approach, implemented by a
set of assumptions being verified, that needs to be saturated in order to reveal
possible contradictions. Because of the union type connector, the algorithm of
XDuce cannot simply monotonically saturate this set of assumptions. Indeed,
this algorithm, which we present with a set of rules, may have to check several
different derivations in order to prove a given goal (it suffices that one of them
succeeds). If the algorithm tries a branch that fails, it has to be able to do
backtracking in order to put the set of assumptions back to its previous state,
because some assumptions which were introduced in the failing branch have not
been verified (in fact, at least one of them is false).

I developed an algorithm (Chapter 7) that avoids this backtracking. I chose
to separate the presentation of the rules that define the subtyping relation itself,
and, that of the resolution engine itself, which is independent from those rules.
The algorithm without backtracking can be applied to any inductive relation
(or coinductive, like subtyping, by considering the negation). For example,
the capture factorization algorithm (Section 8.4) also fits into this frame. The
algorithm without backtracking is in fact quite close in spirit to the algorithms
proposed by Dowling and Gallier [DG84] to test the satisfiability of the Horn
formula in linear time.

Tadahiro and Hosoya [SH04] have tackled the same problem in paralell (get-
ting rid of backtracking in the subtyping algorithm of XDuce). Their solution,
like mine, consists in keeping track of the dependencies between the assumptions
being verified, and their consequences. A precise comparison between the two
algorithms remains to be done.

1.4.5 XML attributes
When the work on this thesis started, XDuce did not handle XML attributes.
I introduced extensible records in CDuce (Chapter 9) in order to close this
gap. The version presented in this thesis is slightly more expressive than the
one implemented in CDuce, as it makes it possible to constrain the type of
all unspecified fields (the implemented version is only able to allow or forbid
the presence of other fields than those specified). It differs also in that the
absence of a field is encoded by a particular value, which can be manipulated
and captured by pattern-matching. In the implementation, this value is hidden
from the programmer.

In parallel, Hosoya and Murata [HM02, HM03] developed an alternative
solution to add attributes to XDuce, which consisted in adding attribute spec-
ifications to the regular expressions. In that system, we can easily express

1.4. Main contributions 33

that an information is present exclusively either in a sub-element, or in an at-
tribute, as well as many other similar element-attribute dependencies. These
dependencies can be "developed", in order to separate the constraints on sub-
elements from constraints on the attributes, by listing all the possible cases, at
the cost of a growth exponential in the size of types. Hosoya and Murata devel-
oped specific algorithms in order to compute the subtyping relation and boolean
combinations, which avoid this combinatorial explosion in practice. Thus, even
though the expressive power of the two approaches is similar, the one of Hosoya
and Murata has a clear algorithmic advantage. The one proposed in this the-
sis, based on records, does enjoy the advantage of simplicity; it is completely
orthogonal to the rest of the system (records are in fact a generalization of
cartesian products), and contrarily to the approach of Hosoya and Murata, it
does not put into question, for example, the techniques for efficient compilation
of pattern-matching, and it does not significantly complicate the subtyping or
pattern-matching algorithms.

1.4.6 A calculus for overloaded functions
In XDuce and CDuce, computations are done essentially by pattern-matching:
it is the only way to do computations on the form of objects. Each branch is
given by a pattern and a body. The pattern verifies that the argument is of a
certain type, and also extracts some sub-objects from the argument, which will
be used in the body for computations. In fact, to each pattern p, corresponds
a type *p+ which represents the set of all values accepted by the pattern: a
value if accepted if and only if it is of type *p+. In other words, each branch
handles a given type, and branch selection can be done using only the type of the
pattern matched value. In case of ambiguity, the usual choice in programming
languages is to chose the first branch that matches: this is what is done in
ML-like languages, in XDuce, and in CDuce.

Pattern-matching is quite close, operationally, to calculi based on overloaded
functions with late binding, which are also driven-by-type computations. In the
λ&-calculus [CGL95], an overloaded function is defined by several branches,
which are "simple" functions. When we apply it to a value, a selection mecha-
nism (dispatch) chooses the adequate branch. When several branches match, the
most precise one, whose domain is the smallest, is chosen, and the typechecker
ensures that such a branch exists.

The differences in the selection mechanism when several branches fit is not
essential to our subject.

However, there is a fundamental difference between pattern-matching in
XDuce, and overloading in a λ&-calculus. With pattern-matching, all branches
must give a result of the same type, whereas with overloading it is possible to
have branches that operate on disjoint domains; in that case, the results of these
branches can have different types, and this (more precise) type information can
be exploited to type the rest of the program. In that sense, pattern-matching
is less flexible.

In CDuce, overloaded functions keep this kind of information in the type of
functions. There are no new type constructors, and the overloading is simply
represented by an intersection type. The type (t1→→→s1)∧∧∧ . . .∧∧∧(tn→→→sn) denotes
the functions that simultaneously have all the types ti→→→si. The type intersec-
tion can be interpreted as a conjunction of constraints (and therefore, as the

34 Chapter 1. Introduction

intersection of the corresponding sets).
Let us give a very simple example of overloaded functions. Suppose that

a company receives from its customers XML documents that are sequences of
orders, and that there are two types of orders t1, t2 (for example, for different
types of products). The company sends back a receipt which acknowledges every
order and adds information depending on the type. When responding to an or-
der of type ti, it responds with an XML fragment of type si. Without overloaded
functions, the processing function would have the type (t1∨∨∨t2)∗→→→(s1∨∨∨s2)∗ (here
we freely use the Kleene star of regular expressions). It proceeds by simply iter-
ating a function that treats individual orders, of type (t1∨∨∨t2)→→→(s1∨∨∨s2). In fact,
it is an overloaded function, of type: (t1→→→s1)∧∧∧(t2→→→s2), hence we can give to
the general process function (without rewriting its code) the more precise type:
((t1∨∨∨t2)∗→→→(s1∨∨∨s2)∗)∧∧∧(t1 ∗→→→s1∗)∧∧∧(t2 ∗→→→s2∗). Therefore, if a client only sends
orders of type t1, it implies that the order form is of type t1∗, and he can expect
to receive an acknowledgement of type s1∗; and a client which sends orders of
both types should receive answers of type (s1∨∨∨s2)∗. If we add a new type of
orders, it is enough to just modify the code of the order processing function so
that it can process a new type (we also change the interface of functions in order
to express the new types being handled).

We see that overloaded functions make it possible to work simultaneously on
documents which have more or less different types, without losing information.
This avoids having to duplicate code.

Let us go back for a moment to the λ&-calculus. In this theory of overloaded
functions, one of the basic well-formedness conditions off overloaded functions
is the following. If an overloaded function has two branches of types t1→→→s1
and t2→→→s2, then: t1 ≤ t2 ⇒ s1 ≤ s2. To understand this condition, it must be
recalled that the most precise type of a program decreases during evaluation. If,
statically, we attribute to an expression the type t2 and hence the result of the
overloaded function applied to this expression has type s2, then it is possible
that at execution we realize that the expression has in fact the more precise
type t1, therefore it is branch t1→→→s1 which is being used, giving a result of type
s1. This requires, for type safety reasons, that s1 ≤ s2.

In CDuce, there are no conditions restricting the arrow types in the interface
of a function. Consider the two following expressions:

e0 = µf(t1→→→s1; t2→→→s2).λx.e
e′0 = µf(t1→→→(s1∧∧∧s2); t2→→→s2).λx.e

Suppose t1 ≤ t2. Function e′0 verifies the λ&-calculus condition, since s1∧∧∧s2 ≤
s2, but it is not necessarily the case for e0 (if s1 6≤ s2). With the type system
of Chapter 5, however, one of the expressions e0,e′0 is well-typed if and only if
the other one is also well-typed, and then they have the exact same types. In
general, it is always possible to rewrite the interface of an abstraction so that
the covariance condition of the λ&-calculus is verified. The theory we developed
allows us to meet the condition posed a priori in the λ&-calculus; in some sense,
it gives a semantic justification to this condition.

35

Part I

Theoretic and semantic
foundations

37

Chapter 2

A formal framework for
recursive syntaxes

In this chapter, we will use elementary notions of category theory [AL91] which
we do not recall here. We denote by Set the category of sets and total functions.
The disjoint sum of two sets X and Y is written X + Y . If X is a subset of Y ,
we write iX,Y for the canonical inclusion X ↪→ Y . The identity is written IdX .

2.1 Motivation
Inductive syntax The set of types of a logical system or of a type system is
usually introduced as an inductive term algebra. For example, the type algebra
T for a λ-calculus with a unique base type ι can be defined by the following
syntax:

t ::= ι | t→→→t

This presentation makes it possible to define operators and relations by
induction on the syntax of types. From a categorical point of view, this con-
struction can be seen as follows. Let Set be the category of sets and F the
functor Set → Set which associates to a set X the set of terms of the form ι
or x→→→y, with x, y ∈ X. An F -algebra is a pair (X, f) where X is a set and
f a function FX → X. The term algebra T can be seen as an F -algebra, its
function f being a bijection often left implicit. The class of F -algebras has a
natural category structure, in which the type algebra T is an initial object. It
would therefore be possible to define the type algebra as the initial F -algebra
(which characterizes it, up to isomorphism, in the category of F -algebras).

The functor F represents the signature of the type algebra. From an arbi-
trary functor Set→ Set, we can try to formally build an initial F -algebra. The
classic technique consists in starting from the function ∅ → F∅ and iterating
the functor, thus giving rise to a diagram ∅ → F∅ → F 2∅ → . . ., whose induc-
tive limit can be considered. If the functor commutes with this limit (which is
guaranteed if the functor is ω-continuous), then the limit can be made into an
initial F -algebra.

38 Chapter 2. A formal framework for recursive syntaxes

It is quite possible to take as signature a less "syntactic1" functor than the
example given in introduction, like for example the ω-continuous functor Pf :
Set→ Set which associates to a set the set of all its finite subsets.

Recursive syntax Let us consider now the case of recursive types. A classic
presentation consists in introducing recursion variables α and binders in the
syntax:

t ::= ι | t→→→t | α | µα.t

This syntax is quite arbitrary. We could indeed imagine using this other
syntax which makes it possible to better share common sub-terms:

t ::= ι | t→→→t | α | t where {α1 = t1; . . . ;αn = tn}

In addition, we have to take into account:
— a syntactic restriction, in order to only authorize terms without free vari-

ables and without ill-formed recursions (that is, a variable must be sepa-
rated from its binder by at least one constructor), and

— a contextual equivalence which stems from α-conversion and unfolding:
µα.t = t[α 7→ µα.t] (which might be interpreted in a coinductive way).

Having a syntactic presentation of types also suggests describing the algorithms
in inductive form. For example, subtyping algorithms with recursive types are
presented through a system of rules, with a memoization environment to ensure
their termination. Hence we have to be able to efficiently test type equality, and
this can cause implementation problems.

These problems are further exacerbated if we want to introduce operators in
the type algebra, such as a commutative and associative union operator. Indeed,
equivalence tests can become very costly. A simple solution consists in not using
any equivalence concept, and working with the syntax itself, by explicitly taking
into account unfolding and other potential equivalences in the rules and in the
algorithms. But we then lose the possibility of using these equivalences in the
theoretical study of the system, as well as in the implementation (to increase
the sharing of structures in memory).

This kind of syntactic approach tries to give an inductive nature (terms)
to objects that are fundamentally cyclical. Algorithms that deal with recur-
sive types usually work by decomposing types. Even in the case of an infinite
unfolding, we have the guarantee of encountering only a finite number of dif-
ferent types, and this property ensures the termination of the algorithms via
memoization techniques.

It seems more natural for us to use to try to formalize recursive types with
coinduction, and to develop the theory of this formalization. The inductive
syntax only has a superficial role, and can be treated at the parser level.

A first idea is to simply take the categorical dual of the initial algebra con-
struction. For a given functor F , an F -coalgebra is a pair (X, δ) where X is a
set and δ : X → FX is a function. While an F -algebra represents the way of
constructing objects, an F -coalgebra is more about destructors, that is, the way
of seeing an object from X as an expression built on atoms from X. The class

1By syntactic functor, we mean a functor that associates to a set X a set of "terms" built
over X.

2.2. The category of F -coalgebras 39

of F -coalgebras has a natural category structure, and we can define the natural
concept of final F -coalgebra. We define it by iterating from a final object • in
Set (i.e. a singleton) using the unique function F• → • and taking a projective
limit.

Let us consider again the functor F : Set → Set which associates to a
set X the terms of form ι and x → y with x, y ∈ X. The final F -coalgebra
can be described as the set of potentially infinite binary trees, with leafs ι
and internal nodes →. These objects are not finitely representable. We would
like to restrict our attention to regular trees, namely those that only have a
finite number of different sub-trees, and that can be regarded as an infinite
unfolding of recursive types. These regular trees can be concretely represented
with graphs, but this is not a unique representation: several graphs represent
the same regular tree. With the example functor F above, it is easy to test
for equality in this representation, but that would not be the case with more
complex functors, for example ones that make use of the operator Pf (_).

The idea is then to say that it is not necessary to have such a strong equality
concept. It is not necessary to identify all the graphs that represent the same
regular tree in order to ensure the termination of algorithms. We can be satisfied
with a weaker concept of equality; it is enough indeed to identify enough types
so that, starting from a type that we iteratively deconstruct, we only encounter
a finite number of types that are different for this concept of equality. Our
approach consists in axiomatizing this property, which makes it possible to
develop the theory while leaving more flexibility to the implementation of the
algebra.

2.2 The category of F -coalgebras
Definition 2.1 (F -coalgebra) Let F : Set → Set be a set-theoretic endo-
functor. An F -coalgebra is a pair T = (T, τ) where T is a set and τ is a
function T → FT . We say that T is the support of T.

To simplify, we will simply talk of coalgebras from now on. It is understood
that all definitions relate to a certain functor F .

Definition 2.2 (Category of coalgebras) Let T = (T, τ) and S = (S, σ) be
two coalgebras. A morphism T → S is given by a set-theoretic function f :
T → S such that Ff ◦ τ = σ ◦ f . We also write f for the coalgebra morphism.

T

τ

��

f // S

σ

��
FT

Ff
// FS

The composition of coalgebra morphisms inherits from the corresponding opera-
tion in Set, and the same goes for identities. Hence the class AlgF of coalgebras
is given a category structure.

Remark 2.3 The functor F naturally induces an endofunctor F̃ in AlgF by
F̃T = (FT, Fτ) if T = (T, τ) and F̃ f = Ff . We see that τ is a coalgebra

40 Chapter 2. A formal framework for recursive syntaxes

morphism T→ F̃T, and that the commutative diagram in Set in the definition
of a coalgebra morphism can also be read in AlgF as:

T

τ
��

f // S

σ
��

F̃T
Ff
// F̃S

We will also write F for this morphism F̃ .

Remark 2.4 The forgetful functor AlgF → Set that associates a coalgebra
with its support is faithful. Therefore, to verify that a diagram in AlgF is
commutative, we can simply consider its projection in Set.

The following lemma is interesting to "understand" the category AlgF , es-
pecially the way in which it inherits the existence of amalgamated sums from
Set.

Lemma 2.5 The category AlgF is cocomplete.

Proof: We can easily show the existence of arbitrary sums and
coequalizers, which is enough to establish the existence of arbitrary
colimits. These constructions can be directly deduced from those
of Set.

We will sketch another proof, that shows how colimits can be
built directly from colimits obtained in Set. Let I be a small
category and D an I-diagram in AlgF , that is, a functor I →
AlgF . We writeDi = Ti = (Ti, τi). Composition with the forgetful
functor AlgF → Set gives an I-diagram D′ in Set. Since Set is
cocomplete, we can consider a limiting D′-cocone (T, (fi : Ti →
T)i∈I). To make a coalgebra out of T , we have to define a function
τ : T → FT . According to the universal property of colimits, this
function is fully defined by the D-cocone (FT, (gi : Ti → FT)i∈I).
We take gi = Ffi ◦ τi. Let us show that it is indeed a cocone.
Let u : i → j. Since Du : Ti → Tj is a morphism in AlgF , we
have: τj ◦ Du = F (Du) ◦ τi, hence gj ◦ Du = Ffj ◦ τj ◦ Du =
F (fj ◦ Du) ◦ τi = Ffi ◦ Du = gi. We deduce from that cone a
function τ : T → FT , which gives a coalgebra T = (T, τ). It can
then be verified that the fi are coalgebra morphisms Ti → T and
that the D-cocone (T, (fi : Ti → T)i∈I) is limiting. 2

Finite coalgebras and recursive environments It would be conceivable
to stop there, and to start working with finite coalgebras. Such coalgebras can
be seen as finite systems of equations {α1 = d1; . . . ;αn = dn} where the di are
elements of FX with X = {α1, . . . , αn}. If we fix such a system, we can call
"types" the elements of FX and "recursion variables" the elements of X. The
system itself is a "recursive environment" that defines recursion variables. The
formalism now has to be developed with regard to a fixed recursive environment,
and it is necessary to point out explicitly when it is necessary to extend it (in an
algorithm or in the proof of a theorem). From a formal point of view, a type only

2.3. Congruences, quotients 41

has meaning with regard to a given environment. To define an algebra of types,
one would actually have to define a type as a pair consisting of an environment
(X,σ : X → FX) and of an element of FX. We certainly want to identify
two types that differ only by their environment, one being an extension of the
other. But one may want to identify more types, for example modulo variable
renaming, unfolding, or modulo a coinductive concept of equality. Making more
types equal speeds up algorithms that perform by saturation, but detecting
equivalences can come at a significant cost. So there is a trade-off to be made
at the implementation level. In addition, taking into account equivalences in
the theoretical development can be technically cumbersome.

It is legitimate to seek a formalism that is sufficiently abstract to allow for
a proper theoretical development, but which nevertheless reflects the various
possible implementation choices.

2.3 Congruences, quotients
Definition 2.6 Let T = (T, τ) be a coalgebra and ≡ be an equivalence relation
on T . We denote by T/ ≡ the quotient set of this equivalence and by π≡ : T →
T/ ≡ the canonical projection. We say that ≡ is a congruence (on T) if there
exists a function τ≡ which commutes the following diagram:

T
τ //

π≡

��

FT

Fπ≡
��

T/ ≡
τ≡
// F (T/ ≡)

Such a function is unique if it exists. If ≡ is a congruence, we will speak of
the quotient coalgebra T/ ≡ = (T/ ≡, τ≡). The projection π≡ is a coalgebra
morphism.

Lemma 2.7 Let T be a coalgebra and (≡i)i∈I a family of congruences on T.
Then the equivalence relation ≡ generated by the family ≡i is yet another con-
gruence on T.

Proof: We need to prove that if α, β ∈ T and α ≡ β, then Fπ ◦
τ(α) = Fπ ◦ τ(β). Since the equivalence relation ≡ is generated by
the ≡i, we can suppose that α ≡i β for a certain i. Let us write π′i
the projection T/ ≡i→ T/ ≡. We have: Fπ ◦ τ = F (π′i ◦π≡i)◦ τ =
Fπ′i◦Fπ≡i ◦τ = Fπ′i◦τ≡i ◦π≡i . Since π≡i(α) = π≡i(β), we deduce
that Fπ ◦ τ(α) = Fπ ◦ τ(β). 2

Corollary 2.8 For all coalgebra T, there exists an upper bound for congruences.

Example 2.9 Let us give an example to explain the intuition (for the rest of this
chapter). Let Σ be an alphabet and F the functor defined by F (X) = {0, 1}×XΣ.
We can interpret a finite coalgebra T = (T, τ) as a complete finite deterministic
automaton over the alphabet Σ. If q ∈ T and τ(q) = (ε, d), then ε = 1 means that
q is a final state and d : Σ→ T gives the outgoing transitions for q. The largest
congruence corresponds to the classic Nerode equivalence, and the quotient of T
by this congruence is the minimal deterministic automaton associated with T.

42 Chapter 2. A formal framework for recursive syntaxes

2.4 Regularity and recursivity
Instead of defining our type algebra by a universal property (initial algebra,
final coalgebra), we will axiomatize the two properties that we need in order
to develop the theory. This will give more freedom to the implementation.
These two properties are the regularity and recursivity of the coalgebra. They
respectively ensure:
— the termination of algorithms that proceed by iterative decomposition of

types and memoization;
— the existence of solutions to systems of equations, with the purpose of

defining recursive types.
To formalize these two conditions, it is convenient to make the following

assumption about functor F .

Definition 2.10 (Signature) A functor F : Set→ Set preserves set-theoretic inclusions
if, for sets X,Y such that X ⊆ Y , then FX ⊆ FY and the image of the canon-
ical inclusion iX,Y is the canonical inclusion iFX,FY . We also say that F is a
signature.

Example 2.11 The functor Pf (_) preserves set-theoretic inclusions, as well
as any functor that associates to a set X a set of terms with free variables
in X (and, as a particular case, constant functors). The composition of two
functors that preserve set-theoretic inclusions still possesses this property, and
the same goes for the sum and product of two functors (defined by (F+G)(X) =
FX + GX, and (F × G)(X) = FX × GX). On this basis, we can obtain the
functor from Example 2.9.

Let us suppose from now on that the functor F preserves set-theoretic in-
clusions.

Lemma 2.12 Let f : X → Y be a function. Then: (Ff)(FX) ⊆ F (f(X)).

Proof: Just write f = if(X),Y ◦ f . 2

Lemma 2.13 Let f : X → Y be a function and A ⊆ X. Then: F (f|A) =
(Ff)|FA.

Proof: Just write f|A = f ◦ iA,X . 2

Definition 2.14 (Sub-coalgebra, extension) Let T = (T, τ) and S = (S, σ)
be two coalgebras. We say that T is a sub-coalgebra of S, or that S is an
extension of T if T ⊆ S and the canonical inclusion T ↪→ S is an algebra
morphism T → S. We then write T ⊆ S. A retraction of S over T is a
morphism f : S→ T such that f ◦ iT,S = IdT.

Remark 2.15 The sub-coalgebras of S = (S, σ) exactly correspond to the sub-
sets T ⊆ S such that σ(T) ⊆ FT . With this correspondence, an arbitrary union
of sub-coalgebras is still a sub-coalgebra.

Remark 2.16 The extensions of T = (T, τ) exactly correspond to the functions
σ : X → F (T +X) where X is an arbitrary set.

2.4. Regularity and recursivity 43

Lemma 2.17 Let f : T→ S be a coalgebra morphism. Then the image of f is
a sub-coalgebra of S.

Proof: The aim is to show that σ(f(T)) ⊆ F (f(T)). But
σ(f(T)) = Ff(τ(T)) since f is a coalgebra morphism. We then
write: Ff(τ(T)) ⊆ Ff(FT) ⊆ F (f(T)) by Lemma 2.12. 2

2.4.1 Regularity
Definition 2.18 (Basis, regularity) Le T be a coalgebra. A basis of T is a
sub-coalgebra with finite support. An element of the support of T is said regular
if it belongs to a certain basis. The algebra T is said regular if all the elements
of its support are regular.

Lemma 2.19 A finite union of bases is a basis.

Lemma 2.20 The direct image of a basis by a coalgebra morphism is a basis.

Lemma 2.21 Let f : T→ S be a coalgebra morphism. If T is regular, then its
image by f is regular too. In particular, any quotient of a regular coalgebra is
regular.

Remark 2.22 We have seen that the sub-coalgebras of T = (T, τ) can be iden-
tified with their support, that is a subset of T . We will use this identification
for bases.

The regularity condition can be understood the following way. Let T =
(T, τ) be a regular coalgebra and t an element of T . We can find a basis S ⊆
T which contains it. The decomposition τ(t) is in F , meaning that it is an
expression built immediately from other elements of S. We can then continue
the decomposition, and all the elements obtained are still in S. The finiteness
of S ensures the termination of that saturation process.

Example 2.23 Let us take back the functor F from Example 2.9. Consider a
coalgebra T = (T, τ), i.e. an automaton (that might be infinite). A state q ∈ T
is regular if it is part of a finite sub-automaton, that is, if its forward closure is
finite.

Lemma 2.24 Let T be an algebra. The sub-coalgebra of regular elements is a
regular algebra.

2.4.2 Recursivity
We now want to ensure that every system of equations {α1 = d1; . . . ;αn = dn},
with the di in F{α1, . . . , αn} has a solution. In fact, we also want to be able
to use already-known elements of the algebra on the right hand side of the
equations.

Definition 2.25 (Finite extension, regular extension) Let T be a coalge-
bra. An extension S of T is finite if the set-theoretic difference of the supports
is finite.

An extension S of T is regular if for any element of S, there exists a sub-
algebra T′ of S which contains this element and is a finite extension of T (T ⊆
T′ ⊆ S).

44 Chapter 2. A formal framework for recursive syntaxes

Remark 2.26 The regular extensions of the empty coalgebra are precisely the
regular coalgebras.

A more concret way of seeing things is to say that a finite extension of T is
given by a finite system {α1 = d1; . . . , αn = dn} where the di are elements of
F (T+{α1, . . . , αn}), meaning they are expressions formed either from variables,
or from elements of T . A retraction is a solution to this system, that is, a way of
injecting the variables αi in T by validating the equations (this is the meaning of
the commutative diagram that expresses the fact that retraction is a coalgebra
morphism).

A more concrete way of looking at it is to say that a finite extension of T is
given by a finite system {α1 = d1; . . . , αn = dn} where the di are elements of
F (T+{α1, . . . , αn}), meaning they are expressions formed either from variables,
or from elements of T

Definition 2.27 A coalgebra T is recursive if any finite extension admits a
retraction.

This definition does not impose unicity of the solutions. The same system
can have multiple different solutions, and this frees the implementation from
having to compute a unique representation of types.

Example 2.28 Let us continue with Example 2.9. If T is a recursive coalgebra,
then any finite automaton can be injected into it (not necessarily in a unique
way). Even better, if we give ourselves a finite automaton with transitions to-
wards states of T, then we can find an injection of this automaton into T that
preserves the states in T.

Lemma 2.29 The image of a recursive coalgebra by a morphism is a recursive
coalgebra. In particular,every quotient of a recursive coalgebra is recursive.

Proof: Let φ : T → S be a morphism, with T = (T, τ) and S =
(S, σ). We can assume that the morphsim is surjective and the
aim is to show that if T is recursive, then so is S. Let φ̂ be a right
inverse of the set-theoretic function φ, that is a function φ̂ : S → T
such that φ ◦ φ̂ = IdS .

We consider a finite extension of S, say S′ = (S+X,σ+s) with
s : X → F (S + X). The recursivity of T gives the existence of a
function f : X → T that commutes the diagram:

F (S +X)

F (φ̂+IdX)
��

X

s

::

//

f

��

F (T +X)

F (IdT +f)
��

T
τ //

φ

��

FT

Fφ

��
S

σ
// FS

The function F (S+X)→ FS, obtained by composition on the

2.4. Regularity and recursivity 45

right side of of the diagram, is F (φ ◦ φ̂+ φ ◦ f) = F (IdS + φ ◦ f),
which gives the retraction S′ → S:

X
s //

φ◦f
��

F (S +X)

F (IdS+φ◦f)
��

S
σ

// FS

2

Lemma 2.30 Let T = (T, τ) be a recursive coalgebra. Then function τ : T →
FT is surjective.

Proof: Let t ∈ FT . We consider the finite extension S = (T +
{•}, σ) of T defined by σ(•) = t. A retraction of S over T gives
indeed an element of T whose image by τ is t. 2

This show that the coalgebra FT is isomorphic to a quotient of T as long as T
is recursive.

In addition, we can choose a right inverse of τ , that is a function f : FT → T
such that τ ◦ f = IdFT . This makes it possible to see T as a F -algebra rather
than as as a F -coalgebra. However, the choice of that inverse f is not unique
in general, therefore this point of view is not canonical.

Lemma 2.31 Let T be a recursive coalgebra. Then the coalgebra FT = (FT, Fτ)
is recursive. And if T is regular, then so is FT.

Proof: Corollary of the Lemmas 2.21, 2.29 and 2.30. 2

Lemma 2.32 (Finite extension) Let T be a recursive coalgebra, S1 an arbi-
trary coalgebra, and S2 a finite extension of S1. Then every morphism S1 → T
can be extended to S2.

Proof: Let f : S1 → T be a morphism. Consider the amalgamated
sum of the two morphisms f : S1 → T and iS1,S2 : S1 → S2 (which
exists according to Lemma 2.5). We can build it so that we have
a finite extension S′2 of T:

S1

f

��

� � // S2

f ′

��
T �
� // S′2

The regularity of T gives a retraction g : S′2 → T:

S1

f

��

� � // S2

f ′

��
T �
� //

IdT

S′2

g

��
T

46 Chapter 2. A formal framework for recursive syntaxes

We deduce a morphism g ◦ f ′ : S2 → T which extends f . 2

Theorem 2.33 (Regular extension) Let T be a recursive coalgebra, S1 an
arbitrary coalgebra and S2 a regular extension of S1. Then every morphism
S1 → T can be extended to S2.

Proof: Let f : S1 → T be a morphism. We consider the set of pairs
(S′, f ′) where S1 ⊆ S′ ⊆ S2 and f ′ is a morphism S′ → T that
extends f . We define an order on this set by: (S′1, f ′1) ≤ (S′2, f ′2)
iff S′1 ⊆ S′2 and f ′2 extends f ′1. This ordered set is inductive,
hence the Zorn lemma ensures the existence of a maximal element
(Sm, fm). We now prove that Sm = S2. It is enough to prove that
for any sub-coalgebra S′ of S2 which is a finite extension of S1, we
have S′ ⊆ Sm. For this coalgebra, we consider the sub-coalgebra
S′′ = S′∪Sm. It is a finite extension of Sm, hence, by the previous
lemma, the morphism fm can be extended to S′′. The maximality
of the pair (Sm, fm) gives Sm = S′′. 2

Corollary 2.34 (Regular retraction) Let T be a recursive coalgebra and S
be a regular extension. Then there exists a retraction S→ T.

Proof: Just apply the previous theorem to extend the morphism
IdT to S. 2

This corollary will be used in the next section.

2.4.3 Application: transfer between signatures

In only this section, we take two different signatures, that is, two functors F
and G that preserve set-theoretic inclusions. We give ourselves a recursive F -
coalgebra T = (T, τ) and a regular G-coalgebra S = (S, σ). It is natural to
consider the pairs of functions (f : S → T, g : GS → FT) that are compatible
with the respective coalgebra structures, i.e. that make the following diagram
commute:

S

f

��

σ // GS

g

��
T

τ
// FT

We want to constrain these functions by a system of equations that associate
with every element of GS an element of F (T + S). To express the fact that
this system does not depend from the construction of S, we suppose that the
function GS → F (T + S) is defined as βS where β is a natural transformation
β : G→ F (T + _). Formally, what we are asking is that the following diagram

2.4. Regularity and recursivity 47

commutes:
GS

g

��

βS

$$
F (T + S)

F (IdT +f)zz
FT

In other words, function g can be deduced from f . The next theorem ensures
the existence of such a function f .

Theorem 2.35 Given the objects introduced above, there exists a function f :
S → T such that the following diagram commutes:

S

f

��

σ // GS

βS

��
F (T + S)

F (IdT +f)
��

T
τ
// FT

Proof: We have the F -coalgebra T′ = (T + S, τ + βS ◦ σ) which
is an extension of T. A retraction of this F -coalgebra over T will
give indeed a function f : S → T solution of the system, meaning
that it verifies τ ◦ f = F (IdT + f) ◦ βS ◦ σ. For every basis B of
S, we have the sub-coalgebra of T′ with support T + B, that is a
finite extension of T. This results from the naturality diagram of
β for the canonical injection iB,S . Corollary 2.34 ensures indeed
the existence of a retraction T′ → T. 2

An example Now let us give a concrete application of the previous result. It
is a simplified version of Theorem 6.9. We take a finite alphabet Σ. The functor
F associates to a set X the set of finite terms generated by the following syntax:

t := (t∨∨∨t) | (x×××x) | a

where x denotes a generic element from X, and a denotes a generic element
from Σ. We suppose as given a recursive F -coalgebra T = (T, τ). We can see it
as a type algebra (with product types and union types).

Similarly, the functor G associates to a set Y the set of finite terms generated
by the following syntax:

p := (p|p) | (y, y) | t

where y denotes a generic element from Y and t denotes a generic element from
FT . We suppose given a regular F -coalgebra S = (S, σ). We can see it as a
pattern algebra.

We then want to associate to every pattern a type that represents the values
accepted by p. Formally, we want to define two functions f : S → T and

48 Chapter 2. A formal framework for recursive syntaxes

g : GS → FT linked by the relation τ ◦f = g ◦σ, and which verify the following
equations: g(p1|p2) = g(p1)∨∨∨g(p2)

g((y1, y2)) = f(y1)×××f(y2)
g(t) = t

The link with the theorem above comes when we define the natural trans-
formation β : G→ F (T + _) by: βY (p1|p2) = βY (p1)∨∨∨βY (p2)

βY ((y1, y2)) = y1×××y2
βY (t) = t

We can then apply the theorem to define function f : S → T , from which
we deduce function g.

2.5 Constructions
In this section, we show how to formally build recursive regular coalgebras.
We present three constructions. The first models an implementation which
optimally shares recursive types (meaning that two types that have the same
infinite unfolding will be equal in this coalgebra). The second, on the contrary,
models an implementation that does not seek to introduce any sharing. The
third is intermediate: it detects types defined by the same equations (modulo
recursion variables renaming and suppression of useless equations), and shares
them.

The constructions are built on an countably infinite set of variables V , which
we fix for the rest of the study.

Similarly to the classical construction of an initial algebra, we need a conti-
nuity assumption on functor F . Since F preserves set-theoretic inclusions, we
can give a concrete version of this continuity hypothesis.

Definition 2.36 (Continuity) A family of sets (Xi)i∈I is directed if:

∀i, j ∈ I. ∃k ∈ I. Xi ∪Xj ⊆ Xk

The functor F is continuous if for any family of directed sets (Xi)i∈I :

F (
⋃
i∈I

Xi) =
⋃
i∈I

FXi

Throughout this chapter, we assume that functor F is continuous. One
consequence of this assumption is that the class of regular coalgebras is stable
by finite extension.

Lemma 2.37 (Stability of regular coalgebras by finite extension) Let T ⊆
S be a finite extension. If T is regular, then S is regular.

Proof: Let us write T = (T, τ) and S = (S, σ). We can write
S = T +X where X is a finite set. By continuity of the functor F
and regularity of T, we obtain: F (S) = F (T+X) = F (

⋃
B+X) =

2.5. Constructions 49

⋃
F (B + X) where the unions are taken on the set of bases of T.

It is a directed family because the union of two bases is still a
basis. The set σ(X) being finite, it is possible to find a basis B
such that σ(X) ⊆ F (B + X). By definition of a basis, we also
have: σ(B) ⊆ FB ⊆ F (B + X). We obtain a basis B′ of S whose
support is B + X. We have showed that all the elements of S\T
are in a basis of S. The same is obviously true for elements of T .
2

Remark 2.38 By a similar proof, we can show the transitivity of regular exten-
sions: if T1 ⊆ T2 and T2 ⊆ T3 are two regular extensions, then so is T1 ⊆ T3.

2.5.1 Optimal sharing
In this section, we are going to build a regular and recursive coalgebra with
optimal sharing, that is, that has no quotients.

The idea is to define a type by a finite system of equations {α1 = d1; . . . ;αn =
dn} by distinguishing one of its variables αi. We consider the pairs (T, α) where
T = (T, τ) is a finite coalgebra with support in V (T ∈ Pf (V)) and α ∈ T . To
introduce optimal sharing, we define 'D as the equivalence relation generated
by the equations:

(T, α) 'D (S, f(α))

for any morphism of finite coalgebras f : T → S. Let [T, α] denote the equiv-
alence class of (T, α) and D the set of those classes. We are going to give a
coalgebra structure to D, and show that it is regular and recursive.

Remark 2.39 Because of the equivalence 'D, we will allow ourselves to write
(T, α) for any finite coalgebra T. Indeed, the 'D equivalence allows us to reason
up to variable renaming, which allows us to get back to the case where the support
of T is a subset of V..

First of all, for any finite coalgebra T = (T, τ), we define function ΦT : T → D
by:

ΦT(α) = [T, α]

Lemma 2.40 If f : T→ S is a morphism of finite coalgebras, then ΦS◦f = ΦT.

Proof: We compute: ΦS(f(α)) = [S, f(α)] = [T, α] = ΦT(α). 2

This allows us to define a function δ : D → FD by:

δ([T, α]) = FΦT(τ(α))

if T = (T, τ). This definition is valid because if f : T → S then, by the
previous fact, we have: FΦS(σ(f(α))) = FΦS(Ff ◦ τ(α)) = F (ΦS ◦ f)(τ(α)) =
FΦT(τ(α)). Let D = (D, δ) be the coalgebra thus defined. We will prove that
it is regular and recursive.

Lemma 2.41 Function ΦT : T → D is a coalgebra morphism T→ D.

50 Chapter 2. A formal framework for recursive syntaxes

Proof: Immediate consequence of the definition of ΦT and of δ. 2

Theorem 2.42 (Regularity) The coalgebra D is regular.

Proof: Let T = (T, τ) be a finite arbitrary coalgebra. By using
Lemmas 2.41 and 2.17, we obtain that the set ΦT(T) = {[T, α] | α ∈
T} is a sub-coalgebra of D. Its finite character is obvious. So it is
a basis, and any element of D is in such a set. 2

The following lemma connects two different visions of the bases of D. Indeed,
such a basis B can be seen either as a finite set of D elements, or as a finite
coalgebra that induces a morphism ΦB : B→ D.

Lemma 2.43 (Internalization of the bases) Let B be a basis of D. Then
ΦB is the canonical injection B ↪→ D.

Proof: We have to show that for any element [T, α] of B, we get:
[B, [T, α]] = [T, α]. To do so, let us introduce the basis S = ΦT(T)∪
B of D. We can see ΦT as a coalgebra morphism T→ S that sends
α over [T, α] and this produces the equality: [T, α] = [S, [T, α]].
On the other hand, we can consider the canonical injection B→ S,
that sends [T, α] (in B) over itself (in S), which gives: [B, [T, α]] =
[S, [T, α]]. By transitivity, we obtain the desired equality. 2

Corollary 2.44 Let T be a finite coalgebra. Then the only morphism T→ D is
ΦT.

Proof: Let f : T→ D be such a morphism. Let T′ be the image of
T by f ; this is still a finite coalgebra, hence it is a basis of D. We
can write f = iT′,D ◦ f ′ where f ′ is a morphism T → T′. Lemma
2.40 gives ΦT = ΦT′ ◦ f ′ and the previous lemma gives ΦT′ = iT′,D.
From which we conclude f = ΦT. 2

The corollary above characterizes D with a universal property in the full
sub-coalgebra of AlgF constituting of regular coalgebras.

Corollary 2.45 (Finality) Let T be a regular coalgebra. Then there exists a
unique morphism T→ D, that we write ΦT.

Proof: The restriction of such a morphism to each basis B of Tmust
coincide with the unique morphism B → D. This gives unicity, as
well as the way to build the morphism T→ D. 2

Corollary 2.46 The unique morphism D→ D is the identity.

Corollary 2.47 If T is a regular coalgebra, then any morphism D → T is in-
jective.

Proof: If f is a morphism D → T, then ΦT ◦ f is the identity,
according to the previous Corollary. 2

Theorem 2.48 (Recursivity) The coalgebra D is recursive.

2.5. Constructions 51

Proof: Let T = (T, τ) be a finite extension of D. According to
Lemma 2.37, it is a regular coalgebra, and we obtain with Corol-
lary 2.45 a morphism ΦT : T → D. It is a retraction according to
Corollary 2.46. 2

Theorem 2.49 (Optimal sharing) The only congruence over D is the iden-
tity.

Proof: Let ≡ be a congruence over D. Lemma 2.21 shows that the
quotient D/ ≡ is a regular coalgebra. Corollary 2.47 then indicates
that the projection π : D → D/ ≡ is injective. This congruence is
therefore the identity. 2

Lemma 2.50 The morphism δ : D→ FD is an isomorphism.

Proof: We just need to check that this set-theoretic function is
bijective. Surjectivity is a consequence of Lemma 2.30. According
to Lemma 2.31, we know that FD is regular. Corollary 2.47 shows
that the function δ is injective. 2

Implementation techniques Efficient algorithms for optimal sharing have
been developed by par Mauborgne [Mau99, Mau00] and Considine [Con00], in
the case where the functor F associates to a setX a set of (free) terms built onX.
These techniques are inspired by minimization methods for finite deterministic
automatons [Wat94]. They cannot be directly applied, for example, to the case
of functor Pf (_), or to any functor built from Pf (_), that is, when we add
axioms such as commutativity or associativity on the terms.

2.5.2 Minimal sharing
We now describe another construction of a regular recursive coalgebra that does
not rely on maximal sharing. In particular, two types defined by two identical
systems of equations up to variable renaming will not be equal in the coalgebra.
On the contrary, we are going to build a recursive, regular coalgebra T∞ with
minimal sharing, that is, such that any other regular recursive coalgebra is
obtained as a quotient of T∞.

The idea is to work with terms of the form "α1 where {α1 = d1; . . . ;αn =
dn}" where the di are expressions built from the αi and other terms of the same
form.

Let V denote an infinite set of variables. We define a sequence of sets (Tn)n∈N

by T0 = ∅, Tn+1 = {(X,σ, α) | X ∈ Pf (V), σ : X → F (Tn + X), α ∈ X}. We
see that this suite is increasing (for inclusion). We then fix: T∞ =

⋃
Tn. For

any pair (X,σ) with X ∈ Pf (V), σ : X → F (Tn + X), we have the function
Φσ : T∞+X → T∞ defined as the identity over T∞ and by Φσ(α) = (X,σ, α) ∈
Tn+1 ⊆ T∞ for α ∈ X. We can the define a function τ∞ : T∞ → FT∞ by
τ∞(X,σ, α) = FΦσ(σ(α)). Let T∞ = (T∞, τ∞) be the coalgebra thus defined.

Theorem 2.51 The coalgebra T∞ is recursive.

52 Chapter 2. A formal framework for recursive syntaxes

Proof: Let S = (S, σ) be a finite extension of T∞. We can assume
that S = T∞ + X for a certain set X ∈ Pf (V). We still write
σ for its restriction to X. The image of X by σ is contained
in F (T∞ + X), which, by continuity of functor F , is the union⋃
F (Tn + X). However, the set σ(X) is finite, hence for a large

enough n, we can see σ as a function X → F (Tn + X). We then
consider function Φσ : S → T∞ defined above. It extends the
identity over T∞. To conclude the proof, we then only have to
show that it is a coalgebra morphism S→ T∞, that is, that:

τ∞ ◦ Φσ = FΦσ ◦ σ

We verify this equality separately over T∞ and X. Insofar as
Φσ behaves as the identity over T∞, we deduce that FΦσ behaves
as the identity over FT∞. In addition, σ coincides with τ∞ over
T . Hence for an element t ∈ T∞, we indeed have τ∞(Φσ(t)) =
τ∞(t) = σ(t) = FΦσ(σ(t)).

Now, let α ∈ X. We have: τ∞(Φσ(α)) = τ∞(X,σ, α) by defi-
nition of Φσ and τ∞(X,σ, α) = FΦσ(σ(α)) by definition of τ∞.
2

Theorem 2.52 The coalgebra T∞ is regular.

Proof: First of all, we find that the Tn are sub-coalgebras of T∞.
This comes from the fact that if σ : X → F (Tn + X), then the
image of any α ∈ X by Φσ is in Tn+1; thus τ sends Tn+1 in FTn+1.

Since T∞ =
⋃
Tn, we only have to show that the sub-coalgebras

Tn are regular. We do this by induction. The base case n =
0 is trivial. Assuming that Tn is regular, we show that Tn+1 is
regular too. Let (X,σ, α) be an element of Tn+1. We now prove
it is regular. We define the coalgebra S = (Tn + X, τ + σ). It
is a finite extension of Tn, so it is a regular algebra according to
Lemma 2.37. As in the proof of Theorem 2.51, we can then see Φσ
as a coalgebra morphism S → Tn+1. According to Lemma 2.21,
its image is regular. And since Φσ(α) = (X,σ, α) this element of
Tn+1 is regular. 2

Insofar as T∞ is regular, we know there exists a morphism T∞ → T for any
recursive coalgebra T (Theorem 2.33). We will show that if we also assume that
T is regular and countable, then we can build a surjective morphism T∞ → T.
This shows that any coalgebra that verifies these conditions is isomorphic to a
"quotient" of T∞.

Theorem 2.53 Let T = (T, τ) be a recursive, regular coalgebra with countable
support. Then, there exists surjective morphisms T1 → T and T∞ → T.

Proof: For any pair (X,σ) with X ∈ Pf (V) and σ : X → FX,
we suppose as given a coalgebra morphism fσ : (X,σ) → T. We
can then define a function f : T1 → T by f(X,σ, α) = fσ(α). We
then have fσ = f ◦ Φσ. We also have Ffσ ◦ σ = τ ◦ fσ, which
expresses the fact that fσ is a morphism. This establishes that

2.5. Constructions 53

f is a coalgebra morphism T1 → T; for any triplet (X,σ, α), we
compute: Ff ◦τ∞(X,σ, α) = Ff ◦FΦσ ◦σ(α) = F (f ◦Φσ)◦σ(α) =
Ffσ ◦ σ(α) = τ ◦ fσ(α) = τ ◦ f(X,σ, α)

The existence of the morphisms fσ for any (X,σ) is a conse-
quence of the recursivity of T. We now show that a clever choice
allows for making the morphism f : T1 → T surjective.

The bases of T are countable; we denote them by (Bn)n∈N. For
each of those bases, we choose a pair (Xn, σn) that is isomorphic
to it as a coalgebra. We write fn : Xn → Bn for this morphism.
It is possible to choose the pairs (Xn, σn) so they are all different.
This allows us to choose fσn

= fn. For the other fσ, we make an
arbitrary choice.

With those choices, the morphism f becomes surjective. In-
deed, for any integer n, it induces a bijection between Φσ(Xn)
and Bn. Corollary 2.33 allows us to extend f into a surjective
morphism T∞ → T. 2

Lemma 2.54 The two coalgebras T∞ and D are not isomorphic (except if
FX = ∅ for any X).

Proof: If FX = ∅ for any X, there is only one coalgebra (with
empty support). Assume that is not the case. By continuity of
functor F , there exists a finite set X such that FX 6= ∅. We can
consider, up to renaming, that X ∈ Pf (V) and X 6= ∅.

We know there exists a unique morphism f : T∞ → D. We
now prove that it is not an isomorphism. We will show that it is
not injective. Consider its restriction to the sub-coalgebra T1. It
is the unique morphism f1 : T1 → D. But we can define a function
T1 → D by f1(X,σ, α) = [(X,σ), α], hence it is easy to see that
it is indeed a coalgebra morphism. Hence it is f1. We now only
have to prove that f1 is not injective. We have X ∈ Pf (V) such
that FX 6= ∅. Therefore there exists a function σ : X → FX,
and an element α ∈ X. We deduce there exists a different triplet
(X ′, σ′, α′), for example by renaming the elements of X (or simply
by taking a strict overset of X), so that there exists a morphism
of finite coalgebras (X,σ) → (X ′, σ′) that sends α over α′. The
two triplets (X,σ, α) and (X ′, σ′, α′) do not have the same image
by f1, therefore it is not injective. 2

2.5.3 Sharing modulo renaming and extension
We give a third construction of a regular and recursive coalgebra, that is neither
isomorphic to T∞, or to D. It means that it can obtained from T∞ by quotienting
over a congruence larger than the identity, but that is not maximal either. We
give a direct construction for it.

The idea is to consider systems {α1 = d1; . . . ;αn = dn} (where the di
are built over the αi) modulo variable renaming and extension (adding useless
equations). Formally, this is like considering the pairs (T, α) where T = (T, τ)
is a finite coalgebra whose support is included in V , and α ∈ T . We consider

54 Chapter 2. A formal framework for recursive syntaxes

the equivalence induced by the relations:

(T, α) 'D′ (S, f(α))

for any injective morphism f : T → S (that represents renaming and adding
equations). We denote by < T, α > the equivalence class of the pair (T, α) and
by D′ the set of those classes. We then proceed as in the case of optimal sharing.
For any finite coalgebra T = (T, τ), we define function Φ′T : T → D′ by:

Φ′T(α) =< T, α >

Lemma 2.55 If f : T → S is an injective morphism of finite coalgebras, then
Φ′S ◦ f = Φ′T.

We can then define function δ′ : D′ → FD′ by:

δ′(< T, α >) = FΦ′T(τ(α))

if T = (T, τ). Let D′ = (D′, δ′) be the coalgebra thus defined.

Lemma 2.56 Function Φ′T : T → D′ is a coalgebra morphism T→ D′.

Theorem 2.57 The coalgebra D′ is regular.

Proof: This proof is the same as the one for Theorem 2.42. 2

Theorem 2.58 Coalgebra D′ is recursive.

Proof: Let S = (S, σ) be a finite extension of D′. We can assume
that S = D′ + X with X = {α1, . . . , αn} ∈ Pf (V). According to
Lemma 2.37, we can deduce the existence of a basis B of D′ that
contains X. We write B = {< T1, β1 >, . . . , < Tn, βm >}+X. In
fact, in view of the equivalence modulo renaming and extension,
and even if we have to rename the βi, we can assume that all
the Ti are equal: B = {< T, β1 >, . . . , < T, βm >} + X with
T = (T, τ). Let us then set T ′ = T + X and define function
f : B → T ′ by f(< T, βi >) = βi and f(αi) = αi. We can
then define τ ′ : T ′ → FT ′, the extension of τ : T → FT , by:
τ ′(αi) = Ff(σ(αi)) for αi ∈ X. Indeed, we know that B is a
basis, hence σ(X) ⊆ B. This provides us with a finite coalgebra
T′ = (T ′, τ ′).

We can now define a retraction g : S→ D′ as the identity of D′
and by g(αi) = Φ′T′(αi) =< T′, αi >. We have to check that it is
a coalgebra morphism. This is found with a simple calculation, by
noticing that the restriction of g to B is the composition Φ′T′ ◦ f :
δ′ ◦ g(αi) = δ′(< T′, αi >) = FΦ′T′(τ ′(αi)) = F (Φ′T′ ◦ f)(σ(αi)) =
Fg ◦ σ(αi). 2

We will now prove that this construction gives in general a coalgebra D′

that is isomorphic neither to D or to T∞. We take as functor F the identity.
Coalgebras are then the (finite or infinite) graphs whose outdegree of each node
is exactly 1.

2.5. Constructions 55

We easily see that D is a singleton. We can also describe D′ very precisely
. For any coalgebra T = (T, τ), and any element α ∈ τ , we define pT(α) as
the smallest strictly positive integer n such that τn(α) = α, or +∞ if that
integer does not exist (which is only possible when T is infinite). We find
that if f : T → S is an injective coalgebra morphism, then pT(α) = pS(f(α))
for every α. It is therefore possible to define a function p : D′ → N+ by
p(< T, α >) = pT(α). We will show that it is a bijection. For a fixed integer
n > 0, we can consider the finite coalgebra Zn = (Z/nZ, (x 7→ x + 1)). For all
x ∈ Z, we have: pZn

(x) = n. We then find that for any coalgebra T and α ∈ T ,
if pT(α) = n, then there exists an injective morphism Zn → T that sends an
arbitrary element of Zn over α. The bijective nature of function p is deduced
from that, which ensures a countable cardinal for D′ and we immediately see
that D and D′ are not isomorphic. However we also see that for every element
x of D′, we have pD′(x) = 1 (in other words: δ′ is the identity). Indeed, such an
element x can always be written as < Zn, 0 > for a certain n, and δ′(< Zn, 0 >
) =< Zn, 1 >=< Zn, 0 >. Clearly, the coalgebra T∞ does not have the same
structure. For example, if we take X = {α1, α2}, and σ(α1) = α2, σ(α2) = α1,
then for the element x = (X,σ, α1) of T∞, we have: pT∞(x) = 2.

56 Chapter 2. A formal framework for recursive syntaxes

57

Chapter 3

Type algebra

In the previous chapter we introduced the formalism used to construct (co)algebras
of recursive terms on an arbitrary signature given by a set-theoretic endofunctor
F . In this chapter, we instantiate this framework to define the type algebra of a
calculus which will serve as the core on which we will build the CDuce language.

3.1 Boolean combinations
3.1.1 Motivation
We want to introduce boolean combinations (union, intersection, complement)
in the type algebra. An immediate solution would be to consider these boolean
operations as type constructors, in the same way as arrow or product types.
With this approach, we would define the functor F as:

t ∈ FX ::= x→→→x | x×××x | x∨∨∨x | x∧∧∧x | ¬¬¬x | . . .

where the meta-variable x represents arbitrary X elements.
This approach is well suited to the construction of an inductive type algebra.

However, in the formalism we use for recursive algebras, this would allow for a
type t to be defined by an equation like:

t = ¬¬¬t

Obviously, it is not possible to give a set-theoretic semantic to such a type.
Similarly, an equation such as:

t = t∨∨∨t

does not give any information about the content of the type t. Generally, we
want to avoid ill-formed recursions, which "do not traverse an actual construc-
tor". One solution is to stratify the construction, by using an inductive con-
struction for boolean operators. For example, we can define functor F by:

t ∈ FX ::= x→→→x | x×××x | t∨∨∨t | t∧∧∧t | ¬¬¬t | . . .

For a fixed set X, the set FX represents finite terms built with boolean
operators, whose atoms are the "real" constructors of the type algebra. Hence
we avoid being able to define ill-formed types.

58 Chapter 3. Type algebra

However, the problem with this construction is that it prevents that identi-
fication of types that are equivalent modulo boolean tautologies (for example t
and t∨∨∨t). In particular, even if the setX is finite, the functor gives an infinite set
FX. This can be a problem with algorithms that proceed by saturation of a set
of types (for example, subtyping algorithms). To ensure termination, we have
to find a representation that makes it possible to share tautologically equiva-
lent boolean combinations. It is not necessary to detect all these equivalences,
because it can have a high cost, but identifying more equivalent combinations
allows to reduce the number of iterations in saturation algorithms.

We will now study an example of a representation that fits these require-
ments. In section 11.3, we point out some possible variants.

3.1.2 Finite boolean combinations in normal disjunctive
form

A finite boolean combination in disjunctive normal form on a set of atoms X is
a finite union of finite intersections of literals, where a literal is either an atom,
or the complement of an atom. We can define this set of objects by the following
stratified syntax:

C ::= 0 | C∨∨∨C | L
L ::= 1 | L∧∧∧L | x | ¬¬¬x

"Production" L represents the "lines" of a disjunctive normal form. By taking
into account the associativity and commutativity of intersection, we can define
it in a less-syntactic way by gathering on the one hand the set of positive literals
x and on the other hand the set of negative literals ¬¬¬x. We then consider the
set Pf (X)×Pf (X). For example, the line x1∧∧∧¬¬¬x2∧∧∧x3 can be represented with
the pair ({x1, x3}, {x2}). The neutral element for intersection 1 corresponds to
the pair (∅, ∅).

We can do the same for production C, by seeing a combination as a finite set
of lines. Overall, a finite boolean combination in disjunctive normal form can
be represented by an element of the set Pf (Pf (X)×Pf (X)) which we denote as
BX (B for boolean combinations). In this representation, the neutral element
for union 0 corresponds to the empty set.

We can now define boolean combinators as operators on this set BX. We
first write @x for the element {({x}, ∅)} of BX which correspond to the atom x,
and similarly we write @¬¬¬x for the negative literal {(∅, {x})}. We define union
and intersection by:

t1∨∨∨t2 := t1 ∪ t2
t1∧∧∧t2 := {(P1 ∪ P2, N1 ∪N2) | (P1, N1) ∈ t1, (P2, N2) ∈ t2}

It is clear that operators ∨∨∨ and ∧∧∧ are commutative and associative, and that
they admit respectively 0 := ∅ and 1 := {(∅, ∅)} as neutral elements. For any
finite family (ti)i∈I of elements of BX, we can then define naturally

∨∨∨
i∈I ti and∧∧∧

i∈I ti by induction on the cardinal of I. Equivalently, they can be defined by
the formulas: ∨∨∨

i∈I
ti :=

⋃
i∈I

ti∧∧∧
i∈I

ti := {(
⋃
i∈I

Pi,
⋃
i∈I

Ni | ∀i ∈ I. (Pi, Ni) ∈ ti}

3.1. Boolean combinations 59

which show the associative character of operators ∨∨∨ and ∧∧∧.

Lemma 3.1 For any element t ∈ BX, we have:

t =
∨∨∨

(P,N)∈t

(∧∧∧
x∈P

@x∧∧∧
∧∧∧
x∈N

@¬¬¬x
)

This suggests the following definition for complement and difference:

¬¬¬t :=
∧∧∧

(P,N)∈t

(∨∨∨
x∈P

@¬¬¬x∨∨∨
∨∨∨
x∈N

@x
)

t1\\\t2 := t1∧∧∧¬¬¬t2
Lemma 3.2 For any atom x ∈ X, we have ¬¬¬@x = @¬¬¬x.

In order to define a set-theoretic interpretation of types, it is natural to
introduce the following definition.
Definition 3.3 A set-theoretic interpretation of BX in a set D is a func-
tion J_K : BX → P(D) such that, for all t, t1, t2 ∈ BX:
— J0K = ∅
— J1K = D
— Jt1∨∨∨t2K = Jt1K ∪ Jt2K
— Jt1∧∧∧t2K = Jt1K ∩ Jt2K
— J¬¬¬tK = D\JtK

Lemma 3.4 A function J_K : BX → P(D) is a set-theoretic interpretation if
and only if for all t ∈ BX:

JtK =
⋃

(P,N)∈t

(⋂
x∈P

J@xK\
⋃
x∈N

J@xK
)

(with the convention that an intersection indexed on the empty set equals D)

Proof: Suppose that J_K is a set-theoretic interpretation and con-
sider an element t ∈ BX. By using Lemma 3.1, we obtain:

JtK =
⋃

(P,N)∈t

⋂
x∈P

J@xK ∩
⋂
x∈N

J@¬¬¬xK

Lemma 3.2 gives J@¬¬¬xK = J¬¬¬@xK = D\J@xK, which allows us to
conclude:

JtK =
⋃

(P,N)∈t

⋂
x∈P

J@xK\
⋃
x∈N

J@xK

Conversely, if we assume that this formula is valid for all t ∈
BX, we easily check that J_K is a set interpretation. Consider for
example the case t1∧∧∧t2. We have:

Jt1K ∩ Jt2K =

 ⋃
(P1,N1)∈t1

⋂
x∈P1

J@xK\
⋃
x∈N1

J@xK

∩

 ⋃
(P2,N2)∈t2

⋂
x∈P2

J@xK\
⋃
x∈N2

J@xK

=

⋃
{(P1,N1)∈t1

(P2,N2)∈t2

⋂
x∈P1∪P2

J@xK\
⋃

x∈N1∪N2

J@xK

= Jt1∧∧∧t2K

60 Chapter 3. Type algebra

2

Corollary 3.5 For every function J_K : X → P(D), there exists a unique set-
theoretic interpretation of BX into D that sends @x on JxK for every atom
x ∈ X. We denote it again with J_K.

An important property is that we can see B = Pf (Pf (_) × Pf (_)) as a
functor that preserves set-theoretic inclusions. It is legitimate not to specify
the set X when manipulating the operators ∨∨∨,∧∧∧,¬¬¬,\\\ and the elements 0 and
1. For example, if t1, t2 are both in BX and in BY , then we can compute
t1∨∨∨t2 indifferently in BX and in BY , and obtain the same result. This can be
interpreted categorically by saying that the operators are "natural" with respect
to functor B (for example, the operator∨∨∨ can be seen as a natural transformation
B_× B_→ B_).

For any element t ∈ BX, we can define the "set of atoms of t" as the smallest
set Y ⊆ X such that t ∈ BY , which is

⋃
(P,N)∈t P ∪N .

3.2 Algebras with recursive types and boolean
combinations

We now have all the elements we need to define a type algebra with the following
characteristics:
— recursive types;
— arbitrary constructors;
— well-formed boolean combinations.
If we write F the signature of constructors (that is to say a functor Set →

Set which preserves set-theoretic inclusions), we we can define a type algebra as
being a recursive and regular (B ◦ F)-coalgebra T = (T, τ). We write T̂ = BFT
and TA = FT .

Definition 3.6 The elements of T (resp. T̂) (resp. TA) are called type nodes
(resp. type expressions, or simply types) (resp. atoms).

The function τ : T → T̂ associates a node to an expression, and an expression
is a boolean combination (in disjunctive normal form) of atoms. Atoms are
objects built with type nodes, via the signature F . We denote by θ, θ1, . . . the
elements of T , and t, t1, . . . the elements of T̂ .

To ensure the existence of a type algebra, it is enough to assume that the
functor F is continuous. If that is the case, then functor B ◦ F is continuous
too, and we can apply the constructions of the previous chapter.

We now need to define the signature F , that is, the way of building atoms
from type nodes.

3.3 The minimal algebra
We start working with a minimal algebra that only contains three types of
constructors: product types, arrow types, and base types. It will be enough to
present our approach. We will then extend the algebra with other constructors

3.3. The minimal algebra 61

(records, XML elements, . . .) by explaining the changes to be made to the
minimal system.

We fix a set of base types B (for example Int, Char) and we define the
signature F in the following way:

a ∈ FX ::= x→→→x | x×××x | b

where b denotes a generic element from B and x a generic element from X.
Let us summarize the properties of the type algebra thus constructed. The

following functions are available:
— The binary constructors→→→ and×××: T×T → TA and the 0-ary constructors

b ∈ TA.
— The injection of atoms in type expressions @ : TA → T̂ . We will make it

implicit, by omitting @, which amounts to acting as if TA ⊆ T̂ .
— The boolean operators on type expressions ∨∨∨,∧∧∧,\\\ : T̂ × T̂ → T̂ and
¬¬¬ : T̂ → T̂ , as well as the two type expressions 0,1 ∈ T̂ .

— The surjective function τ : T → T̂ which associates a type node with its
description (an expression).

There are three atom "universes": arrow types, product types, base types.
Let us write Tu the atoms in universe u, where u ∈ {fun,prod,basic}:

Tbasic = B
Tfun = {θ1→→→θ2 | (θ1, θ2) ∈ T}
Tprod = {θ1×××θ2 | (θ1, θ2) ∈ T}

We have:
TA =

⋃
u∈{fun,prod,basic}

Tu

Furthermore, the (B ◦ F)-coalgebra is regular and recursive. Recursivity
implies that the function τ is surjective: for any type expression t, it is possible
to find (in practice, to create) a node whose description is t. This allows us
to define types inductively. Hence there exists two nodes θ0 and θ1 such that:
τ(θ0) = 0 and τ(θ1) = 1. To simplify the notations, we will also denote them
by 0 and 1.

We can also form recursive types by considering finite systems: α1 = d1
. . .
αn = dn

where the di are elements of BF (T + {α1, . . . , αn}), i.e. type expressions where
variables are allowed, in addition to nodes, as constitutive elements of atoms.
Here is an example: {

α1 = α1×××α2
α2 = (α1→→→α2)∨∨∨(α2→→→α1)

Recursivity ensures the existence of two nodes θ1 and θ2 such that:{
τ(θ1) = θ1×××θ2
τ(θ2) = (θ1→→→θ2)∨∨∨(θ2→→→θ1)

62 Chapter 3. Type algebra

We can then reuse these nodes in a new system:{
α3 = (θ1×××α3)∨∨∨(θ2→→→θ2)

which allows us to build a node θ3 such that:

τ(θ3) = (θ1×××θ3)∨∨∨(θ2→→→θ2)

This is the way to build recursive types. We will now see how to deconstruct
them.

Definition 3.7 A socle is a finite set of types i ⊆ T̂ that verifies the following
conditions:
— i is finite;
— i contains 0, 1 and is stable by the boolean operators (∨∨∨,∧∧∧,¬¬¬);
— for every type t ∈ i and every (P,N) ∈ t:

(θ1→→→θ2 ∈ P ∪N) ∨ (θ1×××θ2 ∈ P ∪N)⇒ τ(θ1) ∈ i ∧ τ(θ2) ∈ i

Theorem 3.8 Any finite set of types is included in a socle.

Proof: We just have to prove it for a set of the form τ(X) where
X is a basis. Indeed, any finite set of types is included in such a
τ(X).

Let A be the set of atoms that appear in an element of τ(X):

A =
⋃

t∈τ(X)

⋃
(P,N)∈t

P ∪N

It is clear that it is the smallest set such that τ(X) ⊆ BA. Since
X is a basis, we have τ(X) ⊆ BFX, hence A ⊆ FX.

We now show that the set i = BA is a socle. Since the set X is
finite, then so is τ(X), as well as A and finally i. The stability of
i by boolean operators is trivial (as for any set of the form B_).

Let us take an atom θ1→→→θ2 that appears in one of the types of
i. It is an element of A, hence of FX. We deduce that θ1 and θ2
are in X, therefore τ(θi) ∈ τ(X) ⊆ BA = i.

The case of θ1×××θ2 is similar. 2

This theorem ensures that if we inductively unfold a type t by considering
the descriptions of the type nodes that appear in its atoms, then we obtain
a finite number of different types. Even better, we can saturate the resulting
set by applying the boolean operators, and we still obtain a finite set. This
finiteness property will be used to ensure the termination of algorithms.

63

Chapter 4

Semantic subtyping

In this chapter, we will show how to define a subtyping relation on the mini-
mal type algebra T introduced in the previous chapter. We will follow a new
approach based on a set-theoretic interpretation of types.

Naive set-theoretic approaches We want to define the subtyping relation
≤ by using a set-theoretic interpretation (in the sense of Definition 3.3), that
is to say a function T̂ → P(D), for a certain set D, which interprets boolean
operators in a set-theoretic way.

Definition 4.1 (Subtyping) Let J_K : T̂ → P(D) be a set-theoretic interpre-
tation. It defines a binary relation ≤J_K on T̂ by:

t1 ≤J_K t2 ⇐⇒ Jt1K ⊆ Jt2K

This relation is the subtyping relation induced by J_K.

We clearly have the equivalence: t1 ≤J_K t2 ⇐⇒ Jt1\\\t2K = ∅. In other
words, to study this subtyping relation, it is enough to focus on the unary
predicate "J_K = ∅".

In order to define this subtyping relation, we have to choose the set D, and
the way to interpret the atoms TA.

A natural choice for D would be to take the set of values of the calculus we
want to define (see Chapter 5), to interpret the type t as the set of values of
that type, and to check that we have indeed defined a set-theoretic interpretation
We would write: JtK = {v | ` v : t}. It implies that we already have the type
system of the language, but it is precisely in order to define it that we need the
subtyping relation. In fact, we only need the type of values, and not of arbitrary
expressions. We need to know, given an atom a ∈ TA and a value v, if v is of
type a or not. The problem comes from functions. If v is a λ-abstraction λx.e
and a an arrow type θ1→→→θ2, we would like to say that v has type a if and only
if x : τ(θ1) ` e : τ(θ2), but then we would need the type system of the whole
language. Moreover, this definition poses a type safety issue. In a calculus with
subtyping, the type of an expression becomes more precise during execution. If
the abstraction above does not have type a, it only means that the type system
is not powerful enough to prove that e has type τ(θ2) under the assumption

64 Chapter 4. Semantic subtyping

x : τ(θ1); in that case, the value v must have type ¬¬¬a (to have a set-theoretic
interpretation of types). Now assume that we can reduce the body of v 1, in
order to obtain a new values v′ = λx.e′. It may be then that the system is able
to prove that e′ has type τ(θ2), hence v′ has type a, but it must have type ¬¬¬a,
as well as the abstraction from which it is derived. Therefore we have a value
of type a and ¬¬¬a, which is impossible with a set-theoretic interpretation.

Another possibility would be to say that the abstraction λx.e has type θ1→→→θ2
if and only if all the values that can be obtained by reducing an expression
e[x 7→ v] with v of type θ1 are of type θ2, and that no type error can appear
during those reductions. There are also problems with that. On the one hand,
we still rely on the type system of the calculus (which is not yet defined, and
whose definition will depend on the subtyping relation). On the other hand, the
dynamic semantics will itself depend on the subtyping relation (via the pattern
matching operation, or simply by the dynamic type-check operation), hence this
definition is unfounded. Therefore this only introduces an additional circularity
loop (between typing, subtyping and dynamic semantics).

In the calculus we will introduce, abstractions are explicitly annotated by
their type. As we want to have overloaded functions, an abstraction is annotated
by a finite set of arrow types θ1→→→θ′1; . . . ; θn→→→θ′n. This abstraction has the atomic
type a = θ→→→θ′ if and only if a is a super-type of the intersection

∧∧∧
i=1..n θi→→→θ′i

(and therefore it has type ¬¬¬a if that is not the case). Therefore this typing does
not really depend on the body of the abstraction (although we assume that it
is well-typed). But we just moved the problem, because we define the predicate
` v : a (when v is an abstraction and a an arrow type) using the subtyping
relation that we want to define.

Idea of the proposed solution The naive approaches presented above all
fail. We propose a solution that is to relax the link between the set D, used to
interpret the types, and the set of values of the calculus that we want to type.
We want to be able to interpret the types as sets of values (and subtyping as
inclusion between the denoted sets). But we have seen that it is problematic
to start from this property to define subtyping. In fact, the precise nature of
the elements of D does not matter: this set is only used to define the relation
≤. So the choice for D is free enough, the only constraint being that we want
to interpret the type atoms in a way that produces a subtyping relation that
makes sense with regard to the values.

We will define a concept of model that captures this intuition. A model is a
way to interpret the types in a set-theoretic way so that the induced subtyping
relation corresponds to our intuition on the types and calculus.

Starting from a model, we can define a subtyping relation, and use it to
define the type system of the calculus. It is then possible to define afterwards a
new interpretation of types as sets of values, by using this type system (we take
JtK = {v | ` v : t}). The criteria used to validate our approach is to verify that
this interpretation induces the same subtyping relation as the model we started
from. Thus, we have come full circle, as even if we have a priori broken the link
between subtyping and values (by defining subtyping via a model), this link is
restored afterwards.

1In the calculus that we are about to introduce, it is not possible to reduce inside abstrac-
tions, but it could be done without giving up type safety .

4.1. Base types 65

4.1 Base types
For every base type b ∈ B, we assume given a set BJbK, whose elements are called
the constants of type b. These constants belong to the calculus that we want to
study.

The sets BJbK are not necessarily two-to-two disjoint: the same constant
can have several different base types. For example, in CDuce, the constant 0
has the singleton type 0, the type Int, and any interval type that contains 0,
. . . However, we assume that for any constant c, there exists a singleton base
type bc ∈ B, that verifies:

JbcK = {c}
This implies:

∀b ∈ B. c ∈ BJbK ⇐⇒ BJbcK ⊆ BJbK ⇐⇒ BJbcK ∩ BJbK 6= ∅

We denote by C =
⋃
b∈B BJbK the set of constants.

4.2 Models
We want to define a set-theoretic model notion for the type algebra. A model
has to be a set-theoretic interpretation (Definition 3.3), which ensures that
the boolean operators are interpreted in a natural way. The interpretation of
type constructors must also be constrained. For example, we can say that the
constructor ××× must be interpreted as a set-theoretic cartesian product. The set
D in which the types are interpreted must then be such that D×D ⊆ D. Things
are more complicated for constructor→→→. An interpretation of arrow types could
be sets of set-theoretic functions. This would require that DD ⊆ D, which is
impossible for cardinality reasons. Furthermore, we want to interpret types as
sets of values of the calculus, hence we need to interpret an arrow type as a set
of λ-abstractions (which are syntactic objects, and not set-theoretic functions).

What we mean is that, in a model, the type constructors behave as if they
were interpreted in the natural set-theoretic way (even if they are not actually
interpreted that way) from the point of view of subtyping (or, equivalently, from
the point of view of the predicate JtK = ∅, since JtK ⊆ JsK ⇐⇒ Jt\\\sK = ∅ for a
set-theoretic interpretation). The formal definition below formalizes this "as if"
idea.

Definition 4.2 (Extensional interpretation, model) Let J_K : T̂ → P(D)
be a set-theoretic interpretation of T̂ = BTA in a set D. We write:

ED := C +D ×D + P(D ×DΩ)

where DΩ = D + {Ω}. If X,Y ⊆ D, we write:

X → Y := {f ⊆ D ×DΩ | ∀(d, d′) ∈ f. d ∈ X ⇒ d′ ∈ Y } ⊆ P(D ×DΩ)

The extensional interpretation associated to J_K is then defined as the
unique set-theoretic interpretation EJ_K : T̂ → P(ED) such that:

EJbK = BJbK ⊆ C
EJθ1×××θ2K = Jτ(θ1)K× Jτ(θ2)K ⊆ D ×D
EJθ1→→→θ2K = Jτ(θ1)K→ Jτ(θ2)K ⊆ P(D ×DΩ)

66 Chapter 4. Semantic subtyping

We say that J_K is a model of the type algebra if:

∀t ∈ T̂ . JtK = ∅ ⇐⇒ EJtK = ∅

We write EbasicD = C, EprodD = D ×D, EfunD = P(D ×DΩ).

The extensional interpretation associated with a set-theoretic interpretation
gives a natural set-theoretic interpretation for type constructors: the products
are interpreted as cartesian products, the arrows are interpreted as sets of func-
tions. In fact, rather than taking functional graphs, we consider binary relations,
or, equivalently, non-deterministic functions. This is motivated by the fact that
the calculus we are going to introduce may actually possess non-deterministic
traits (in the form of operators, or if we consider an extension with side effects).
In addition, this choice simplifies the set-theoretic calculations, avoiding corner
cases related to finite sets. Let us give an example (in which we identify types
and type nodes): consider the arrow type t→→→(s1∨∨∨s2), with s1 and s2 disjoint,
and t non-empty. We are wondering if it is a subtype of (t→→→s1)∨∨∨(t→→→s2), that is,
if any function of type t→→→(s1∨∨∨s2) is necessarily of type t→→→si for some i. If we
consider non-deterministic functions, this is not the case (because the function
may choose to output in s1 or in s2 in a non-deterministic way). But if we
consider set-theoretic functions, this becomes true in a corner case, when t is
a singleton (because the value of the function for this point is in s1∨∨∨s2, so in
one of the two types si, and then the function itself is in t→→→si). Using non-
deterministic functions avoids specific difficult-to-treat cases for the subtyping
relation.

The special element Ω, in the codomain of functions, represents a possible
type error. If we remove Ω from the definition of a model, we immediately see
that any arrow type is a subtype of 1→→→1, that is, any function can be applied
to any argument. In previous [Fri01] work, we have studied such a system. The
semantics of the associated calculus must indeed be able to apply any abstraction
to any argument, without causing a type error. To do this, it is necessary when
calling the function to test if the argument is in the domain (declared in the
interface of the abstraction), and if this is not the case, it is necessary to avoid
evaluating the body of the function (and it is appropriate to return any value, for
example a particular value that reports an error). The system we are presenting
here ensures that when we evaluate a well-typed application, the argument is
in the domain of the function. This is an illustration of the following principle:
the definition of the model must capture in a precise enough way the semantics
of the calculus to be typed. We will later give (Section 5.9) another illustration
of this principle.

The model definition constrains the "local" interpretation of type construc-
tors. We lack a constraint to ensure that the subtyping induced by a model
corresponds exactly to that of an interpretation of types as a set of values. Con-
sider a recursive type τ(θ) = θ×××θ. Nothing in the definition of a model ensures
that Jτ(θ)K is the empty set (in fact, it is possible to build models for which this
set is not empty). But a value v of this type must be a pair (v1, v2) where v1
and v2 are still of that type; hence we see that v is necessarily an infinite tree,
but the calculus that we are about to introduce does not allow us to build such
infinite values. So we want the interpretation of τ(θ) to be empty, and we will
now introduce a concept of well-founded model to ensure that property.

4.3. Set-theoretic inclusions 67

Definition 4.3 A model J_K : T̂ → P(D) is well-founded if there exists a
well-founded order / over D such that:

∀t ∈ T̂ .∀d ∈ JtK.∃d′ ∈ EJtK.d′ = (d1, d2)⇒ (d1 / d) ∧ (d2 / d)

Definition 4.4 A model J_K : T̂ → P(D) is structural if D is the initial
solution of an equation of the form:

D = C +D ×D +Dfun

for a certain set Dfun, and if:

JbK = EJbK
Jθ1×××θ2K = EJθ1×××θ2K
Jθ1→→→θ2K ⊆ Dfun

Lemma 4.5 A structural model is well-founded.

Proof: It is sufficient to consider the well-founded order / induced
by the relations d1 / (d1, d2) and d2 / (d1, d2) for every (d1, d2) ∈
D ×D. 2

4.3 Set-theoretic inclusions
To prepare the study of subtyping in the models, we need to establish some
simple set-theoretic properties. The property expressed in the following lemma
served as the basis for the top-down subtyping algorithm introduced in XDuce [Hos01].

Lemma 4.6 Let (Xi)i∈P , (Xi)i∈N (resp. (Yi)i∈P , (Yi)i∈N) be two families of
parts of a set D1 (resp. D2). Then:(⋂
i∈P

Xi × Yi

)
\

(⋃
i∈N

Xi × Yi

)
=

⋃
N ′⊆N

(⋂
i∈P

Xi\
⋃
i∈N ′

Xi

)
×

⋂
i∈P

Yi\
⋃

i∈N\N ′
Yi

(with conventions:

⋂
i∈∅Xi × Yi = D1 ×D2;

⋂
i∈∅Xi = D1 and

⋂
i∈∅ Yi = D2)

In particular: ⋂
i∈P

Xi × Yi ⊆
⋃
i∈N

Xi × Yi

⇐⇒

∀N ′ ⊆ N.

(⋂
i∈P

Xi ⊆
⋃
i∈N ′

Xi

)
∨

⋂
i∈P

Yi ⊆
⋃

i∈N\N ′
Yi

Proof: We start by noticing that:

Xi × Yi
D1×D2 =

(
Xi

D1 ×D2

)
∪
(
D1 × Yi

D2
)

We deduce:⋂
i∈N

Xi × Yi
D1×D2 =

⋃
N ′⊆N

 ⋂
i∈N ′

(
Xi

D1 ×D2

)
∩

⋂
i∈N\N ′

(
D1 × Yi

D2
)

⋃
N ′⊆N

 ⋂
i∈N ′

Xi
D1 ×

⋂
i∈N\N ′

Yi
D2

68 Chapter 4. Semantic subtyping

And finally:(⋂
i∈P

Xi × Yi

)
∩

(⋂
i∈N

Xi × Yi
D1×D2

)
=

⋃
N ′⊆N

(⋂
i∈P

Xi ∩
⋂
i∈N ′

Xi
D1

)
×

⋂
i∈P

Yi ∩
⋂

i∈N\N ′
Yi
D2

2

We will now establish the equivalent of Lemma 4.6 but for arrow types. We
start by decomposing the set-theoretic operator → in simpler operators: set of
parts, complement, cartesian product.

Lemma 4.7 Let X,Y ⊆ D. Then:

X → Y = P
(
X × Y DΩ

D×DΩ
)

Proof: The result comes from a simple calculation:

X → Y = {f ⊆ D ×DΩ | ∀(x, y) ∈ f. ¬(x ∈ X ∧ y 6∈ Y)}
= {f ⊆ D ×DΩ | f ∩X × Y

DΩ = ∅}

= {f ⊆ D ×DΩ | f ⊆ X × Y
DΩ

D×DΩ

}

2

Lemma 4.8 Let (Xi)i∈P and (Xi)i∈N be two families of parts of a set D. Then:⋂
i∈P
P(Xi) ⊆

⋃
i∈N
P(Xi) ⇐⇒ ∃io ∈ N.

⋂
i∈P

Xi ⊆ Xi0

Proof: The ⇐ implication is trivial. Let us show the converse
implication, and so assume that

⋂
i∈P P(Xi) ⊆

⋃
i∈N P(Xi). The

set
⋂
i∈P Xi belongs to every P(Xi) for i ∈ P , hence it is in the

union of the P(Xi) for i ∈ N . Therefore we can find an i0 ∈ N
such that

⋂
i∈P Xi ∈ P(Xi0), which concludes the proof. 2

Lemma 4.9 Let (Xi)i∈P , (Xi)i∈N , (Yi)i∈P , (Yi)i∈N be four families of parts of
a set D. Then: ⋂

i∈P
Xi → Yi ⊆

⋃
i∈N

Xi → Yi

⇐⇒

∃i0 ∈ N. ∀P ′ ⊆ P.

(
Xi0 ⊆

⋃
i∈P ′

Xi

)
∨

P 6= P ′ ⋂
i∈P\P ′

Yi ⊆ Yi0

(with the convention:

⋂
i∈∅Xi → Yi = P(D ×DΩ))

4.4. Subtyping analysis 69

Proof: Corollary of the Lemmas 4.7, 4.8, 4.6, by noticing that in
the condition

⋂
i∈P\P ′ Yi ⊆ Yi0 that appears, the convention is

to interpret the intersection as DΩ if P = P ′, which makes the
inclusion impossible. 2

Corollary 4.10 Let J_K : T̂ → P(D) be a model, and (θi)i∈P , (θi)i∈N , (θ′i)i∈P ,
(θ′i)i∈N be four families of type nodes. Then:

∧∧∧
i∈P

θi → θ′i ≤
∨∨∨
i∈N

θi → θ′i

⇐⇒
P 6= ∅

∃i0 ∈ N. ∀P ′ ⊆ P.

(
τ(θi0) ≤

∨∨∨
i∈P ′

τ(θi)
)
∨

P 6= P ′ ∧∧∧
i∈P\P ′

τ(θ′i) ≤ τ(θ′i0)

4.4 Subtyping analysis

We now have all the necessary elements to express the predicate EJtK = ∅, based
on the predicate JtK = ∅, and thus to obtain a more effective definition to ensure
that a set-theoretic interpretation is a model.

Let t be a type. We have:

t '
∨∨∨

(P,N)∈t

∧∧∧
a∈P

a∧∧∧
∧∧∧
a∈N
¬¬¬a

The extensional interpretation of this type is empty if and only if the one of
every term of the union is empty. In particular, this is the case for (P,N) ∈ t
as soon as P contains two atoms of a different kind, since the EuD are two-
to-two disjoint (for u ∈ {basic,prod, fun}). When all the atoms are products
(resp. arrows), we can use Lemma 4.6 (resp. 4.9) to decompose the predicate
EJ
∧∧∧
a∈P a∧∧∧

∧∧∧
a∈N ¬¬¬aK = ∅ in a boolean formula over predicates of the form

JtK = ∅, for types t obtained as boolean combinations of the τ(θ), for the θ that
appear in atoms a. This reasoning is formalized in the following definition and
in Theorem 4.13.

Definition 4.11 Let S ⊆ T̂ . We define:

ES = {t ∈ T̂ | ∀(P,N) ∈ t.∀u. (P ⊆ Tu ⇒ Cu)}

70 Chapter 4. Semantic subtyping

where:

Cbasic ::= C ∩
⋂
b∈P

BJbK ⊆
⋃
b∈N

BJbK

Cprod ::= ∀N ′ ⊆ N ∩ Tprod.

(∧∧∧
θ1×××θ2∈P

τ(θ1)
)
\\\

(∨∨∨
θ1×××θ2∈N ′

τ(θ1)
)
∈ S

∨(∧∧∧
θ1×××θ2∈P

τ(θ2)
)
\\\

 ∨∨∨
θ1×××θ2∈N\N ′

τ(θ2)

 ∈ S

Cfun ::= ∃θ′1→→→θ′2 ∈ N. ∀P ′ ⊆ P.

τ(θ′1)\\\
(∨∨∨
θ1×××θ2∈P ′

τ(θ1)
)
∈ S

∨
P 6= P ′ ∧∧∧
θ1×××θ2∈P\P ′

τ(θ2)

\\\τ(θ′2) ∈ S

We say that S is a simulation if:

S ⊆ ES

Remark 4.12 The definition of ES does not depend on a fixed model or a set-
theoretic interpretation. It is a purely axiomatic definition. For all type t and
(P,N) ∈ t, there exists at least one u such that P ⊆ Tu, except if P = ∅, in
which case the three conditions Cu have to be verified.

Theorem 4.13 Let J_K : T̂ → P(D) be a set-theoretic interpretation. Let us
write:

S = {t | JtK = ∅}
Then:

ES = {t | EJtK = ∅}

Proof: Let t ∈ T̂ . We have:

EJtK =
⋃

(P,N)∈t

⋂
a∈P

EJaK\
⋃
a∈N

EJaK

Hence:

EJtK = ∅ ⇐⇒ ∀(P,N) ∈ t.
⋂
a∈P

EJaK ⊆
⋃
a∈N

EJaK

Let us decompose on each universe:⋂
a∈P

EJaK ⊆
⋃
a∈N

EJaK ⇐⇒ ∀u. EuD ∩
⋂
a∈P

EJaK ⊆ EuD ∩
⋃
a∈N

EJaK

Note that for any atom a, if a ∈ Tu, then EuD ∩ EJaK = EJaK, and
if a 6∈ Tu, then EuD ∩ EJaK = ∅. Hence:

EuD ∩
⋂
a∈P

EJaK ⊆ EuD ∩
⋃
a∈N

EJaK

4.5. Universal model 71

⇐⇒(
P ⊆ Tu ⇒

⋂
a∈P

EJaK ⊆
⋃

a∈N∩Tu

EJaK

)
We conclude with Lemmas 4.9 et 4.6. 2

Corollary 4.14 With the notations of the previous theorem, the interpretation
J_K is a model if and only if S = ES.

Corollary 4.15 Let J_K1 : T̂ → D1 be a model and J_K2 : T̂ → D2 be a
set-theoretic interpretation. Then the two assertions below are equivalent:
— J_K2 is a model and it induces the same subtyping relation as J_K1
— for any type t ∈ T̂ , JtK1 = ∅ ⇐⇒ JtK2 = ∅

This corollary says that whether a set-theoretic interpretation is a model
or not depends only on the subtyping relation it induces. In other words, as
expected, our model definition only constrains the subtyping relation induced
by the set-theoretic interpretation, and not the nature of the elements of the set
used to interpret the types.

4.5 Universal model
Definition 4.16 (Universal model) A model J_K0 is universal if , for every
model J_K, we have:

∀t ∈ T̂ . JtK = ∅ ⇒ JtK0 = ∅

A model is universal if it induces the largest possible subtyping relation. In-
tuitively, having the largest possible subtyping relation allows for more expres-
sions to be typed in the calculus of the next chapter, in view of the subsumption
rule (although, formally, this property is false in the type system we are going
to introduce, because of the abstraction typing rule).

In this section we will show how to build a universal model. Of course, all
universal models induce the same subtyping relation.

The property that defines the model notion imposes a correspondence be-
tween the set-theoretic interpretations J_K and EJ_K. To build a model, it is
natural to consider the following equation:

D = ED

For mere cardinality reasons, it is not possible to build a set D that verifies
this equation. The problem comes from the fact that the cardinal of P(D×DΩ)
is strictly larger than the cardinal of D. The following Lemmas prove that by
only considering finite graphs, we do not change set-theoretic inclusion relations,
and this is what counts in order to get a model.

Lemma 4.17 If we write X →f Y = (X → Y) ∩ Pf (D ×DΩ), then:

X →f Y = Pf
(
X × Y DΩ

D×DΩ
)

72 Chapter 4. Semantic subtyping

Lemma 4.18 Let (Xi)i∈P and (Xi)i∈N be two finite families of parts of a set
D. Then: ⋂

i∈P
Pf (Xi) ⊆

⋃
i∈N
Pf (Xi) ⇐⇒

⋂
i∈P
P(Xi) ⊆

⋃
i∈N
P(Xi)

Proof: The implication ⇐ is immediate. Let us prove the impli-
cation ⇒. We suppose that every finite part of X =

⋂
i∈P Xi is

included in a certain P(Xi0) with i0 ∈ N . If that was not the
case for X itself, we could find for each i0 ∈ N a certain element
xi0 ∈ X\Xi0 , and we would obtain a contradiction by considering
the set of those xi0 (which is a finite part of X).Then 2

Lemma 4.19 Let (Xi)i∈P , (Xi)i∈N , (Yi)i∈P , (Yi)i∈N be four finite families of
parts of a set D. Then:⋂

i∈P
Xi →f Yi ⊆

⋃
i∈N

Xi →f Yi ⇐⇒
⋂
i∈P

Xi → Yi ⊆
⋃
i∈N

Xi → Yi

(with the convention:
⋂
i∈∅Xi →f Yi = Pf (D ×DΩ))

Proof: Corollary of Lemmas 4.17 and 4.18. 2

Definition 4.20 Let J_K : T̂ → P(D) be a set-theoretic interpretation in a set
D. We take:

EfD := C +D ×D + Pf (D ×DΩ)

and we then define the finite extensional interpretation associated with J_K
as the unique set-theoretic interpretation Ef J_K : T̂ → P(ED) such that:

Ef JbK = BJbK ⊆ C
Ef Jθ1×××θ2K = Jτ(θ1)K× Jτ(θ2)K ⊆ D ×D
Ef Jθ1→→→θ2K = Jτ(θ1)K→f Jτ(θ2)K ⊆ Pf (D ×DΩ)

Lemma 4.21 Let J_K : T̂ → P(D) be a set-theoretic interpretation. Then:

EJtK = ∅ ⇐⇒ Ef JtK = ∅

This suggest looking at the equation D = EfD, which, unlike equation
D = ED does have solutions. We will now consider the initial solution D0,
consisting of finite "terms" generated by the productions:

d ∈ D0 ::= c
| (d1, d2)
| {(d1, d

′
1), . . . , (dn, d′n)}

In the last production, the d′i are elements of D0
Ω = D0 + {Ω}. We indeed

have D = EfD.

Theorem 4.22 There exists a unique set-theoretic interpretation J_K0 : T̂ →
P(D0) that verifies JtK0 = Ef JtK

0. It is a structural model.

4.5. Universal model 73

Proof: Lemma 3.4 translate the condition "J_K0 is a set-theoretic
interpretation and J_K0 = Ef J_K0" into a recursive definition of
the truth value of the assertion "d ∈ JtK0", by induction over the
structure of d and simultaneously for every t ∈ T̂ :

c ∈ JtK0 ⇐⇒
∃(P,N) ∈ t. (P ⊆ Tbasic)∧

(∀b ∈ P.c ∈ BJbK)∧
(∀b ∈ N.c 6∈ BJbK)

(d1, d2) ∈ JtK0 ⇐⇒
∃(P,N) ∈ t. (P ⊆ Tprod)∧

(∀θ1×××θ2 ∈ P.d1 ∈ Jτ(θ1)K0 ∧ d2 ∈ Jτ(θ2)K0)∧
(∀θ1×××θ2 ∈ N.d1 6∈ Jτ(θ1)K0 ∨ d2 6∈ Jτ(θ2)K0)

f ∈ JtK0 ⇐⇒
∃(P,N) ∈ t. (P ⊆ Tfun)∧

(∀θ1→→→θ2 ∈ P.∀(d, d′) ∈ f. d ∈ Jτ(θ1)K0 ⇒ d′ ∈ Jτ(θ2)K0)∧
(∀θ1→→→θ2 ∈ N.∃(d, d′) ∈ f. d ∈ Jτ(θ1)K0 ∧ d′ 6∈ Jτ(θ2)K0)

This proves the existence and the unicity of a set-theoretic inter-
pretation J_K0 that verifies condition J_K0 = Ef J_K0. We immedi-
ately see that this is a model with Corollary 4.14 and Lemma 4.21.
It is clearly structural. 2

Lemma 4.23 Let S ⊆ T̂ be a simulation and t ∈ S. Then JtK0 = ∅.

Proof: Let S be a simulation. We will show by induction over the
structure of d ∈ D0 the following property:

∀t ∈ T̂ . d ∈ JtK0 ⇒ t 6∈ S
So let us assume that this property is verified for every sub-

element of a certain d ∈ D0. Let us take a type t ∈ T̂ such that
d ∈ JtK0. We have to show that t 6∈ S. Since S is a simulation, we
only have to prove that starting from hypothesis t ∈ ES, we arrive
to a contradiction.

Let u ∈ {basic, fun,prod} be the universe of d. We choose
(P,N) ∈ t such that:

d ∈
⋂
a∈P

JaK0\
⋃
a∈N

JaK0

For any a ∈ P , we have d ∈ JaK0, hence P ⊆ Tu.
Therefore the property Cu of Definition 4.11 is verified for the

pair (P,N). Let us distinguish between the value of u.
For u = basic, we directly obtain a contradiction.
For u = prod, let us d = (d1, d2). We can write:

(d1, d2) ∈
⋂

θ1×××θ2∈P

Jτ(θ1)K0 × Jτ(θ2)K0\
⋃

θ1×××θ2∈N

Jτ(θ1)K0 × Jτ(θ2)K0

According to Lemma 4.6, we can find N ′ ⊆ N ∩ Tprod such that:

d1 ∈
⋂

θ1×××θ2∈P

Jτ(θ1)K0\
⋃

θ1×××θ2∈N ′
Jτ(θ1)K0

74 Chapter 4. Semantic subtyping

and
d2 ∈

⋂
θ1×××θ2∈P

Jτ(θ2)K0\
⋃

θ1×××θ2∈N\N ′
Jτ(θ2)K0

By applying the induction hypothesis to d1 and to the type t1 =∧∧∧
θ1×××θ2∈P τ(θ1)\\\

∨∨∨
θ1×××θ2∈N ′ τ(θ1), we obtain: t1 6∈ S. Similarly,

for t2 =
∧∧∧
θ1×××θ2∈P τ(θ2)\\\

∨∨∨
θ1×××θ2∈N\N ′ τ(θ2). We indeed obtain a

contradiction with condition Cprod.
For any u = fun, let us write d = {(d1, d

′
1), . . . , (dn, d′n)}. Let

us choose an element θ′1→→→θ′2 ∈ N such as given by condition Cfun.
Since d 6∈ Jθ′1→→→θ′2K

0 = Jτ(θ′1)K0 → Jτ(θ′2)K0, we can find i such that:

(di, d′i) ∈ Jτ(θ′1)K0 × Jτ(θ′2)K0D
0
Ω

Therefore this pair (di, d′i) is in the set:

Jτ(θ′1)K0 × Jτ(θ′2)K0D
0
Ω
\

⋃
θ1→→→θ2∈P

Jτ(θ1)K0 × Jτ(θ2)K0D
0
Ω

By reasoning similarly as for the case of products, we see that there
exists P ′ ⊆ P such that:

di ∈ Jτ(θ′1)K0\
⋃

θ1×××θ2∈P ′
Jτ(θ1)K0

and

d′i ∈ D0
Ω ∩

 ⋂
θ1×××θ2∈P\P ′

Jτ(θ2)K0

 \Jτ(θ′2)K0

By applying the induction hypothesis to di and to the type t1 =
τ(θ′1)\\\

∨∨∨
θ1×××θ2∈P ′ τ(θ1), we obtain t1 6∈ S. In addition, if P ′ 6= P ,

then d′i 6= Ω, and we can apply the induction hypothesis to d′i and
to the type t2 =

(∧∧∧
θ1×××θ2∈P\P ′ τ(θ2)

)
\\\τ(θ′2). We have obtained a

contradiction. 2

Theorem 4.24 The model J_K0 is universal.

Proof: Consequence of Corollary 4.14 and of the previous lemma.
2

By combining Corollary 4.14 and Lemma 4.23, we obtain:

Lemma 4.25 Let t ∈ T̂ . Then JtK0 = ∅ if and only if there exists a simulation
S that contains t.

The following Lemma will induce a more effective version of this property.

Lemma 4.26 The intersection of a simulation and a socle is still a simulation.

4.6. Non-universal models 75

Proof: This is a direct consequence of Definitions 4.11 and 3.7. 2

A simulation is a set of types stable by a certain set of decomposition rules
(given by the definition of ES). Lemma 4.26 shows that in order to check that a
type t belongs to a certain simulation, we only have to consider a finite number
of types (if t is in a socle, the types introduced by the decomposition rules
are still in that same socle). By using this Lemma, we obtain a more effective
version of Lemma 4.25.

Lemma 4.27 Consider t ∈ T̂ , and let i be a socle that contains it. Then
JtK0 = ∅ if and only if there exists a simulation S ⊆ i that contains t.

The existence of a socle that contains t is guaranteed by Theorem 3.8. Since a
socle is a finite set, we can enumerate all its subsets and check if there is one
that is a simulation. This gives us a naive algorithm to compute the subtyp-
ing induced by the universal model. In Chapter 7, we will give more efficient
algorithms.

4.6 Non-universal models
In this section, we will show that there exists a model that induces a different
subtyping relation than the one induced by model J_K0. Even better, we will
build a structural model that verifies this property. Building a non-universal
model allows us to see that the definition of a model leaves a certain amount of
freedom, because it does not completely axiomatize the subtyping relation.

Consider a node θ such that:

τ(θ) = (0→ 0)\\\(θ → 0)

(here 0 is used as a type node , which represents the empty type - see Section 3.3)
and let us write t0 = τ(θ). A calculation shows us that :

Jt0K
0 = {{(d1, d

′
1), . . . , (dn, d′n)} | ∃i. di ∈ Jt0K

0}

Since the terms of D0 are finite, we immediately deduce that Jt0K
0 = ∅ hence

t0 ≤J_K0 0. We will now build a model J_K : T̂ → D such that Jt0K 6= ∅. For
that, we will add to D0 "functions" whose graph is a tree of infinite depth.
Consider the set D1 of terms generated by the following productions:

d ∈ D1 ::= c
| (d1, d2)
| {(d1, d

′
1), . . . , (dn, d′n)}

| n

where the di denote elements of D1, the d′i elements of D1
Ω = D1 +{Ω} and n an

integer (n ∈ Z). Define D as the quotient of D1 by equations n ' {(n− 1,Ω)}
for any n ∈ Z. It verifies the set-theoretic equation:

D = EfD

76 Chapter 4. Semantic subtyping

Theorem 4.28 There exists a model J_K : T̂ → P(D) that verifies:

J_K = Ef J_K
Jt0K 6= ∅

The proof of the theorem uses the following technical lemma.

Lemma 4.29 Let X be a set, f a function P(X) → P(X). Assume that any
element x ∈ X is in a certain finite subset S of X verifying:

∀Y ⊆ X. f(Y) ∩ S = f(Y ∩ S)

Let Z ⊆ X. Then there exists a unique sequence (Yn)n∈Z such that:
— ∀n ∈ Z. Yn+1 = f(Yn)
— ∃n0 ∈ N.∀n ≥ n0. Yn = fn(Z)
— for all x ∈ X, the sequence of predicates (x ∈ Yn)n∈N is periodic

Proof: Consider the sequence (Zn)n∈N defined by Z0 = Z and
Zn+1 = f(Zn).

Let us treat first the case where X is finite. The sequence (Zn)
has its value in the set P(X) which is finite; hence it is ultimately
periodic. Therefore there is a unique periodic sequence (Yn)n∈Z

that ultimately corresponds to (Zn)n∈N. This sequence verifies the
induction formula Yn+1 = Yn for all n ∈ Z.

Let us move on to the case where X is infinite. If S is a set as
in the statement, then we can apply what precedes to the sequence
(Zn ∩ S)n∈N. It is also obtained by iteration of the function f ,
and this brings us back to the finite case. This allows us to build
a sequence (Yn ∩ S)n∈Z. By unicity in the finite case, this defines
indeed a sequence (Yn)n∈Z. 2

Let us move on to the proof of the theorem.

Proof: We are bringing back the proof of Theorem 4.22. The
equation J_K = Ef J_K gives a recursive definition of the truth
value of the assertion "d ∈ JtK". Therefore this induction is ill-
founded, because of the elements n ∈ Z. Hence, to define a model,
we simply have to choose sets Tn = {t ∈ T̂ | n ∈ JtK} for all n ∈ Z,
in a way that is compatible with the equality n = {(n − 1,Ω)} in
D. Once this is done, the equations of the proof of Theorem 4.22
clearly define the truth value of the assertion "d ∈ JtK", and we
have obtained a model.

Note that we must have:

{(n− 1,Ω)} ∈ Jθ1→→→θ2K ⇐⇒ n− 1 6∈ Jτ(θ1)K

and therefore:

n ∈ Jθ1→→→θ2K ⇐⇒ n− 1 6∈ Jτ(θ1)K

which gives, for every t ∈ T̂ :

t ∈ Tn ⇐⇒ ∃(P,N) ∈ t.

 P ⊆ Tfun
∀θ1→→→θ2 ∈ P. τ(θ1) 6∈ Tn−1
∀θ1→→→θ2 ∈ N. τ(θ1) ∈ Tn−1

4.7. Notation conventions 77

Let us recall that the condition over the Tn is expressed by:

(∗) ∀n ∈ Z. Tn = f(Tn−1)

where f is a certain operator P(T̂) → P(T̂). For any sequence
(Tn)n∈Z that verifies this condition (∗), we obtain a unique model.

To build such a sequence, we apply the lemma. Indeed, if i is a
socle, then f(T ′)∩i = f(T ′∩i), for any T ′ ⊆ T̂ . The lemma does
give the existence of a sequence (Tn)n∈Z that verifies condition (∗).
In addition, we can arbitrarily fix the set Z ⊆ T̂ .

Note that, for any Z ⊆ T̂ :

t0 ∈ f(Z) ⇐⇒ (0 6∈ Z) ∧ (t0 ∈ Z)

and
0 6∈ f(Z)

So if we choose Z such that t0 ∈ Z, and 0 6∈ Z, then, for any n ∈ N,
t0 ∈ fn(Z). We deduce that t0 ∈ Tn for any n, which means that
Z ⊆ Jt0K (and in particular Jt0K 6= ∅). 2

Remark 4.30 If we have several nodes θ such that τ(θ) = (0 → 0)\\\(θ → 0),
the proof of the theorem shows that for each of those we can independently
choose that either Jτ(θ)K ∩ Z = ∅ or Z ⊆ Jτ(θ)K. In other words, several types
defined by the same equation do not necessarily have the same interpretation in
a non-universal model.

Remark 4.31 A similar construction to D1 allows for a model in which the
type τ(θ) = θ×××θ is non-empty. Of course, such a model is not well founded.

4.7 Notation conventions
So far, we have carefully made sure to distinguish type expressions T̂ , written
as t, t1, t2, s, . . . , from type nodes T , written as θ, θ1,θ2, . . .

To simplify the notations, we are now adopting conventions that will make
it easier for us to mix the two notions.

First of all, we overload the semantic brackets so they apply directly to the
nodes:

JθK := Jτ(θ)K

More generally, we allow the nodes to appear in any context that is expecting
a type expression, the node being interpreted as τ(θ). In particular, this allows
the use of a node as argument (left or right) of a subtyping relation ≤.

Conversely, we allow ourselves to use a type expression t when a node is
expected. There are two cases:
— It is a "capture" context. For example, in the phrase "if a is a product

atom, let us write a = t1×××t2", the meta-variables t1 and t2 operate as
binders. Formally, this phrase means that "if a is a product atom θ1×××θ2,
we fix t1 = τ(θ1) and t2 = τ(θ2)".

— When a type expression t appears where a node is expected, outside of a
capture context, we have to choose a node θ such that τ(θ) = t. This is

78 Chapter 4. Semantic subtyping

always possible because θ is surjective. Every time we use this convention,
it will be clear that the choice of θ does not ultimately change the object
we are talking about or which we are defining. For example, if we write
t1→→→s1 ≤ t2→→→s2, the truth value of this assertion does not depend on the
choice of the nodes used to represent t1, t2, s1, s2.

4.8 Semantic reasonings
In this section, we show how the approach we have chosen to define subtyping,
through a set-theoretic model notion, makes it easy to obtain properties on the
subtyping relation, without even considering an eventual subtyping algorithm.

We fix a model, and we denote by ≤ instead of ≤J_K the subtyping relation it
induces. We assume that this subtyping relation is decidable (this is the case for
universal models when subtyping is decidable for base types). We will denote by
' the equivalence induced by this subtyping: t1 ' t2 ⇐⇒ (t1 ≤ t2)∧ (t2 ≤ t1)

Lemma 4.32 The relation ≤ is preorder (transitive and reflexive). The relation
' is an equivalence relation.

Lemma 4.33 The operators ∨∨∨ and ∧∧∧ are covariant in both their arguments.

4.8.1 Decompositions
Lemma 4.34 (t1×××t2)∧∧∧(t′1×××t′2) ' (t1∧∧∧t′1)×××(t2∧∧∧t′2)

Proof: This kind of property can directly be observed on the exten-
sional interpretation, by using the fact that J_K and EJ_K are both
set-theoretic interpretations. We detail the proof as an example,
by taking t′′i = ti∧∧∧t′i:

EJt′′1×××t′′2K = Jt′′1K× Jt′′2K
= (Jt1K ∩ Jt′1K× (Jt2K ∩ Jt′2K)
= (Jt1K× Jt2K) ∩ (Jt′1K× Jt′2K)
= EJt1×××t′1K ∩ EJt2×××t′2K
= EJ(t1×××t′1)∧∧∧(t2×××t′2)K

2

Here is another example of a property that can be "seen" on the extensional
interpretation:

Lemma 4.35 (t1×××t2)\\\(t′1×××t′2) ' (t1\\\t′1)×××t2∨∨∨t1×××(t2\\\t′2)

By combining the two previous lemmas, we obtain the following result, which
makes it possible to decompose any type t such that t ≤ 1×××1 (that is, EJtK ⊆
D ×D) into a finite union of cartesian products.

Theorem 4.36 Let t be a type such that t ≤ 1×××1. Then there exists a finite
set of type pairs π(t) such that:
— t '

∨∨∨
(t1,t2)∈π(t)

t1×××t2

4.8. Semantic reasonings 79

— ∀(t1, t2) ∈ π(t). t1 6' 0, t2 6' 0
— if i is a socle that contains t, then: ∀(t1, t2) ∈ π(t). t1 ∈ i, t2 ∈ i

We see π as a partial function T̂ → Pf (T̂ 2), defined on types t such that t ≤
1×××1.

Proof: We start by writing:

t '
∨∨∨

(P,N)∈t | P⊆Tprod

(1×××1)∧∧∧
∧∧∧
a∈P

a∧∧∧
∧∧∧

a∈N∩Tprod

¬¬¬a

Then, by using Lemmas 4.34 and 4.35, we see that we can write t
in the form of a union of atoms of the form t1×××t2 where t1 (resp.
t2) can be expressed as a boolean combination of the τ(θ1) (resp.
τ(θ2)) where a = θ1×××θ2 ∈ P∪N for a certain (P,N) ∈ t. Therefore
the ti are indeed in i if i is a socle that contains t. The only things
left is to remove the atoms t1×××t2 such that t1 ' 0 or t2 ' 0. 2

This decomposition of the subtypes of 1×××1 in the form of a finite union
of product types will often be used in the rest of this presentation. Several
functions π meet the requirements of the statement, and there is no need to
specify the one we choose. In other words, we will only use the properties of
the statement when we have to handle π. In particular, no property allows to
a priori link π(t) and π(s), when t ≤ s. However, there are choices of π that
make it possible to obtain such relations; we will describe informally how to
obtain them. Let t ≤ 1×××1. A product type t1×××t2 ≤ t is said maximal if it is
non-empty and if t1×××t2 ≤ t′1×××t′2 ≤ t ⇒ t′1×××t′2 ≤ t1×××t2. The amount of such
types, modulo equivalence, is finite, and if we choose a representative in each
equivalence class, we obtain a decomposition π that is uniquely defined (modulo
equivalence). This decomposition verifies the following property, for types t and
s such that t ≤ s:

∀(t1, t2) ∈ π(t).∃(t′1, t′2) ∈ π(s). t1 ≤ t′1 ∧ t2 ≤ t′2

In other words, a smaller type has a more precise decomposition. In practice,
this decomposition in maximal products can be computed from an arbitrary
decomposition π, by "cutting" and "merging" its elements (via boolean combi-
nations on each component).

The following result gives an decomposition analogous to π for arrow types.

Lemma 4.37 Let t be a type such that t ≤ 0→→→1. Then we can compute a type
Dom(t) and a finite set of type pairs ρ(t) such that:

∀t1, t2. (t ≤ t1→→→t2) ⇐⇒
{
t1 ≤ Dom(t)
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)

and such that if t is in a socle i, then Dom(t) and the type of ρ(t) are also in
i.

Proof: The property is true for t ' 0 by taking Dom(t) = 1 and
ρ(t) = ∅. If the property is true for two types t and t′, then it is

80 Chapter 4. Semantic subtyping

true for their union t∨∨∨t′ (by taking Dom(t∨∨∨t′) = Dom(t)∧∧∧Dom(t′)
and ρ(t∨∨∨t′) = ρ(t) ∪ ρ(t′)). Now we can write:

t '
∨∨∨

(P,N)∈t

∧∧∧
a∈P

a ∧
∧∧∧
a∈N
¬¬¬a

and this brings us back to the case where t is an intersection of
arrow types and negations of arrow types, with, in addition, t 6' 0.
We can then easily conclude with Lemma 4.9. 2

Remark 4.38 We easily find that Dom(t) is a smallest solution s (with regard
to subtyping) to the inequation t ≤ s→→→1. We deduce in particular that this
function is contravariant: if t ≤ t′ ≤ 0→→→1, then Dom(t′) ≤ Dom(t).

Remark 4.39 The finiteness of the set ρ(t) expresses the fact that even if we
have arbitrarily complex functions in the models, at the type level everything
comes down to overloaded functions with a finite number of branches. This
simplification comes from the fact that we only consider finite intersections.

4.8.2 Building equivalent models
Consider a certain operator on types F : T̂ → T̂ for which we want to prove
monotonicity (t ≤ s ⇒ F (t) ≤ F (s)), or other properties, such as F (t1∨∨∨t2) '
F (t1)∨∨∨F (t2). Since relation ≤ is not axiomatized and the "rules" that define it
are particularly complex, the most natural approach consists in finding a set-
theoretic counterpart to the F operator. Indeed, if we can write JF (t)K = F̂ (JtK)
for a certain operator F̂ : P(D)→ P(D), then it all comes down to proving the
monotony of F̂ in relation to the set-theoretic inclusion, which is often easier.
For example, if F̂ (X) is defined as {y | xRy} for a certain binary relation R,
then the property is trivial.

However, we know nothing about the nature of the elements of model D,
and it is not easy to define such an operator F̂ . We would like to have models
that induce the same subtyping relation, but for which we could control the
nature of their elements, at least superficially. We will see how to do it.

According to Corollary 4.15, if J_K : T̂ → P(D) is a model, then EJ_K : T̂ →
P(ED) is another, and it is equivalent to J_K. The following theorem gives a
generalization of this result.

Theorem 4.40 Let J_K1 : T̂ → P(D1) and J_K2 : T̂ → P(D2) be two models
equivalent to J_K : T̂ → P(D). Let us define the unique set-theoretic interpre-
tation J_K′ : T̂ → P(D′) with

D′ = C +D1 ×D2 + P(D ×DΩ)

and:
Jt1×××t2K′ = Jt1K1 × Jt2K2
JaK′ = EJaK for a ∈ Tbasic ∪ Tfun

Then J_K′ is a model equivalent to J_K.

The proof is easy; it simply consists in repeating the proof of Theorem 4.13.
This construction allows us to reason "as if" we had J_K = EJ_K. We will show
an example of that kind of reasoning, which will be useful to us later.

4.8. Semantic reasonings 81

Tying functional application In the following chapter, we are going to
introduce a λ-calculus with pairs. Functional application will in fact be encoded
by an operator app that takes as arguments a pair (f, x) and applies function
f to the argument x. To type this operator, we have to define a judgement
app : t→→→s, that expresses, intuitively, the fact that if operator app is applied
to a value of type t, then the result is necessarily a value of type s.

Let us start with a fairly natural syntactic approach. It consists in axioma-
tizing the relation app : _→ _ using the inductive system of Figure 4.1.

app : ((t→→→s)×××t)→→→s
(app→→→)

app : t1→→→s1 app : t2→→→s2

app : (t1∧∧∧t2)→→→(s1∧∧∧s2)
(app∧∧∧)

app : t1→→→s1 app : t2→→→s2

app : (t1∨∨∨t2)→→→(s1∨∨∨s2)
(app∨∨∨)

app : t′→→→s′ t ≤ t′ s′ ≤ s
app : t→→→s (app ≤)

Figure 4.1: Axiomatizing the typing of functional application

These rules are "safe", for an intuitive interpretation of arrow types in a strict
language. The rule (app→→→) corresponds to a classic typing rule in a λ-calculus.
The others are generic: they are semantically correct for any operator. For
example, we can justify the rule (app∨∨∨) by saying that if the value to which
we apply the operator is of type t1∨∨∨t2, then it is of type ti for a certain i. The
corresponding premise then gives that the result is of type si, and therefore a
fortiori of type ≤ s1∨∨∨s2.

Nevertheless, it would be nice to have a semantic interpretation of the ap-
plication to give a formal meaning to this safety assertion. It will also allow us
to consider the question of the completeness of the system of rules. Further-
more, for a given type t, we will need to compute the smallest type s such that
app : t→→→s, and the axiomatic definition does not allow us to do that easily.

So we are going to propose a semantic definition of the binary relation app :
_ → _. To do this, we will "mimic" functional application in a model. This
cannot be done in model J_K because we do not know anything about the nature
of the elements in D. The model EJ_K does not fit either: some elements of
ED are pairs indeed, but their first component is just an element of D, when
we would like to have an element of ED, and more accurately, of EfunD, to be
able to define functional application the extensional way.

Theorem 4.40 allows us to build a model J_K′ : T̂ → P(D′), with:

D′ = C + (ED)×××D + P(D ×DΩ)

and
Jt1×××t2K′ = EJt1K× Jt2K

This model is equivalent to the model J_K, therefore it is legitimate to work
inside of it. We can mimic in D′ the expected behavior of functional application.

82 Chapter 4. Semantic subtyping

We define a binary relation . between D′ and DΩ by: d . Ω if d is not in
P(D×DΩ)×D, and (f, x) . y if f ∈ P(D×DΩ) and (x, y) ∈ f . For any subset
X of D′, let us write app(X) = {y | x . y, x ∈ X} ⊆ DΩ.

Lemma 4.41 Let t1,t2 and s be three types. Then:

app(Jt1×××t2K′) ⊆ JsK ⇐⇒ (t1 ≤ t2→→→s) ∨ (t2 ' 0)

Proof: Let us prove implication⇒. Let us assume app(Jt1×××t2K′) ⊆
JsK and t2 6' 0, and prove that EJt1K ⊆ Jt2K → JsK. Let f ∈
EJt1K. First of all, we see that f ∈ P(D ×DΩ). Indeed, for every
element x ∈ Jt2K, we have (f, x) ∈ EJt1K × Jt2K = Jt1×××t2K′. If f
was not in P(D × DΩ), we would have (f, x) . Ω, and therefore
Ω ∈ app(Jt1×××t2K′), which contradicts the hypothesis. Let us show
now that f ∈ Jt2K → JsK. Let us take x ∈ Jt2K. We now need
to prove that if (x, y) ∈ f , then y ∈ JsK. But if (x, y) ∈ f , then
(f, x) . y, hence y ∈ app(Jt1×××t2K′) ⊆ JsK.

Let us prove implication ⇐. The case t2 ' 0 is trivial, because
in that case t1×××t2 ' 0, hence app(Jt1×××t2K′) = app(∅) = ∅. Sup-
pose t1 ≤ t2→→→s. Let us take an element in Jt1×××t2K′ = EJt1K×××Jt2K.
It is therefore a pair (f, x), with f ∈ EJt1K and x ∈ Jt2K. Since
t1 ≤ t2→→→s, we have f ∈ Jt2K→ JsK. If (f, x).y, we have (x, y) ∈ f ,
which indeed implies that y ∈ JsK. 2

Theorem 4.42 Let t and s be two types. The following assertions are equiva-
lent:

(i) app : t→→→s
(ii) app(JtK′) ⊆ JsK

(iii) (t ≤ 1× 1) ∧ ∀(t1, t2) ∈ π(t). t1 ≤ t2→→→s

Proof: Implication (i) ⇒ (ii) can be proven by induction on the
derivation of judgement app : t→→→s. The rules (app ≤), (app∨∨∨),
(app∧∧∧) can be treated with elementary set-theoretic reasonings.
The case of rule (app→→→) is a consequence of the previous lemma.

Let us prove implication (ii) ⇒ (iii). Since Ω 6∈ app(JtK′), we
have JtK′ ⊆ D × D, and therefore t ≤ 1 × 1. For (t1, t2) ∈ π(t),
we have t1×××t2 ≤ t, and therefore app(Jt1×××t2K′) ⊆ JsK, and the
previous lemma gives indeed t1 ≤ t2→→→s (because t2 6' 0).

Let us finally prove implication (iii)⇒ (i). We have:

t '
∨∨∨

(t1,t2)∈π(t)

t1×××t2

If (t1, t2) ∈ π(t), we have t1×××t2 ≤ (t2→→→s)×××t2. Rule (app→→→) gives
app : (t2→→→s)×××t2→→→s. By applying rule (app ≤), we obtain app :
t1×××t2→→→s. Rules (app∨∨∨) and (app ≤) finally give app : t→→→s. We
have used a generalization of the rule (app∨∨∨) for a finite arbitrary
union. The case of a non-empty union is immediate. For an empty
union, we notice that app : 0→ 0 thanks to rule (app→→→) (which
gives app : (0→→→0)×××0→→→0), then with rule (app ≤). 2

4.8. Semantic reasonings 83

This theorem provides a better understanding of the binary relation app :
→→→ between types. Property (ii) gives the semantic point of view (extensional
application). Property (iii) directly gives an algorithm to compute the relation
(that is, to decide if app : t→→→s, with t and s given). Even better: by using
Lemma 4.37, we obtain an algorithm to compute a smallest type s such that
app : t→→→s, for a given t, when such a type exists.

Remark 4.43 We did not need rule (app∧∧∧) in the proof of (iii) ⇒ (i). This
proves that this rule is admissible in the system consisting of the three other rules
(app→→→), (app∨∨∨), (app ≤). Direct proof of this fact, without going through
semantics, is easy, albeit tedious.

Remark 4.44 The proof (i) ⇒ (iii) goes through the semantic point of view.
The reader can convince himself that a direct proof (without introducing model
J_K′) is difficult to carry out.

Corollary 4.45 Let t1, t2 and s be three types. Then:

app : t1×××t2→→→s ⇐⇒ (t1 ≤ t2→→→s) ∨ (t2 ' 0)

Lemma 4.46 Let tf =
∧∧∧
i∈I ti→→→si where I is a non-empty set, and tx is a type

such that tx ≤ ∨∨∨i∈Iti. Let us write:

s =
∨∨∨

I′⊆I | (∗)

∧∧∧
i∈I\I′

si

where (∗) is the condition tx 6≤
∨∨∨
i∈I′ ti. Then we have:

app : tf×××tx→→→s

Proof: Corollary 4.10 allows us to break down the relation tf ≤
tx→→→s into:

∀I ′ ⊆ I.

(
tx ≤

∨∨∨
i∈I′

ti

)
∨

I 6= I ′∧∧∧
i∈I\I′

si ≤ s

and we find that this property is true, with the definition of s given
in the statement. We conclude with Corollary 4.45.

As an illustration, let us give a proof that uses the seman-
tic interpretation of relation app. We need to establish that
app(Jtf×××txK′) ⊆ JsK. Let us take an element in Jtf×××txK′. It is
a pair (f, x), with f ∈ EJtf K and x ∈ JtxK. Since I 6= ∅, we have
EJtf K ⊆ EfunD, and therefore f is a set of pairs. What is left is
to show that if y is such that (x, y) ∈ f , then y ∈ JsK. For such
a y, let us write I ′ = {i | x 6∈ JtiK}. Since tf ≤ ti→→→si, we obtain:
x ∈ JtiK ⇒ y ∈ JsiK, and therefore y ∈ Js′K where s′ =

∧∧∧
i∈I\I′ si.

Now tx 6≤ ∨∨∨i∈I′ti (because x is in the interpretation of the left-
hand side, and not in the interpretation of the right-hand side),
which gives s′ ≤ s. 2

84 Chapter 4. Semantic subtyping

4.9 Equation systems ∨∨∨×××
In this section, we will consider a structural model J_K : T̂ → P(D). We are
going to study some form of equation systems on types. This tool will allow us
to define the typing algorithm for pattern matching (Theorem 6.12).

Let us consider equation systems of the form: α1 = . . .
. . .
αn = . . .

where the right-hand side components are themselves variables αi, types t, vari-
able products αi×××αj , or a finite union of terms of that form. Thus, by noting
V for the set of the αi, we can see each right-hand side component as a finite
set of elements of the set V + V × V + T̂ .

Definition 4.47 An equation system ∨∨∨××× is a pair (V, φ) where V is a finite
set and φ is a function V → Pf (V + V × V + T̂). We say that the system is
well-founded if φ(α) ⊆ V × V + T̂ for every α ∈ V .

To define a concept of solution for such a system, we will associate it with
a set-theoretic transformation and say that a solution is a fixed point of that
transformation.

Definition 4.48 To any system (V, φ), we associate the operator φ̂ : P(D)V →
P(D)V defined by:

φ̂(ρ)(α) =
⋃

β∈φ(α)

ρ(β) ∪
⋃

(β1,β2)∈φ(α)

ρ(β1)× ρ(β2) ∪
⋃

t∈φ(α)

JtK

This operator is increasing for the order on P(D)V defined by ρ1 ≤ ρ2 ⇐⇒
∀α ∈ V. ρ1(α) ⊆ ρ2(α). Its smallest fixed point is written lfp(φ̂).

We will now see how to compute the smallest fixed point, whose existence
is guaranteed by Kleene’s theorem.

Theorem 4.49 Let (V, φ) be the equation system ∨∨∨×××. Then we can build a
family of types (tα)α∈V such that:

∀α ∈ V. lfp(φ̂)(α) = JtαK

Moreover, this family does not depend on the (structural) model chosen.

The theorem is a consequence of the two following lemmas.

Lemma 4.50 For any system (V, φ), we can compute a well-founded system
(V, φ′) such that lfp(φ̂) = lfp(φ̂′).

Proof: Let us write ∗
; the transitive and reflexive closure of the

relation defined by α ; β ⇐⇒ β ∈ φ(α). We define the well-
founded system (V, φ′) by:

φ′(α) =
⋃
α
∗
;β

φ(β)\V

4.9. Equation systems ∨∨∨××× 85

Let us write ρ1 = lfp(φ̂) and ρ2 = lfp(φ̂′).
First of all, we find that for every ρ:

φ̂′(ρ)(α) ⊆
⋃
α
∗
;β

φ̂(ρ)(β)

In addition, if α; β, then ρ(β) ⊆ φ̂(ρ)(α), and therefore ρ1(β) ⊆
ρ1(α), and it can be generalized to the case α ∗

; β. We thus obtain
φ̂′(ρ1)(α) ⊆ ρ1(α), which gives ρ2 ≤ ρ1.

Now let us prove that ρ1 ≤ ρ2. For any ρ, we have:

φ̂(ρ)(α) ⊆ φ̂′(ρ)(α) ∪
⋃
α;β

ρ(β)

Hence in particular:

φ̂(ρ2)(α) ⊆ ρ2(α) ∪
⋃
α;β

ρ2(β)

But if α ; β, then φ′(β) ⊆ φ′(α), and therefore ρ2(β) =
φ̂′(ρ2)(β) ⊆ φ̂′(ρ2)(α) = ρ2(α). Thus we obtain φ̂(ρ2)(α) ⊆ ρ2(α),
which indeed gives ρ1 ≤ ρ2. 2

Lemma 4.51 Let (V, φ) be a well-founded system. Then the operator φ̂ has a
unique fixed point ρ, and we can compute a family of types (tα)α∈V , independent
from the model, such that:

∀α ∈ V. ρ(α) = JtαK

Proof: Starting with proving the unicity of the fixed point. Let ρ1
and ρ2 be two fixed points of φ̂, and let us prove that ρ1 = ρ2. To
do that, it is enough to establish the following property for every
d ∈ D:

∀α ∈ V. d ∈ ρ1(α) ⇐⇒ ρ2(α)

Proceeding by induction over d, by noticing that the assertion d ∈
ρi(α) can be written (since ρi = φ̂(ρi)):

 ∃t ∈ φ(α). d ∈ JtK
∨
∃(β1, β2) ∈ φ(α), d1 ∈ ρi(β1), d2 ∈ ρi(β2). d = (d1, d2)

Moving on to the second point of the statement. The regularity
property of the B ◦ F -coalgebra T allows us to build a family of
types (tα)α∈V such that:

∀α ∈ V. tα =
∨∨∨

(β1,β2)∈φ(α)

tβ1×××tβ2∨∨∨
∨∨∨

t∈φ(α)

t

We immediately see that if we fix ρ(α) = JtαK, then ρ is a fixed
point of φ̂. 2

86 Chapter 4. Semantic subtyping

87

Chapter 5

Calculus

In this chapter, we introduce a typed mini-language (or calculus). We use the
type algebra introduced in Chapter 3.

5.1 Syntax
Expressions are defined by the grammar of Figure 5.1. Let E denote the set of
expressions.

e ::= c c ∈ C constant
| (e1, e2) pair
| µf(t1→→→s1; . . . ; tn→→→sn).λx.e ti, si ∈ T̂ , n ≥ 1 abstraction
| x variable
| o(e) o ∈ O operator
| (x = e ∈ t ? e1|e2) t ∈ T̂ type test

Figure 5.1: Expressions (terms) of the calculus

The letters x and f denote variables. We assume that there is an infinite
number of distinct variables, and, classically, we consider expressions modulo
alpha-conversion. Collision problems are avoided by implicit renaming. The set
of free variables of an expression e is written fv(e), and it is defined the following
way:

fv(c) = ∅
fv((e1, e2)) = fv(e1) ∪ fv(e2)
fv(µf(. . .).λx.e) = fv(e)\{f, x}
fv(x) = x
fv(o(e)) = fv(e)
fv((x = e ∈ t ? e1|e2)) = fv(e) ∪ ((fv(e1) ∪ fv(e2))\{x})

We say that an expression e is closed if fv(e) = ∅.

88 Chapter 5. Calculus

Productions for constants, pairs, and variables do not require any comments.
The production for abstractions is a bit special: it allows on the one hand to de-
fine recursive functions (the variable f is bound to the function itself in its body)
and on the other hand to specify a finite number of types (t1→→→s1; . . . ; tn→→→sn)
for the prototype (or interface) of these functions. The scope of variables f
and x is limited to the body e of the abstraction. If P is a finite non-empty
set of arrow types, let P = {t1→→→s1, . . . , tn→→→sn}, we allow ourselves to write
µf(P).λx.e instead of µf(t1→→→s1; . . . ; tn→→→sn).λx.e (this requires us to chose an
order of enumeration for the elements of P).

Let O denote a set of operators; it is a parameter of the calculus. We assume
that there is always a "functional application" operator app ∈ O. We write e1e2
instead of app((e1, e2)).

The last production allows for a dynamic type check. If the result of ex-
pression e is t, then the evaluation continues with expression e1, if not with
expression e2. Variable x is bound to the result of e in e1 and in e2.

These type checks mean that the semantics of the language is directed by
types. So we need to introduce a type system before we consider the semantics
of the language.

5.2 Type system
The type system is presented in a classic way by an induction system (Figure
5.2). The typing judgement has the form Γ ` e : t where Γ denotes a typing
environment, that is, a partial function with finite domain from variables to
types.

We need a subtyping relation. In the previous chapter, we saw how to define
one from an arbitrary model. Let us take a well-founded model J_K : T̂ →
P(D), and we will simply write ≤, instead of ≤J_K, for the subtyping relation
it induces. We assume that this subtyping relation is decidable (this is the case
for universal models when subtyping is decidable for base types). We denote by
' the equivalence induced by this subtyping: t1 ' t2 ⇐⇒ (t1 ≤ t2)∧ (t2 ≤ t1)

For each operator o ∈ O, we assume given a binary relation between types,
written o : _→→→_. We assume that if we have o : t1→→→s1 and o : t2→→→s2, then we
also have o : (t1∧∧∧t2)→→→(s1∧∧∧s2). This condition will allow us to obtain Lemma
5.3, which in turn allows us to see that the set of types assigned to an expression
is a filter (a set of types closed by subsumption and intersection). It is always
possible to complete o : _→→→_ to satisfy this requirement. For the app operator
, we define the binary relation app : _→→→_ defined in Chapter 4.

Outside of the (abstr) and (case) rules, the system (Figure 5.2) is quite
usual. Let us comment on these two rules.

The (abstr) rule gives a type to abstractions. In the calculus, functions are
overloaded: their prototype can specify several arrow types. The type given to
the abstraction corresponds to the intersection of all these arrow types. It is
case m = 0. We check that each of these arrow types is valid: for this, we must
check n constraints on the type of the body, with different assumptions about
the type of the argument.

But the rule also allows for the addition of an arbitrary finite number of arrow
type negations (m > 0) to this intersection, as long as the intersection does not
become empty. The reason for allowing these negative types is quite simple: we

5.2. Type system 89

Γ ` e : t1 t1 ≤ t2
Γ ` e : t2

(subsum)

Γ ` c : bc
(const)

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1, e2) : t1×××t2

(pair)

t =
∧∧∧

i=1..n
(ti→→→si)∧∧∧

∧∧∧
j=1..m

¬¬¬(t′j→→→s′j)

∀i = 1..n.(f : t), (x : ti),Γ ` e : si
t 6' 0

Γ ` µf(t1→→→s1; . . . ; tn→→→sn).λx.e : t
(abstr)

Γ ` x : Γ(x)
(var)

Γ ` e : t o : t→→→s
Γ ` o(e) : s

(op)

Γ ` e : t0
{
t1 = t0∧∧∧t
t2 = t0\\\t

∀i = 1..2.
{
si = 0 if ti ' 0
(x : ti),Γ ` ei : si if ti 6' 0

Γ ` (x = e ∈ t ? e1|e2) : s1∨∨∨s2
(case)

Figure 5.2: Type system

want to give a model structure to all of the values of the language. This will be
done by interpreting a type as the set of values of this type. Because a closed and
well-typed abstraction is a value, it must have one of two types t→→→s or ¬¬¬(t→→→s)
for any choice of t and s; indeed, in a model, every element must be either in
the interpretation of a type, or in the interpretation of its complement. This
explains why arrow type negations can be added to the typing rule, otherwise
arrow type negations could never be inferred for abstractions. The following
lemma allows us to write the condition t 6' 0 differently.

Lemma 5.1 Let t =
∧∧∧
i=1..n(ti→→→si) ∧

∧∧∧
j=1..m¬¬¬(t′j→→→s′j) be a type. Then

t ' 0 ⇐⇒ ∃j = 1..m.
∧∧∧

i=1..n
(ti→→→si) ≤ t′j→→→s′j

Proof: Consequence of Lemma 4.9. 2

In other words, the condition t 6' 0 simply means that none of the added
arrow types (in negative) could be obtained (in positive) thanks to the sub-
sumption rule from the type

∧∧∧
i=1..n(ti→→→si).

90 Chapter 5. Calculus

The rule (case) is simpler to write. The idea is to refine type t0. If the first
branch is selected, then it means that expression e was evaluated as a value of
type t; therefore we know that x will have type t and type t0, and therefore type
t∧∧∧t0. Similarly, if the second branch is selected, the value is not of type t, and
therefore is of type ¬¬¬t because the set of values must be a model. Both cases
must be considered to compute the type of the result. In general, it is the union
of the result types of each branch. But we can refine this: indeed, if we are sure
that a branch will not be used, it is not necessary to take it into account in this
union. This refinement is typically necessary when one types the body of an
overloaded function (several type arrows in its prototype). It is then necessary
to check several times the type of the body, with different assumptions, and
in some cases, it may be necessary not to take into account a certain branch
in order to be able to verify the constraint. We can see that in the following
example:

µf(int→→→int; bool→→→bool).λx.(y = x ∈ int ? 1 | true)

In this example, we are using two disjoint base types int and bool, and two
constants 1 (of type int) and true (of type bool). When verifying the constraint
given by int→→→int, we do have to ignore the second branch, otherwise the type
of the body would be int∨∨∨bool, which is not a subtype of int.

5.3 Syntactic properties of the typing
Lemma 5.2 (Strengthening assumptions) Let Γ1 and Γ2 be two typing en-
vironments such that for all x in the domain of Γ1, we have Γ2(x) ≤ Γ1(x). If
Γ1 ` e : t, then Γ2 ` e : t.

Proof: By induction on the derivation of Γ1 ` e : t. 2

Lemma 5.3 If Γ ` e : t1 and Γ ` e : t2, then Γ ` e : t1∧∧∧t2.

Proof: By induction over the structure of the two typing deriva-
tions for Γ ` e : t1 and Γ ` e : t2.

Considering first the case where the last rule applied in one of
those two derivations is (subsum), let us write:

. . .
Γ ` e : s1 s1 ≤ t1

Γ ` e : t1
. . .

Γ ` e : t2
The induction hypothesis allows us to obtain Γ ` e : s1∧∧∧t2. We

conclude this case by noticing that s1∧∧∧t2 ≤ t1∧∧∧t2 since s1 ≤ t1.
If none of the two last applied rules is (subsum), then those are

necessarily two instances of the same rule.
Rules (const), (var): these rules only allow for a single type t for
the expression, and t∧∧∧t ' t.
Rule (op): a direct consequence of the closure by intersection prop-
erty of o : _→→→_.

5.3. Syntactic properties of the typing 91

Rule (pair): considering the following situation.

. . .
Γ ` e1 : t1

. . .
Γ ` e2 : t2

Γ ` (e1, e2) : t1×××t2

. . .
Γ ` e1 : t′1

. . .
Γ ` e2 : t′2

Γ ` (e1, e2) : t′1×××t′2

Let t′′1 = t1∧∧∧t′1 and t′′2 = t2∧∧∧t′2. By applying twice the induction
hypothesis, we obtain Γ ` e1 : t′′1 and Γ ` e2 : t′′2 . Rule (pair) then
gives Γ ` (e1, e2) : t′′1×××t′′2 . To conclude, it suffices to notice that
t′′1×××t′′2 ' (t1×××t2)∧∧∧(t′1×××t′2) according to Lemma 4.34.
Rule (case): consider the following situation.

. . .
Γ ` e : t0

. . .
(x : ti),Γ ` ei : si

Γ ` (x = e ∈ t ? e1|e2) : s1∨∨∨s2

. . .
Γ ` e : t′0

. . .
(x : t′i),Γ ` ei : s′i

Γ ` (x = e ∈ t ? e1|e2) : s′1∨∨∨s′2

with t1 = t0∧∧∧t, t2 = t0\\\t, t′1 = t′0∧∧∧t, t′2 = t′0\\\t. First of all, the
induction hypothesis gives: Γ ` e : t′′0 with t′′0 = t0∧∧∧t′0. We then
fix t′′1 = t′′0∧∧∧t and t′′2 = t′′0\\\t. Let i = 1..2. We find that t′′i ≤ ti,
hence Lemma 5.2 gives (x : t′′i),Γ ` ei : si. Similarly, we obtain
(x : t′′i),Γ ` ei : s′i, hence by applying the induction hypothesis
(x : t′′i),Γ ` ei : s′′i where s′′i = si∧∧∧s′i. With rule (case), we then
prove that Γ ` (x = e ∈ t ? e1|e2) : s′′1∨∨∨s′′2 , and we conclude by
noticing that s′′1∨∨∨s′′2 ≤ (s1∨∨∨s2)∧∧∧(s′1∨∨∨s′2).

Special cases (when ti ' 0 or t′i ' 0) do not pose any problem.
Rule (abstr): consider two applications of rule (abstr) to the same
abstraction µf(t1→→→s1; . . . ; tn→→→sn).λx.e, with the following types:

t =
∧∧∧

i=1..n
(ti→→→si)∧∧∧

∧∧∧
j=1..m

¬¬¬(t′j→→→s′j)

t′ =
∧∧∧

i=1..n
(ti→→→si)∧∧∧

∧∧∧
j=m+1..m′

¬¬¬(t′j→→→s′j)

where t 6' 0 and t′ 6' 0. Writing:

t′′ =
∧∧∧

i=1..n
(ti→→→si)∧∧∧

∧∧∧
j=1..m′

¬¬¬(t′j→→→s′j)

We have t′′ ' t∧∧∧t′. Verifying that rule (abstr) allows the type t′′
to be given to the abstraction under consideration. For i = 1..n,
by hypothesis we have (f : t), (x : ti),Γ ` e : si, therefore, by
Lemma 5.2: (f : t′′), (x : ti),Γ ` e : si. All that remains is to
verify that t′′ 6' 0, which immediately comes from Lemma 5.1.
Note that in that case, we have not used the induction hypothesis.

2

Corollary 5.4 Let Γ be an environment and e be a well-typed expression under
Γ. Then the set {t ∈ T̂ | (Γ ` e : t) ∨ (Γ ` e : ¬¬¬t)} contains 0 and is stable by
boolean operators.

92 Chapter 5. Calculus

Proof: Let E be the set introduced in the statement. It is clearly
stable by operator ¬¬¬ and invariant by equivalence '. We have Γ `
e : 1 by rule (subsum), hence 1 ∈ E. We obtain 0 ∈ E by writing
0 ' ¬¬¬1. All that remains is the prove that E is stable by∨∨∨, because
then it will also be stable by ∧∧∧ in view of t1∧∧∧t2 ' ¬¬¬((¬¬¬t1)∨∨∨(¬¬¬t2)).
Taking t1 and t2 in E, and showing that t1∨∨∨t2 is also in E. Assume
that Γ 6` e : t1∨∨∨t2. Then, by rule (subsum), we obtain Γ 6` e : t1
and Γ 6` e : t2. Therefore we have Γ ` e : ¬¬¬t1 and Γ ` e : ¬¬¬t2.
Lemma 5.3 gives Γ ` e : ¬¬¬t1∧∧∧¬¬¬t2. Now ¬¬¬t1∧∧∧¬¬¬t2 ' ¬¬¬(t1∨∨∨t2). 2

Lemma 5.5 (Substitution) Let e, e1, . . . , en be expressions, x1, . . . , xn dis-
tinct variables, t, t1, . . . , tn types, and Γ a typing environment. We write e[x1 :=
e1; . . . ;xn := en] the expression obtained from e by replacing (without capture)
the free occurrences of xi by ei. We then have:{

(x1 : t1), . . . , (xn : tn),Γ ` e : t
∀i = 1..n. Γ ` ei : ti

⇒ Γ ` e[x1 := e1; . . . ;xn := en] : t

Proof: By induction on the typing derivation (x1 : t1), . . . , (xn :
tn),Γ ` e : t. 2

5.4 Values
Among all the expressions, we isolate those that are closed, well-typed, and that
are produced by the grammar:

v ::= c
| (v1, v2)
| µf(t1→→→s1; . . . ; tn→→→sn).λx.e

When talking about induction on the structure of a value, we consider the
case of abstractions as a base case.

Writing V the set of values, and writing

JtKV = {v ∈ V | ` v : t}
According to the subsumption rule, this definition is compatible with the

semantic of types: if t1 ≤ t2, then Jt1KV ⊆ Jt2KV , and in particular, if t1 ' t2,
then Jt1KV = Jt2KV .

Theorem 5.6 Function J_KV : T̂ → P(V) is a structural model. The subtyping
relation it induces is ≤.

This theorem states that whatever the well-founded model J_K we have
chosen to define the subtyping relation ≤ used in the type system, we obtain a
new interpretation of the subtyping relation t ≤ s as the inclusion of the set of
values of type t in the set of values of type s. In other words, we can "forget"
the original model for interpreting the subtyping relation.

Different choices for the original model can give rise to different subtyping
relations, and therefore to different type systems for the same calculus. It is
interesting to note that, since the semantics of the calculus is driven by types,
it is also affected by those choices.

5.4. Values 93

Corollary 5.7 For any well-founded model, we can build a structural model
that induces the same subtyping relation.

The following results help establish Theorem 5.6.

Lemma 5.8 No value has type 0.

Proof: We show by an easy induction of the typing derivation
` v : t that t cannot be 0. 2

Lemma 5.9 For every type t ∈ T̂ , JtKV ∪ J¬¬¬tKV = V.

Proof: We need to show that for every value v and every type t,
we have ` v : t or ` v : ¬¬¬t. By induction on the structure of v.
Corollary 5.4 brings us back to the case where t is an atom a.

If v is a constant c, then ` c : bc. If a is not a base type,
then bc ≤ ¬¬¬a and therefore ` c : ¬¬¬a. If a is a base type, then we
have either bc ≤ a, or bc ≤ ¬¬¬a (because bc is a singleton type, see
Section 4.1), which concludes this first case.

Consider the case where v is an abstraction with prototype
(t1→→→s1; . . . ; tn→→→sn). Writing t0 =

∧∧∧
i=1..n ti→→→si. We have ` v : t0.

If a is not a type arrow, then t0 ≤ ¬¬¬a, therefore ` v : ¬¬¬a. If a
is a type arrow such that t0 ≤ a, then ` v : a by rule (subsum).
Otherwise, we can apply rule (abstr) with a as negative arrow type,
and we obtain ` v : t0∧∧∧¬¬¬a, and therefore ` v : ¬¬¬a.

Finally, consider the case v = (v1, v2). If a is not a product
type, we easily get ` v : ¬¬¬a. Now assume a = t1×××t2. If ` v1 : t1
and ` v2 : t2, then rule (pair) immediately gives ` v : a. If that
is not the case, say 6` v1 : t1, then the induction hypothesis gives
` v1 : ¬¬¬t1. Writing t′1 = ¬¬¬t1. We have ` v1 : t′1, and also ` v2 : 1
because v2 is well-typed. We obtain ` v : t′1×××1 ≤ ¬¬¬(t1×××t2). 2

Lemma 5.10 Function J_KV : T̂ → P(V) is a set-theoretic interpretation.

Proof: The condition J0KV = 0 is expressed by Lemma 5.8. We
obtain J1KV = V by noticing that by definition, every value is well-
typed, and can therefore be given the type 1 with rule (subsum).

Condition Jt1∧∧∧t2KV = Jt1KV ∩ Jt2KV is obtained using
Lemma 5.3. In particular, it gives for every type t: JtKV ∩ J¬¬¬tKV =
Jt∧∧∧¬¬¬tKV = J0KV = ∅. By combining this with Lemma 5.9, we
obtain J¬¬¬tKV = V\JtKV .

Finally, the union condition Jt1∨∨∨t2KV = Jt1KV ∪Jt2KV can be ob-
tained by writing t1∨∨∨t2 ' ¬¬¬(¬¬¬t1∧∧∧¬¬¬t2) and by using the properties
established for negation and intersection. 2

According to Corollary 4.15, to conclude that J_KV is a model that defines
the same subtyping relation as J_K, we now only have to establish the following
lemma.

Lemma 5.11 For any type t:

JtK = ∅ ⇐⇒ JtKV = ∅

94 Chapter 5. Calculus

Proof: The implication ⇒ comes from Lemma 5.8. To establish
implication⇐, we will use the fact that J_K is a well-founded model
(Definition 4.3). We have a well-founded order / over D. Let us
reason by induction on this order to prove that for every type t,
if d ∈ JtK, then there exists v ∈ JtKV . Assuming d ∈ JtK. The
definition of a well-founded model gives a d′ ∈ EJtK such that, if
d′ = (d1, d2), then d1 / d and d2 / d. Let us distinguish according
to the form of d′.

If d′ = (d1, d2), then d1 / d and d2 / d. This element d′ is in the
set EJtK, and therefore in:

⋃
(P,N)∈t | P⊆Tprod

(⋂
t1×××t2∈P

Jt1K× Jt2K

)
\

(⋃
t1×××t2∈N

Jt1K× Jt2K

)

By using Lemma 4.6, we find (P,N) ∈ t, and N ′ ⊆ N such that
P ⊆ Tprod, d1 ∈ Js1K and d2 ∈ Js2K where:

s1 =
∧∧∧

t1×××t2∈P
t1\\\

∨∨∨
t1×××t2∈N ′

t1

s2 =
∧∧∧

t1×××t2∈P
t2\\\

∨∨∨
t1×××t2∈N\N ′

t2

By applying the induction hypothesis to d1 and d2, we find two
values v1 and v2 such that ` v1 : s1 and ` v2 : s2. Taking v =
(v1, v2). Rule (pair) gives ` v : s1×××s2. All that remains is to see
that s1×××s2 ≤ t, which again comes from Lemma 4.6. We do have
v ∈ JtKV .

If d′ is a constant c, then we find (P,N) ∈ t such that P ⊆
Tbasic, ∀b ∈ P. c ∈ BJbK and ∀b ∈ N. c 6∈ BJbK. We deduce that
bc ≤

∧∧∧
b∈P b\\\

∨∨∨
b∈N b ≤ t, which gives ` c : t.

Finally, consider the case where d′ ∈ P(D × DΩ). We find
(P,N) ∈ t such that P ⊆ Tfun and d′ ∈ EJt′K where

t′ =
∧∧∧

t1→→→t2∈P
t1→→→t2 ∧

∧∧∧
t1→→→t2∈N

¬¬¬(t1→→→t2)

We have t′ ≤ t and t′ 6' 0 (since EJt′K 6= ∅). We conclude by con-
sidering a closed well-typed abstraction, whose prototype is given
by P , for example µf(P).λx. f x. Rule (abstr) gives the type t′ to
this value. 2

To establish the safety of our semantics, we will need the result below.

Lemma 5.12 (Inversion)

Jt1×××t2KV = {(v1, v2) | ` v1 : t1,` v2 : t2}
JbKV = {c | bc ≤ b}
Jt→→→sKV = {(µf(t1→→→s1; . . . ; tn→→→sn).λx.e) ∈ V. |

∧∧∧
i=1..n

ti→→→si ≤ t→→→s}

5.5. Semantics 95

Proof: For each of those equalities, inclusion ⊇ is immediate.
Showing the three inclusions ⊆ successively. Let us start by notic-
ing that if v is a value, then we have ` v : a for a certain atom a of
the same kind of v: if v is a constant (resp. pair)(resp. function),
then a is a base type (resp. product type)(resp. arrow type).
Furthermore if we have ` v : t0, then by Lemma 5.3 we obtain
` v : t0∧∧∧a. According to Lemma 5.8, we therefore have t0∧∧∧a 6' 0,
thus t0 is also an atom, of the same kind of v (because two atoms
of a different kind have an empty intersection).

Starting with case t0 = t1×××t2. If we have ` v : t1×××t2, then
according to the above remark, v must be a pair: v = (v1, v2).
The judgement ` v : t1×××t2 can only be obtained by applying rule
(subsum) a certain number of times after an instance of rule (pair).
This gives two types t′1 and t′2 such that ` v1 : t′1, ` v2 : t′2, and
t′1×××t′2 ≤ t1×××t2. Now t′1 6≤ 0 and t′2 6≤ 0 according to Lemma 5.8,
hence we obtain t′1 ≤ t1 and t′2 ≤ t2. We do have: v ∈ {(v1, v2) | `
v1 : t1,` v2 : t2}.

Consider now the case t0 = b. Here, the value v is necessarily
a constant c, and any typing derivation for c consists in a finite
application of rule (subsum) after rule (const). We therefore obtain
bc ≤ b.

Finally, looking at case t0 = t→→→s. The value v is an ab-
straction µf(t1→→→s1; . . . ; tn→→→sn).λx.e. We see, with a reasoning
as the one above, that there exists a finite number of arrow types
(t′j→→→s′j)j=1..m such that s0 ≤ t→→→s and s0 6' 0 where:

s0 =
∧∧∧

i=1..n
ti→→→si ∧

∧∧∧
j=1..m

¬¬¬(t′j→→→s′j)

Hence Lemma 5.1 gives: ∧∧∧
i=1..n

ti→→→si ≤ t→→→s

as expected. 2

5.5 Semantics

We can now define the semantics of the calculus. We will in fact define a small-
step operational semantics, that is, a rewriting relation on closed expressions.

We materialize the type error with symbol Ω, and we write EΩ = E + {Ω}.

For any operator o ∈ O, we assume given a binary relation, written v o
;;; e,

where v ∈ V and e ∈ EΩ. For the app operator , we take the β-reduction
(v1, v2) app

;;; e[f := v1;x := v2] when v1 = µf(. . .).λx.e and v
app
;;; Ω when v is

not of the form (µf(. . .).λx.e, v2).

96 Chapter 5. Calculus

The (immediate) evaluation contexts are defined by the productions:

C[] ::= ([], e)
| (e, [])
| o([])
| (x = [] ∈ t ? e1|e2)

We define the rewriting relation e ; e′ (where e ∈ E and e′ ∈ EΩ) by the
following inductive system.

e; Ω
C[e] ; Ω

e; e′ e′ 6= Ω
C[e] ; C[e′]

v
o
;;; e

o(v) ; e

i ∈ {1, 2} (i = 1 ⇐⇒ ` v : t)
(x = v ∈ t ? e1|e2) ; ei[x := v]

Note that with this semantics, a value is not reduced.

5.6 Type safety
Definition 5.13 Let o be an operator, and t,s two types. We write (o : t =⇒ s)
if:

∀v ∈ V,∀e ∈ EΩ. (` v : t)∧∧∧(v o
;;; e) ⇒ ` e : s

Definition 5.14 We say that an operator o is well-typed if:

∀t, s. (o : t→→→s)⇒ (o : t =⇒ s)

Definition 5.15 Let o be a well-typed operator . We say that the typing of o is
exact if, for any type t such that (o : t =⇒ 1), there exists s such that (o : t→→→s)
and:

∀v′ ∈ JsKV .∃v ∈ JtKV .∃e ∈ E . (v o
;;; e) ∧ (e ∗; v′)

Remark 5.16 This exactness condition kind of serves as a converse to the
implication of Definition 5.14. It also asserts a very strong property, namely
the existence of a type that captures exactly all the results that can be obtained
by applying the operator on an arbitrary value of a given type. The typing of
an exact operator does not introduce any approximation regarding its semantics
and regarding the approximation already made on the type of the argument.

Lemma 5.17 Let o be an operator and t1, t2, s1, s2 be four types. Then:
— (o : t1 =⇒ s1) ∧ (o : t2 =⇒ s2)⇒ (o : (t1∧∧∧t2) =⇒ (s1∧∧∧s2)),
— (o : t1 =⇒ s1) ∧ (o : t2 =⇒ s2)⇒ (o : (t1∨∨∨t2) =⇒ (s1∨∨∨s2)),
— (o : t1 =⇒ s1) ∧ (t2 ≤ t1) ∧ (s1 ≤ s2)⇒ (o : t2 =⇒ s2),

Proof: Assume that (o : t1 =⇒ s1) and (o : t2 =⇒ s2). Proving
first of all that (o : (t1∧∧∧t2) =⇒ (s1∧∧∧s2)). Consider a value v of
type t1∧∧∧t2 and a reduction v o

;;; e. The value v is also of type t1,

5.6. Type safety 97

hence by hypothesis ` e : s1. Similarly, ` e : s2, and we deduce
` e : s1∧∧∧s2 by using Lemma 5.3.

Proving now that (o : (t1∨∨∨t2) =⇒ (s1∨∨∨s2)). Consider a value v
of type t1∨∨∨t2 and a reduction v o

;;; e. The value v is of type t1 or
of type t2. For example, if v is of type t1, by hypothesis we have
` e : s1 and therefore also ` e : s1∨∨∨s2.

The last point is trivially proven by using the subsumption rule.
2

Lemma 5.18 The app operator is well-typed.

Proof: In view of the lemma above and the axiomatic definition
of relation app : _→→→_ (Figure 4.1), we just need to check that
(app : ((t→→→s)×××t) =⇒ s) for arbitrary types t and s. Let v be
a value of type (t→→→s)×××t. According to Lemma 5.12, we see that
it is a pair v = (vf , vx) with ` vx : t and ` vf : t→→→s. The
value vf is therefore an abstraction µf(t1→→→s1; . . . ; tn→→→sn).λx.e,
with

∧∧∧
i=1..n ti→→→si ≤ t→→→s.

If v app
;;; e′, we then have e′ = e[f := vf ;x := vx]. Now proving

that ` e′ : s.
Let I = {1, . . . , n} and I ′ = {i ∈ I | ` vx : ti}. We have

t 6≤
∨∨∨
i∈I\I′ ti. Indeed, in the opposite case, we would have vx ∈

J
∨∨∨
i∈I\I′ tiK, hence there would be an i 6∈ I ′ with ` vx : ti, which

would contradict the definition of I ′.
Since

∧∧∧
i=1..n ti→→→si ≤ t→→→s and t 6≤

∨∨∨
i∈I\I′ ti, we obtain with

Lemma 4.9 that I ′ 6= ∅ and:∧∧∧
i∈I′

si ≤ s

To establish ` e′ : s, it is enough, in view of Lemma 5.3, to prove
that ` e′ : si for every i ∈ I ′.

Let us take i such that ` vx : ti. If the value vf is well-typed;
then by considering an instance of rule (abstr) that gives a type
t′ to vf , we see that (f : t′), (x : ti) ` e : si. Since ` vf : t′ and
` vx : ti, Lemma 5.5 indeed gives ` e′ : si. 2

We can now establish a classic result of type preservation through reduction
(subject reduction). Since we have made the error Ω explicit in the semantics of
the calculus, this theorem ensures the absence of any type error when evaluating
a well-typed expression.

Theorem 5.19 (Subject reduction) If all the operators are well-typed, then
typing is preserved through reduction: if e ; e′ and ` e : t, then ` e′ : t. In
particular, e′ 6= Ω.

Proof: By induction on the judgement derivation ` e : t. If the
last rule applied is (subsum), we in fact have ` e : s with s ≤ t.
By induction, we see that ` e′ : s and rule (subsum) then gives
` e′ : t.

98 Chapter 5. Calculus

We now assume that the derivation of ` e : t does not end by
an application of rule (subsum). The syntactic form of e then gives
the last rule applied. Constant, variable and abstraction cases are
impossible.

The rules of reduction under a context are trivial to handle.
The case of the reduction of an operator comes from the definition
of a well-typed operator.

Consider the of case of an expression e = (x = v ∈ t ? e1|e2).
The typing rule used is:

Γ ` v : t0
{
t1 = t0∧∧∧t
t2 = t0\\\t

{
si = 0 if ti ' 0
(x : ti),Γ ` ei : si if ti 6' 0

Γ ` (x = v ∈ t ? e1|e2) : s1∨∨∨s2

There are two (mutually exclusive) cases: ` v : t or ` v : ¬¬¬t.
Consider for example the first case. The reduction is then:

e; e1[x := v]

We have ` v : t0∧∧∧t = t1, which already gives t1 6' 0 and then
(x : t1),Γ ` e1 : s1. By applying Lemma 5.5 to this judgement, we
obtain ` e1[x := v] : s1 ≤ s. Case ` v : ¬¬¬t is handled the same
way. 2

The theorem below gives an additional justification to our approach: even if
we have defined the typing of functional application app in a purely set-theoretic
way, it corresponds very exactly to the semantics of the calculus.

Theorem 5.20 The typing of the app operator is exact.

Proof: Let t be a type such that (app : t =⇒ 1). We already
deduce that t ≤ 1×××1, because otherwise we could find a value v
such that ` v : t and v app

;;; Ω.
If we can prove the exactness property for two types t1 and t2,

we will deduce the property for type t1∨∨∨t2, by using rule (app∨∨∨).
Writing (Theorem 4.36)

t '
∨∨∨

(tf ,tx)∈π(t)

tf×××tx

and decomposing every tf into the form

tf '
∨∨∨

(P,N)∈tf

∧∧∧
a∈P

a∧∧∧
∧∧∧
a∈N
¬¬¬a

we reduce the problem to the case where t = tf×××tx, with tf =∧∧∧
a∈P a∧∧∧

∧∧∧
a∈N ¬¬¬a, for two finite sets P and N of atomic arrow

types, with tf 6' 0. Writing P = {ti→→→si | i ∈ I} where I =
{1, . . . , n}.

Let t0 be the type
∨∨∨
i∈I ti. If tx 6≤ t0, then we choose a value

vx in tx\\\t0, and we take:

vf = µf(P).λx.(y = x ∈ t0 ? app((f, x))|app(f))

5.7. Type inference 99

This expression has type tf , because the second branch of the body
is ignored during typing. The value (vf , vx) then has type t but
(vf , vx) app

;;; e where e is an ill-typed expression (because it reduces
to app(vf) which is ill-typed), which contradicts the assumption
(app : t =⇒ 1).

Hence we can assume that tx ≤ t0. Writing:

s =
∨∨∨

I′⊆I | (∗)

∧∧∧
i∈I\I′

si

where (∗) is the condition tx 6≤
∨∨∨
i∈I′ ti. Lemma 4.46 gives app :

t→→→s. Let v′ be a value in s. We can find I ′ which verifies (∗) and
such that v′ ∈

∧∧∧
i∈I\I′ si. Let vx be a value in tx\\\

∨∨∨
i∈I′ ti and vf

the value:

vf = µf(P).λx.(y = x ∈
∨∨∨
i∈I′

ti ? app((f, x))|v′)

We notice that (vf , vx) does have type t, and that (vf , vx) app
;;; e

with e ∗; v′. 2

5.7 Type inference
In this section, we will study the problem of type inference for the type system
introduced in Section 5.2. The difficulty comes from the fact that the system
does not have principal types: given a typing environment Γ and an expression
e well-typed in Γ, there does not necessarily exist a type t such that:

∀s. (Γ ` e : s) ⇐⇒ t ≤ s

This essentially comes from typing rule (abstr) that always allows the addition
of negative arrow types. Rule (op) can also prevent the existence of principal
types.

5.7.1 Filters, schemas
The idea is to introduce syntactic objects called schemas that each represent
a set of types, in order to express with a unique schema all of the types of a
certain expression e in an environment Γ. The grammar for schemas is:

t ::= t t ∈ T̂
| [t1→→→s1; . . . ; tn→→→sn] n ≥ 1; ti, si ∈ T̂
| t1 ⊗ t2
| t1 > t2
| Ω

We will also write [ti→→→si]i=1..n for [t1→→→s1; . . . ; tn→→→sn].
To each t, we want to associate a set of types {{{t}}}. Since the idea is to

represent the set of types of an expression by a schema, we will be guided by
the following definition and lemma.

100 Chapter 5. Calculus

Definition 5.21 A filter is a set of types F ⊆ T̂ closed by intersection and
subsumption:
— ∀t1, t2. t1 ∈ F ∧ t2 ∈ F ⇒ t1∧∧∧t2 ∈ F
— ∀t1, t2. t1 ∈ F ∧ t1 ≤ t2 ⇒ t2 ∈ F

Lemma 5.22 Let Γ be a typing environment, e an expression, then the set{t | Γ `
e : t} is a filter.

Proof: It is a consequence of rule (subsum) and Lemma 5.3. 2

Definition 5.23 We define the function {{{_}}} that associates to a schema a set
of types:

{{{t}}} = {s | t ≤ s}
{{{[ti→→→si]i=1..n}}} = {s | ∃s0 =

∧∧∧
i=1..n

(ti→→→si) ∧
∧∧∧

j=1..m
¬¬¬(t′j→→→s′j). 0 6' s0 ≤ s}

{{{t1 ⊗ t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1×××t2 ≤ s}
{{{t1 > t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1∨∨∨t2 ≤ s}
{{{Ω}}} = ∅

Lemma 5.24 For any schema t, the set {{{t}}} is a filter. We can deduce whether
it is empty.

Proof: By easy induction on the syntax of schemas. The case
[ti→→→si]i=1..n is dealt with by Lemma 5.1.

If we see a schema t as a binary tree whose nodes are ⊗ and >,
then the filter {{{t}}} is empty if and only if one of the leafs is Ω. 2

Remark 5.25 It is easy to verify the equality:

{{{t1 > t2}}} = {{{t1}}} ∩ {{{t2}}}

Lemma 5.26 Let t0 be a type and t a schema. Then we can compute a schema,
written t0 ? t, such that:

{{{t0 ? t}}} = {s | ∃t ∈ {{{t}}}.t∧∧∧t0 ≤ s}

and in addition #(t0 ? t) ≤ #t, where #t denotes the maximal number of
constructors ⊗ nested in t.

Proof: The proof gives a construction for t0 ? t. The verification
of the property is easy. We proceed by induction on the syntax of
t. If t is a type t, we take:

t0 ? t = t0∧∧∧t

If t is a union t1 > t2, we distribute:

t0 ? (t1 > t2) = (t0 ? t1) > (t0 ? t2)

If t is Ω, we take t0 ? t = Ω.
In both cases [ti→→→si]i=1..n and t1 ⊗ t2, we will use Lemma 3.1,

that allows us to see t0 as a boolean combination of atoms. The

5.7. Type inference 101

two following equations bring us back to the case where t0 is an
atom or a negation of an atom:

(t1∨∨∨t2) ? t = (t1 ? t) > (t2 ? t)

(t1∧∧∧t2) ? t = t1 ? (t2 ? t)

For the case t = t1 ⊗ t2, we take:

(t1×××t2) ? (t1 ⊗ t2) = (t1 ? t1)⊗ (t2 ? t2)

¬¬¬(t1×××t2) ? (t1 ⊗ t2) = ((¬¬¬t1 ? t1)⊗ t2) > (t1 ⊗ (¬¬¬t2 ? t2))

and if a is an atom that is not of the form t1×××t2:

a? (t1 ⊗ t2) = 0

¬¬¬a? (t1 ⊗ t2) = (t1 ⊗ t2)

For the case t = [ti→→→si]i=1..n, we take:

(t→→→s) ? [ti→→→si]i=1..n =

[ti→→→si]i=1..n if

∧∧∧
i=1..n

ti→→→si ≤ t→→→s

0 if
∧∧∧

i=1..n
ti→→→si 6≤ t→→→s

¬¬¬(t→→→s) ? [ti→→→si]i=1..n =

0 if

∧∧∧
i=1..n

ti→→→si ≤ t→→→s

[ti→→→si]i=1..n if
∧∧∧

i=1..n
ti→→→si 6≤ t→→→s

and if a is an atom that is not of the form t→→→s:

a? [ti→→→si]i=1..n = 0

¬¬¬a? [ti→→→si]i=1..n = [ti→→→si]i=1..n

2

Lemma 5.27 Let t be a schema and t a type. Then we can decide whether the
assertion t ∈ {{{t}}} is true or false. We write t ≤ t when it is true.

Proof: Let us start by observing the equivalence the equivalence:

t ∈ {{{t}}} ⇐⇒ 0 ∈ {{{(¬¬¬t) ? t}}}

We find indeed that: 0 ∈ {{{(¬¬¬t) ? t}}} ⇐⇒ ∃s ∈ {{{t}}}. (¬¬¬t)∧∧∧s ≤
0 ⇐⇒ ∃s ∈ {{{t}}}. s ≤ t ⇐⇒ t ∈ {{{t}}}.

This brings us back to the case t = 0, and we conclude by
induction on the syntax of t, by using:

0 ∈ {{{t}}} ⇐⇒ t ' 0
0 6∈ {{{[ti→→→si]i=1..n}}}
0 ∈ {{{t1 ⊗ t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∨ (0 ∈ {{{t2}}})
0 ∈ {{{t1 > t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∧ (0 ∈ {{{t2}}})
0 6∈ {{{Ω}}}

102 Chapter 5. Calculus

2

5.7.2 Typing the operators
We have almost all the necessary ingredients to reformulate the type system
using schemas. All that remains is to assume that the operators behave well
with regard to the schemas. For an operator o and a schema t, we consider the
set:

{s | ∃t′ ≥ t.∃s′ ≤ s. o : t′→→→s′}
It is clear that it is a filter.

Definition 5.28 A typing function for the operator o is a function from
schemas to schemas, written o[_], such that, for any schema t:

{{{o[t]}}} = {s | ∃t′ ≥ t.∃s′ ≤ s. o : t′→→→s′}

Lemma 5.29 There exists a computable typing function for the app operator
.

Proof: The proofs rests on the Theorem 4.42 and Lemma 4.37. For
a filter F , let us write:

XF = {s | ∃t′ ∈ F .∃s′ ≤ s. app : t′→→→s′}
= {s | ∃t′ ∈ F . app : t′→→→s}

By using Theorem 4.42, wee see that if t 6≤ (0→→→1) × 1, then
X{{{t}}} = ∅, and in that case, we take app[t] = Ω. This makes it
possible to deal in particular with cases t = Ω, t = [ti→→→si]i=1..n
and t = (t1⊗ t2)⊗ t3. If t ≤ 0, we take app[t] = 0. From now on,
we assume that t ≤ (0→→→1)× 1 and t 6≤ 0.

By using rule (app∨∨∨), we immediately establish the equality:

XF1∩F2 = XF1 ∩XF2

This allows us to write:

app[t1 > t2] := app[t1] > app[t2]
app[(t1 > t′1)⊗ t2] := app[t1 ⊗ t2] > app[t′1 ⊗ t2]
app[t] := ©∨

(t1,t2)∈π(t)
app[t1 ⊗ t2]

By using these definitions, we come back to the case t1⊗ t2 where
t1 is either a type t1 (with t1 ≤ 0→→→1 and t1 6≤ 0) or of the form
[t′i→→→s′i]i=1..n. Corollary 4.45 gives:

X{{{t1⊗t2}}} = {s | ∃t2 ≥ t2. t1 ≤ t2→→→s}

Insofar as:

[t′i→→→s′i]i=1..n ≤ t2→→→s ⇐⇒
∧∧∧

i=1..n
t′i→→→s′i ≤ t2→→→s

we are brought back to the unique case where t1 is a type t1, and
we have:

X{{{t1⊗t2}}} = {s | ∃t2 ≥ t2. t1 ≤ t2→→→s}

5.7. Type inference 103

Lemma 4.37 gives:

t1 ≤ t2→→→s ⇐⇒
{
t2 ≤ Dom(t1)
∀(s1, s2) ∈ ρ(t1). (t2 ≤ s1) ∨ (s2 ≤ s)

We easily obtain the following equivalences:

∃t2 ≥ t2. t1 ≤ t2→→→s
⇐⇒ ∃t2 ≤ t2 ≤ Dom(t1). ∀(s1, s2) ∈ ρ(t1). (t2 ≤ s1) ∨ (s2 ≤ s)
∗⇐⇒ t2 ≤ Dom(t1) ∧ ∀(s1, s2) ∈ ρ(t1). (t2 ≤ s1) ∨ (s2 ≤ s)
⇐⇒ t2 ≤ Dom(t1) ∧ s ≥ ©∨

(s1,s2)∈ρ(t1) | t2 6≤s1
s2

The only implication that deserves a comment is the ⇐ direction
of the equivalence marked by a star. Assume that for each pair
(s1, s2) ∈ ρ(t1), we have t2 ≤ s1 or s2 ≤ s. We then define t2 as the
intersection of Dom(t1) and some types s1 such that (s1, s2) ∈ ρ(t1)
and t2 ≤ s1. We have t2 ≤ t2.

We finally deduce:

app[t1 ⊗ t′2] := Ω if t2 6≤ Dom(t1)
:= ©∨

(s1,s2)∈ρ(t1) | t2 6≤s1
s2 if t2 ≤ Dom(t1)

2

5.7.3 Typing algorithm
For the rest of this section, we assume that all operators have a computable
typing function. We can then define a typing algorithm. A "schematic typ-
ing environment" � is a partial function, with finite domain, from variables to
schemas, such that {{{�(x)}}} 6= ∅ for all x in the domain of �. The algorithm is
presented in Figure 5.3 in the form of a function that associates to an environ-
ment � and to an expression e a schema, written �[e]. This function is defined
by induction on the syntax of e.

If Γ (resp. �) is a typing environment (resp. schematic typing environment),
then we write � ≤ Γ when � and Γ have the same domain and for all x:
�(x) ≤ Γ(x).

Lemma 5.30 If � ≤ Γ1 and � ≤ Γ2, then there exists an environment Γ such
that: � ≤ Γ, Γ ≤ Γ1, Γ ≤ Γ2.

Proof: The three environments �, Γ1 and Γ2 have the same domain.
If x is in that domain, we fix Γ(x) = Γ1(x)∧∧∧Γ2(x), otherwise Γ(x)
is not defined. 2

Lemma 5.31 (Correction) If �[e] ≤ t, then there exists Γ ≥ � such that
Γ ` e : t.

Proof: By induction on the structure of expression e. We deal with
the two most interesting cases.
Case e′ = (x = e ∈ t ? e1|e2). We take t0, t1, t2, s1, s2 as in the def-
inition of �[(x = e ∈ t ? e1|e2)]. Let s1, s2 such that s1 ≤ s1

104 Chapter 5. Calculus

�[c] := bc

�[(e1, e2)] := �[e1]⊗ �[e2]

�[µf(t1→→→s1; . . . ; tn→→→sn).λx.e] :=
{

t if ∀i = 1..n. si ≤ si
Ω otherwise

where
{

t = [ti→→→si]i=1..n
si = ((f : t), (x : ti),�)[e] (i = 1..n)

�[x] :=
{

�(x) if �(x) is defined
Ω otherwise

�[o(e)] := o[�[e]]

�[(x = e ∈ t ? e1|e2)] := s1 > s2

where

t0 := �[e]
t1 := t? t0
t2 := (¬¬¬t) ? t0

si :=

 ((x : ti),�)[ei] if ti 6≤ 0,{{{ti}}} 6= ∅
0 if ti ≤ 0
Ω if {{{ti}}} = ∅

(i = 1..2)

Figure 5.3: Typing algorithm

and s2 ≤ s2. The goal is to see there exists Γ ≥ � such that
Γ ` e′ : s1∨∨∨s2. Taking i = 1..2. Since si ≤ si, we have si 6= Ω.
There are two cases. If ti 6≤ 0, then si = ((x : ti),�)[ei] ≤ si.
According to the induction hypothesis, there exists Γi ≥ � and
ti ≥ ti such that (x : ti),Γi ` ei : si. If ti ≤ 0, then we fix ti = 0.

Writing t0 = (t1∧∧∧t)∨∨∨(t2\\\t). Proving that t0 ≥ t0. We have
t1 ≥ t1 = t ? t0, so there exists t′1 ≥ t0 such that t∧∧∧t′1 ≤ t1.
Similarly, there exists t′2 ≥ t0 such that (¬¬¬t)∧∧∧t′2 ≤ t2. We deduce:
t0 ≥ (t∧∧∧t′1∧∧∧t′2)∨∨∨((¬¬¬t)∧∧∧t′1∧∧∧t′2) ' t′1∧∧∧t′2 ≥ t0. Writing t′′1 = t0∧∧∧t ≤ t1
and t′′2 = t0\\\t ≤ t2.

We can then apply the induction hypothesis again, which gives
the existence of a Γ0 ≥ � such that Γ0 ` e : t0. By using Lem-
mas 5.2 and 5.30, we see there exists an environment Γ ≥ � such
that Γ ` e : t0, and (x : t′′i),Γ ` ei : si for i = 1..2 (when ti 6≤ 0).
We conclude, by using rule (case) and possibly (subsum), that
Γ ` e′ : s1∨∨∨s2.
Case e′ = µf(t1→→→s1; . . . ; tn→→→sn).λx.e. Taking t and si as in the
definition of �[e′]. Since �[e′] 6= Ω (because �[e′] ≤ t), we have
�[e′] = t and si ≤ si for any i = 1..n. The induction hypothesis
shows that for every i, we can find an environment Γ = ((f :
ti), (x : t′′i),Γi) ≥ ((f : t), (x : ti),�) such that Γ ` e : si. Writing
t′ =

∧∧∧
i=1..n t

i∧∧∧t.
We have t′ ≥ t, so we can find a family (t′j→→→s′j)j=1..m such that

t′ ≥ t′′ 6' 0 where t′′ =
∧∧∧
i=1..n(ti→→→si)∧∧∧

∧∧∧
j=1..m¬¬¬(t′j→→→s′j).

By using Lemma 5.2 and 5.30, we obtain Γ ≥ � such that, for

5.7. Type inference 105

all i: (f : t′′), (x : ti),Γ ` e : si. We can apply rule (abstr) to
obtain Γ ` e′ : t′′, which allows us to conclude, since t′′ ≤ t. 2

Lemma 5.32 (Completeness) If � ≤ Γ and Γ ` e : t, then �[e] ≤ t.

Proof: By induction on the typing derivation Γ ` e : t. The proof
is mechanical. Consider for example the case where the derivation
ends with an instance of rule (case):

Γ ` e : t0
{
t1 = t0∧∧∧t
t2 = t0\\\t

{
si = 0 if ti ' 0
(x : ti),Γ ` ei : si if ti 6' 0

Γ ` (x = e ∈ t ? e1|e2) : s1∨∨∨s2

We take t0, t1, t2, s1, s2 as in the definition of �[(x = e ∈ t ? e1|e2)].
By applying the induction hypothesis, we obtain t0 = �[e] ≤ t0,
and deduce t1 ≤ t1 and t2 ≤ t2. Taking i = 1..2. If ti ≤ 0,
then si = 0 and then si ≤ si. Otherwise, since {{{ti}}} 6= ∅, we
have si = ((x : ti),�)[ei]. But ti 6≤ 0 (because otherwise ti ≤ 0),
therefore (x : ti),Γ ` ei : si. The induction hypothesis still gives
si ≤ si in that case. Finally, we do have s1 > s2 ≤ s1∨∨∨s2. 2

By combining the two previous lemmas, we obtain the following theorem.

Theorem 5.33 Let � be a schematic typing environment and e an expression.
Then:

{{{�[e]}}} = {t | ∃Γ. (� ≤ Γ) ∧ (Γ ` e : t)}

The next corollary gives an algorithm to decide whether an expression is
well-typed in a typing environment.

Corollary 5.34 Let Γ be a typing environment. We can also see it as a schematic
typing environment. Then, for all expression e and all type t, we have:

Γ ` e : t ⇐⇒ Γ[e] ≤ t

In particular, expression e is well-typed in the environment Γ if and only if
{{{Γ[e]}}} 6= ∅.

5.7.4 Set-theoretic interpretation of schemas
We introduced diagrams as syntactic representatives of sets of types assigned to
a value by the type system. A dual vision consists in saying that a non-empty
schema represents a set of values, defined by:

JtKV :=
⋂
t∈{{{t}}}

JtKV

This definition is consistent with the case where t is a type. We will see that the
different operators that we have introduced on schemas behave as expected from
a set-theoretic point of view. The following properties are easy to establish:

Jt1 ⊗ t2KV = Jt1KV × Jt2KV

106 Chapter 5. Calculus

Jt1 > t2KV = Jt1KV ∪ Jt2KV

Jt? tKV = JtKV ∩ JtKV

The set J[ti→→→si]i=1..nKV contains all abstractions whose intersection of in-
terface types is equivalent to

∧∧∧
i(ti→→→si); in particular, it is never empty. We

then see, by induction over t, that JtKV = ∅ ⇐⇒ t ≤ 0, and deduce that
t ≤ t ⇐⇒ JtKV ⊆ JtKV (because t ≤ t ⇐⇒ (¬¬¬t) ? t ≤ 0).

It is interesting to note that these properties generally become false if schemas
are interpreted as sets of elements of a model. For example, in the universal
model of Section 4.5, the set ⋂

t∈{{{t}}}

JtK0

is always empty for t = [0→→→0]. An element of this set would indeed be a graph
fini f = {(d1, d

′
1), . . . , (dn, d′n)} with d′i ∈ D0

Ω. But t ≤ ¬¬¬(t→→→1) as soon as t 6' 0,
so for any non-empty type t, there must be a pair (di,Ω) in f , with di in JtK0.
Since we build an infinite number of type t two-to-two disjoint, this contradicts
the finiteness of f .

This may seem contradictory to the fact that the model for values is equiv-
alent to the original model, i.e. the interpretations of a type in either model
are simultaneously empty or non-empty. In fact, we have simply shown that
this property does not translate to schemas which are, intuitively, infinite type
intersections. This is why we do not put forward the set-theoretic interpretation
of schemas in the formalism introduced.

5.8 Operators
The calculus we have introduced is parameterized by a set of operators O. For
each operator o ∈ O, we have to define:
— a binary relation _ o

;;; _ where the first argument is a value and the
second is either an expression or Ω;

— a binary relation between types o : _→→→_, closed by intersection (if o :
t1→→→s1 and o : t2→→→s2, then o : (t1∧∧∧t2)→→→(s1∧∧∧s2)) and such that o is well-
typed (Definition 5.14);

— a typing function (Definition 5.28).
Of course, the choice of operators depends on the base types chosen. For

example, if we have a base type int that represents integers, we will probably
have an operator + with + : int×××int→→→int.

However, we can define generic operators, which do not depend on the base
types chosen. We have already studied the app operator . We will now introduce
the first projection operator π1 (operator π2 is defined similarly). Its semantics
are given by: (v1, v2) π1

;;; v1 and v
π1
;;; Ω when v is not of the form (v1, v2).

Relation π1 : _→→→_ is given by the inductive system of Figure 5.4.

Lemma 5.35 The operator π1 is well-typed.

Proof: According to Lemma 5.17, we only have to consider rule
(π1×××). If ` v : t1×××t2 and v π1

;;; e, then we have to show that e 6= Ω
and ` e : t1. But according to Lemma 5.12, if ` v : t1×××t2, we have

5.8. Operators 107

π1 : (t1×××t2)→→→t1
(π1×××)

π1 : t1→→→s1 π1 : t2→→→s2
π1 : (t1∧∧∧t2)→→→(s1∧∧∧s2)

(π1∧∧∧)

π1 : t1→→→s1 π1 : t2→→→s2
π1 : (t1∨∨∨t2)→→→(s1∨∨∨s2)

(π1∨∨∨)

π1 : t′→→→s′ t ≤ t′ s′ ≤ s
π1 : t→→→s (π1 ≤)

Figure 5.4: Axiomatizing the typing of the first projection

v = (v1, v2) with ` v1 : t1, and the only possible reduction for v is
v
π1
;;; v1. 2

Now let us look at the typing of the π1 operator. We begin by establishing
an equivalent to Theorem 4.42. The proof is more direct because we can directly
interpret the first projection in model ED.

Lemma 5.36 Let t and s be two types. The following assertions are equivalent:
(i) π1 : t→→→s

(ii) t ≤ s×××1 (i.e.: EJtK ⊆ JsK×D)
(iii) (t ≤ 1× 1) ∧ ∀(t1, t2) ∈ π(t). t1 ≤ s

Proof: The proof of (i)⇒ (ii) is an easy induction on the derivation
of π1 : t→→→s. Proving (ii) ⇒ (iii). If (t1, t2) ∈ π(t), we have
t1×××t2 ≤ t, which gives t1×××t2 ≤ s×××1, and since t2 6' 0, we do
obtain t1 ≤ s. The proof of (iii) ⇒ (i) is similar to the one of
Theorem 4.42. 2

Corollary 5.37 Let t1, t2 and s be three types. Then:

π1 : t1×××t2→→→s ⇐⇒ (t1 ≤ s) ∨ (t2 ' 0)

It is easy to see then that the function π1[_] defined below is a typing
function for π1:

π1[t] =

∨∨∨

(t1,t2)∈π(t)

t1 if t ≤ 1× 1

Ω otherwise
π1[ti→→→si]i=1..n = Ω

π1[t1 ⊗ t2] =
{

0 if t2 ≤ 0
t1 otherwise

π1[t1 > t2] = π1[t1] > π1[t2]
π1[Ω] = Ω

Lemma 5.38 The typing of the π1 operator is exact.

108 Chapter 5. Calculus

Proof: Let t such that (π1 : t =⇒ 1). We can see that it means
t ≤ 1×××1. Writing s = π1[t]. It is easy to see that π1 : t→→→s. Let
v′ be a value in s. We can find a pair (t1, t2) ∈ π(t) such that
v′ ∈ Jt1K. Writing v = (v′, v2) where v2 is an arbitrary value of
type t2 (there is one because t2 is non-empty). We do have v π1

;;; v′.
2

5.9 Variant of the calculus without overloaded
functions

The λ-abstractions of the calculus introduced in this chapter represent over-
loaded functions: their interface can specify several arrow types simultaneously.
Consider the syntactic restriction that only allows for a single arrow. The syntax
of abstractions is then:

µf(t→→→s).λx.e
This syntactic restriction is stable by our semantics. In particular, the appli-

cation operator does not introduce overloaded functions in a program that does
not contain any. We immediately infer that type preservation through reduction
is still valid in the restricted calculus.

However, the subtyping relation, induced by the original model, no longer
corresponds to inclusion between sets of values. In other words, Theorem 5.6
is wrong. Let us see why. Let t1, t2, s1, s2 be four types. Consider the type
(t1→→→s1)∧∧∧(t2→→→s2). Values of that type are well-typed abstractions of the form
µf(t→→→s).λx.e, that have both types t1→→→s1 and t2→→→s2, that is, such that t→→→s ≤
ti→→→si for i = 1..2. But t→→→s ≤ ti→→→si decomposes into (t ' 0)∨ (ti ≤ t∧ s ≤ si).
So the condition is equivalent to (t ' 0) ∨ (t1∨∨∨t2 ≤ t ∧ s ≤ s1∧∧∧s2), or too
t→→→s ≤ (t1∨∨∨t2)→→→(s1∧∧∧s2). This reasoning shows that in the restricted calculus,
we have the property:

J(t1→→→s1)∧∧∧(t2→→→s2)KV = J(t1∨∨∨t2)→→→(s1∧∧∧s2)KV
But it is easy to see that the subtyping

(t1→→→s1)∧∧∧(t2→→→s2) ≤ (t1∨∨∨t2)→→→(s1∧∧∧s2)

is generally false.
We will show in the rest of this section how to recover Theorem 5.6. The

extensional interpretation of functions as graphs (non-deterministic binary re-
lations) in the definition of a model is consistent with the possibility of defining
several arrow types in the interface of abstractions. To recover Theorem 5.6 in
the restricted calculus, we have to change this interpretation. Instead of inter-
preting functions as graphs, we will stick closer to the calculus. We modify the
definition of the extensional interpretation with:

ED := C +D ×D + P(D)× P(D)

and
X → Y := {(X ′, Y ′) | X ⊆ X ′ ∧ Y ′ ⊆ Y }

Intuitively, we only retain the interface of functions, given by a pair (X,Y),
with X ⊆ D,Y ⊆ D. The set X (resp. Y) represents the domain (resp. the

5.9. Variant of the calculus without overloaded functions 109

codomain) of the function. The extensional interpretation of the type t→→→s
is the set of "functions" (X,Y) with JtK ⊆ X and Y ⊆ JsK, that is, those
whose interface gives a constraint as least as strong as type t→→→s. To study the
subtyping relation that we obtain, we have to adapt Lemma 4.9. We use those
two simple observations. First of all, we find that:⋂

i∈P
Xi → Yi = (

⋃
i∈P

Xi)→ (
⋂
i∈P

Yi)

This allows us to treat intersections. We then study the assertion

X → Y ⊆
⋃
i∈N

Xi → Yi

In the left hand side, we find element (X,Y), which must also be found, if the
assertion is correct, in one of the Xi → Yi, which means Xi ⊆ X ∧ Y ⊆ Yi.
Conversely, if (X,Y) ∈ Xi → Yi for a certain i ∈ N , then the assertion is true.
We deduce the equivalent to Lemma 4.9:

Lemma 5.39 Let (Xi)i∈P , (Xi)i∈N , (Yi)i∈P , (Yi)i∈N be four families of parts
of a set D. Then: ⋂

i∈P
Xi → Yi ⊆

⋃
i∈N

Xi → Yi

⇐⇒
∃i0 ∈ N. Xi0 ⊆

⋃
i∈N

Xi ∧
⋂
i∈P

Yi ⊆ Yi0

The rest of the theory is easily adapted. For example, condition Cfun in the
Definition 4.11 becomes:

Cfun ::= ∃θ′1→→→θ′2 ∈ N.

τ(θ′1)\\\

(∨∨∨
θ1×××θ2∈P

τ(θ1)
)
∈ S(∧∧∧

θ1×××θ2∈P

τ(θ2)
)
\\\τ(θ′2) ∈ S

To build a universal model, we always go back to using finite sets to represent
function. We define X →f Y as the subset of X → Y made of pairs (X ′, Y ′)
with finite Y ′ and cofinite X ′ .

Lemma 5.1, which expresses the strong disjunction of arrow types (an inter-
section is included in a union if and only if it is included in one of the terms of
the union) is still valid.

We adapt the typing of the application by taking the approach of Section 4.8.
For some pair (f, x) with f = (X,Y) ∈ EfunD = P(D) × P(D) and x ∈ D,
we take (f, x) . y if (x ∈ X ⇒ y ∈ Y). This makes Theorem 4.42 work.
Corollary 4.45 now simply becomes:

app : t1×××t2→→→s ⇐⇒ t1 ≤ t2→→→s

Remark 5.40 Our new definition of X → Y ignores the special case X = ∅
(which gives rives to condition t2 ' 0 in Corollary 4.45). We could have defined
X → Y as the set of pairs (X ′, Y ′) with (X ⊆ X ′ ∧ Y ⊆ Y ′) ∨X = ∅, to keep
this special case.

110 Chapter 5. Calculus

To study the subtyping t1 ≤ t2→→→s, we can set up an equivalent result to
Lemma 4.37. In addition to the domain, we can define the codomain of a
function type.

Lemma 5.41 Let t be a type such that t ≤ 0→→→1. Then there exists two types
Dom(t) and Codom(t) such that:

∀t1, t2. (t ≤ t1→→→t2) ⇐⇒
{
t1 ≤ Dom(t)
Codom(t) ≤ t2

This lemma allows us to deduce a typing function for the app operator
(similar to Lemma 5.29, with a simpler proof).

Of course, we obtain, as expected, a version of Theorem 5.6 for the restricted
calculus. The only change to be made is in the case d′ ∈ EfunD in the proof of
Lemma 5.11. Having a type

t′ =
∧∧∧

t1→→→t2∈P
t1→→→t2 ∧

∧∧∧
t1→→→t2∈N

¬¬¬(t1→→→t2)

with t′ ≤ t and t′ 6' 0. We then find that:

t′ '

(
(
∨∨∨

t1→→→t2∈P
t1)→→→(

∧∧∧
t1→→→t2∈P

t2)
)
∧

∧∧∧
t1→→→t2∈N

¬¬¬(t1→→→t2)

Then we take a closed well-typed abstraction whose unique arrow type in the
interface is (

∨∨∨
t1→→→t2∈P t1)→→→(

∧∧∧
t1→→→t2∈P t2), for example µf(. . .).λx. f x. Rule

(abstr) gives the type t′ to this value.

111

Chapter 6

Pattern matching

We will extend the calculus introduced in the previous chapter with a pattern
matching operation. A pattern allows one or more sub-values of an input value
to be extracted and named. Patterns are recursive objects, just like types,
making it possible to express extractions of unbounded depths.

6.1 Patterns
We are going to modify the formalism from Chapter 2 to define the pattern
algebra. So we have to define a set-theoretic endofunctor G. For any set Y , we
define GY as the set of terms generated by the following productions:

p ∈ GY ::= x x variable
| t t ∈ T̂
| (q1, q2) q1, q2 ∈ Y
| p1|||p2 p1, p2 ∈ GY
| p1&&&p2 p1, p2 ∈ GY
| (x := c) x variable, c ∈ C

We choose a recursive and regular G-coalgebra P = (P, σ). The elements of
P (resp. P̂ = GP) are called pattern nodes (resp. pattern expressions, or just
patterns).

The productions in the definition of the functor G are introducing patterns
called respectively variable, type check (ou just type), product, disjunction (or
union), conjunction (or intersection), and constant. Note that the components
of the product patterns are pattern nodes, not patterns, and that they are
the only possible use of pattern nodes to form patterns: this allows for the
introduction of recursive patterns, while ensuring that the recursion loops are
well formed (i.e., they cross paths with a product pattern constructor).

Definition 6.1 A set S of patterns is stable if:
— ∀(q1, q2) ∈ S. σ(q1) ∈ S, σ(q2) ∈ S
— ∀p1|||p2 ∈ S. p1 ∈ S, p2 ∈ S
— ∀p1&&&p2 ∈ S. p1 ∈ S, p2 ∈ S

Definition 6.2 Let p1 and p2 be two patterns. We say that p2 is accessible from
p1 if p2 is in any set of stable patterns that contains p1.

112 Chapter 6. Pattern matching

Lemma 6.3 Let p be a pattern. The set of patterns accessible from p is finite
and stable.

Proof: This is a consequence of the regularity of the coalgebra P.
2

Remark 6.4 The concept of finite stable set plays a similar role for patterns
than the one of socle for types, that is, it bounds by a finite set the set of possible
objects manipulated by an algorithm, ensuring its termination.

Definition 6.5 Let p be a pattern. We denote by Var(p) the set of variables
of p, which is defined by:

Var(p) = {x | x accessible from p} ∪ {x | (x := c) accessible from p}

Definition 6.6 A pattern p is well-formed if:
— for any pattern p1|||p2 accessible from p: Var(p1) = Var(p2);
— for any pattern p1&&&p2 accessible from p: Var(p1) ∩Var(p2) = ∅.

Note that there is no well-formedness condition for the sets of variables
Var(σ(q1)) and Var(σ(q2)) in a pattern (q1, q2).

6.2 Semantics
To define the semantics of patterns, we use a structural model J_K : T̂ → P(D)
(Definition 4.4). For any element d of D and any pattern p, we write d/p the
result of p applied to d; it is either a function γ from Var(p) to D, or Ω (which
represents the failure to pattern match d with p). We use the letter r to denote
these results. Figure 6.1 gives a definition of d/p, by induction on the pair (d, p)
(using the lexicographic order).

The same capture variable x can appear in the two pattern nodes of a product
pattern (q1, q2). If that pattern succeeds for some element (d1, d2), we obtain
the result d′1 for x by q1 applied to d1 and another result d′2 for x by q2 applied to
d2. According to the definition of the operator ⊕, the semantics then consists in
build the result (d′1, d′2) for x. This semantics will allow us to express the capture
of sub-sequences for an encoding of sequences using nested pairs (Section 10.3).

6.3 Typing
To type a well-formed pattern p, we have to compute on the one hand the part
of the type accepted by p (which represents the set of values that do not make
p fail), and on the other hand the type of the result of p for an input type t
(an environment that associates to each capture variable x ∈ Var(p) a type that
represents the set of values that can be obtained by applying p to a value of t).

Definition 6.7 For p, we denote by LpM the set of elements of the model accepted
by p:

LpM = {d ∈ D | v/p 6= Ω}

6.3. Typing 113

d/x = {x 7→ d}

d/t =
{
{} if d ∈ JtK
Ω if d ∈ J¬¬¬tK

d/(q1, q2) =
{
d1/σ(q1)⊕ d2/σ(q2) if d = (d1, d2)
Ω otherwise

d/p1|||p2 = d/p1 | d/p2
d/p1&&&p2 = d/p1 ⊕ d/p2
d/(x := c) = {x 7→ c}

where:

γ|r = γ
Ω|r = r
Ω⊕ r = Ω
r ⊕ Ω = Ω
γ1 ⊕ γ2 = {x 7→ γ1(x) | x ∈ Dom(γ1)\Dom(γ2)}

∪ {x 7→ γ2(x) | x ∈ Dom(γ2)\Dom(γ1)}
∪ {x 7→ (γ1(x), γ2(x)) | x ∈ Dom(γ1) ∩Dom(γ2)}

Figure 6.1: Semantics of pattern matching

Lemma 6.8 We have the following equalities:

LxM = D
LtM = JtK
L(q1, q2)M = Lσ(q1)M× Lσ(q2)M
Lp1|||p2M = Lp1M ∪ Lp2M
Lp1&&&p2M = Lp1M ∩ Lp2M
L(x := c)M = D

Proof: It is immediate by using the definition from Figure 6.1. 2

Theorem 6.9 For every pattern p, we can compute a type *p+, independent
from the model, such that:

J*p+K = LpM

Proof: In fact, we will build a function *_+ from pattern to types,
such that:

*x+ = 1
*t+ = t
*(q1, q2)+ = *σ(q1) +××× * σ(q2)+
*p1|||p2+ = *p1 +∨∨∨ * p2+
*p1&&&p2+ = *p1 +∧∧∧ * p2+
*(x := c)+ = 1

If *_+ verifies those equations, then J*_+K easily verifies the same
equations as L_M in the next lemma. An induction on the (lexi-
cographically ordered) pair (d, p) then shows that d ∈ J*p+K ⇐⇒
d ∈ LpM for all d ∈ D and all pattern p.

114 Chapter 6. Pattern matching

To build the function *_+, we will use the technique developed
in Section 2.4.3. We have to define a transfer between the signature
G of patterns, and the signature B ◦ F of types. To do that, we
have seen that we can just define a natural transformation β :
G→ B ◦ F (T + _). For some Y , and p ∈ GY , we define βY (p) by
induction over p:

βY (x) = 1
βY (t) = t
βY ((q1, q2)) = q1×××q2
βY (p1|||p2) = βY (p1)∨∨∨βY (p2)
βY (p1&&&p2) = βY (p1)∧∧∧βY (p2)
βY ((x := c)) = 1

The right hand sides of those equations are indeed in B ◦ F (T +
Y) (by using the implicit inclusion @ : F (Y) → B ◦ F (Y)). We
can then apply Theorem 2.35, and we obtain a function *_+ that
verifies the expected equations. 2

Definition 6.10 Let p be a well-formed pattern, t a type such that t ≤ *p+, and
x a variable of p. We write:

(t//p)(x) := {(d/p)(x) | d ∈ JtK}

Lemma 6.11 In the following equations, when the left-hand side is well-defined,
then so is the right-hand side, and these equalities are true:

(t//x)(x) = JtK

(t//(q1, q2))(x) =

(π1[t]//σ(q1))(x) if x ∈ Var(σ(q1))\Var(σ(q2))
(π2[t]//σ(q2))(x) if x ∈ Var(σ(q2))\Var(σ(q1))⋃
(t1,t2)∈π(t)

(t1//σ(q1))(x)× (t2//σ(q2))(x)

if x ∈ Var(σ(q2)) ∩Var(σ(q1))
(t//(p1|||p2))(x) = ((t∧∧∧ * p1+)//p1)(x) ∪ ((t\\\ * p1+)//p2)(x)

(t//(p1&&&p2))(x) =
{

(t//p1)(x) if x ∈ Var(p1)
(t//p2)(x) if x ∈ Var(p2)

(t//(x := c))(x) =
{
{c} if t 6' 0
0 if t ' 0

Recall that the operator on types π1[_] was defined by:

π1[t] =
∨∨∨

(t1,t2)∈π(t)

t1

The operator π2[_] is defined in a similar way.

Theorem 6.12 Let p be a well-formed pattern and t a type such that t ≤ *p+.
Then we can compute a typing environment (t///p) : Var(p) → T̂ , which only
depends on the equivalence class of the model (that is, on the induced subtyping
relation) such that:

∀x ∈ Var(p). J(t///p)(x)K = (t//p)(x)

6.3. Typing 115

Proof: Let us fix x. Let S be the (finite) set of patterns accessible
from p and of which x is a variable. Let i be a socle that contains
t, as well as any *p′+ for p′ ∈ S. Writing:

V = {[t′, p′] | t′ ∈ i, p′ ∈ S, t′ ≤ *p′+}

(we just use [t′, p′] to denote the pair (t′, p′) in order to avoid
encumbering the equations with many identical parentheses). Let
us define a system ∨∨∨××× (Definition 4.47), that is, a function φ : V →
Pf (V + V × V + T̂):

φ([t′, x]) = {t′}

φ([t′, (q1, q2)]) =

{[π1[t′], σ(q1)]}
if x ∈ Var(σ(q1))\Var(σ(q2))

{[π2[t′], σ(q2)]}
if x ∈ Var(σ(q2))\Var(σ(q1))

{([t1, σ(q1)], [t2, σ(q2)]) | (t1, t2) ∈ π(t′)}
if x ∈ Var(σ(q2)) ∩Var(σ(q1))

φ([t′, p1|||p2]) = {[t′∧∧∧ * p1+, p1]; [t′\\\ * p1+, p2]}

φ([t′, p1&&&p2]) =
{
{[t′, p1]} if x ∈ Var(p1)
{[t′, p2]} if x ∈ Var(p2)

φ([t′, (x := c)]) =
{
{bc} if t′ 6' 0
∅ if t′ ' 0

We see that this system only depends on the equivalence class of
the model (because of the definition of V , and also because of
the operators π, π1, π2, it is not completely independent from the
model).

According to the previous lemma, if we write ρ([t′, p′]) =
(t′//p′)(x), then ρ is a fixed point of the operator φ̂ (Defini-
tion 4.48). We will show that it is its smallest fixed point. We
have to show that for any fixed point ρ0, we have:

∀[t′, p′] ∈ V. (t′//p′)(x) ⊆ ρ0([t′, p′])

This is written:

∀[t′, p′] ∈ V. ∀d ∈ Jt′K. (d/p′)(x) ∈ ρ0([t′, p′])

This property is proved by induction on the pair (d, p′) (simulta-
neously for every t′), by discriminating over the form p′. Consider
for example the case p′ = (q1, q2), with x ∈ Var(σ(q1))\Var(σ(q2)).
Since d ∈ Jt′K and t′ ≤ *p′+ ' *σ(q1) +××× * σ(q2)+, the element d is
necessarily a pair (d1, d2). We have:

(d/p′)(x) = (d1/σ(q1))(x)

and
ρ0([t′, p′]) = φ̂(ρ0)([t′, p′]) = ρ0([π1[t′], σ(q1)])

Now d1 ∈ Jπ1[t′]K, and d1 is strictly smaller than d, so we can
apply the induction hypothesis to the pair (d1, σ(q1)); giving

116 Chapter 6. Pattern matching

(d1/σ(q1))(x) ∈ ρ0([π1[t′], σ(q1)]), which concludes. All the other
cases are dealt with in a similar way, by using the semantics of
pattern matching and the fact that ρ0 is a fixed point of φ̂.

Theorem 4.49 allows us to build types that represent the small-
est fixed point of the system given by φ. These types are denoted
by (t′///p′)(x), and they verify the property expressed in the state-
ment of the theorem. 2

Remark 6.13 In practice, the system of equations ∨∨∨××× introduced in the proof
of the theorem is build lazily: we only consider the effectively accessible pairs
[t′, p′]. We can also use some simplifications that are justified by the set-theoretic
definitions, for example by taking ∅ for φ([t′, p′]) when t′ ' 0 (because then
(t′//p′)(x) = ∅).

Lemma 6.14 Let p be a well-formed pattern and x a variable of p. Then the
function t 7→ (t///p)(x) is increasing and commutes with the operator ∨∨∨:

∀t1, t2 ≤ *p + . (t1∨∨∨t2///p)(x) ' (t1///p)(x)∨∨∨(t2///p)(x)

Proof: It is immediate, in view of the semantical definition of
(t//p)(x). 2

6.4 Extension of the calculus
We can now extend the calculus introduced in Chapter 5 with a pattern match-
ing operation.

We add a construction in the syntax of expressions:

e ::= . . .
| match e with p1 → e1 | p2 → e2

where p1 and p2 denote well-formed patterns. The variables pi are considered
to be bound in ei. We then define fv(match e with p1 → e1 | p2 → e2) as

fv(e) ∪ (fv(e1)\Var(p1)) ∪ (fv(e2)\Var(p2))

Intuitively, this expression behaves in the following way: the expression e is
evaluated into a value v. If the pattern p1 accepts this value, then the expression
e1 is evaluated, in the environment resulting from the matching of v with p1.
Otherwise, the expression e2 is evaluated, in the environment resulting from
the matching of v by p2, which has to succeed. It will be the role of the type
system to guarantee this property (pattern exhaustivity), as well as to compute
the type of variables bound by the pattern pi in ei.

This new construction is in fact a generalization of the dynamic type check
operation. Indeed, we can encode the expression (x = e ∈ t ? e1|e2) with
match e with (x&&&t)→ e1 | (x&&&¬¬¬t)→ e2.

Typing We take, as a first model, the same structural model used so far in
this chapter.

6.4. Extension of the calculus 117

The typing rule associated with the new construction is:
Γ ` e : t0
t0 ≤ *p1 +∨∨∨ * p2+
t1 = t0∧∧∧ * p1+
t2 = t0\\\ * p1+

∀i = 1..2.
{
si = 0 if ti ' 0
(ti///pi),Γ ` ei : si if ti 6' 0

Γ ` match e with p1 → e1 | p2 → e2 : s1∨∨∨s2
(match)

Every syntactic property of the type system can be extended without prob-
lem, in particular Theorem 5.6.

Semantics We have the structural model of values J_KV : T̂ → P(V). For
any value v and any well-formed pattern p, we can compute v/p, which is either
Ω, or a function from Var(p) to V (that we see as a substitution).

This allows us to define the operational semantics of pattern matching. We
extend the evaluation contexts to reduce pattern matched expressions:

C[] ::= . . .
| match [] with p1 → e1 | p2 → e2

And we add the following reduction rules:

v/p1 6= Ω
match v with p1 → e1 | p2 → e2 ; e1[v/p1]

v/p1 = Ω v/p2 6= Ω
match v with p1 → e1 | p2 → e2 ; e2[v/p2]

v/p1 = Ω v/p2 = Ω
match v with p1 → e1 | p2 → e2 ; Ω

Safety The value model being equivalent to the original model, we can give
an interpretation of the pattern typing operators in terms of values.

Lemma 6.15 Let p be a well-formed pattern and v a value. Then:

v/p 6= Ω ⇐⇒ ` v : *p+

Lemma 6.16 Let p be a well-formed pattern, t a type such that t ≤ *p+, x a
variable of p, and v a value. Then:

(∃v′. (` v′ : t) ∧ ((v′/p)(x) = v)) ⇐⇒ ` v : (t///p)(x)

From this, we can easily infer a type preservation through reduction theorem.

Remark 6.17 At this point, one might wonder why we did not directly choose
to work in the value model to define the pattern typing operators, which would
have had the effect of replacing the two lemmas above with definitions. There is
a simple reason for that: the definition of the value model rests of the definition
of the type system, which uses those typing operators. We can also note that the
value model of Chapter 5 is not identical to the one of the calculus studied in
this chapter, because the values are not the same (in the body of an abstraction,
a value can use the new pattern matching construction).

118 Chapter 6. Pattern matching

Type inference The approach of Section 5.7 can smoothly be extended to
deal with the new construction.

Lemma 6.18 For every pattern p and every schema t such that t ≤ *p+, and
every variables x of p, we can compute a schema ((t///p))(x) such that:

∀s. (((t///p))(x) ≤ s ⇐⇒ ∃t. (t ≤ t) ∧ ((t///p))(x) ≤ s)

Proof: We define (t///p)(x) for any pattern t such that t ≤ *p+ by
induction on the lexicographically ordered triplet (#t, p, t), where
#t represents the maximal number of constructors ⊗ nested in t.
Let us remember that, according to Lemma 5.26, we have #(t0 ?
t) ≤ #t. We then let ourselves be guided by Lemma 6.11. The
equations below deal with all cases, and they are well-founded for
induction on the triplet (#t, p, t).

(t///x)(x) = t
(t///(q1, q2))(x) = (t///(q1, q2))(x) (seen as a schema)
((t1 > t2)///(q1, q2))(x) = (t1///(q1, q2))(x) > (t2///(q1, q2))(x)

((t1 ⊗ t2)///(q1, q2))(x) =

(t1///σ(q1))(x)
if x ∈ Var(σ(q1))\Var(σ(q2))

(t2///σ(q2))(x)
if x ∈ Var(σ(q2))\Var(σ(q1))

(t1///σ(q1))(x)⊗ (t2///σ(q2))(x)
if x ∈ Var(σ(q1)) ∩Var(σ(q2))

(t///p1|||p2)(x) = ((*p1 + ?t)///p1)(x)>
(((¬¬¬ * p1+) ? t)///p2)(x)

(t///p1&&&p2)(x) =
{

(t///p1)(x) if x ∈ Var(p1)
(t///p2)(x) if x ∈ Var(p2)

(t///(x := c))(x) =
{
bc if t 6≤ 0
0 if t ≤ 0

It is then easily established that each case of this inductive defini-
tion preserves the property of the statement. Consider for example
the case p = p1|||p2. Let s be a type. We have:

(t///p1|||p2)(x) ≤ s

⇐⇒
{

((*p1 + ?t)///p1)(x) ≤ s
(((¬¬¬ * p1+) ? t)///p2)(x) ≤ s

⇐⇒
{
∃t1 ≥ *p1 + ?t. (t1///p1)(x) ≤ s
∃t2 ≥ (¬¬¬ * p1+) ? t. (t2///p2)(x) ≤ s

⇐⇒ ∃t1, t2 ≥ t.

{
((*p1 +∧∧∧t1)///p1)(x) ≤ s
(((¬¬¬ * p1+)∧∧∧t2)///p2)(x) ≤ s

⇐⇒ ∃t ≥ t. (t///p1|||p2)(x) ≤ s

For the last equivalence, we take t = t1∧∧∧t2 for implication ⇒ and
t1 = t2 = t for implication ⇐. The other cases are dealt with in a
similar way. 2

We can then define the missing case in the definition of the typing algorithm

6.5. Normalization 119

(Figure 5.3):

�[match e with p1 → e1 | p2 → e2] := s1 > s2

where

t0 := �[e]
t1 := *p1 + ?t0
t2 := (¬¬¬ * p1+) ? t0

si :=

 ((ti///pi),�)[ei] if ti 6≤ 0, ti ≤ *pi+
0 if ti ≤ 0
Ω if ti 6≤ *pi+

(i = 1..2)

It is easy to prove the corresponding version of Theorem 5.33.

Pattern matching with n branches We have chosen to introduce two-
branch pattern matching to simplify the notations. There is no problem with
considering pattern matching with n branches (with n ≥ 1). In fact, we can en-
code pattern matching with n branches in two-branch pattern matching without
losing precision in terms of typing. For n = 1, let us define:

match e with p1 → e1 := match e with p1 → e1 | p1 → e1

And for n ≥ 3, we define:

match e with p1 → e1 | . . . := match e with p1 → e1 | x→ match x with . . .

(x is a fresh variable)

6.5 Normalization
In this section, we show how the categorical approach used to define the G-
coalgebra P = (P, σ) allows us to describe pattern transformations that preserve
their semantics. In this section, we consider only well-formed patterns.

Definition 6.19 If p and p′ are two patterns, we write p ' p′ if Var(p) =
Var(p′) and v/p = v/p′ for any value v. If q and q′ are two pattern nodes, we
write q ' q′ for σ(q) ' σ(q′).

6.5.1 Method
We consider a normalization specification given by a restriction of G, that is, a
set-theoretic endofunctor G′ such that, for all set X, we have G′X ⊆ GX, and
for all function f : X → Y , G′f is the restriction of Gf . We also assume that
if X ⊆ Y , then GX ∩ G′Y ⊆ G′X. Intuitively, the functor G′ imposes certain
constraints on the structure of the patterns. Of course, these constraints have to
apply recursively to the σ(q) for any pattern node q that appears in the patterns
considered.

For any G-coalgebra P′ = (P ′, σ′), we call G′-basis a finite part B ⊆ P ′ such
that σ′(B) ⊆ G′B (it is, also, a basis). The patterns that are elements of G′B
for a certain G′-basis of P are called G-patterns. We are trying to compute for
any pattern p a G′-pattern φ(p) such that p ' φ(p). This equivalence is proved
in a coinductive way over patterns, making up for a cumbersome direct proof.
The formalism we introduce in this section allows us to factor in this coinductive

120 Chapter 6. Pattern matching

reasoning. The next section gives an example of application: we will see that
the proof is brought back to a simple induction that uses algebraic properties
of the equivalence '.

Here is how to build function φ. We give ourselves a normalization function
N that associates to a pattern p a new pattern N(p) that verifies the constraints
of G′, but which is built on nodes that are not from P , but from another set
P ′. Formally, N is a function GP → G′P ′. It does the transformation that we
expect on a higher level. Generally, it will be defined by induction over p. To
be able to "come back" to P , we give ourselves another function f : P ′ → P ,
which somehow defines the "semantics" of the elements of P ′. The correction of
this transformation N is expressed by:

∀p ∈ P̂ . Gf ◦N(p) ' p

and this property is proven by induction over p.
We then take σ′ = N ◦ σ ◦ f , which defines a G-coalgebra P′ = (P ′, σ′). We

assume that this coalgebra is regular. Intuitively, this means that if we iterate
function N , we will only see a finite number of different nodes from P ′.

This regularity assumption ensures (Theorem 2.33) the existence of a mor-
phism of G-coalgebras Φ : P′ → P. We then take φ = GΦ ◦N : GP → GP .

We prove that for any pattern p, φ(p) is a G′-pattern and φ(p) ' p, as
expected.

First of all, let us see that φ(p) is a G′-pattern. Any basis B of P′ is a G′-basis
(because σ′(B) ⊆ GB and σ′(B) = N(σ ◦f(B)) ⊆ G′P ′, and GB∩G′P ′ ⊆ G′B
according to the assumption over G′), and it is sent by the morphism Φ over a
G′-basis of P (because σ(Φ(B)) = GΦ(σ′(B)) ⊆ GΦ(G′B) ⊆ G′(Φ(B))). Thus,
all GΦ(p′) for p′ ∈ G′P ′ are G′-patterns, and φ(p) is indeed of that form (with
p′ = N(p)).

It remains to be established that φ(p) ' p for any pattern p, that is:

∀v.∀p. v/(GΦ ◦N(p)) = v/p

We prove this assertion by induction over v. Let v be a value. By assumption, we
know that v/p = v/(Gf ◦N(p)). We then have to prove that for all p′ ∈ G′P ′:
v/GΦ(p′) = v/Gf(p′). We then reason by (local) induction over p′. The functo-
riality of G and the compositionality of the pattern matching semantics allow us
to easily deal with every case except the one of a pattern pair p′ = (q′1, q′2) with
q′i ∈ P ′. We have GΦ(p′) = (Φ(q′1),Φ(q′2)) and Gf(p′) = (f(q′1), f(q′2)). If the
value v is not a pair, then the two members are Ω. If v = (v1, v2), we only need
to see that vi/σ(Φ(q′i)) = vi/σ(f(q′i)) for i = 1, 2. Now σ(Φ(q′i)) = GΦ◦σ′(q′i) (Φ
is a morphism of G-coalgebras) and σ′(q′i) = N ◦σ◦f(q′i). Writing pi = σ◦f(q′i).
The aim is to prove that vi/(GΦ ◦N(pi)) = vi/pi, which is given by the global
induction hypothesis, applied to the values v1 and v2.

6.5.2 Elimination of the intersection
We illustrate the formalism introduced above by the following example: we want
to put patterns in a normal form where type checks are restricted to t types
with t∧∧∧1prod ' 0 (where 1prod = 1×××1) and where the intersection patterns &&&
are eliminated (except those needed to express the capture).

6.5. Normalization 121

Let us define the set-theoretic endofunctor G′ that captures these con-
straints. We write:

p ∈ G′Y ::= x&&&p
| (x := c)&&&p
| t t ≤ ¬¬¬1prod
| p1|||p2 p1, p2 ∈ GY
| (q1, q2) q1, q2 ∈ Y

This functor verifies the assumptions of the previous section. For the set P ′, we
take:

P ′ = {(t, S) | t ∈ T̂ , S ∈ Pf (P)}
Let q denote the elements of P ′. The function f : P ′ → P gives an intuitive

meaning to the elements of P ′. For any element q = (t, S) with S = {q1, . . . , qn},
we write f(q) = q where q is chosen such that σ(q) = t&&&σ(q1)&&& . . .&&&σ(qn) (there
exists such a pattern node because P is recursive). Writing g = σ ◦ f .

We have a natural concept of intersection over P ′; if q = (t, S) and q′ =
(t′, S′), we write:

q1 ∩ q2 = (t1∧∧∧t2, S1 ∪ S2)
It is clear that: g(q1 ∩ q2) ' g(q1)&&&g(q2).

We also define an intersection operator over G′P ′ (when there are no rules
to define p ∩ p′, we write p ∩ p′ = p′ ∩ p):

(x&&&p) ∩ p′ = x&&&(p ∩ p′)
((x := c)&&&p) ∩ p′ = (x := c)&&&(p ∩ p′)
(p1|||p2) ∩ p′ = (p1 ∩ p′)|||(p2 ∩ p′)
t ∩ t′ = t∧∧∧t′
t ∩ ((t1, S1), (t2, S2)) = ((0, S1), (0, S2))
(q1, q2) ∩ (q′1, q′2) = (q1 ∩ q′1, q2 ∩ q′2)

By unfolding these definitions, it becomes clear that if p, p′ ∈ G′P ′, then G′f(p∩
p′) ' G′f(p)&&&G′f(p′).

Remark 6.20 In the case t ∩ (q1, q2), we just have to compute a pattern p
that always fails (*p+ ' 0), but which preserves the set of variables (to pre-
serve the well-formedness of the patterns). We could also have taken the pattern
x1&&& . . . xn&&&0, where {xi | i = 1..n} = Var((q1, q2)).

We can then define the translation N : GP → G′P ′, by a simple induction
over patterns. For any type t, we denote by q(t) the element (t, ∅) ∈ P ′ so
that g(q(t)) ' t.. Similarly, for any pattern node q ∈ P , we denote by q(q)
the element (1, {q}) ∈ P ′, so that g(q(q)) ' σ(q). For any type t ≤ 1prod, we
choose an order of enumeration of the elements of π(t).

N(t) = (t\\\1prod) ||| (q(t11), q(t12)) ||| . . . ||| (q(tn1), q(tn2))
where π(t∧∧∧1prod) = {(ti1, ti2) | i = 1..n}

N(x) = x&&&N(1)
N((x := c)) = (x := c)&&&N(1)
N((q1, q2)) = (q(q1), q(q2))
N(p1|||p2) = N(p1) ||| N(p2)
N(p1&&&p2) = N(p1) ∩ N(p2)

122 Chapter 6. Pattern matching

An induction over p immediately gives Gf(N(p)) ' p for every p. To apply
the construction of the previous section, all it remains is to check that the
G-coalgebra P′ = (P ′, N ◦ σ ◦ f) is regular. We just have to check that for
every basis B of P, and every socle i that contains at least 1prod, the subset
B′i = i×Pf (B) is a basis P′ (indeed, any element of P ′ is in such a B′i). Now
if q ∈ B′i, we see, according to the definition of f that g(q) is in GB and that
the only type that appears within it is i. Is is then easy to prove by induction
over p that if p ∈ GB and if all of the types that appear in it are in i, then
N(p) ∈ G′(B′i), which concludes. For the case p = p1&&&p2, we use the fact that
G′(B′i) is stable by the binary operator ∩.

123

Part II

Algorithmic aspects

125

Chapter 7

Subtyping algorithm

In this chapter, we study the algorithmic aspect of the subtyping relation in-
duced by universal models (Section 4.5).

We reduce the study of subtyping to that of emptiness checking, by using
the equivalence t1 ≤ t2 ⇐⇒ Jt1\\\t2K = ∅. We modularize the presentation
of the subtyping algorithm by expressing the unary predicate J_K 6= ∅ in in-
ductive form, that is, as the smallest fixed point of a monotonic operator, and
by studying separately the computation of these kind of predicates. This mod-
ularization separates the difficulties and allows us to optimize the two stages
separately. Section 7.1 introduces the underlying formalism as well as two com-
putational algorithms, Section 7.2 shows how to deduce from the definition of
universal models the definition of a monotonic operator for which the predicate
J_K 6= ∅ is the smallest fixed point, and Section 7.3 presents variations and
optimizations on the definition of that operator.

7.1 Computation of an inductive predicate
In this section, we work with a finite set i of variables, written as t, t′, We
write B = {0, 1}. The binary operators ∨,∧ are naturally defined over B, as
well as the order relation 0 ≤ 1.

7.1.1 Formulas, systems, induction
Definition 7.1 A formula is a term generated by the following productions:

φ ::= t | 0 | 1 | φ1 ∨ φ2 | φ1 ∧ φ2

We denote by F the set of formulas.

Definition 7.2 A congruence is a function ρ : F → B such that ρ(0) = 0,
ρ(1) = 1, ρ(φ1 ∨ φ2) = ρ(φ1) ∨ ρ(φ2), ρ(φ1 ∧ φ2) = ρ(φ1) ∧ ρ(φ2). We identify
congruences with the functions i→ B.

Definition 7.3 A system S is a set of constraints of the form (φ ⇒ t). For
any congruence ρ, we write ρ � S when ρ(φ) ≤ ρ(t) for any constraint (φ⇒ t)
of S.

126 Chapter 7. Subtyping algorithm

Definition 7.4 For any system S and any formula φ, we write S � φ when:

∀ρ � S. ρ(φ) = 1

We extend this notation to a set of formulas: S � {φ1, . . . , φn} ⇐⇒ ∀i. S � φi.
If S and S′ are two systems, we write S ' S′ for: ∀φ. S � φ ⇐⇒ S′ � φ.

We want to compute this judgement S � φ. We begin by giving an alternative
presentation in axiomatic form, which, although it does not directly give us an
algorithm, allows us to observe all the properties that will be needed over �.

Definition 7.5 We define the judgement S ` φ by the inductive system below:

S ` φ (φ⇒ t) ∈ S
S ` t S ` 1

S ` φ1
S ` φ1 ∨ φ2

S ` φ2
S ` φ1 ∨ φ2

S ` φ1 S ` φ2
S ` φ1 ∧ φ2

We define a function JSK : F → B by:

JSK(φ) = 1 ⇐⇒ S ` φ

Lemma 7.6 The function JSK is a congruence and JSK � S.

Proof: To see that JSK is a congruence, we just need to inspect the
rules that define the judgement `. Let us prove that JSK � S. Let
(φ ⇒ t) be a constraint of S. Assuming that JSK(φ) = 1. That
means S ` φ. By applying a rule, we obtain S ` t, i.e. JSK(t) = 1.
We have proven that JSK(φ) ≤ JSK(t). 2

Theorem 7.7 For any system S and any formula φ, we have:

S ` φ ⇐⇒ S � φ

Proof: Suppose S � φ, that is, ∀ρ � S. ρ(φ) = 1. By taking
ρ = JSK, we obtain JSK(φ) = 1, that is, S ` φ.

The implication S ` φ ⇒ S � φ is proven by induction on the
derivation of S ` φ. Every case is easy. 2

The axiomatic definition of the judgement does not directly give an algo-
rithm; indeed, if we try to build a derivation for S ` φ, it may be that we
find the same judgement again, and that we start trying to build an infinite
derivation.

Definition 7.8 We define the judgement S,N ` φ, where S is a system, N a
set of variables and φ a formula by the following inductive system:

S,N ∪ {t} ` φ (φ⇒ t) ∈ S t 6∈ N
S,N ` t S,N ` 1

S,N ` φ1
S,N ` φ1 ∨ φ2

S,N ` φ2
S,N ` φ1 ∨ φ2

S,N ` φ1 S,N ` φ2
S,N ` φ1 ∧ φ2

7.1. Computation of an inductive predicate 127

The set N "blocks" the construction of derivations by preventing the same
variable from being unfolded several times on a branch.

We see that the derivations for the judgment S, ∅ ` φ correspond bijectively
and naturally to the derivations for S ` φ that do not use twice the same variable
on the same branch. Now if S ` φ, there is always such a derivation: we just
have to consider a minimal size derivation. Indeed, a derivation that uses the
same variable twice on the same branch can be "short-circuited" to obtain a
strictly smaller derivation. Similarly, it can be seen that the derivations for the
judgement S,N ` φ correspond to the derivations for the judgement SN , ∅ ` φ,
where SN = {(φ⇒ t) ∈ S | t 6∈ N}.

Theorem 7.9 For any system S, any formula φ and N ⊆ i:

S,N ` φ ⇐⇒ SN ` φ

In particular,:
S, ∅ ` φ ⇐⇒ S ` φ

For any finite system S, the definition of judgement S,N ` φ does give a
non-deterministic algorithm (which terminates).

Lemma 7.10 Let S be a system and (φ⇒ t) be a constraint. Then:

S 6� φ⇒ S ' S ∪ {(φ⇒ t)}

Proof: Writing S′ = S ∪ {(φ ⇒ t)}. It is clear that JSK ≤ JS′K
because S ⊆ S′. Writing ρ = JSK. We have ρ � {(φ⇒ t)} because
S 6� φ, that is, ρ(φ) = 0. By combining this with ρ � S, we obtain
ρ � S′, therefore JS′K ≤ ρ. 2

Lemma 7.11 Let S be a system and N ⊆ i. Then:

t ∈ N ⇒ SN 6� t

Proof: It is obvious with the axiomatic definition of SN ` t. 2

7.1.2 Cache
In this section, we present an algorithm to compute JSK that carefully stores
intermediate results in order to avoid unnecessary computations. Assuming that
system S is given by a function Φ from variables to formulas:

S = {(Φ(t)⇒ t) | t ∈ i}

Informal presentation The algorithm maintains two disjoint sets of vari-
ables N and P . The variables t in P are those for which the algorithm has
already definitely established that JSK(t) = 1. The set N plays a similar role
to the one it played in the definition of the predicate S,N ` φ of the previous
section: it keeps track of the variables t that have already been considered, those
that it is forbidden to unfold again if we want to avoid infinite recursion. When
the algorithm considers a variable t that is in N (resp. in P), it immediately
outputs 0 (resp. 1). Otherwise, it temporarily adds t to N and starts evaluating

128 Chapter 7. Subtyping algorithm

the formula Φ(t). If the result is 0, the algorithm outputs 0 for t; but contrarily
to the predicate S,N ` φ of the previous section, the algorithm then lets t in N ,
as well as all the other variables that have been added to it during the compu-
tation of Φ(t). If the result of the computation of Φ(t) is 1, then the algorithm
does output 1 for t, which it adds to P and removes from N . But it must also
remove from N all the variables that were added to it during the computation
of Φ(t). Indeed, these variables t′ are those for which the algorithm thought it
had proven JSK(t′) = 0, by wrongly assuming that JSK(t) = 0, which ended up
being false.

Formal presentation Figure 7.1 defines an algorithm to compute a function
eval(φ,N, P) where φ is a formula, N,P ⊆ i, N ∩P = ∅. The result is a triplet
(ε,N ′, P ′), with ε ∈ B, and N ′, P ′ ⊆ i, N ⊆ N ′, P ⊆ P ′, and N ′ ∩ P ′ = ∅.

eval(t,N, P) :=
if t ∈ P then (1, N, P)
else if t ∈ N then (0, N, P)
else match eval(Φ(t), N ∪ {t}, P) with

| (0, N ′, P ′) → (0, N ′, P ′)
| (1, N ′, P ′) → (1, N, P ′ ∪ {t})

eval(φ1 ∧ φ2, N, P) :=
match eval(φ1, N, P) with

| (0, N ′, P ′) → (0, N ′, P ′)
| (1, N ′, P ′) → eval(φ2, N

′, P ′)
eval(φ1 ∨ φ2, N, P) :=

match eval(φ1, N, P) with
| (0, N ′, P ′) → eval(φ2, N

′, P ′)
| (1, N ′, P ′) → (1, N ′, P ′)

eval(0, N, P) := (0, N, P)
eval(1, N, P) := (1, N, P)

Figure 7.1: Algorithm with cache

Theorem 7.12 (Termination) The algorithm given in Figure 7.1 terminates.

Proof: By induction on the lexicographically ordered pair (N,φ),
with N ′ ≤ N ⇐⇒ N ⊆ N ′ (it is a well-founded order because i
is finite). 2

Remark 7.13 One could think that if eval(φ,N, P) = (1, N ′, P ′), then N ′ =
N , which would allows us to replace the return expression (1, N, P ′ ∪ {t}) in
the last line of the definition of eval(t,N, P) with (1, N ′\{t}, P ′ ∪ {t}). This is
wrong because of the case φ1∨φ2, as the first recursive call can output (0, N ′, P ′),
with N (N ′.

To find back N from N ′, it is not enough to remove the t element: it may
be necessary to remove an a priori arbitrary number of elements.

7.1. Computation of an inductive predicate 129

We write:

S(N,P) = {Φ(t)⇒ t | t 6∈ N} ∪ {1⇒ t | t ∈ P}

This system captures the current invariant of the algorithm: the Φ(t) ⇒ t
implications with t in N are not taken into account (because we can assume
that the truth value of t is 0), and the variables t in P are assumed to have a
truth value of 1, which translates into the constraints 1⇒ t.

Theorem 7.14 (Invariant) If eval(φ,N, P) = (ε,N ′, P ′) with ε ∈ {0, 1},
then: S(N,P) ' S(N ′, P ′) and JS(N,P)K(φ) = ε.

Proof: The proof is done by induction by using, of course, the same
order as for the proof of termination.
Case φ = t: if t ∈ P , then clearly S(N,P) � t. If t ∈ N , then
S(N,P) 6� t by using Lemma 7.11. Now let us assume that t 6∈
P ∪N , and fix (ε,N ′, P ′) = eval(Φ(t), N ∪ {t}, P). By induction,
we have: S(N ∪ {t}, P) ' S(N ′, P ′), JS(N ∪ {t}, P)K(Φ(t)) = ε.

Consider first the case ε = 0. By applying Lemma 7.10 to the
system S(N ∪ {t}, P) and to the constraint (Φ(t)⇒ t), we obtain
S(N ∪ {t}, P) ' S(N,P). We deduce S(N,P) ' S(N ′, P ′) and
S(N,P) 6� t (because S(N ∪{t}, P) 6� t according to Lemma 7.11).

Now consider the case ε = 1. As S(N ∪ {t}, P) ⊆ S(N,P), we
obtain, a fortiori: S(N,P) � Φ(t) and S(N,P) � P ′. But (Φ(t)⇒
t) ∈ S(N,P), therefore S(N,P) � t. Since S(N,P) � P ′ ∪ {t}, we
do have S(N,P) ' S(N,P ′ ∪ {t}).
Case φ = φ1 ∧ φ2: let us write (ε,N ′, P ′) = eval(φ1, N, P). By in-
duction, we have: S(N ′, P ′) ' S(N,P) and JS(N,P)K(φ1) = ε.
If ε = 0, then we also have JS(N,P)K(φ) = 0, which con-
cludes that case. If ε = 1, then, by writing (ε′, N ′′, P ′′) =
eval(φ2, N, P), we obtain, by induction: S(N ′′, P ′′) ' S(N ′, P ′)
and JS(N ′, P ′)K(φ2) = ε′. Hence we deduce S(N,P) ' S(N ′′, P ′′)
and JS(N,P)K(φ2) = ε′, which concludes that case.
Case φ = φ1 ∨ φ2: similar to the previous one.
Case φ = 0 or φ = 1: trivial. 2

By starting from N = P = ∅, we obtain an algorithm to decide if S � φ, for
any formula φ. Indeed, we clearly have S(∅, ∅) = S. Furthermore, the output
of the algorithm gives us two sets P ′ and N ′ that can be used in a later run of
the algorithm (the larger these sets, the faster the algorithm terminates). Note
that if φ = t, then t is in one of the two sets P ′ or N ′; this shows that if we
have already used the algorithm to compute JSK(t), a subsequent call with the
same argument will terminate immediately.

Implementation We have presented a purely functional version of the algo-
rithm. In practice, for efficiency reasons, we can implement the sets P and N
using imperative data structures such as hash tables. For the set P , this is not
a problem, because it only grows during a run of the algorithm. However, we
have to be more cautious about set N . Indeed, the last case of the definition of
eval(t,N, P) outputs the initial value of N , and not the one obtained after the

130 Chapter 7. Subtyping algorithm

recursive call. Hence we have to be able to backtrack to find the initial value
of N . This can be done easily, without backing up the entire hash table: we
can just keep in a stack the history of items added to N ; then, to return to the
initial value of N , we pop elements off the stack until we fall back on t, and
in parallel we remove all of the popped elements from N . The stack and the
hash table continuously keep track of the same objects (those of N): the stack
is used to backtrack, and the hash table is used to quickly check whether a type
is in N .

Of course, it is possible to use the same hash table to represent both P and
N (meaning only one access is needed for the two checks t ∈ P , t ∈ N).

Remark 7.15 Hosoya [Hos01] points out that to implement the subtyping al-
gorithm of XDuce, it is not possible to use an in-place mutable structure, such
as a hash table, to represent the intermediate assumptions that may have to
be removed after backtracking (which correspond to our set N). The technique
proposed above, however, allows such a data structure to be used without having
to copy it entirely.

Optimization In the definition of eval(t,N, P), we can replace the constraint
Φ(t) by an equivalent constraint modulo the following assumptions: to replace
a variable t′ such that t′ ∈ P (resp. t′ ∈ N) by 1 (resp. 0), and to simplify by
using boolean tautologies (such that φ ∧ 0 ' 0). For example, if Φ(t) = t1 ∧ t2
and t2 ∈ N , then we can replace Φ(t) by 0, which avoids "unrolling" t1. The
proof of correction of this optimization is easy.

Backtracking Outputting N in the last line of case φ = t comes down to
invalidating all the negative assumptions that were added to N ′ during the
recursive call. Indeed, the result (1, N ′, P ′) implies that the truth value of the
t′ ∈ N ′ is 0, by assuming that the one of t is 0, but that is not true.

Example 7.16 Here is an example of that. Let i = {t1, t2}, and Φ(t1) = t2∨1,
Φ(t2) = t1. We want to compute the truth value of t1. The algorithm computes
eval(t2 ∨ 1, {t1}, ∅) = (1, {t1, t2}, ∅), therefore eval(t1, ∅, ∅) = (1, ∅, {t1}). It is
necessary to remove not only t1, but also t2 from the intermediate set N , because
the truth value of t2 is 1 (it is in N = {t1, t2} because of a false assumption).

7.1.3 Removing backtracking
The algorithm of the previous section, before unrolling the definition of Φ(t)
when it considers a variable t, starts by assuming that the truth value of t is 0.
During the computation of Φ(t), the algorithm can establish that the truth value
of another variable t′ is 0; as this deduction may depend from the assumption
that the truth value of t is 0, we have to invalidate it if that assumption turns out
to be false. This is the backtracking phenomenon highlighted in Example 7.16.
However, in some cases, this systematic backtracking of the N set invalidates
facts that do not depend on the assumption that turned out to be false, as
shown in the example below.

Example 7.17 Let us modify Example 7.16, taking Φ(t2) = 0. We still obtain
eval(t2 ∨ 1, {t1}, ∅) = (1, {t1, t2}, ∅), but the fact that t2 ends up in the set

7.1. Computation of an inductive predicate 131

N = {t1, t2} in output does not depend from the fact that t1 was in the set
N = {t1} in input. The algorithm of the previous section cannot distinguish
this situation from that of Example 7.16, because it forgets the dependencies
between assumptions (which can be invalidated), and their conclusions.

In this section, we present a new algorithm that computes JSK while com-
pletely avoiding backtracking. The idea is that instead of assuming that a
variable t has a truth value 0 during the computation of Φ(t), we will keep track
of the dependencies of t, that is, of the constraints that need to be taken into
account if the truth value of t is ultimately 1.

Informal presentation The algorithm keeps a state for each variable t it
has already encountered. It can be a constant 0 or 1, which means that the
truth value of this variable is known for sure. It can also be a set of constraints
[C1; . . . ;Cn] that have to be taken into count if we end up finding that the truth
value of t is 1, and that we can ignore otherwise.

The overall state of the algorithm, consisting of the states of all variables, is
called the current table. When we consider a new variable t, we start by giving it
the state [] (an empty set of constraints), and we "activate" the constraint Φ(t)⇒
t. In fact, we consider extended constraints, of the form φ1 ⇒ . . . ⇒ φn ⇒ t.
Activating such a constraint with n = 0 comes down to setting the state of t
to 1 and successively activating the constraints C1, . . . , Cn if the state of t was
previously [C1; . . . ;Cn]. If n > 0, activating a constraint φ1 ⇒ . . .⇒ φn ⇒ t is
done by considering the form of φ1. If φ1 = 1, we activate φ2 ⇒ . . .⇒ φn ⇒ t.
If φ1 = 0, there is nothing to do. If φ1 = t′, we start by considering t′; if its
state 0 or 1, then we proceed as in the cases above where φ1 = 0 or φ1 = 1;
if its state is a set of constraints [C1; . . . ;Cn], we add to this set an additional
constraint φ2 ⇒ . . .⇒ φn ⇒ t. Indeed, if it turns out that the truth value of t is
1, we will have to check this constraint again, although for now it is temporarily
suspended. Finally, if φ1 = φ ∧ φ′, we activate φ ⇒ φ′ ⇒ . . . ⇒ φn ⇒ t, and if
φ1 = φ∨φ′, we successively activate the two constraints φ⇒ . . .⇒ φn ⇒ t and
φ′ ⇒ . . .⇒ φn ⇒ t.

Once we have dealt with all constraints that needed activating, we can re-
place all the states of the form [C1; . . . ;Cn] by 0, because we know that the
truth value of the corresponding variables cannot be 1. All the possible states
for all considered variables are then 0 and 1.

Let us make a few comments, which will result in optimizations for the
algorithm.
— When activating a constraint φ1 ⇒ . . . ⇒ φn ⇒ t, if we have already

established that the truth value of t is 1, then we can immediately ignore
this constraint.

— Similarly, a constraint of the form t ⇒ . . . ⇒ φn ⇒ t can be ignored,
because it is necessarily satisfied.

— When the algorithm considers a new variable t, it sets its state to the
empty constraint set [] and activates the constraint Φ(t)⇒ t. After doing
this, if the state of t is a set of constraints [C1; . . . ;Cn], we can sometimes
replaces it with 0, which will save us from extending this set later. In
order to do so, we have to be sure that the truth value of t is indeed 0;
that is the case if none of the other suspended constraints in the current
table is "pointing" towards t.

132 Chapter 7. Subtyping algorithm

Formal presentation We will give a formal presentation of the algorithm
described above. Let us start by formally defining the concepts of extended
constraint and table.

Definition 7.18 A long constraint is either a variable t, or a term of the
form φ ⇒ C, where φ is a formula and C is a long constraint. We can see
a long constraint C as a finite list of formulas, followed by a variable, written
v(C). The definitions on constraints and systems of constraints are transferred
to long constraints and systems of longs constraints, by associating the long
constraint C = φ1 ⇒ φn ⇒ v(C) with the constraint φ1 ∧ . . .∧φn ⇒ v(C)
(if n = 0, we take 1⇒ v(C)).

Definition 7.19 A table is a function σ which associates to every variable
either 0, or 1, or ⊥, or a finite sequence of long constraints L = [C1; . . . ;Cn]
such that σ(v(Ci)) 6∈ {0,⊥}.

We denote by σ{t→ X} the table σ′ such that σ′(t) = X and σ′(t′) = σ(t′)
for t′ 6= t.

Definition 7.20 The domain of a table σ is the set Dom(σ) of variables t
such that σ(t) 6= ⊥. We define a preorder on tables by:

σ ≤ σ′ ⇐⇒
{

Dom(σ′) ⊆ Dom(σ)
{t | σ′(t) = 1} ⊆ {t | σ(t) = 1}

This preorder is well-founded (because i is finite).

A table with no suspended constraints and that is correct regarding the
system S is called a partial solution.

Definition 7.21 A partial solution is a table σ such that:

∀t ∈ Dom(σ). σ(t) = JSK(t)

Figure 7.2 defines two mutually recursive functions extend and trigger.
They both take a current table as input and output an updated table. The role
of function extend is to "consider" a new variable t, that is, to ensure that the
current table is defined over t. The trigger function activates a constraint;
it uses an auxiliary function trigger′ which is only called when the state of
the variable associated with the constraint is not 1. The auxiliary function
may is used to check that no suspended constraint points to a given variable.
Finally, the function clean removes all suspended constraints and replaces the
corresponding states with 0.

Theorem 7.22 Let σ be a partial solution and t a variable. Writing σ′ =
clean(extend(σ, t)), as defined in Figure 7.2. Then σ′ is a well-defined partial
solution (i.e. the algorithm terminates), with σ′ ≤ σ and t ∈ Dom(σ′).

We will give the proof of this theorem below.
By starting from the empty domain table, we obtain an algorithm to decide

if S � t for some variable t. In output we get a table σ′ that can be used as
input for the next call of the algorithm (global cache).

7.1. Computation of an inductive predicate 133

extend(σ, t) :=
if σ(t) = ⊥ then

let σ′ = trigger(σ{t→[]}, Φ(t)⇒t) in
if may(σ′, t) then σ′ else σ′{t→0}

else
σ

trigger(σ,C) := if σ(v(C)) = 1 then σ else trigger’(σ,C)
trigger’(σ, t) := let L = σ(t) in trigger∗(σ{t→1}, L)
trigger’(σ, t⇒C) :=

if v(C) = t then σ else
let σ′ = extend(σ, t) in
match σ′(t) with
| 0 → σ′

| 1 → trigger(σ′, C)
| L → σ′{t→C :: L}

trigger’(σ, 0⇒C) := σ
trigger’(σ, 1⇒C) := trigger’(σ,C)
trigger’(σ, φ1∧φ2⇒C) := trigger’(σ, φ1⇒(φ2⇒C))
trigger’(σ, φ1∨φ2⇒C) := trigger(trigger’(σ, φ1⇒C), φ2⇒C)

trigger∗(σ, []) := σ
trigger∗(σ,C :: L) := trigger∗(trigger(σ,C), L)

may(σ, t) := σ(t) = 1 ∨ ∃t′.∃C∈σ(t′). v(C) = t

clean(σ) := (t 7→ if σ(t) ∈ {0, 1,⊥} then σ(t) else 0)

Figure 7.2: Algorithm without backtracking

Implementation As with the algorithm with cache, we have presented a
functional version of this algorithm. Here, however, the table σ is used in a
purely linear way (in that sense, it is a non-backtracking algorithm). This
makes it easy to implement the algorithm using an imperative data structure,
such as a hash table, to represent σ. To compute function may, we can maintain
a counter, for each variable t, of the number of long constraints C ∈ σ(t′) such
that v(C) = t. This makes it possible to compute this function in constant
time. To implement function clean, we simply keep a list of all the variables
that have been added to the domain of σ.

Optimizations The optimization mentioned for the algorithm with cache can
be transposed. In the definition of extend(σ, t), we can simplify the constraint
Φ(t) by using the following assumptions (if σ(t′) ∈ {0, 1}, we can replace t′ by
σ(t′)), and boolean tautologies. Similarly, we can simplify a long constraint
φ1 ⇒ . . . ⇒ φn ⇒ t, and also change the order of the φi (for example, to first
consider smaller formulas).

134 Chapter 7. Subtyping algorithm

Examples Let us give some examples of how the algorithm works. We show
each time the tree of recursive calls between functions trigger, extend and
may. We denote by {} the empty table, and we name all the intermediate tables
that appear in the algorithm by order of appearance.

Example 7.23 Taking back Example 7.17, which illustrates a useless backtrack-
ing step done by the algorithm of the previous section. We have Φ(t1) = t2 ∨ 1,
Φ(t2) = 0. We are trying to compute the truth value of t1. Here is how the
algorithm works for the call extend({}, t1):

extend({}, t1) = σ4∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

trigger(σ1, t2 ∨ 1⇒ t1) = σ4∣∣∣∣∣∣∣∣∣∣∣∣

trigger(σ1, t2 ⇒ t1) = σ3∣∣∣∣∣∣
extend(σ1, t2) = σ3∣∣∣∣ trigger(σ2, 0⇒ t2) = σ2

may(σ2, t2) = false
trigger(σ3, 1⇒ t1) = σ4∣∣ trigger(σ3, t1) = σ4

may(σ4, t1) = true
where:
σ1 = {t1 → []}
σ2 = {t1 → [], t2 → []}
σ3 = {t1 → [], t2 → 0}
σ4 = {t1 → 1, t2 → 0}

The final result is {t1 → 1, t2 → 0} (which is invariant by clean). When we
unrolled the definition of Φ(t2), we saw that there was no way to prove t2 (by
using may), therefore we were able to immediately compute its truth value 0.

Example 7.24 Taking back Example 7.16: Φ(t1) = t2 ∨ 1, Φ(t2) = t1. Here is
how the algorithm works for the call extend({}, t1):

extend({}, t1) = σ6∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

trigger(σ1, t2 ∨ 1⇒ t1) = σ6∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

trigger(σ1, t2 ⇒ t1) = σ4∣∣∣∣∣∣∣∣
extend(σ1, t2) = σ3∣∣∣∣∣∣

trigger(σ2, t1 ⇒ t2) = σ3∣∣ extend(σ2, t1) = σ2
may(σ3, t2) = true

trigger(σ4, 1⇒ t1) = σ6∣∣∣∣∣∣
trigger(σ4, t1) = σ6∣∣∣∣ trigger(σ5, t2) = σ6∣∣ trigger(σ6, t1) = σ6

may(σ6, t1) = true
where:
σ1 = {t1 → []}
σ2 = {t1 → [], t2 → []}
σ3 = {t1 → [t2], t2 → []}
σ4 = {t1 → [t2], t2 → [t1]}
σ5 = {t1 → 1, t2 → [t1]}
σ6 = {t1 → 1, t2 → 1}

7.1. Computation of an inductive predicate 135

The final result is {t1 → 1, t2 → 1} (which is invariant by clean). During the
calculus, the dependency t1 ⇒ t2 was stored; hence, when t1 proved to be true
(because of the 1 in Φ(t1) = t2 ∨ 1), we immediately knew that t2 was also true.

Example 7.25 Let us give another example, with Φ(t1) = t2 and Φ(t2) = t1.
Here is the trace of this algorithm:

extend({}, t1) = σ4∣∣∣∣∣∣∣∣∣∣∣∣

trigger(σ1, t2 ⇒ t1) = σ4∣∣∣∣∣∣∣∣
extend(σ1, t2) = σ3∣∣∣∣∣∣

trigger(σ2, t1 ⇒ t2) = σ3∣∣ extend(σ2, t1) = σ2
may(σ3, t2) = true

may(σ4, t1) = true
where:
σ1 = {t1 → []}
σ2 = {t1 → [], t2 → []}
σ3 = {t1 → [t2], t2 → []}
σ4 = {t1 → [t2], t2 → [t1]}

The algorithm saves the mutual dependency between t1 and t2. Because there
are no more "implicite" constraints (κ = ∅ for the global calls of the algorithm),
we can eliminate these dependencies. This is the role of clean, that transforms
table {t1 → [t2], t2 → [t1]} into {t1 → 0, t2 → 0}.

Proof of Theorem 7.22 The rest of this section is dedicated to the proof of
Theorem 7.22. We will introduce some auxiliary concepts.

Definition 7.26 The system of long constraints associated with a table σ is
defined by:

S(σ) = {Φ(t)⇒ t | σ(t) = ⊥}
∪ {t | σ(t) = 1}
∪ {t⇒ Ci | σ(t) = [C1; . . . ;Cn], i = 1..n}

Definition 7.27 A state is a pair (σ, κ) where σ is a table and κ is a a set of
long constraints, such that:{

S ' S(σ) ∪ κ
∀C ∈ κ. σ(v(C)) 6∈ {0,⊥}

Lemma 7.28 If (σ, κ) is a state and σ(t) ∈ {0, 1}, then JSK(t) = σ(t).

Proof: If σ(t) = 1, then the constraint t is in S(σ), therefore
JSK(t) = JS(σ) ∪ κK(t) = 1. If σ(t) = 0, then no constraint in
S(σ) ∪ κ points to t, therefore JS(σ) ∪ κK(t) = 0. 2

In a state, the set of constraints κ represents the constraints implicitly stored
in the control flow, waiting to be "integrated" to the table σ.

Theorem 7.22 is a consequence of the two lemmas and of the theorem below.

Lemma 7.29 If σ is a partial solution, then (σ, ∅) is a state.

136 Chapter 7. Subtyping algorithm

Proof: We have to prove that S ' S(σ). We have:

S = {Φ(t)⇒ t | t ∈ i}
S(σ) = {Φ(t)⇒ t | σ(t) = ⊥} ∪ {t | σ(t) = 1}

Proving first that JSK � S(σ). The constraints of the form
Φ(t)⇒ t with σ(t) = ⊥ are obviously satisfied under JSK. If σ(t) =
1, then JSK(t) = 1 by definition of a partial solution, therefore the
constraint t is satisfied under JSK. We deduce that JSK � S(σ),
hence JS(σ)K ≤ JSK.

Proving now that JS(σ)K � S. Let Φ(t) ⇒ t be a constraint of
S. If σ(t) = ⊥, then the constraint is in S(σ) and we are done. If
σ(t) = 1, then S(σ) � t, therefore we also have S(σ) � Φ(t)⇒ t. If
σ(t) = 0, then JSK(t) = 0, implying JSK(Φ(t)) = 0. Now we have
seen that JS(σ)K ≤ JS(σ)K, which gives JS(σ)K(Φ(t)) = 0, therefore
S(σ) � Φ(t) ⇒ t. The case σ(t) = [C1; . . . ;Cn] is impossible
because σ is a partial solution. We have proven that JS(σ)K � S,
which gives JSK ≤ JS(σ)K. 2

Lemma 7.30 If (σ, ∅) is a state, then clean(σ) is a partial solution σ′ with
σ′ ≤ σ (for the preorder on tables).

Proof: Writing σ′ = clean(σ). Consider the function ρ : i → B
such that ρ(t) = 1 ⇐⇒ σ(t) ∈ {1,⊥}. It is easy to see that
ρ � S(σ): the constraints Φ(t) ⇒ t with σ(t) = ⊥ and t with
σ(t) = 1 are verified because ρ(t) = 1, and the constraints t⇒ Ci,
with σ(t) = [C1; . . . ;Cn] are verified because ρ(t) = 0. We deduce
JSK = JS(σ)K ≤ ρ, proving that σ′(t) = 0⇒ JSK(t) = 0. If σ′(t) =
1, then σ(t) = 1, therefore JSK = JS(σ)K � t (since t ∈ S(σ)), that
is, JSK(t) = 1.

The relation σ′ ≤ σ is immediate. In fact, we also have σ ≤ σ′.
2

Theorem 7.31 (Termination and invariant) Let (σ, κ) be a state and t ∈
i. Then extend(σ, t) is well-defined table σ′, with t ∈ Dom(σ′), σ′ ≤ σ, and
such that (σ′, κ) is a state.

Let (σ, κ ∪ {C}) be a state. Then trigger(σ,C) is a well-defined table σ′,
with σ′ ≤ σ, and such that (σ′, κ) is a state.

Proof: We prove both assertions by mutual induction over σ (by
using the well-founded preorder ≤ on tables).

Starting by the assertion on extend. If t ∈ Dom(σ), the result
is σ, and there is nothing left to prove. Otherwise, we try to
apply the induction hypothesis for the call to trigger. The table
σ{t → []} is strictly smaller than σ. In addition, we find that
(σ{t → []}, κ ∪ {Φ(t) ⇒ t}) is a state because S(σ{t → []}) ∪
{Φ(t)⇒ t}) = S(σ). Hence we can apply the induction hypothesis:
the call to trigger terminates and outputs a table σ′ such that
(σ′, κ) is a state. If may(σ′, t) is true, then it is over. Otherwise,
we write σ′′ = σ′{t → 0}, and we have to see that (σ′′, κ) is a

7.1. Computation of an inductive predicate 137

state. If σ′(t) = 0, there is nothing to prove. The case σ′(t) = ⊥ is
impossible because σ′ ≤ σ{t→ []}. The case σ′(t) = 1 is impossible
because may(σ′, t) is false. The only option remaining is therefore
σ′(t) = [C1; . . . ;Cn]. No constraints of S(σ′)∪κ points to t (that is,
v(C) 6= t for any constraint C ∈ S(σ′) ∪ κ); indeed, if C ∈ κ, then
σ(v(C)) 6∈ {0,⊥} but σ(t) = ⊥, and if C ∈ S(σ′), then we conclude
by using the fact that may(σ′, t) is false. Hence, JS(σ′) ∪ κK(t) = 0,
and we can remove from this system any constraint of the form
t ⇒ C without changing the equivalence class for '. Then we
obtain S(σ′′) ∪ κ, which indeed gives S(σ′′) ∪ κ ' S. We found
that (σ′′, κ) is a state.

Moving on to the assertion over trigger. We will do (for a fixed
equivalence class of σ) a second (so-called local) induction over the
size of the constraint C. We define the size of a constraint C as the
pair (n,m) where n is the number of symbols ∧ appearing in C,
and m is the total number of symbols of C. It is easy to see that
every recursive call to trigger′ from trigger′ can be replaced by
a call to trigger without changing the result; indeed, trigger’
is only called on pairs (σ,C) such that σ(v(C)) 6= 1.

Let us assume then that (σ, κ ∪ {C}) is a state. First consider
the case σ(v(C)) = 1. We have to see that (σ, κ) is also a state,
i.e. that S(σ) ∪ κ ' S(σ) ∪ κ ∪ {C}; this comes from the fact that
JS(σ) ∪ κK � C (because v(C) ∈ S(σ)).

From now on, we assume that σ(v(C)) 6= 1, and we proceed by
case disjunction over the form of C.
Case C = t: Since (σ, κ ∪ {C}) is a state and σ(v(C)) 6= 1, we
necessarily have σ(v(C)) = σ(t) of the form L = [C1; . . . ;Cn]. We
find that S(σ) ∪ κ ∪ {t} = S(σ{t → 1}) ∪ κ ∪ {t ⇒ C1, . . . , t ⇒
Cn} ' S(σ{t→ 1})∪κ∪{C1, . . . , Cn}. Hence, we see that (σ{t→
1}, κ ∪ {C1, . . . , Cn}) is a state, and σ{t → 1} is strictly smaller
than σ. We conclude this case by applying n times the global
induction hypothesis (in trigger∗).
Case C = t⇒ C ′: Consider first the case where t = v(C ′). The
long constraint C is then true for any congruence, hence S(σ) ∪
κ ∪ {C} ' S(σ) ∪ κ, and (σ, κ) is indeed a state.

Consider now the general case. By using the assertion over
extend, we obtain that (σ′, κ ∪ {t ⇒ C ′}) is a state, with t ∈
Dom(σ′) and σ′ ≤ σ. Hence the pattern matching is exhaustive. If
σ′(t) = 0, then JSK(t) = JS(σ′) ∪ κ ∪ {t⇒ C ′}K(t) = 0, therefore
S(σ′) ∪ κ ∪ {t ⇒ C ′} ' S(σ′) ∪ κ. Hence we find that (σ′, κ) is a
state. If σ′(t) = 1, then JSK(t) = JS(σ′) ∪ κ ∪ {t⇒ C ′}K(t) = 1,
therefore S(σ′)∪κ∪{t⇒ C ′} ' S(σ′)∪κ∪{C ′}. Hence we find that
(σ′, κ∪{C ′}) is a state. We can apply the global or local induction
hypothesis, whether σ′ is strictly smaller than that σ or not (and
then C ′ is strictly smaller than C). Finally, if σ′(t) = [C1; . . . ;Cn],
then S(σ′) ∪ κ ∪ {t ⇒ C ′} = S(σ′{t → C ′ :: L}) ∪ κ, therefore
(S(σ′{t→ C ′ :: L}), κ) is a state.
Case C = φ1 ∧ φ2 ⇒ C ′: We find that S(σ)∪κ∪{C} ' S(σ)∪κ∪
{φ1 ⇒ (φ2 ⇒ C ′)}. Hence (σ, κ ∪ {φ1 ⇒ (φ2 ⇒ C ′)}) is a state.

138 Chapter 7. Subtyping algorithm

Furthermore, the constraint φ1 ⇒ (φ2 ⇒ C ′) is strictly smaller
than C, with the order we have chosen over the constraints (the
number of symbols ∧ is strictly decreasing). We conclude this case
by applying the local induction hypothesis.
Case C = φ1 ∨ φ2 ⇒ C ′: We find that S(σ)∪κ∪{C} ' S(σ)∪κ∪
{φ1 ⇒ C ′, φ2 ⇒ C ′}. Hence (σ, κ ∪ {φ1 ⇒ C ′} ∪ {φ2 ⇒ C ′}) is a
state, and we conclude this case by applying twice the induction
hypothesis (the first time, it is the local induction; the second
time, it is either the local or global induction, whether σ is strictly
decreasing or not during the first call).
Case C = 0⇒ C ′: We find that S(σ)∪κ∪{C} ' S(σ)∪κ, therefore
(σ, κ) is a state.
Case C = 1⇒ C ′: We find that S(σ)∪κ∪{C} ' S(σ)∪κ∪{C ′},
therefore (σ, κ ∪ {C ′}) is a state. We conclude by local induction
hypothesis. 2

Remark 7.32 In the proof, we see that, as it is presented, the algorithm in-
cludes two optimizations that are in fact optional:
— in the definition of extend, we can output σ′ even though may outputs

false;
— in the definition of trigger′(σ, t ⇒ C), we can ignore the special case

t = v(C).

7.1.4 Application: emptiness checking for a tree automa-
ton

We now give a simple example of application of our inductive predicate com-
putation algorithms. Consider binary trees, whose leafs are labeled by symbols
from a finite alphabet Σ (the nodes have no labels). A tree automaton is a pair
(Q,R), where Q is a finite set of states, and R is a finite set of transitions of
the form a → q (a ∈ Σ, q ∈ Q) or (q1, q2) → q (q, q1, q2 ∈ Q). Each state q
defines in the classic way a set of regular trees, which we denote by JqK. We are
interested in whether JqK = ∅ or not, for a given state q.

It is easy to see that the predicate JqK 6= ∅ is inductively defined by:

JqK 6= ∅ ⇐⇒

 ∃a. (a→ q) ∈ R
∨
∃(q1, q2). ((q1, q2)→ q) ∈ R ∧ Jq1K 6= ∅ ∧ Jq2K 6= ∅

This fits well into the formalism introduced. We take i = Q, and:

Φ(q) =
∨

(a→q)∈R

1 ∨
∨

(q1,q2)→q∈R

q1 ∧ q2

If the automaton is given in a descending way (top-down), that is, if we can
obtain for each q the set of transitions with target q in linear time in the size
of the result, then we can prove that the non-backtracking algorithm gives a
linear time algorithm (hence optimal) in relation to the size of the automaton
(number of states + number of transitions). This is a known result, but it is
usually achieved by a bottom-up method (by saturating the set of states q such
that JqK 6= ∅); the advantage of using a top-down method is to be able to ignore

7.2. Subtyping algorithm 139

certain states: those that are inaccessible, of course, but also, for a transition
(q1, q2) → q, the state q2 when we find that Jq1K = ∅. This is particularly
important when the automaton is not given explicitly and the computation of
its states and transitions is costly.

7.2 Subtyping algorithm

Now let us see how to apply the algorithms of the previous section to compute
the subtyping relation in universal models. Taking a universal model J_K, we
will denote by ≤ the subtyping relation it induces. We obviously reduce the
problem to emptiness checking, finding that t1 ≤ t2 ⇐⇒ Jt1\\\t2K = ∅. The
starting point is Lemma 4.27, that can be rewritten in the following way. Let t
be a type and i a socle that contains it. Then:

JtK 6= ∅ ⇐⇒ ∀S ⊆ i. S ⊆ ES ⇒ t 6∈ S

We associate to a subset S ⊆ i the function ρS : i → {0, 1} defined by
ρS(t) = 1 ⇐⇒ t 6∈ S (characteristic function of the complement). For any
t ∈ i, we can deduce (see below) from the definition of ES a boolean formula
Φ(t) such that:

ρES(t) = 1 ⇐⇒ ρS � Φ(t)

We then consider the system of constraints:

S = {Φ(t)⇒ t | t ∈ i}

Hence:

S ⊆ ES ⇐⇒ ρS � S

therefore:

JtK 6= ∅ ⇐⇒ ∀ρ � S. ρ(t) = 1

therefore:

JtK 6= ∅ ⇐⇒ JSK(t) = 1

We can then use one of the algorithms presented in the previous section to
compute this predicate JtK 6= ∅. The set i can be very large, but algorithms
will generally only consider part of it. Similarly, the formulas Φ(t) are complex,
but since the algorithms do not necessarily consider them entirely, it may be in
our best interest to build them lazily.

Now let us explain the definition of the Φ(t) formulas. We simply follow
Definition 4.11. To avoid confusion between logical operators ∨,∧ and boolean
operators on types ∨∨∨,∧∧∧, we will write [t] instead of t to denote the variable
associated with the type t (which intuitively corresponds to the predicate stating
that the type t is not empty).

140 Chapter 7. Subtyping algorithm

Φ([t]) ::=
∨

(P,N)∈t
u | P⊆Tu

Φu(P,N)

Φbasic(P,N) ::=

 0 if C ∩
⋂
b∈P

BJbK ⊆
⋃
b∈N

BJbK

1 otherwise

Φprod(P,N) ::=
∨

N ′⊆N∩Tprod

[∧∧∧
t1×××t2∈P

t1\\\
∨∨∨

t1×××t2∈N ′
t1

]
∧ ∧∧∧

t1×××t2∈P
t2\\\

∨∨∨
t1×××t2∈N\N ′

t2

Φfun(P,N) ::=
∧

t′1→→→t′2∈N

∨
P ′⊆P

[
t′1\\\

∨∨∨
t1×××t2∈P ′

t1

]
∧

1 if P = P ′ ∧∧∧
t1×××t2∈P\P ′

t2

\\\t′2
 if P 6= P ′

Implementation We have chosen to present separately our generic algo-
rithms to compute predicates defined inductively by boolean formulas, and
the function Φ that generates the subtyping predicate (in fact, the negation
of emptiness checking). A naive implementation would consist of effectively
manipulating syntactic terms to represent boolean formulas Φ([t]), and using
generic implementations of the algorithms of the previous section (with or with-
out backtracking). In fact, by specializing these algorithms with the particular
definition of Φ, we can avoid producing these terms (which are immediately de-
constructed by the algorithms). The formulas then correspond to checkpoints
of the implementation. For the algorithm without backtracking, however, we
sometimes have to store constraints in the table σ; in practice, such a constraint
may be represented as a closure obtained by the partial application of trigger
to the constraint.

7.3 Variant and optimization
7.3.1 Other formulas
The formulas obtained in the previous section, which come from the definition of
a simulation, ultimately come from the set-theoretic result stated in Lemma 4.6.
We will now show how, starting from a different set-theoretic property, we can
get an algorithm that is potentially more efficient.

Lemma 7.33 Let X,X ′ ⊆ D1, Y, Y ′ ⊆ D2. Then:

(X × Y)\(X ′ × Y ′) = ((X\X ′)× Y) ∪ (X × (Y \Y ′))

7.3. Variant and optimization 141

Consider now a type t, and (P,N) ∈ t, with P ⊆ Tprod. Writing:

P = {t11×××t12; . . . ; tn1×××tn2}

N ∩ Tprod = {s1
1×××s1

2; . . . ; sm1 ×××sm2 }
Writing t1 =

∧∧∧
i=1..n t

i
1 and t2 =

∧∧∧
i=1..n t

i
2. We study the question of

whether the following is true:

(∗) Jt1K× Jt2K ⊆
⋃

i=1..m
Jsi1K× Jsi2K

Clearly, if Jt1K = ∅ or Jt2K = ∅, then the assertion (∗) is true. Otherwise, if
m = 0, the assertion is false, and if m 6= 0, we use Lemma 7.33 (by isolating the
first term of the union), and we obtain that (∗) is true if and only if the two
following assertions are true:

Jt′1K× Jt2K ⊆
⋃

i=2..m
Jsi1K× Jsi2K

Jt1K× Jt′2K ⊆
⋃

i=2..m
Jsi1K× Jsi2K

where t′1 = t1\\\s1
1 and t′2 = t2\\\s1

2. Each of these two assertions is in the same form
as (∗). This decomposition can therefore be continued for each of the products
si1×××si2. This gives an alternative definition of the set ES, and therefore different
formulas Φ(t):

Φprod(P,N) ::= [t1] ∧ [t2] ∧ Φ′prod(t1, t2, N ∩ Tprod)
where:

t1 =
∧∧∧

t1×××t2∈P
t1

t2 =
∧∧∧

t1×××t2∈P
t2

and the formulas Φ′prod(t1, t2, N) are defined by:

Φ′prod(t1, t2, ∅) ::= 1

Φ′prod(t1, t2, {s1×××s2} ∪N ′) ::=

[t1\\\s1] ∧ Φ′prod(t1\\\s1, t2, N

′)
∨

[t2\\\s2] ∧ Φ′prod(t1, t2\\\s2, N
′)

(the choice of s1×××s2 in N can be arbitrary)
We can see these formulas as binary trees. Hence for N = {s1

1×××s1
2; s2

1×××s2
2},

the tree is:

[t1] ∧ [t2]

uu))
[t1\\\s1

1]

zz ""

[t2\\\s1
2]

|| $$
[t1\\\s1

1\\\s2
1] [t2\\\s2

2] [t1\\\s2
1] [t2\\\s1

2\\\s2
2]

142 Chapter 7. Subtyping algorithm

The corresponding boolean formula can be interpreted as the existence of a
branch whose nodes are all true. We immediately see that these new formulas
allow for some significant pruning: as soon as a node is false, there is no need to
consider the corresponding subtree (and the algorithms of the previous section
will take this pruning into account).

We can introduce an additional optimization to this presentation, whose mo-
tivation comes from the following set-theoretic property, that completes Lemma 7.33.

Lemma 7.34 Let X,X ′ ⊆ D1, Y, Y ′ ⊆ D2. If we have X ∩X ′ = ∅ or Y ∩Y ′ =
∅, then:

(X × Y)\(X ′ × Y ′) = (X × Y)

This suggests taking:

Φ′prod(t1, t2, {s1×××s2} ∪N ′) ::= Φ′prod(t1, t2, N ′)

instead of the generic formula for Φ′prod(t1, t2, {s1×××s2} ∪N ′), when we already
know that Jt1∧∧∧s1K = ∅ or that Jt2∧∧∧s2K = ∅, based on the current assumptions of
the algorithms (for the algorithm with cache, by considering the set of negative
assumptions, and for the algorithm without backtracking, by considering the
table σ).

For example, let us take back the example with N = {s1
1×××s1

2; s2
1×××s2

2}. If we
already know (ou are assuming) that, say, Jt1∧∧∧s1

1K = ∅, then the decision tree
becomes:

[t1] ∧ [t2]

zz $$
[t1\\\s2

1] [t2\\\s2
2]

Similarly, if we know that Jt1∧∧∧s2
1K = ∅, or that J(t2\\\s1

2)∧∧∧s2
2K = ∅, then the

decision tree becomes:

[t1] ∧ [t2]

uu &&
[t1\\\s1

1]

zz ""

[t2\\\s1
2]

[t1\\\s1
1\\\s2

1] [t2\\\s2
2]

Note that in the case Jt1∧∧∧s2
1K = ∅, it would have been smarter to consider the

product s2
1×××s2

2 before s1
1×××s1

2, which would have given the decision tree:

[t1] ∧ [t2]

zz $$
[t1\\\s1

1] [t2\\\s1
2]

Generally, even without this optimization, it is best to first consider the (set-
theoretically) "largest" products of N , so as to cut the path of the decision trees
higher. Hence we could imagine using heuristics (that quickly estimate a certain
measure of the "size" of types) to decide in which order to consider the products
N . We have not obtained any results in this direction.

7.3. Variant and optimization 143

Finally, let us note that everything that has been said in this section also
applies mutatis mutandis to the formulas Φfun, that also comes from Lemma 4.6
(via Lemma 4.9).

7.3.2 Approximations
We have seen how to modify the boolean formulas that decide whether a type is
empty or not, in order to optimize the subtyping algorithm. Another approach
consists in searching for approximations, that is, necessary conditions and suf-
ficient conditions, for a type to be empty. This can short-circuit the generic
algorithm in simple and typical cases. Assuming that we have two systems of
constraints over the variables [t] (for t in a given socle), says, S0 and S1 that
approximate the subtyping relation:

JS0K(t) = 0⇒ JtK = ∅

JS1K(t) = 1⇒ JtK 6= ∅

We assume that these systems are given by formulas:

Si = {Φi(t)⇒ t | t ∈ i}

If the predicates JS0K and JS1K are way easier to compute than JSK, we can
replace Φ(t) by:

Φ′(t) = JS1K(t) ∨ (JS0K(t) ∧ Φ(t))

Therefore, we use complex formulas for Φ(t) only when the approximation are
not enough to check that JtK = ∅.

Eventually, we can nest the computation of JS0K, JS1K and JSK, by using
mutually recursive systems (formally, each type t results in three variables
[t], [t]0, [t]1, and we use a unique function from variables to boolean formulas).

Here is a typical example of approximation. Consider this instance of sub-
typing:

t×××s ≤
∨∨∨

i=1..n
ti×××si (∗)

Clearly, to have (∗), we only need t ≤ ti0 and s ≤ si0 for a certain i0. Conversely,
a necessary condition to get (∗) is to either have t ≤ 0, or the conjunction of
t ≤

∨∨∨
i=1..n ti and of s ≤

∨∨∨
i=1..n si. These approximations induce the definition

of systems of constraints S0 and S1, whose smallest fixed points are easier to
compute than the one of S.

144 Chapter 7. Subtyping algorithm

145

Chapter 8

Pattern matching
compilation

In this chapter, we study the implementation of pattern matching (Chapter
6). Given a value v and a pattern p, it consists in computing the result v/p
of matching v to p. We study the situation at compile time: we know p in
advance, which allows us to perform some possibly expensive computations in
order to prepare the efficient evaluation of the pattern match v/p for some values
v available at runtime.

Consider the evaluation of the expression match e with p1 → e1 | p2 → e2.
Once e has been reduced to a value v, we have, according to the semantics of
the construction, to compute v/p1, and then eventually v/p2. We will develop
techniques to efficiently evaluate several patterns on the same value in parallel.

We are mainly interested in the structural aspect of pattern matching, that
is, we assume that we can efficiently evaluate type test expressions for "simple"
t types, i.e. such that t∧∧∧1prod ' 0 (where 1prod = 1×××1). We see values
as binary trees whose leaves are constants or abstractions (i.e. elements of
J1\\\1prodK). Internal nodes (and therefore sub-trees) correspond to sub-values.
For any value v = (v1, v2), we see v1 (resp. v2) as the left sub-tree (resp. right).
A value is said to be simple if it is not a pair.

Every pattern considered in this chapter is assumed to be in normal form,
within the meaning of Section 6.5.2. In particular, all the types that appear
inside of patterns are simple. We fix a G′-basis B (still within the meaning
of Section 6.5.2), and we will only study patterns σ(q) for q ∈ B, and their
sub-patterns. There is only a finite number of such patterns.

We write v/q instead of v/σ(q), *q+ instead of *σ(q)+, and Var(q) instead of
Var(σ(q)).

8.1 Naive evaluation
The semantics of pattern matching (Figure 6.1) directly gives a naive algorithm
to compute pattern matches, by induction on the lexicographically ordered pair
(v, p). To compute v/p1|||p2, we start by computing v/p1, and we only compute
v/p1 if the result is Ω. Similarly, to compute (v1, v2)/(q1, q2), we start, for

146 Chapter 8. Pattern matching compilation

example, by computing v1/σ(q1) and we only compute v2/σ(q2) if the result is
not Ω.

8.2 Optimization ideas
Ignore a sub-tree A first optimization from the naive algorithm consists in
detecting the patterns p such that *p+ ' 1 and Var(p) ' ∅; when evaluating
v/p for such a pattern p, we can completely ignore the sub-tree v and directly
output the result {}.

Ordering computations When computing v/p1|||p2, the choice of starting
with p1 is quite natural given the first-match policy (if p1 succeeds, it is not
necessary to consider p2). However, it is sometimes better to start with p2, for
example if *p1 + ∧∧∧ * p2+ ' 0 (because then, if p2 succeeds, we will not have
to consider p1) and if computing v/p2 is faster than v/p1 (or if we find that
statistically v/p2 succeeds more often than v/p1).

Memoization The naive algorithm we sketched in the previous section can
be made to compute v/p several times for the same sub-value v and the same
pattern p (and the number of times it could do that is unbounded, meaning
an exponential complexity in the size of v). We can avoid these useless com-
putations with a memoization technique (by keeping track of already made
computations). This ensures a time complexity linear in the size of the value v
(because the number of different patterns is finite).

Determinization In fact, we can force the algorithm to go through each sub-
value only once at most. All we need to do is to compute in parallel all the v/q
for q ∈ B by starting from the leaves of v. Knowing the two families (v1/q)q∈B
and (v2/q)q∈B , we can easily compute ((v1, v2)/q)q∈B . This corresponds to the
classic determinization algorithm for bottom-up tree automata. This evaluation
technique is of course very costly, because we must go through every node of the
tree (we cannot ignore a sub-tree), and we have to do the same computations
everywhere, although for some value (v1, v2) and pattern (q1, q2), we only need
v1/q1 and v2/q2, but not v1/q2 or v2/q1. So we are doing a lot of useless
computations.

Top-down determinization It is possible to refine the determinization tech-
nique, by computing in parallel not all of the v/q, but only a certain number.
If we have to compute (v/q)q∈R for R ⊆ B and v = (v1, v2), then we compute
(at compile time) two sets R1 ⊆ B and R2 ⊆ B such that (v/q)q∈R can be
computed only using (v1/q)q∈R1 and (v2/q)q∈R2 . To minimize the number of
computations that need to be done for every sub-tree, we try to take R1 and
R2 as small as possible. For example, if R = {q0}, σ(q0) = (q1, q

′
1)||| . . . |||(qn, q′n),

then we can take R1 = {qi | i = 1..n}, and R2 = {q′i | i = 1..n}.

Lateral propagation Let us continue the idea of the previous paragraph.
Since the computations of (v1/q)q∈R1 and of (v2/q)q∈R2 will be done sequen-
tially, then can make, say, R2, depend from the result of (v1/q)q∈R1 (rather than

8.2. Optimization ideas 147

from the fact that every v1/q is either Ω or not). In the previous paragraph
example, we could take R1 = {qi | i = 1..n}, and R2 = {q′i | v1/qi 6= Ω}. Of
course, the symmetric choice is also valid (to start with v2, and make R1 depend
from the result).

Determinization ? Even when applying the ideas of the two previous para-
graphs, determinization can induce some useless computations. If σ(q0) =
(q1, q

′
1)|||(q2, q

′
2), it may be best, instead of evaluating q1 and q2 in parallel on

the left sub-tree, to start with q1, and if successful, to continue with q′1 on the
right sub-tree. We only consider q2 if one of these computations fail, which
can be faster. There is a part of heuristics in choosing between one approach
or the other (determinization or sequential evaluation), because the best choice
depends on the data actually present during execution.

Taking types into account We do not usually need to evaluate v/p for every
value v. Indeed, the static type system of the language gives a type to the inputs
of the pattern match. We can assume that v is in a certain type t0. This static
information can help avoid some unnecessary computations. For example, for a
leaf, we can avoid a type test for t (a simple type) if the type information t0 at
this level is such that t0 ≤ t (then the test will necessarily succeed). This can
be generalized to the case of an arbitrary p such that t0 ≤ *p+ and Var(p) = ∅.
Similarly, if t0∧∧∧ * p+ ' 0, we can completely ignore the corresponding sub-tree
because the result will necessarily be Ω.

When evaluating v/p1|||p2 with some static information, we can assume, in-
dependently from the evaluation order (between p1 and p2) and from a possible
computation in parallel (determinization), that when computing p2 we have the
static information t0\\\ * p1+. This might simplify the computation (compared to
the mere static information t0). Indeed, if the additional assumption we made
(that the value is in ¬¬¬ * p1+) is wrong, then the result of this computation will
be ignored anyway, hence it is acceptable to output a wrong result for v/p2.

Therefore we interpret the static information t0 not as a guarantee that the
value v is in Jt0K, but as the contract that demands a correct result only when
that condition is achieved (and authorizes any outcome otherwise).

To compile the pattern matching expression match e with p1 → e1 | p2 →
e2 with an input type1 t0, we can compute p1 and p2 in parallel (or not); for p1,
the static information is t0 and for p2, we take t0\\\ * p1+.

Type propagation The static information gets propagated to the sub-values.
So, knowing that v = (v1, v2) is in t0, we then also know that v1 is in π1[t0∧∧∧1prod]
and that v2 is in π2[t0∧∧∧1prod].

During the evaluation of pattern matching, the computations made allow
to gain information on the type of the value and of its sub-values, and thus
to refine the static information. For example, if we compute v1/q1 on the left
sub-tree, and it fails, we then know that the value v = (v1, v2) is not only of
type t0 (a priori information), but also of type ¬¬¬(*q1 +×××1), which can be used
for further computations over v (and v1). If the computation of v1/q1 succeeds,

1A pattern matching expression can be typed several times by the typing algorithm, if it
is inside of an overloaded function. In that case, the type t0 is the union of all the types
computed for the expression e.

148 Chapter 8. Pattern matching compilation

then we know that v is also of type *q1+×××1, which might provide a more accurate
information for v2.

Factorization of captures In some cases, to compute v/p, we can completely
ignore v. We have seen that it is the case if the static information t0 that we
have over v is such that t0∧∧∧*p+ ' 0 (the result is then Ω), or such that t0 ≤ *p+
and Var(p) = ∅ (the result is then {}). When t0 ≤ *p+, but Var(p) 6= ∅, the
result can still sometimes be directly computed, for example if p is of the form
x1&&&x2&&& . . . xn&&&p0, with Var(p0) = ∅ (or by replacing the xi with (xi := ci)). It
may be necessary to rewrite the pattern p to put it in this form. For example,
if σ(q) = (q, q)|||x, then σ(q) ' x. We also may have to consider the type t0. For
example, if p = (q0, q1) with σ(q0) = x, σ(q1) = (x := c) and t0 = 1×××bc, then
we can replace p by x.

Even if t0 6≤ *p+, we might want to "pull up" the captures inside the pat-
terns, to simplify computations in the sub-trees. For example, if σ(q0) =
(q1, q0)|||((x := c)&&&bc), σ(q1) = x&&&t1, then we can replace σ(q0) by x&&&q′0 where
σ(q′0) = (q′1, q′0)|||bc, σ(q′1) = t1. This avoids having to rebuild already existing
pairs.

Merging patterns Consider an alternation pattern (q1, q2)|||(q3, q4). If q1 and
q3 are equivalent according to the static information that we have (i.e. for any
value in π1[t0], they output the same result), then we can merge the terms of
the alternation into (q1, q) with σ(q) = q2|||q4. Indeed, computing a result for
q might be simpler than computing a result for q2 and for another q4, as we
would do in the original pattern. For example, if σ(q2) and σ(q4) do not have
any variables and *σ(q2)+ = ¬¬¬ * σ(q4)+, then computing a result for q is trivial,
while computing the same result for q2 alone might be complicated.

8.3 Formalization
Our algorithm to compile patterns is not rigid. Indeed, as we have seen in
the previous section, some choices can only be done through heuristics. To
experiment several heuristics, either dynamically or by using statistical data
collected from previous executions (profiling), we will set up a formalism that
will express the different optimizations and strategies presented above.

We still fix a G′-basis B (in the meaning of Section 6.5.2). We also fix a
socle i, that will allow us to express the static information t0. We assume that
i contains 1prod, as well as all the other *p+ for the sub-patterns p of the σ(q)
(q ∈ B).

We write p t0−→ x the predicate:

(x ∈ Var(p)) ∧ (∀v ∈ Jt0∧∧∧ * p+K. (v/p)(x) = v)

and p t0−→ (x := c) the predicate:

(x ∈ Var(p)) ∧ (∀v ∈ Jt0∧∧∧ * p+K. (v/p)(x) = c)

We will give algorithms to compute these predicates in Section 8.4 , which are
used to express the fact that a capture variable (or a pattern constant) can be
factorized inside of a pattern.

8.3. Formalization 149

8.3.1 Queries
A query is the specification of a computation to be performed on a value. In the
case of the naive evaluation, we can identify a query to a pattern node q. To
be able to do several computations in parallel (determinization), we must have
queries with several nodes. To be able to simplify the computations by taking
into account an assumption on the type of the input vale, we associate to each
node q of the query a type t0. It is possible to have different types for each
node of the query. Indeed, as we have seen earlier, this type t0 is not a strong
constraint on the input value: the value might not be in t0, but then we would
be free to output any result for the corresponding computation Finally, in order
to factorize captures, we can take the restriction of a node q to a certain set of
variables X ⊆ Var(q).

Definition 8.1 (Queries) A good triplet is a triplet (p, t0, X) where p is a
pattern built over B, t0 ∈ i and X ⊆ Var(p).

An atomic query r is a triplet (q, t0, X) with q ∈ B, t0 ∈ i, and X ⊆
Var(q). We write Var(r) = X and σ(r) the good triplet (σ(q), t0, X).

A query R is a finite set of atomic queries.

Lemma 8.2 There is only a finite number of queries.

Proof: The sets B and i are finite. 2

8.3.2 Results
Definition 8.3 An atomic result r for some finite set of variables X is either
a function from X to values, or Ω. We sometimes write rX to recall the support
of r.

If r is a result for X and X ′ ⊆ X, we write r|X′ the restriction of r to X ′
(Ω|X′ = Ω, γ|X′ = {x 7→ γ(x) | x ∈ X ′}).

An atomic result for some atomic query r is an atomic result for Var(r).
A result R for some query R is a family R = (rr)r∈R of atomic results for

each of the components. We also write Dom(R) = R.

The only atomic result for R = ∅ is written R∅.

Definition 8.4 (Correct results) An atomic result r for X is said correct
for some good triplet (p, t0, X) if:

v ∈ Jt0K⇒ r = (v/p)|X

We then write v r : (p, t0, X).
We define the correction of an atomic result r for some query r and some

value v by:
v r : r ⇐⇒ v r : σ(r)

We define the correction of a result R = (rr)r∈R for some query R and some
value v by:

v R ⇐⇒ ∀r ∈ R. v rr : r

The following lemma is trivial to establish.

150 Chapter 8. Pattern matching compilation

Lemma 8.5 For any value v and any atomic query r or any query R, there
exists (at least one) result correct for v.

We are trying to efficiently compute one result correct for some given query
R and value v.

Definition 8.6 If R1 and R2 are two results, we write R1 ∪ R2 the result of
domain Dom(R1) ∪Dom(R2) defined by:

(R1 ∪ R2)r =
{

(R1)r if r ∈ Dom(R1)\Dom(R2)
(R2)r if r ∈ Dom(R2)

8.3.3 Query compilation
The finiteness property of the number of queries allows us to place ourselves in
a compilation situation: each query R will give rise, in the generated code, to
a function that associates to a value v a correct result for R over v. To do so,
it can apply queries a finite number of times on the sub-values v1 and v2 when
v = (v1, v2). This corresponds to recursive calls between the different functions
associated with the requests, and termination is guaranteed (because the values
are finite trees). Overall, we can see the evaluation of pattern matching on
a value as the traversal of a tree (value) by a tree automaton, whose states
correspond to queries.

Of course, the number of requests, though finite, is gigantic (exponential in
the product of the cardinal of B, times the cardinal of i, times the exponential
of the number of variables), but in practice, we only generate the code corre-
sponding to queries that might be used, and this number is generally reasonable.

The code in charge of evaluating the queries has the following form (in
pseudo-ML):

let rec evalR1 v = . . .
and evalR2 v = . . .
. . .
and evalRn

v = . . .

We can introduce some amount of memoization for the functions associated
with queries, or for some of them (it is a heuristic choice). We only have to keep
track of already-computed results, and if a query must be evaluated again on a
previously considered value, then it can output the memoized result.

We still have to define the . . . in the pseudo-code above, that is, the way
to evaluate a query R over a value v. There are two cases. First, it may be
possible to compute a correct result without considering the form of the value
v. That is the case if for every atomic queries r = (q, t0, X) in R, we have :
— either t0∧∧∧ * q+ ' 0;
— or t0 ≤ *q+ and all the variables x ∈ Var(q) can be factorized (σ(q) t0−→ x

or σ(q) t0−→ (x := c) for some constant c).
In both cases, we can compute a correct result for r without considering v.

Otherwise, we have to distinguish according to the form of v: constant,
abstraction or pair. The pseudo-code of the function evaluating the query R
will then have the form:

8.3. Formalization 151

evalR v = match v with
| (v1,v2) -> . . . (* Code for the pairs *)
| c -> . . . (* Code for the constants *)
| f -> . . . (* Code for the abstractions *)

If v is a simple value (constant or abstraction), we have to do a certain
amount of type tests over v, according to the patterns t that appear in the
σ(q) (for (q, t0, X) ∈ R). We see t as a boolean combination of atoms: t '
∨∨∨(P,N)∈t(∧∧∧a∈Pa)∧∧∧(∧∧∧a∈B¬¬¬a). By using the fact that v ∈ Jt1∨∨∨t2K ⇐⇒ (v ∈
Jt1K) ∨ (v ∈ Jt2K) and some similar properties for t1∧∧∧t2 and ¬¬¬t, it all comes
down to type tests with atomic types a. It is possible to take into account
the static information of atomic queries to optimize these tests (we can know
whether they will succeed or fail, only by looking at the static information t0).
If v and a do not have the same kind, the test fails. If v is a constant and a is an
atomic base type, we can use several dispatch techniques, according to the base
types considered (for example, research trees, tries, . . .). If v is an abstraction
µf(t1→→→s1; . . . ; tn→→→sn).λx.e and a is an arrow type, we use the equivalence:

v ∈ JaK ⇐⇒
∧∧∧

i=1..n
ti→→→si ≤ a (∗)

Hence, we only need to extract the interface of the function. If we assume to
be working in a closed world, then we know the full set of abstractions of the
program, and all the type tests that could be done on the interfaces of these
abstraction. It is possible to precompute the tests (∗) for all the abstractions
and all the type tests on arrow types. This allows, for example, to keep only an
integer at runtime to represent the interface of a function and to avoid subtyping
tests.

In the rest of this chapter, we only study the case of a pair value v = (v1, v2).
We then have to do some computations on the sub-values v1 and v2, that is, to
apply some R′ sub-queries to them (by calling the functions evalR′). Each sub-
query collects information that is relevant to the computation to be done. When
enough information is available, we can finally compute the result of the query
R. The selection of sub-queries to be evaluated on the sub-values is sequential:
if the first sub-query can only depend on R, the choice of the next sub-queries
can depend on the results of the sub-queries previously evaluated. Specifically,
this choice may depend on the success or failure of each atomic request of the
sub-requests evaluated. We have to choose a strategy to make that choice. In
the following sections, we formalize a target language used to formalize these
sub-query choices.

8.3.4 Target language: syntax
Definition 8.7 (Static results) The set of static atomic results is {Ω,X}.
We use the letter r to denote a static result.

A static query result is a partial function from the set of atomic queries
to {Ω,X}R. We denote by R a static query result (rr)r∈R. We set Dom(R) = R,
and we write R : R to denote that Dom(R) = R. We denote by R∅ the unique
static result for the empty query.

The function |_| associates to an (atomic) result a static (atomic) result
defined by: |Ω| = Ω, |γ| = X, |(rr)r∈R| = (|rr|)r∈R.

152 Chapter 8. Pattern matching compilation

We will represent by a pair I = (R1, R2) the sub-queries evaluated on the
sub-values. We write I∅ = (∅, ∅). We write I ∪ (1 : R) = (R1 ∪ R,R2) and
I ∪ (2 : R) = (R1, R2 ∪R).

Definition 8.8 (Target language) A target expression for a set of vari-
ables X and a pair of sub-queries I = (R1, R2) is a term generated by the
productions:

eX,I := x where X = {x}
| rX

| (i, r|X) where i = 1..2, r ∈ Ri, X ⊆ Var(r)
| eX1,I

1 ⊕ eX2,I
2 where X = X1 ∪X2

where rX is an atomic result for X, i = 1..2, r is an atomic query, X a finite
set of variables.

A strategy for some query R0 and a pair of sub-queries I is a finite term
generated by the productions:

sR0,I := (eVar(r),I
r)r∈R0

| (i, R) 7→ (sR0,I∪(i:R)
R)R:R

where i = 1..2, R is a query, and the er are target expressions.

The exponents are there to ensure well-formedness constraints over the in-
troduced objects. We sometimes omit them when there is no ambiguity.

A strategy abstractly represents a piece of code responsible for calculating
a correct result for a query R0 on an input value v = (v1, v2). This code has
the form of a finite tree. An internal node (i, R) 7→ (sR)R:R corresponds to the
evaluation of the sub-query R over the value vi. The family (sR)R:R tells how to
continue the computation, depending on the success or failure of each atomic
query in R. The leaves of the tree are reached when enough information is
available to compute a correct result for R0. The result for an atomic query
r ∈ R0 is computed by a target expression. The target expression rX outputs
the denoted result. The target expression x outputs the environment {x 7→ v}
where v is the current value. The target expression e1⊕e2 combines two results.
The target expression (i, r|X) uses the result of an atomic sub-query r over vi,
by restricting it to the variables of X. This result must be available, that is, it
must have been computed by the strategy during the call of a sub-query R over
vi, with r ∈ R.

8.3.5 Target language: semantics
We are going to formalize the semantics of the target language. The results
of the sub-requests evaluated during a strategy should be stored. For this we
define the concept of information packet.

Definition 8.9 (Packets) An information packet I is a pair of query results
(R1,R2). We write Dom(I) = (Dom(R1),Dom(R2)). We write I∅ the information
packet (R∅,R∅).

8.3. Formalization 153

Definition 8.10 We define the correction of an information packet (R1,R2) for
some value v = (v1, v2) by:

v (R1,R2) ⇐⇒ ∀i. vi Ri

If I = (R1,R2) is an information packet, we write I ∪ (1 : R) = (R1 ∪ R,R2)
and I ∪ (2 : R) = (R1,R2 ∪ R).

Lemma 8.11 Let v = (v1, v2) be a value and i = 1..2. If vi � R and v � I, then
v � I ∪ (i : R).

Figure 8.1 introduces two judgments that formalize the semantics of the
target language:
— Evaluation of a strategy: sR0,I

v,I
; R0, where v is a value of the form

(v1, v2), Dom(I) = I, and Dom(R0) = R0.
— Evaluation of a target expression: eX,I

v,I
; r where r is a result for X.

(∀r ∈ R0) er
v,I
; rr

(er)r∈R0

v,I
; (rr)r∈R0

(assemble)

vi R Dom(R) = R s|R|
v,I∪(i:R)

; R0

(i, R) 7→ (sR)R:R
v,I
; R0

(subreq)

x
v,I
; {x 7→ v}

(capture)

rX
v,I
; rX

(const)

I = (R1,R2) r = (Ri)r

(i, r|X) v,I; r|X
(fetch)

(∀i) ei
v,I
; ri

e1 ⊕ e2
v,I
; r1 ⊕ r2

(compose)

Figure 8.1: Semantics of the target language

The choice of a correct result for the sub-query R in rule (subreq) is arbitrary.
The non-determinism of the semantics comes solely from these choices, and the
well-formedness conditions in the syntax of the target language ensures the
absence of execution errors (that is, it is always possible to build a derivation,
for any choice of R in rule (subreq)). In particular, in rule (fetch), the result
Ri is well-defined over the atomic query r.

Definition 8.12 (Correction) We define the correction of a strategy sR0,I for
some information packet I (with Dom(I) = I) by:

I sR0,I ⇐⇒ ∀v.∀R0.

{
sR0,I

v,I
; R0

v I
⇒ v R0

154 Chapter 8. Pattern matching compilation

When I = I∅, we allows ourselves to omit it when writing this judgement.

Intuitively, the predicate I sR0,I means that we can use strategy s to
compute a result correct for the query R0 on any value of the form v = (v1, v2),
provided we already have the information packet I (correct for v). Since the
packet I∅ is correct for every value v, the predicate sR0,I

∅ means that we can
use strategy s to implement the calculation of a result correct for R0 (for pair
values).

8.3.6 Static information
Definition 8.13 A static information packet I is a pair of static query re-
sults (R1, R2). We set Dom(I) = (Dom(R1),Dom(R2)).

We write I∅ for the static information packet (R∅, R∅). If I = (R1, R2) is a
static information packet, we write I ∪ (1 : R) = (R1 ∪ R, R2) and I ∪ (2 : R) =
(R1, R2 ∪ R).

For some information packet I = (R1,R2), we denote by |I| the static infor-
mation packet (|R1|, |R2|).

Lemma 8.14 We have:

|I ∪ (i : R)| = |I| ∪ (i : |R|)

A result r correct for a value v on a good triplet (p, t0, X) gives some infor-
mation about the type of v. Indeed, if the result is Ω, the value is in ¬¬¬ * p+,
otherwise the value is in *p+. We see that it only depends on the static result
|r|. In fact, this is only true if the value is in t0, because otherwise the correct
result can be anything.

Definition 8.15 For a good triplet (p, t0, X) and a static atomic result r, we
write:

*r : (p, t0, X)+ =
{

*p +∨∨∨¬¬¬t0 if r = X
(¬¬¬ * p+)∨∨∨¬¬¬t0 if r = Ω

for an atomic query r = (q, t0, X):

*r : r+ = *r : σ(r)+

The type associated with the static result R = (rr)r∈R of a query R is defined
by:

*R+ =
∧∧∧
r∈R

*rr : r+

The type associated with the static packet I = (R1, R2) is defined by:

*I+ = *R1 +××× * R2+

Remark 8.16 The types *R+ are in i. This is not necessarily the case for the
types *I+ (socles are not stable by constructor ×××).

Lemma 8.17
(v r : (p, t0, X)) =⇒ v ∈ J*|r : (p, t0, X)|+K
(v r : r) =⇒ v ∈ J*|r : r|+K
(v R) =⇒ v ∈ J*|R|+K
((v1, v2) I) =⇒ (v1, v2) ∈ J*|I|+K

8.3. Formalization 155

A static information t0 on a value v = (v1, v2) gives information over v1
and v2, that is, the types π1[t0] and π2[t0]. If we take into account a static
information packet I, we can refine the information t0 into t′0 = t0∧∧∧ * I+. This
type is not necessarily in i (Remark 8.16). However, the projections π1[t′0] and
π2[t′0] can be represented by types in i.

Lemma 8.18 If t0 ∈ i, I is a static information packet, and i = 1..2, then we
can compute a type πi[t0; I] ∈ i such that πi[t0∧∧∧ * I+] ' πi[t0; I]

Proof: Let us take, for example, i = 1. We can assume t0 ≤ 1prod
(because 1prod ∈ i). We write:

t0 '
∨∨∨

(t1,t2)∈π(t0)

t1×××t2

If I = (R1, R2), and if we write t′i = *Ri+, then *I+ = t′1×××t′2. We
have t′i ∈ i, and:

t′0 := t0∧∧∧ * I+ '
∨∨∨

(t1,t2)∈π(t0)

(t1∧∧∧t′1)×××(t2∧∧∧t′2)

Hence:

π1[t′0] '

 ∨∨∨
(t1,t2)∈π(t0) | (∗)

t1

∧∧∧t′1 ∈ i

where (∗) is the condition t2∧∧∧t′2 6' 0. 2

Remark 8.19 We easily find that πi[t0; I] is a sub-type (sometimes strict) of
πi[t0]∧∧∧ * Ri+, where I = (R1, R2).

8.3.7 Strategy development
We study how to produce correct strategies for a given query. First of all, let
us consider the construction of target expressions.

Figure 8.2 gives a method to compute, given a good triplet (p, t0, X) and
a static information packet I, a target expression eX,I that computes a result
correct for (p, t0, X). The figure defines a judgement I ` (p, t0, X) ⇒ eX,I

where I = Dom(I). It uses an auxiliary judgement I `i (q, t0, X)⇒ eX,I .
Before we state and prove the correction of the expressions produced by

this judgment, let us comment on the rules. For a good triplet (p, t0, X), the
type *I +∧∧∧t0 is the static information under which we have to compute. If that
type does not intersect with *p+, then the result Ω is correct (if the value is in
*I +∧∧∧t0, it is the real result, and otherwise any result is correct). Rules (first)
and (second) treat the case of a disjunctive pattern p1|||p2. To apply them, we
have to a priori know (that is, by knowing I) whether the first pattern succeeds
or fails. The two (factor) rules treat in particular the case of patterns x&&&p and
(x := c)&&&p, when x ∈ X (we then use (skip) when we have eliminated x from
X). They are more general because they can factorize capture variables (or
binders (x := c)). Rule (prod) treats the case of a pattern (q1, q2) We use the
auxiliary judgement `i on each side, while propagating the static information

156 Chapter 8. Pattern matching compilation

t0∧∧∧ * I +∧∧∧ * p+ ' 0

I ` (p, t0, X)⇒ Ω
(fail)

I ` (p1, t0, X)⇒ e t0∧∧∧ * I+ ≤ *p1+
I ` (p1|||p2, t0, X)⇒ e

(first)

I ` (p2, t0, X)⇒ e t0∧∧∧ * I +∧∧∧ * p1+ ' 0

I ` (p1|||p2, t0, X)⇒ e
(second)

x ∈ X p
t0∧∧∧*I+−→ x I ` (p, t0, X\{x})⇒ e
I ` (p, t0, X)⇒ x⊕ e

(factor)

x ∈ X p
t0∧∧∧*I+−→ (x := c) I ` (p, t0, X\{x})⇒ e
I ` (p, t0, X)⇒ {x 7→ c} ⊕ e

(factor)

x 6∈ X I ` (p, t0, X)⇒ e
I ` (x&&&p, t0, X)⇒ e

(skip)
x 6∈ X I ` (p, t0, X)⇒ e
I ` ((x := c)&&&p, t0, X)⇒ e

(skip)

(∀i = 1..2) I `i (qi, πi[t0; *I+], X ∩Var(qi))⇒ ei
I ` ((q1, q2), t0, X)⇒ e1 ⊕ e2

(prod)

t0 ≤ *q+
I `i (q, t0, ∅)⇒ {}

(succeed)

r = (q, t′0, X ′) ∈ Dom(Ri) t0 ≤ t′0 X ⊆ X ′

(R1, R2) `i (q, t0, X)⇒ (i, r|X)
(fetch)

Figure 8.2: Production of target expressions

on each component. This judgement `i can output {} for an atomic query
(q, t0, X) if q necessarily succeeds for any value in t0, and if, in addition, we
have X = ∅ (which may be a consequence of the use of the (factor) rules). If
one of these conditions is not true, we have to use one of the atomic sub-queries
(q′, t′0, X ′) previously evaluated over vi. We allow ourselves to have X ⊆ X ′

and t0 ≤ t′0; this means that the sub-query that we are using can do more work
than necessary for (q, t0, X), but that does not matter.

The following theorem states the correction of target expressions e produced
by the judgement I ` (p, t0, X)⇒ e.

Theorem 8.20 For every value v = (v1, v2) and every information packet I,
we have the implication:

v I
|I| ` (p, t0, X)⇒ e

e
v,I
; r

=⇒ v r : (p, t0, X)

Proof: Let v = (v1, v2) and I such that v I. Writing I = |I|.
Hence we have v ∈ J*I+K.

8.3. Formalization 157

Then we reason by induction on the derivation of I `
(p, t0, X) ⇒ e. If v 6∈ Jt0K, the assertion v r : (p, t0, X) comes
immediately. So we assume v ∈ Jt0K, and we are going to prove
that e

v,I
; (v/p)|X (which proves the result, since the semantics of

the target expressions is deterministic).
Rule (fail): since the value v is in *I + ∧∧∧t0, it is not in *p+,

therefore v/p = Ω.
Rule (first): according to the premise, we obtain that v is in

*p1+, therefore v/p1|||p2 = v/p1, which allows us to conclude by
using the induction hypothesis.

Rule (second): we obtain that v is not in *p1+, therefore
v/p1|||p2 = v/p2.

Rules (factor): as an example, let us treat the case p t0∧∧∧*I+−→ x.
We then have (v/p)|X = {x 7→ v} ⊕ (v/p)|X\{x}.

Rules (skip): If x 6∈ X, we have (v/x&&&p)|X =
(v/(x := c)&&&p)|X = (v/p)|X .

Rule (prod): we have (v/(q1, q2))|X = (v1/q1)|X∩Var(q1) ⊕
(v2/q2)|X∩Var(q2), and then we know that that vi is in πi[t0; *I+].

Finally we only have to see that if I `i (q, t0, X) ⇒ e with vi
in t0, then e

v,I
; (vi/σ(q))|X .

Rule (succeed): We have e = {} and X = ∅. However vi/σ(q)
is not Ω, because vi is in t0 ≤ *q+. Therefore (vi/σ(q))|X = {}.

Rule (fetch): Assume e = (i, r|X) with r = (q′, t′0, X ′) ∈

Dom(Ri), I = (R1, R2), and I = (R1,R2). We then have e
v,I
; r|X

where r = (Ri)r. But we assumed that v I, which implies
vi r : r. Now v is in t0, therefore it is a fortiori in t′0, hence we ob-
tain r = (vi/σ(q))|X′ . But X ⊆ X ′, therefore r|X = (vi/σ(q))|X .
2

We now consider the construction of correct strategies for a given query R0.
Figure 8.3 defines a judgement I ` R0 ⇒ sR0,I where I = Dom(I).

(∀r ∈ R0) I ` σ(r)⇒ er
I ` R0 ⇒ (er)r∈R0

(assemble)

(∀R : R) I ∪ I(i, R) ` R0 ⇒ sR

I ` R0 ⇒ (i, R) 7→ (sR)R:R
(subreq)

Figure 8.3: Strategy production

There are two ways to build a strategy. Either there is enough information
in I to compute a correct result for all atomic queries in R0, and in this case we
can apply the (assemble) rule, or we have to apply a sub-query R (to be chosen)
to vi which allows us to obtain more information (rule (subreq)), depending on
the static result that emerges.

Theorem 8.21 If I ` R0 ⇒ sR0,I , then, for any information packet I such

158 Chapter 8. Pattern matching compilation

that I = |I|, we have:
I sR0,I

In particular, if I∅ ` R0 ⇒ sR0,I , then:

 sR0,I

Proof: By induction on the derivation of I ` R0 ⇒ sR0,I . Let
v = (v1, v2), and I such that I = |I| and v I. We just have to see
that if sR0,I

v,I
; R0, then v R0.

Rule (assemble): The semantics gives R0 = (rr)r∈R0 , with

er
v,I
; rr where I ` σ(r) ⇒ er (for every r ∈ R0). Theorem 8.20

gives v rr : r, therefore v R0.
Rule (subreq): The semantics gives s|R|

v,I∪(i:R)
; R0 for a certain

result vi R with Dom(R) = R. Lemma 8.11 gives v I ∪ (i : R).
Let us take R = |R|. We find that |I ∪ (i : R)| = I ∪ (i : R), and the
premise of (subreq) which corresponds to R does give, by induction:
v R0. 2

Strategy development The systems defined in figures 8.2 and 8.3 do not
give actual constructions for the target expressions or the strategies. A strategy
development scheme is defined by:
— the way to build a target expression for some given static information

packet and good triplet (p, t0, X), when possible;
— the way to choose the sub-query (i, R) to be applied when it is not possible

to build a target expression for all the atomic queries of R with the given
static information packet.

The way to build a target expression when possible is to specify a way to
build a derivation for the judgement I ` (p, t0, X) ⇒ e. A natural approach is
to apply the rules (fail), (factor) and (succeed) as soon as possible.

We will now present a tool that makes it possible to choose the sub-queries
to apply. To do this, we will make explicit the obstacles that prevent us from
building a target expression for a good triplet (p, t0, X), and show how a partic-
ular choice of sub-queries removes these obstructions. Consider the judgement
I ` (p, t0, X) defined in Figure 8.4. The main element is rule (daemon), which
replaces the (fetch) rule when it cannot be applied.

Lemma 8.22 If I ` (p, t0, X)⇒ e and t′0∧∧∧ * I+ ≤ t0, then I ` (p, t′0, X)⇒ e.

Proof: By induction on the derivation of I ` (p, t0, X)⇒ e. 2

Lemma 8.23 Consider a derivation of I ` (p, t0, X) that does not use rule
(daemon). Then:
— either t0∧∧∧ * I+ ≤ *p+, or t0∧∧∧ * I +∧∧∧ * p+ ' 0;
— we can compute a target expression e such that I ` (p, t0, X)⇒ e.

Proof: The proof is done by induction on the derivation of I `
(p, t0, X). Rules (fail), (factor) and (skip) are immediate.

Consider rule (alt). By induction, we build two expressions ei
such that I ` (p1, t0, X) ⇒ e1 and I ` (p2, t0\\\ * p1+, X) ⇒ e2.

8.3. Formalization 159

t0∧∧∧ * I +∧∧∧ * p+ ' 0

I ` (p, t0, X)
(fail)

I ` (p1, t0, X) I ` (p2, t0\\\ * p1+, X)
I ` (p1|||p2, t0, X)

(alt)

x ∈ X p
t0∧∧∧*I+−→ x I ` (p, t0, X\{x})

I ` (p, t0, X)
(factor)

x ∈ X p
t0∧∧∧*I+−→ (x := c) I ` (p, t0, X\{x})

I ` (p, t0, X)
(factor)

x 6∈ X I ` (p, t0, X)
I ` (x&&&p, t0, X)

(skip)
x 6∈ X I ` (p, t0, X)
I ` ((x := c)&&&p, t0, X)

(skip)

(∀i = 1..2) I `i (qi, πi[t0; *I+], X ∩Var(qi))
I ` ((q1, q2), t0, X)

(prod)

t0 ≤ *q+
I `i (q, t0, ∅)

(succeed)

r = (q, t′0, X ′) ∈ Dom(Ri) t0 ≤ t′0 X ⊆ X ′

(R1, R2) `i (q, t0, X)
(fetch)

I `i (q, t0, X)
(daemon)

Figure 8.4: Target expression production skeleton

If t0∧∧∧ * I+ ≤ *p1+, then t0∧∧∧ * I+ ≤ *p1|||p2+, therefore I `
(p1|||p2, t0, X)⇒ e1. Otherwise, we have t0∧∧∧ *I +∧∧∧ *p1+ ' 0, there-
fore t0∧∧∧*I+ ≤ t0*p1+. Lemma 8.22 then gives I ` (p2, t0, X)⇒ e2,
and rule (second) can be applied: I ` (p1|||p2, t0, X)⇒ e2.

Consider rule (prod), and take ti = πi[t0; I] ' πi[t0∧∧∧*I+]. First,
we find that if I `i (qi, ti, Xi) with one of the rules (succeed) or
(fetch) (but not (daemon)), then either ti∧∧∧ * qi+ ' 0, or ti ≤
*qi+. It is trivial for rule (succeed). For rule (fetch), we take
r = (qi, t′i, X ′i) ∈ Dom(Ri) such that t′i ≤ t′i, Xi ⊆ X ′i. If (Ri)r = X,
then *Ri+ ≤ *qi+∨¬¬¬t′i; or ti ≤ *Ri+, therefore ti ≤ *qi+. If (Ri)r = Ω,
then *Ri+ ≤ (¬¬¬ * qi+) ∨ ¬¬¬t′i, therefore ti ≤ ¬¬¬ * qi+, hence finally
ti∧∧∧ * qi+ ' 0.

We have t0∧∧∧*I+ ≤ t1×××t2 and *(q1, q2)+ ' *q1+×××*q2+. Therefore
if t1 ≤ *q1+ and t2 ≤ *q2+, then t0∧∧∧ * I+ ≤ *(q1, q2)+. Otherwise,
for example if t1 ≤ ¬¬¬ * q1+, then t0∧∧∧ * I + ∧∧∧ * (q1, q2)+ ≤ ((¬¬¬ *
q1+)×××t2)∧∧∧(*q1 +××× * q2+) ' 0. 2

Remark 8.24 The converse result is also true: if I ` (p, t0, X) ⇒ e, then
we can build a derivation of I ` (p, t0, X) without using rule (daemon). We
mostly have to just erase the ⇒ e in the derivation of I ` (p, t0, X)⇒ e. Each

160 Chapter 8. Pattern matching compilation

instance of rule (first) or (second) is turned into an instance of rule (alt), and
the missing premise is obtained with rule (fail).

Lemma 8.25 For every good triplet (p, t0, X) and every static information
packet I, we can build we can build a derivation of I ` (p, t0, X).

Indeed, there is no "obstruction" thanks to rule (daemon). As for the judge-
ment I ` (p, t0, X) ⇒ e, a natural choice to build a derivation of I ` (p, t0, X)
consists in applying rules (fail),(factor) and (succeed) as much as possible.

To build a strategy for R0 from some static information packet I, we start
by building derivations for the σ(r) (for r ∈ R0), with as few rules (daemon)
as possible (this is not a hard constraint: it does not matter if we "miss" some
rules that would prevent us from using (daemon), such as factorization, it will
just produce a less efficient strategy). If we can do this without ever using
the (daemon) rule, we have succeeded, and we can build a strategy with rule
(assemble), that is, without doing any sub-queries. We just have to apply
Lemma 8.23 to build a target expression for each atomic query of R0.

Otherwise, we need to choose i = 1..2 and a query R to be applied over vi.
Let us look at what happens to the instances of (daemon) if we work not with
I, but with I′ = I ∪ (i : R) instead, where R is a static result for R. We refine
the static information: *I′+ ≤ *I+. We see that the derivations of the I ` σ(r)
trivially give derivations for I′ ` σ(r). In fact, we can replace a (daemon) rule
proving I′ `i (q, t0, X) by an instance of (fetch), as long as the atomic query
(q, t0, X) is in R (or if a query (q′, t′0, X ′) is in R with the conditions of rule
(fetch)). Indeed, if I = (R′1, R′2), we have: Dom(R′i) = Dom(Ri) ∪R.

But the more accurate static information I′ makes it possible to simplify
even more the derivations of the I ` σ(r), by allowing more uses of the rules
(factor), (fail), (succeed). In general, among the 2n static results R (where
n is the cardinal of R), there are many which are "impossible", i.e. such that
*I′+ ' 0, making it possible to immediately apply the rule (fail) for all the
atomic queries of R0.

In any case, if we choose i and R such that at least one of the (daemon)
rules can be turned into (fetch), we will be able to reduce the number (daemon)
rules used. By induction on this number, we can build a strategy for R0.

The following section gives examples of constructions.

8.3.8 Examples of constructions
Left-right strategy In a left-right strategy, we can only apply one query
on each sub-tree (left and right), and we have to start with the left sub-tree
(of course, the symmetrical choice is possible). This implements the ideas of
paragraphs "Top-down determinization" and "Lateral Propagation" from Section
8.2. Since we only visit each sub-tree once, we do not have to use memoization.

Left-right strategies have the form (1, R1) 7→ (sR)R:R1 with sR = (2, R2(R)) 7→
((eR,R′,r)r∈R0)R′:R2(R), where R1 is the query to be computed over v1 and R2(R)
is the query to be computed over v2 (it can depend on the result of R1).

To build s, we start from a derivation I∅ ` σ(r) for each r ∈ R0. We
consider all the (daemon) rules used in this derivation, with i = 1. We take as
R1 the set of all corresponding atomic queries r. For each R : R1, we simplify
the derivation obtained. All the (daemon) rules that remain are of the form

8.3. Formalization 161

I′ `2 r. We take for R2(R) the set of these atomic queries r. For each R′ : R2(R),
after simplification, we obtain derivations that do not use rule (daemon), and
we can then build the target expressions.

Iterative strategy An iterative strategy consists in only applying sub-queries
that are made of a single atomic query. Given derivations of I ` σ(r) for the
r ∈ R0, we choose an instance of rule (daemon), i.e. I `i r, and we build strategy
(i, {r}) 7→ (sR). Strategies sR are built the same, starting from I ∪ (i : R), after
simplifying the derivation, and so on. At each step, we decrease by at least 1 the
number of (daemon) rules used, which ensures the termination of the process.

A natural choice to find rule (daemon) consists in searching it first in the
derivation for p1, before the one for p2, in rule (alt). Indeed, if p1 succeeds, the
static information will be enough to ignore p2, while the converse is not true (of
course, if *p1 +∧∧∧ * p2+ ' 0, the argument does not hold).

A concrete example Let us give a concrete example of a construction strat-
egy. This example does not involve capture variables, which simplifies things
a bit (in particular, you can always do away with the (fetch) rule, and use
only (fail) and (succeed)). Let us take t0 = (t1×××t2)∨∨∨(1×××t3) where t2∧∧∧t3 ' 0,
and q such that σ(q) = (q1, q2), with Var(qi) = 0 and *qi+ = ti (we can take
σ(qi) = ti if the ti are base types, and otherwise, we can apply the normal form
decomposition from Section 6.5.2). We study the query R0 = {(q, t0, ∅)}.

Here is a derivation obtained with the rules of Figure 8.4:

I∅ `1 (q1,1, ∅)
(daemon)

I∅ `2 (q2, t2∨∨∨t3, ∅)
(daemon)

I∅ ` ((q1, q2), t0, ∅)
(prod)

We are forced to use the (daemon) rules, because there are no queries in
the initially empty static information packet, which prevents the use of the rule
(fetch), while the (succeed) rule does not apply either. To continue building
the strategy, we now have to choose between applying query R1 = {(q1,1, ∅)} to
the left sub-tree, and applying query R2 = {(q2, t2∨∨∨t3, ∅)} to the right sub-tree.

Let us look at both possibilities one after the other. We choose to start the
strategy with (1, R1) 7→ (. . .). We have to complete the There are two
possible static results R1 for R1, which correspond to the success or failure of
its unique atomic query r1. In case of failure: R1 = {r1 7→ Ω}. We then have:
*I(1, R1)+ = (¬¬¬t1|||¬¬¬1)×××1 ' (¬¬¬t1)×××1. This allows us to directly use the rule
(fail):

t0∧∧∧ * I(1, R1) +∧∧∧ * (q1, q2)+ ' t0∧∧∧((¬¬¬t1)×××1)∧∧∧(t1×××t2) ' 0

I(1, R1) ` ((q1, q2), t0, ∅)
(fail)

and we can use this derivation (with the rules of Figure 8.2) to obtain the target
expression Ω.

In case of success of r1, that is, if R1 = {r1 7→ X}, we obtain *I(1, R1)+ =
(t1|||¬¬¬1)×××1 ' t1×××1. An instance of rule (daemon) can then be eliminated, but
the second one necessarily remains:

t1 ≤ *q1+
I(1, R1) `1 (q1, t1, ∅)

(succeed)
I(1, R1) `2 (q2, t2∨∨∨t3, ∅)

(daemon)

I(1, R1) ` ((q1, q2), t0, ∅)
(prod)

162 Chapter 8. Pattern matching compilation

We then apply the query R2 on the right sub-tree, i.e. we continue the strategy
with (2, R2) 7→ (. . .). We once again have to distinguish between the success
or failure of the unique atomic query r2 of R2. If R2 = {r2 7→ Ω}, we obtain
*R2+ = (¬¬¬t2)∨∨∨¬¬¬(t2∨∨∨t3) ' ¬¬¬t2, therefore, by writing I2 = I(1, R1) ∪ I(2, R2):
*I2+ = t1×××(¬¬¬t2), which allows us to directly use the (fail) rule:

t0∧∧∧ * I2 +∧∧∧ * (q1, q2)+ ' t0∧∧∧(t1×××(¬¬¬t2))∧∧∧(t1×××t2) ' 0

I2 ` ((q1, q2), t0, ∅)
(fail)

If R2 = {r2 7→ X}, we obtain *R2+ = t2∨∨∨¬¬¬(t2∨∨∨t3) ' ¬¬¬t3, therefore, by writing
I2 = I(1, R1) ∪ I(2, R2): *I2+ = t1×××(¬¬¬t3), which allows us to replace (daemon)
by (succeed):

t1 ≤ *q1+
I2 `1 (q1, t1, ∅)

(succeed)
t2 ≤ *q2+

I2 `2 (q2, t2, ∅)
(succeed)

I2 ` ((q1, q2), t0, ∅)
(prod)

which corresponds to the target expression {} ⊕ {}, that is equivalent to {}.
Overall, by adopting the left-right approach, we have obtained the strategy:

s1 = (1, R1) 7→

 {r1 7→ Ω} 7→ Ω

{r1 7→ X} 7→ (2, R2) 7→
{
{r2 7→ Ω} 7→ Ω
{r2 7→ X} 7→ {}

Now let us consider the other possible choice, namely to start with the sub-
query R2. In case of failure, we obtain *I(2, R2)+ ' 1×××¬¬¬t2, hence directly:

t0∧∧∧ * I(2, R2) +∧∧∧ * (q1, q2)+ ' 0

I(2, R2) ` ((q1, q2), t0, ∅)
(fail)

In case of success, if R2 = {r2 7→ X}, we obtain *R2+ ' ¬¬¬t3, therefore, t0∧∧∧ *
I(2, R2)+ = t1×××t2, hence we can replace the two (daemon) rules by (succeed):

t1 ≤ *q1+
I(2, R2) `1 (q1, t1, ∅)

(succeed)
t2 ≤ *q2+

I(2, R2) `2 (q2, t2, ∅)
(succeed)

I(2, R2) ` ((q1, q2), t0, ∅)
(prod)

which again corresponds to the target expression {} ⊕ {}, that simplifies into
{}.

The strategy we have just built is:

s2 = (2, R2) 7→
{
{r2 7→ Ω} 7→ Ω
{r2 7→ X} 7→ {}

The question now is what strategy should be chosen, between s1 and s2.
There is no better choice a priori. The strategy s2 seems simpler, since it
ignores the left sub-tree in all cases, and must anyway be used in the event of
a failure of r1 if we use s1 (s2 appears as a sub-strategy of s1). But it is not
enough to say that s2 is necessarily better.

If the sub-query r1 = (q1,1, ∅) is much easier to evaluate than r2 (for example
if t1 is a base type, and in order to distinguish between types t2 and t3 it is
necessary to go deep into the value), and if r1, does fail sometimes during

8.4. Factorization of captures 163

execution, then it is better to use s1, which will sometimes avoid evaluating
r2 (compensating for the fact that when r1 succeeds, we have done a useless
computation). Another case in which it is better to use s1 is when r1 is only a
little easier to evaluate than r2, and r1 fails most of the time during execution.
Indeed, in this situation, choosing s1 makes it possible to avoid computing r2
most of the time, and even if the gain is small, it is often realized. We give a
simple probabilistic model to support these intuitions. Let us assume that the
cost of r1 is constant, denoted by C1, and that the probability of success of r1 is
0 ≤ α1 ≤ 1. Similarly, we introduce C2, the cost of r2. By considering only the
cost of sub-queries, the average cost of s1 is then α1(C1 + C2) + (1 − α1)C1 =
C1 + α1C2 (if r1 succeeds, r2 also needs be evaluated). The average cost of s2
is simply C2. Choosing s1 is therefore best as soon as:

C1 ≤ (1− α1)C2

which justifies the different cases of the informal discussion above. Of course,
the value of α1 is unknown to the compiler (it depends on the values manipu-
lated during execution), and having assumed that the cost of the sub-queries is
unfounded (it also depends on the values actually encountered). This analysis,
however, suggests that it is not possible to rely on a hypothetical concept of
optimality to choose between the various possible strategies: it is, indeed, a
heuristic choice.

Remark 8.26 Levin and Pierce [LP04] suggest a "maximum connection factor"
heuristic, which, reworded in our formalism, would suggest choosing s2 in this
example (inspired by the example presented in Figure 3 of their article).

8.4 Factorization of captures

In this section, we show how to compute the predicates p t0−→ x and p t0−→ (x :=
c) introduced in Section 8.3.

The predicate p t0−→ (x := c) is the easiest, since we can simply use the
typing algorithm for pattern matching. Indeed, by using Theorem 6.12, we find
that:

p
t0−→ (x := c) ⇐⇒ ((t∧∧∧ * p+)///p)(x) ≤ bc

and we have seen how to compute the environment ((t∧∧∧ * p+)///p).
Let us move on to the predicate p t0−→ x. We are actually going to inductively

axiomatize its negation. Consider the judgement ` (p, t0, x) defined by the
following system of rules:

x 6∈ Var(p)
` (p, t0, x)

` (p1, t0∧∧∧ * p1+, x)
` (p1|||p2, t0, x)

` (p2, t0\\\ * p1+, x)
` (p1|||p2, t0, x)

∃i. ` (σ(qi), πi[t0], x)
` ((q1, q2), t0, x)

(prod)

∀i. ` (pi, t0, x)
` (p1&&&p2, t0, x)

164 Chapter 8. Pattern matching compilation

t0 6≤ bc
` ((x := c), t0, x)

Lemma 8.27 Let p be a well-formed pattern, v ∈ *p+, and x ∈ Var(p). Then
the value (v/p)(x), seen as a binary tree, has at most as many nodes as v.

Proof: By induction on the pair (v, p), by following the definition
of the pattern matching semantics. 2

Lemma 8.28 Let q1, q2 be two pattern nodes, v a value, and x ∈ Var(q1) ∪
Var(q2). Then:

(v/(q1, q2))(x) = v ⇐⇒ v = (v1, v2) ∧ ∀i. (x ∈ Var(qi) ∧ vi = (vi/σ(qi))(x))

Proof: The implication ⇐ is trivial. Let us prove the implication
⇒. First of all, if v is not a pair, then (v/(q1, q2))(x) = Ω. So let
us assume that v = (v1, v2). If x ∈ Var(q1) ∩ Var(q2), we have
(v1, v2) = v = (v/(q1, q2))(x) = ((v1/σ(q1))(x), (v1/σ(q2))(x)),
therefore vi = (vi/σ(qi))(x). Let us show that it is impossible
to have x ∈ Var(q1)\Var(q2), the symmetrical case being similar.
If x ∈ Var(q1)\Var(q2), then (v1, v2) = (v1/σ(q2))(x), which con-
tradicts Lemma 8.27. 2

Theorem 8.29 We have: p t0−→ x ⇐⇒ ¬(` (p, t0∧∧∧ * p+, x))

Proof: Even if it means replacing t0 by t0∧∧∧ * p+, we can obviously
assume that t0 ≤ *p+.

We first show, by induction on the derivation, the implication
(` (p, t0, x)) ⇒ ¬(p t0−→ x), assuming that t0 ≤ *p+. Specifically,
we associate a derivation of ` (p, t0∧∧∧ * p+, x) with a value v ∈ Jt0K
such that v/p 6= v. Every case is easy. The (prod) rule is dealt
with by Lemma 8.28.

To prove the implication ¬(p t0−→ x) ⇒ (` (p, t0, x)), we show
the following assertion by induction on the pair (v, p):

(v ∈ Jt0K ∧ x ∈ Var(p) ∧ (v/p)(x) 6= x)⇒ (` (p, t0, x))

The induction follows the semantics of pattern matching. Every
case is easy. The (prod) rule is dealt with by Lemma 8.28. 2

Therefore, to know if the variable x can be factorized in pattern p for some
input type t0, we have to compute the inductive predicate defined by the rules
given above. This comes down directly to the formalism of Section 7.1, and
we can then use the algorithm without backtracking to decide if the judgement
` (p, t0∧∧∧ * p+, x) is derivable or not.

165

Part III

The CDuce language

167

Chapter 9

Records

In this chapter, we will extend the calculus of Chapter 5 with a new type, values
and operations: records. We show how to adapt the definitions and the results
of the previous chapters.

Let L be an infinite set of labels. Record values are functions from a finite
set of labels to values. To simplify the discussion, we will in fact assume that
the records are defined on the whole set L but they are constant on almost all
labels (i.e. on a cofinite set). We will see in Section 9.5 how to code partial
functions.

Quasi constant functions For any Z set, a function r : L → Z is called
quasi constant if there is an element z ∈ Z such that the set {l ∈ L | f(l) 6= z}
is finite. The z element is uniquely identified. It is denoted def(r). We define:
Dom(r) := {l | f(l) 6= def(r)}. The set of quasi constant functions from L to
Z is denoted L c→ Z.

The notation {l1 = z1; . . . ; ln = zn;_ = z} refers to the function r ∈ L c→ Z
defined by r(li) = zi for i = 1..n and r(l) = z for l 6∈ {l1, . . . , ln}. Any
element r ∈ L c→ Z can be written in this form, and one can even choose the
set {l1, . . . , ln} to be arbitrarily large, but this form is not unique (it becomes
unique if we require zi 6= z).

If (Zl)l∈L is a family of subsets of Z, we denote
c∏
l∈L

Zl to be the subset of

L c→ Z consisting of r functions such that r(l) ∈ Zl for any label l.

9.1 Types
9.1.1 Algebra of types
Atoms We first introduce the record types in the minimal algebra defined in
Section 3.3. The functor F gives the signature of the constructors. We declare:

a ∈ FX ::= x→→→x | x×××x | b

We now take:
a ∈ FX ::= x→→→x | x×××x | b | r

168 Chapter 9. Records

where r represents an element of L c→ X. We have a new universe of atoms
rec, as well as fun,prod,basic. The set of atoms in that universe is:

Trec = L c→ T = {{l1 = θ1; . . . ; ln = θn;_ = θ0} | θi ∈ T}

Socle We extend the definition of i by imposing that if r ∈ Trec is a record
atom present in P ∪N (avec (P,N) in the type of i), then τ(r(l)) ∈ i for all
l ∈ L. Putting it differently:

{l1 = θ1; . . . ; ln = θn;_ = θ0} ∈ P ∪N ⇒ ∀i = 0..n. τ(θi) ∈ i

9.1.2 Models

We modify the definition of the extensional interpretation of types associated
with the set-theoretic interpretation J_K : T̂ → P(D) (Definition 4.2). We
define:

ED := C +D ×D + P(D ×DΩ) + L c→ D

and, for r ∈ L c→ T :

EJrK =
c∏
l∈L

Jτ(r(l))K ⊆ L c→ D

We denote ErecD = L c→ D.
In the definition of a well-founded model (Definition 4.3), we add the condi-

tion:

d′ ∈ L c→ D ⇒ ∀l ∈ L. d′(l) / d

In the definition of a structural model (Definition 4.4), we require that D is the
initial solution to an equation of the form:

D = C +D ×D + P(D ×DΩ) + L c→ D

and that, for r ∈ L c→ T :

JrK = EJrK

9.1.3 Subtyping

We modify the approach of Section 4.3. The analogue of Lemmas 4.6 and 4.9
is given by:

Lemma 9.1 Let (Xi)i∈P and (Xi)i∈N be two families of elements of L c→

9.1. Types 169

P(D). Let L ⊇
⋃

i∈P∪N
Dom(Xi). Then:

⋂
i∈P

c∏
l∈L

Xi(l) ⊆
⋃
i∈N

c∏
l∈L

Xi(l)

⇐⇒

∀ι : N → L ∪ {_}.

∃l ∈ L.
⋂
i∈P

Xi(l) ⊆
⋃

i∈N | ι(i)=l

Xi(l) (i)

∨
∃i0 ∈ N. (ι(i0) = _) ∧

⋂
i∈P

def(Xi) ⊆ def(Xi0) (ii)

∨⋂
i∈P

def(Xi) = ∅ (iii)

(with the convention
⋂
i∈∅

c∏
l∈L

Xi(l) = L c→ D)

Proof: Lets first show the contradiction of the implication⇒. Lets
suppose the existence of the function ι which verifies none of the
three conditions (i), (ii), (iii) of the right side. We are going to
construct an element ρ which invalidates the set inclusion of the
left side. In L, the values of ρ are given by (i). We choose ρ(l) in
the set: ⋂

i∈P
Xi(l)\

⋃
i∈N | ι(i)=l

Xi(l)

this guarantees already that ρ is not in
c∏
l∈L

Xi(l) si ι(i) ∈ L.

For each i0 such that ι(i0) = _, we choose li0 6∈ L, all distinct,
we take for ρ(li0) an element of⋂

i∈P
def(Xi)\def(Xi0)

which is not empty, according to (ii), this guarantees that ρ is not

in
c∏
l∈L

Xi0(l) if ι(i0) = _.

We only need to complete ρ on the labels l ∈ L\L which are
not on the form li0 for ι(i0) = _. We select an element d of⋂

i∈P
def(Xi)

which is not empty according to (iii) and we define ρ(l) = d for
those labels. We have then constructed the quasi-function ρ, which
invalidates the set inclusion of the left side.

Lets now tackle the proof of the implication ⇐, again by con-
tradiction. We take a function ρ which invalidates the set inclusion

170 Chapter 9. Records

of the left member. For all i0 ∈ N , we can then find a label li0
such that:

ρ(li0) ∈
⋂
i∈P

Xi(li0)\Xi0(li0)

We define a function ι : N → L ∪ {_} by ι(i0) = li0 if li0 ∈ L and
ι(i0) = _ otherwise. Let’s check that the function ι invalidates the
assertions (i),(ii) and (iii). If (i) was true, we could find l ∈ L
and i0 ∈ N with ι(i0) = l and ρ(l) ∈ Xi0(l) (because ρ(l) ∈⋂
i∈P Xi(l)). But ι(i0) = l gives l = l0, and ρ(li0) 6∈ Xi0(li0).

Let’s now consider (ii). Let’s take i0 ∈ N with ι(i0) = _, i.e.
li0 6∈ L. As a consequence ρ(li0) = def(ρ), and Xi(li0) = def(Xi)
for i ∈ P ∪ N , which gives: def(ρ) ∈

⋂
i∈P def(Xi)\def(Xi0),

and is enough to invalidate (ii). As to (iii), it suffices to consider
def(ρ), which is indeed in

⋂
i∈P def(Xi). 2

Remark 9.2 The result comes from the following observation. We can identify
the set L c→ Z with: ∏

l∈L

Z ×
(

(L\L) c→ Z
)

We are then brought back to a problem of inclusion between an intersection and a
union of finite cartesian products, a problem that we have already met in the two
of products with two elements (Lemma 4.6) and which can be easily generalized.
For the last component, we must deal with the problem of the inclusion between
an intersection and the union of infinite products with all identical components
(by limiting oneself to quasi-constant families). This problem is quite close to
the one considered in Lemma 4.8, which explains the point (ii), except that
an infinite products of empty sets is empty, whereas P(∅) is not empty (which
explains point (iii)).

In this result, we derive the way to extend the definition of the set ES
(Definition 4.11). We take:

Crec ::= ∀ι : Nrec → L ∪ {_}.

∃l ∈ L.

∧∧∧
r∈P

τ(r(l))\\\
∨∨∨

r∈Nrec | ι(r)=l

τ(r(l))

 ∈ S
∨ ∃r′ ∈ Nrec. (ι(r′) = _) ∧

(∧∧∧
r∈P

τ(def(r))\\\τ(def(r′))
)
∈ S

∨

(∧∧∧
r∈P

τ(def(r))
)
∈ S

where Nrec = N ∩ Trec et L =
⋃

r∈P∪Nrec

Dom(r) (or a superset).

The construction of a universal model (Section 4.5) is not problematic. An
algorithm to compute subtyping of the universal models is obtained by extending
the algorithm of Chapter 7. We can also apply the technique in Section 7.3 for
records. Rather than consider binary trees, we use a tree where branching is
indexed by L ∪ {_}.

9.1. Types 171

9.1.4 Decomposition, projection

We denote 1rec the type of all records, which is {_ = 1}.
We define the set of labels of a type t by:

L(t) =
⋃

(P,N)∈t

⋃
r∈(P∪N)∩Trec

Dom(r)

Let L = {l1; . . . ; ln} be a finite set of labels. If (tl)l∈L is a family of types,
E is a finite set of types, and t a type, we define:

R((tl)l∈L; t0;E) := {l1 = tl1 ; . . . ; ln = tln ;_ = t0}\\\∨∨∨
s∈E
{l1 = 1; . . . ; ln = 1;_ = ¬¬¬s}

Each type s ∈ E adds the constraint which can be interpreted by "there
exists a label outside of L whose value is in s".

We can now state the equivalent of Lemmas 4.34 with 4.35 this representa-
tion.

Lemma 9.3

R((tl)l∈L; t0;E)∧∧∧R((t′l)l∈L; t′0;E′) ' R((tl∧∧∧t′l)l∈L; t0∧∧∧t′0;E ∪ E′)

Lemma 9.4

R((tl)l∈L; t0;E)\\\R((t′l)l∈L; t′0; ∅) ' R((tl)l∈L; t;E∪{¬¬¬t′0})∨∨∨
∨∨∨
l0∈L

R((t′′l,l0)l∈L; t0;E)

where t′′l,l0 = tl\\\t′l if l = l0 and t′′l,l0 = tl otherwise.

By using those two facts a proof similar to the one for Theorem 4.36, we can
establish:

Theorem 9.5 Let t be a type such that t ≤ 1rec and L(t) ⊆ L. Then there
exists a finite set πLrec(t) of triplets ((tl)l∈L, t0, E) ∈ T̂L × T̂ ×Pf (T̂) such that:
— t '

∨∨∨
((tl),t0,E)∈πL

rec(t)

R((tl); t0;E)

— ∀((tl), t0, E) ∈ πLrec(t). R((tl); t0;E) 6' 0
— if i is a socle containing t, then: πLrec(t) ⊆ iL × i× Pf (i)

We see πLrec as a partial function, which is defined on the types t such that
t ≤ 1rec and L(t) ⊆ L.

Note that the condition R((tl); t0;E) 6' 0 is equivalent to: ∀l ∈ L. tl 6' 0
t0 6' 0
∀s ∈ E. t0∧∧∧s 6' 0

172 Chapter 9. Records

Projection on the label For a label l0 and a subtype t of 1rec, we want to
define a type πl0 [t] such that, in a structural model:

Jπl0 [t]K = {ρ(l0) | ρ ∈ JtK}

We can see it as the smallest solution s of the inequality:

t ≤ {l0 = s;_ = 1}

The Theorem 9.5 gives us the answer, by converting to types of the form
R((tl)l∈L; t0;E) where we took L ⊇ L(t) ∪ {l0}. The set of possible values of
labels ρ(l0) when ρ inhabits JR((tl)l∈L; t0;E)K is Jtl0K. We can then define:

πl0 [t] =
∨∨∨

((tl)l∈L,t0,E)∈πL
rec(t)

tl0

Actually, we could be satisfies with the simpler set L ⊇ L(t), by considering,
if l0 6∈ L:

πl0 [t] =
∨∨∨

((tl)l∈L,t0,E)∈πL
rec(t)

t0

Indeed, the assertion "there exists at least a label not in L whose value is in
s", for s ∈ E, does not give any information (more precise than t0) on the set
of possible values for the label l0.

9.2 Patterns
We add the records to the pattern algebra (Chapter 6). We add one case in the
definition of the image GY of the set Y by the functor G:

p ∈ GY ::= . . .

| r r ∈ L c→ Y

In the definition of a stable set of patterns (Definition 6.1), we add the
condition (σ ◦ r) ∈ L c→ S, which means:

∀r ∈ S. ∀l ∈ L. σ(r(l)) ∈ S

A more effective version of that condition is, for a pattern p = {l1 = q1; . . . ; ln =
qn;_ = q0}:

∀i = 0..n. σ(qi) ∈ S

The condition of well-formedness associated to a record pattern r is:

∀l1 6= l2. Var(r(l1)) ∩Var(r(l2)) = ∅

A more effective version of that condition, for a pattern p = {l1 = q1; . . . ; ln =
qn;_ = q0}:

(∀i 6= j. Var(qi) ∩Var(qj) = ∅) ∧ (Var(q0) = ∅)

So, the pattern node q repeated infinitely often in r can only perform a type
test.

9.3. Calculus 173

Semantics The semantics of pattern-matching (in a structural model sup-
ported by D) is given by:

d/r =

⊕
l∈L

d(l)/σ(r(l)) si d ∈ L c→ D

Ω sinon

A more effective version is, for a pattern p = {l1 = q1; . . . ; ln = qn;_ = q0} and
an element d = {l1 = d1; . . . ; ln = dn;_ = d0}:

d/p = d0/σ(q0)⊕ . . .⊕ dn/σ(qn)

Note that d0/σ(q0) can only be Ω or {}, because Var(σ(q0)) = ∅ (well-formed
pattern).

Typing We easily extend the operator *_+. In particular, for a record pattern
r, we have:

*r+ = *_ + ◦σ ◦ r
where the right member is a record atom. More explicitly:

*{l1 = q1; . . . ; ln = qn;_ = q0}+ = {l1 = *σ(q1)+; . . . ; ln = *(σ(qn)+;_ = *σ(q0)+}

For the typing of pattern matching, we can extend the Lemma 6.11 with:

(t//r)(x) = (πl[t]//σ(r(l)))(x)

where the label l is defined by: x ∈ Var(σ(r(l))).
The theorem 6.12 can easily be extended: you only need to introduce an

extension of the notion of a system ∨∨∨××× which considers records. Such a system
is a function φ : V → Pf (V + V × V + (L c→ V) + T̂).

The elimination of the intersection (Section 6.5.2) in the patterns is done
by observing that, similar to the product constructor ×××, the record constructor
commutes with the intersection (the intersection distributes over components).

Compilation The implementation technique of pattern matching based on
strategies for the case of pairs (Chapter 8) can be adapted to the case of record
values (meaning elements of L c→ V). One strategy for the case of records can
make two types of sub-queries. As in the case of products , it can apply a
query R on a sub-value v(l); we denote (l, R) 7→ (sR)R:R such a strategy. It can
also apply a query R on all values v(l) for l in a cofinite set L\L (L finite).
Actually there is only a finite number of different values v(l), which makes this
computation possible. We denote (L\L,R) 7→ (sR)R:R this strategy. In this case,
all the atomic queries (q, t0, X) in R are such that Var(q) = ∅ (and then X = ∅),
and the result, for each atomic query is logical conjunction of all the results for
the sub-values v(l) (l ∈ L\L), by identifying Ω with false and {} with true.

9.3 Calculus
Calculus The calculus in Chapter 5 can be naturally extended with a record
constructor in the expressions:

e ∈ E ::= . . .

| ρ ρ ∈ L c→ E

174 Chapter 9. Records

Type system The associated typing rule is:

r ∈ L c→ T̂ (∀l) Γ ` ρ(l) : r(l)
Γ ` ρ : r

A record expression whose components are values is itself a value. All the
type system meta-theoretic properties are still valid.

The inversion lemma (Lemme 5.12) is extended with:

JrKV = {ρ ∈ L c→ V | ∀l. ` ρ(l) : r(l)}

Semantics To define the semantics, we add to the definition of evaluation
contexts some contexts to reduce a given label {l1 = []; l2 = e2; . . . ; ln = en;_ =
e} or a cofinite set of labels with the same expression {l1 = e1; . . . ; ln = en;_ =
[]}.

Schemas, type inference To setup the type inference algorithm, we add the
records to the syntax of schemas. A record schema takes the formR((tl)l∈L; t0;E)
where L is a finite set of labels and E is a finite set of types. Its semantics is
given by:

{{{R((tl)l∈L; t0;E)}}} = {s | ∃(tl) ∈
∏
l∈L

{{{tl}}}.∃t0 ∈ {{{t0}}}.R((tL)l∈L; t0;E) ≤ s}

We can extend the proof of the Lemma 5.26 by getting some inspiration from
the Lemmas 9.3 and 9.4. The property on the number of nested constructors ⊗
can be extended to the number of nested constructors for records. To to prove
the lemma 5.27, we use:

0 ∈ {{{R((tl)l∈L; t0;E)}}} ⇐⇒ (∃l.0 ∈ {{{tl}}}) ∨ (0 ∈ {{{t0}}}) ∨ (∃s ∈ E.0 ∈ {{{s? t0}}})

and an induction on the number of nested constructors for records.
The rule for the records in the typing algorithm is given by:

�[ρ] := R((�[ρ(l)])l∈Dom(ρ);�[def(ρ)]; ∅)

9.4 Concatenation operator
We define a concatenation (or fusion) operator for records. It is a binary oper-
ator ρ⊕⊕⊕tρ′ where the type t allows the selection of which of the two argument
provides a value for each label. We allow the expression ρ⊕⊕⊕ tρ′ to be written
instead of ⊕⊕⊕t((ρ, ρ′)).

The semantics is given by:

(ρ, ρ′) ⊕⊕⊕t
;;; ρ′′

where ρ′′(l) = ρ(l) si ρ(l) 6∈ JtKV and ρ′′(l) = ρ′(l) si ρ(l) ∈ JtKV . In other words,
the ρ fields which are of type t are replaced by the corresponding fields in ρ′.
The error cases are given by:

v
⊕⊕⊕t
;;; Ω

when v is not a pair of records.

9.4. Concatenation operator 175

Theorem 9.6 There does not exist, in general, an exact type for the operator
⊕⊕⊕t.

Proof: Let c0, c1, c2, c3, c4 be five different constants. Define:

t0 = R(∅; bc0∨∨∨bc1 ; ∅)×××R(∅; bc2∨∨∨bc3∨∨∨bc4 ; {bc3 , bc4})

The values of t0 are then pairs of records (ρ, ρ′) where ρ only con-
tains c0 or c1 as values and ρ′ only contains c2,c3 or c4, with at least
a c3 and at least a c4. Let t = bc1 . If ⊕t had an exact type, we could
find a type s0 representing exactly all the records that we can find
by combining with ⊕t a pair (ρ, ρ′) as above. Let’s take l0 and l1
two labels out of L(s0). The record ρ′′1 = {l0 = c0; l1 = c0;_ = c2}
is in s0 because we can get it with ρ = {l0 = c0; l1 = c0;_ = c1}
and ρ′ = {l0 = c3; l1 = c4;_ = c2}. On the other hand, the record
ρ′′2 = {l0 = c0;_ = c2} is not in s0. Indeed, if we could get it from
ρ and ρ′, we would have ρ′(l) = c2 unless maybe for l = l0, which
prevents to find there c3 and c4 as expected. The fact that ρ′′1 is in
s0 and ρ′′2 is not in s0 yields a contradiction with the lemma above.

2

Lemma 9.7 Let t be a type, and L ⊇ L(t). Let ρ, ρ′ be two record values
which coincide on L and which have the same direct image for L\L (ρ(L\L) =
ρ′(L\L)). Then: ρ ∈ JtK ⇐⇒ ρ′ ∈ JtK.

Proof: It is trivial when t is an atomic record type and the property
is stable by boolean combinations. 2

We have to give up an exact type, and introduce an approximation in order
to type this operator. We observe, in the proof of Theorem 9.6 that the impos-
sibility to obtain an exact type comes from the existential constraints E in the
R((tl)l∈L; t0;E). Insofar as these constraints do not give any information when
we extract a field value, it seems reasonable to forget about then when we apply
the operator ⊕⊕⊕t. A natural idea to define this approximation is to associate to
a type t ≤ 1rec the type t̃ defined by:

t̃ =
∨∨∨

((tl)l∈L,t0,E)∈πL
rec(t)

R((tl)l∈L; t0; ∅)

where L = L(t), meaning that we remove the existential constraints E. Actually,
each term in that union can be seen as a record atom. We denote P (t) the set
of these atoms:

t̃ =
∨∨∨

r∈P (t)

r

However, such a definition is hard to use. In particular, it seems difficult
to prove directly with it some simple properties of the operator t 7→ t̃, like
its monotonicity (and even the invariance by type equivalence). In order to
reason in a similar fashion as in the Theorem 4.42, we will adopt a semantic
approach by describing the approximation as a saturating operator on the types
semantics.

176 Chapter 9. Records

Definition 9.8 (Adherence) Let X be a set of record values. We define its
adherence X̃ as the set of record values which coincident with a specific element
of X on an arbitrary finite set of labels:

X̃ = {ρ | ∀L ∈ Pf (L).∃ρ′ ∈ X.∀l ∈ L. ρ(l) = ρ′(l)}

Lemma 9.9 If X and Y are two sets of record value, then:
— X ⊆ X̃
— X ⊆ Y =⇒ X̃ ⊆ Ỹ
— ˜̃

X = X̃
— ∅̃ = ∅
— X̃ ∪ Y = X̃ ∪ Ỹ

Proof: The only point which is not immediate is the inclusion ⊆
in the last inequality. Let ρ a value in X̃ ∪ Y . Suppose that ρ is
not in X̃. We then have L0 ∈ Pf (L) for which it is impossible to
find ρ′ ∈ X coinciding with ρ on L0. We can show then that ρ in
is Ỹ . Let L ∈ Pf (L). Since ρ is in X̃ ∪ Y , we can find ρ′ ∈ X ∪ Y
which coincides with ρ on L∪L0, and then a fortiori on L0, which
guarantees that ρ′ is not in X, which means that it must be in Y .

2

Lemma 9.10 Let t = R((tl)l∈L; t0;E) and t′ = R((tl)l∈L; t0; ∅). If t 6' 0, then:

J̃tKV = Jt′KV

Proof: To prove the inclusion⊆, given t ≤ t′, it is enough to observe
that Jt′KV is closed by adherence. Indeed, if ρ is in the adherence
of that set, then, for an arbitrary label l, by taking L′ = {l} in the
definition of the adherence, we can see that ρ(l) ∈ JtlK (for l ∈ L)
or ρ(l) ∈ Jt0K (for l 6∈ L), which proves that ρ is in t′.

Let’s prove now that any record value ρ of type t′ is in the
adherence of type t. Let L′ be a finite set of labels. We can then
suppose that L ⊆ L′. For each type s ∈ E, we select a label
ls 6∈ L′ and a value vs of type s∧∧∧t0 (it is possible since t 6' 0). We
suppose that the labels ls are pairwise distinct. We define then ρ′
as the record value which coincides with ρ except on the ls, and
ρ′(ls) = vs. This record is in JtK. 2

With the lemmas 9.9 and 9.10, we can see that the syntactic definition of t̃
coincides, at a semantical level, with the adherence operator.

Corollary 9.11 Let t ≤ 1rec. Then Jt̃K = J̃tK.
This corollary provides, with the Lemma 9.9, some properties of the operator
t 7→ t̃ such as its monotonicity with respect to the sub-typing relation.

We can see the semantics of the ⊕⊕⊕t operator as a function V → VΩ. For a set
X of values, let ⊕⊕⊕t(X) be its direct image by this, meaning {v′ | v′ ∈ VΩ,∃v ∈
X. v

⊕⊕⊕t
;;; v′}.

Let’s study this function when X is a product of atomic record types. For
two types t1, t2, we write ft(t1, t2) = t1 si t1∧∧∧t ' 0, and ft(t1, t2) = (t1\\\t)∨∨∨t2
otherwise. We extend this function point-to-point to record atoms ft(r1, r2) =
(l 7→ ft(r1(l), r2(l))).

9.4. Concatenation operator 177

Lemma 9.12 Let t1, t2 be two non-empty types and v a value of type ft(t1, t2).
Then there exists two values v1 ∈ Jt1K, v2 ∈ Jt2K such that v1 ∈ JtK ⇒ v = v1
and v1 6∈ JtK⇒ v = v2.

Lemma 9.13 If r1 6' 0, r2 6' 0, then:

⊕⊕⊕t(Jr1K× Jr2K) = Jft(r1, r2)K

Proof: Let’s show first the inclusion ⊆. Let v be a value in Jr1K×
Jr2K. It is a pair (ρ1, ρ2), with, for all l, ρi(l) of type ri(l). When
we apply the operator ⊕⊕⊕t, we get a record ρ, and then we need
to verify that ρ(l) est de type r(l) = ft(r1(l), r2(l)). Si ρ1(l) is of
type t, then r1(l)∧∧∧t 6' 0, so r2(l) ≤ r(l), and furthermore we have
ρ(l) = ρ2(l), which is indeed of type r(l). If ρ1(l) is not of type t,
we have ρ(l) = ρ1(l), which is of type r1(l), but not of type t, but
r1(l)\\\t is necessarily a subtype of r(l).

Let’s turn to the proof of the inclusion ⊇. Let ρ be a record
of type ft(r1, r2). The lemma above allows the definition of two
records ρ1 and ρ2, respectively of type r1 et r2, such that (ρ1, ρ2) ⊕⊕⊕t

;;;

ρ. 2

Let’s study now the set ⊕⊕⊕t(Jt1K × Jt2K) for two sub-types t1,t2 of 1rec. The
idea is to get an exact result modulo adherence. We will see that we can make
this approximation before or after the application of the operator ⊕⊕⊕t withouth
change the result.

Lemma 9.14 Let X1, X2 be two sets of records. Then:

⊕⊕⊕t(X̃1 × X̃2) ⊆ ˜⊕⊕⊕t(X1 ×X2)

Proof: Let ρ = ⊕⊕⊕t(ρ1, ρ2) be an element of the left member, with
ρi ∈ X̃i. Let’s show that it is in the adherence of ⊕⊕⊕t(X1×X2). Let
L be a finite set of labels. We can find ρ′i ∈ Xi coinciding with ρi
on L. We then state ρ′ = ⊕⊕⊕t(ρ′1, ρ′2), which coincides with ρ sur L.

2

Lemma 9.15 Let t1, t2 be two sub-types of 1rec and X =⊕⊕⊕t(Jt1K× Jt2K). Then
X̃ = ⊕⊕⊕t(J̃t1K× J̃t2K).

Proof: LetXi = JtiK. The inclusion⊇ is a consequence of the above
lemma. Given that X1×X2 ⊆ X̃1×X̃2, to prove the inclusion ⊆, it
is enough to observe that the right member is closed by adherence.
This property is stable by union on t1 on on t2, we can get back
to the case where t1 = R((t1l)l∈L; t10;E1) et t2 = R((t2l)l∈L; t20;E2)
for a specific L (with ti 6' 0) and then the adherence of ti is
represented by a record atom ri = R((til)l∈L; ti0; ∅) (Lemma 9.10),
and we have seen that ⊕⊕⊕t(Jr1K × Jr2K) is itself represented by a
record atom (Lemme 9.13), and it is then stable by adherence. 2

We can now propose a type (non exact) for the operator ⊕⊕⊕t. The relation
⊕⊕⊕t : _→→→_ is defined by the inductive system of Figure 9.1.

178 Chapter 9. Records

⊕⊕⊕t : (r1×××r2)→→→ft(r1, r2)
(⊕⊕⊕t{})

⊕⊕⊕t : t1→→→s1 ⊕⊕⊕t : t2→→→s2
⊕⊕⊕t : (t1∧∧∧t2)→→→(s1∧∧∧s2)

(⊕⊕⊕t∧∧∧)

⊕⊕⊕t : t1→→→s1 ⊕⊕⊕t : t2→→→s2
⊕⊕⊕t : (t1∨∨∨t2)→→→(s1∨∨∨s2)

(⊕⊕⊕t∨∨∨)

⊕⊕⊕t : t′→→→s′ t ≤ t′ s′ ≤ s
⊕⊕⊕t : t→→→s (⊕⊕⊕t ≤)

Figure 9.1: Axiomatisation of the type of the operator ⊕⊕⊕t

Lemma 9.16 The operator ⊕⊕⊕t is well-typed.

Proof: Like the proof for Lemma 5.35, it is enough to consider the
rule (⊕⊕⊕t{}). This case is given by the inclusion ⊆ of Lemma 9.13.

2

Lemma 9.17 Let t0 et s0 be two types. The following assertions are equivalent:
(i) ⊕⊕⊕t : t0→→→s0

(ii) ⊕̃⊕⊕t(Jt0K) ⊆ Js0K

(iii)
{
t0 ≤ 1rec×××1rec
∀(t1, t2) ∈ π(t0). ∀r1 ∈ P (t1), r2 ∈ P (t2). ft(r1, r2) ≤ s0

Proof: Let’s prove first (i)⇒ (ii) by induction on the derivation of
⊕⊕⊕t : t0→→→s0. For the rule (⊕⊕⊕t{}), we get in reality an equality with
the Lemma 9.13. For the rule (⊕⊕⊕t∨∨∨), we use the fact that the left
member of (ii) commutes with the union. For the two other rules,
we use the monotonicity of the left member.

Let’s prove (ii)⇒ (iii). If we didn’t have t0 ≤ 1rec×××1rec, then
⊕⊕⊕t(Jt0K) would contain Ω, which is not the case. Let (t1, t2) ∈ π(t0).
We have t1×××t2 ≤ t0, and then ˜⊕⊕⊕t(Jt1K× Jt2K) ⊆ Js0K. According
to the Lemma 9.15 and the Corollary 9.11, the left member is
⊕⊕⊕t(Jt̃1×××t̃2K). If ri ∈ P (ti), then ri ≤ t̃i, and then ⊕⊕⊕t(Jr1K× Jr2K) ≤
Js0K and the left member is Jft(r1, r2)K, from which we deduce
indeed that ft(r1, r2) ≤ s0.

Finally let’s prove (iii)⇒ (i). We write t =
∨∨∨

(t1,t2)∈π(t0) t1×××t2.
By writing

ti ≤ t̃i =
∨∨∨

ri∈P (ti)

ri

we can see that:
t ≤

∨∨∨
(t1,t2)∈π(t)
r1∈P (t1)
r2∈P (t2)

r1×××r2

With the rule (⊕⊕⊕t{}) and the rule (⊕⊕⊕t ≤), we get ⊕⊕⊕t : (r1×××2)→→→s0,

9.5. Partial functions 179

and we conclude with the rule (⊕⊕⊕t∨∨∨). The case t0 ≤ 0 is dealt with
separately, with the rule (⊕⊕⊕t{}) applied to empty record atoms. 2

As in π1, the assertion (iii) allows us to construct a typing function for ⊕⊕⊕t
on schemas. We extend the function π to schemas t such that t ≤ 1prod by

π(t1 > t2) = π(t1) ∪ π(t2)
π(t1 ⊗ t2) = {(t1, t2)}

The function P associates to every type t ≤ 1rec a finite set of atomic record
types, which means quasi-constant functions L → T̂ . We extend it to define
P (t), a finite set of quasi-constant functions r of labels in the schemas (we
identify such a function to a R((tl)l∈L′ ; t0; ∅)):

P (t1 > t2) = P (t1) ∪ P (t2)
P (R((tl)l∈L′ ; t0;E) = {R((tl)l∈L′ ; t0; ∅)}

We also extend the function ft to pairs of record schemas (r1, r2), in an obvious
fashion. We can then give a definition for ⊕⊕⊕t[t]:

⊕⊕⊕t[t] =

©∨

(t1,t2)∈π(t)
r1∈P (t1)
r2∈P (t2)

ft(r1, r2) si t0 ≤ 1rec×××1rec

Ω sinon

9.5 Partial functions
The formalism that we adopted to present records is that of quasi-constant
functions. Compared to the formalism of the functions on a finite domain,
it has the advantage of being uniform and to simplify the assertions. In this
section, we show how to encode some functions on a finite domain of records.

We choose a constant µ ∈ C which represents the value of record fields
which are actually not defined. For the expressions, we simply write {l1 =
e1; . . . ; ln = en} instead of {l1 = e1; . . . ; ln = en;_ = µ}. For the type, we
write {l1 = t1; . . . ; ln = tn} for {l1 = t1; . . . ; ln = tn;_ = 1} (open record type
and {|l1 = t1; . . . ; ln = tn|} for {l1 = t1; . . . ; ln = tn;_ = bµ} (closed record
type), and similarly for patterns. Instead of a field specification in a record
type, we also allow to write li : ti fo li = ti\\\bµ, and li :?ti for li = ti∨∨∨bµ, and
similarly for patterns: li : pi means that li = pi&&&¬¬¬bµ. This way, the pattern
{|l1 : x; l2 = ((y&&&¬¬¬bµ)|||(y := c))|} accepts any record defined on l1, eventually
on l2, and nowhere else, and captures the value for l1 in x and the one for l2 in
y if this field is defined, and otherwise associates the constant c to y.

Derived Operators We can also defined some number of operators derived
from ⊕⊕⊕t. For a given constant c, we write ⊕⊕⊕c instead of ⊕⊕⊕bc . We select a
constant c0, different from µ (it is only used to provide some semantics to the
new operators, and this semantics does not depend on the choice of c0). Let
L = {l1, . . . , ln} be a finite set of labels. The restriction operator |L is defined
by:

e|L := {l1 = c0; . . . ; ln = c0;_ = µ}⊕⊕⊕c0e

180 Chapter 9. Records

The suppression operator \L is defined by:

e\L := {l1 = µ; . . . ; ln = µ;_ = c0}⊕⊕⊕c0e

For a type t, the restriction operator on t is defined by:

e|t := r⊕⊕⊕¬¬¬t{_ = µ}

This operator removes the fields which are not of type t. Finally, we simply
write r1 ⊕⊕⊕r2 fo r2 ⊕⊕⊕µr1. This is a concatenation operator, which takes, in the
case of a label conflict (if the two arguments are defined for that label), the
value of the second argument.

Finite domain If we only restrict ourselves to writing record expression of
the form {l1 = e1; . . . ; ln = en}, meaning that they are records with finite
domain (which evaluate to µ almost everywhere), then the subtyping relation
is not complete with respect to the model of values (formally: the set of values
is not a model anymore). Indeed, the type {_ = t} contains no value as soon
as t∧∧∧bµ ' 0. It is very easy to modify the definition of a model to fix this: we
can take, instead of L c→ D, the set of functions which evaluate to µ almost
everywhere and this changes slightly the subtyping relation (in the definition of
the set ES, we replace (

∧∧∧
r∈P τ(def(r))) ∈ S with (bµ∧∧∧

∧∧∧
r∈P τ(def(r))) ∈ S).

The type {l1 = t1; . . . ; ln = tn;_ :?t} means then that excepted for the labels
li, the record can be defined on a specific finite number of other labels, and that
the values of these fields are necessarily in t.

181

Chapter 10

Presentation of the
language

In this chapter, we present CDuce, a programming language built on the theo-
retical foundations presented in the previous chapters. CDuce has the traits of
a general-purpose functional programming language, but it has been designed
specifically to develop applications that securely handle XML documents.

The goal of this thesis is not to be used as a reference manual or a user
manual for CDuce, and since the language keeps evolving, we will not formally
specify its concrete syntax or its semantics, but we will present its characteristics
via an encoding in the calculus of Chapter 5, extended with pattern matching
(Chapter 6) and records (Chapter 9).

In CDuce, the syntax for functions combines abstraction and pattern match-
ing:

fun f(t1→→→s1; . . . ; tn→→→sn) p1 → e1 | . . . | pm → em

The identifier f can be omitted if the function is not recursive.

10.1 Base types, constants
First of all, we want to introduce the general frame by specifying the base types
and the constants. There are three kinds of constants: integers, atoms, and
characters.

Integers We use arbitrary precision integers. Therefore, the set of integer
constants is the set of relative integers Z . We write Int the base type that
denotes all those integers: BJIntK = Z. We also introduce, as a base type,
closed intervals i—j where i, j ∈ Z, with BJi—jK = {n | i ≤ n ≤ j}, as
well as open intervals i—∞ with BJi—∞K = {n | i ≤ n} and ∞—j with
BJ∞—jK = {n | n ≤ j}. The singleton type i—i is simply written i.

Any sub-type t of Int can be written as a finite union of closed interval
types. This decomposition is not unique. However, there exists a canonical
decomposition, that can be characterized in two different ways:

182 Chapter 10. Presentation of the language

— the intervals in the decomposition are maximal among the sub-type inter-
vals of t;

— the number of intervals in the decomposition is minimal.
In practice, starting from a decomposition, we can obtain this canonical decom-
position by (iteratively) merging two intervals that have a non-empty intersec-
tion, or that "touch" each other (like i—j and (j + 1)—k).

The language has the classic arithmetic operators. The addition operator,
for example, has an exact typing, whereas the multiplication operator does not.
For example, the multiplication of a an integer of type Int with an integer of
type 2 gives, semantically, the set of even integers, which is not representable
by a type. Of course, we can systematically give the Int type to the result,
or take a more specific type. For example, we could do interval arithmetic, by
specifying that we use the decomposition in maximal intervals.

Characters The character constants represent elements of the Unicode char-
acter set. Each constant represents a code point of that specification, and can
therefore be associated to an integer. We denote by Char the type of all charac-
ters. Its interpretation is the set of all Unicode code points. We also introduce
interval base types that each represent a segment of the Unicode codespace.
The singleton base type associated with an atom constant is an interval type.
Characters are written with simple quotes (′a′,′ b′, . . .).

Atoms Atoms are used, among other things, to represent the labels (tags) of
XML elements. An atom is a pair ‘ns : ln where ns is an XML namespace (that
is, a possibly empty Unicode string), and ln is a local name, in the meaning of
the XML Namespaces [Nam] specification. When ns is the empty namespace,
we simply write ‘ln for the atom ‘ns : ln. We denote by Atom the type of all
atoms, ‘ns : ∗ denotes the type of atoms in the namespace ns, and ‘ns : ln
denotes the unique atom ‘ns : ln.

In CDuce programs, namespaces are not written directly in the atom con-
stants. The language uses a mechanism similar to the XML Namespaces speci-
fication to define prefixes which compactly denote namespaces. These prefixes
are then used to actually write the atom constants in CDuce programs.

10.2 Types, patterns
The type algebra (Chapter 3) and the pattern algebra (Chapter 6) have many
similar constructors: union, intersection, product, record. A pattern p with no
capture variables (Var(p)) can be naturally identified with the type *p+, and
every type t can be seen as a pattern. It is natural to syntactically unify these
two algebras, and the language does use a common external syntax to represent
these two algebras. The union, intersection and difference operators are written
respectively |||,&&& and \\\. The product constructor is written (_,_) (instead of
××× for types). The types 0 and 1 are denoted by Empty and Any. We also
use the notation _ instead of Any (especially in patterns).

A term that does not contain capture variables can be used as a type. To
use a term of this algebra as a pattern, it has to verify the well-formedness
conditions on capture variables. A sub-term of the form p1→→→p2 cannot contain

10.3. Sequences, regular expressions 183

any variables, which in fact makes it possible to see it as a type constrain
pattern. Similarly, in p1\\\p2, the term p2 should not contain any variable.

A term like (Int, Int), used as a pattern, can be interpreted in two different
ways: either as a type constraint pattern (the type being a product type), or as
a product pattern of which each component is a type constraint pattern. This
kind of ambiguity between types and patterns is not a problem (the different
interpretations have the same semantics, and therefore the same typing).

The CDuce language uses the subtyping relation ≤ induced by a univer-
sal model (Section 4.5). This subtyping relation can be computed using the
algorithms of Chapter 7.

Records We use the formalism of Section 9.5 1 . The only record expressions
allowed are of the form {l1 = e1; . . . ; ln = en}. For the constant µ, that repre-
sents undefined record fields, we take the ‘missing atom. For the set of labels
L, we take the set of atom constants (written without the ‘).

We denote by e.l the access to field l. It is syntactic sugar for:

match e with {l = x} → x

XML elements In addition to functions, pairs, records and constants, the
language manipulates another kind of values: XML elements. An expression
that denotes such a value has the form < (e1) e2 > e3. It behaves like a
simple three-term Cartesian product. It could be identified with the nested pair
(e1, (e2, e3), but we prefer to introduce a new category (of values, types and
patterns) to avoid ambiguities. When e1 is an atom constant ‘ns : ln, we can
write it without the initial ‘: < ns : ln e2 > e3. When e2 is a record expression
{. . .}, we can omit the { and }: < (e1) . . . > e3, as well as the semicolons
that separate the different fields. Of course, we have types and patterns that
correspond to this new category of values and expressions: < (p1) p2 > p3,
with the same simplifications. Subtyping, typing and pattern matching for this
new category of values can easily be deduced from the theory introduced for
products.

Recursion Recursive types and patterns can be written in the form t0 where X1 =
t1 and . . . and Xn = tn where the Xi are recursion binders that can be used in-
side within t0 and the ti. For types, the language also allows for mutually
recursive global statements:

type X1 = t1 . . . type Xn = tn

Recursions must be well-formed (every recursion cycle must go through at least
one arrow, product, XML or record constructor).

10.3 Sequences, regular expressions
A number of derived syntactic constructions and operations are introduced to
facilitate the manipulation of value sequences.

1In fact the implementation is slightly different: in records, an empty field is not represented
by a value of the language (records are partial functions).

184 Chapter 10. Presentation of the language

10.3.1 Sequences
Sequences are encoded by nested pairs, and we use the atom constant ‘nil
to represent the empty sequence. A sequence expression [e1 . . . en] is therefore
translated into the expression (e1, . . . , (en, ‘nil) . . .).

10.3.2 Type and pattern regular expressions
To accurately describe the type of sequences, and to be able to perform ex-
tractions by pattern matching, we introduce regular expressions in the type
and pattern algebras. These terms are denoted by [R] where R is a regular
expression, that is, a term generated by:

R := p
| R1R2
| R1|||R2
| R∗
| R?
| R∗?
| R??
| x :: R

It is only syntactic sugar, and we will later show how to translate a term [R]
into a type or a pattern.

The x :: R notation captures the sub-sequence recognized by R in x. We
say that x is a sequence capture variable. When the same sequence capture
variable is used several times in the same regular expression, or when it occurs
under a repetition operator, the expected semantics is to concatenate all the
corresponding sub-sequences (nested occurrences are not allowed).

The two constructors ∗ and ∗? are Kleene stars. The difference between
the two is that the first has a greedy greedy behavior - it tries to do as many
iterations as possible - whereas the second has a lazy behavior (it tries to do as
few iterations as possible). Similarly, the two constructors ? and ?? optionally
capture their argument: the first tries to capture it first, while the second avoids
doing so if possible.

Remark 10.1 Vansummeren [Van04] has noticed that the greedy semantics for
the Kleene star does not simulate a longest-match semantics, as one might
naively believe. Consider for example the pattern p = [x :: (1|||(1 2)) ∗ 2?]
and the value v = [1 2]. The result for x with the greedy semantics is [1], be-
cause during the first iteration in the star, the first branch of the disjunction
(1|||(1 2)) is tried, and succeeds, which prevents a second iteration without pre-
venting the pattern match from succeeding overall. A longest-match semantics
for the star would capture the whole sequence [1 2] in x. Vansummeren studies
such semantic variants, and the corresponding type inference problems.

10.3.3 Translation of regular expressions
To describe the translation, we will generalize the syntax of [R] and use terms of
the form [R; p1; p2]. The form [R] is translated into [R; ‘nil; ‘nil]. Intuitively,
the patterns p1 and p2 represent "continuations", i.e. the pattern to be applied to

10.3. Sequences, regular expressions 185

the rest of the sequence once R has been recognized on a prefix of the sequence.
The pattern p1 is used when R has consumed at least one item, and the pattern
p2 is used when R has not recognized any element. We will explain below why
we distinguish between these two continuations.

The first step in translation is to eliminate sequence capture variables. This
is done by replacing [R0; p1; p2] with [R′0; p′1; p′2]. The regular expression R′0 is
obtained in the following way. If a sub-expression x :: R appears in R0, it is
replaced by R′ where R′ is obtained from R by replacing all the patterns p in it
with (x&&&p). If x1, . . . , xn are all the sequence capture variables that appear in
R0, the continuations p′1 and p′2 are defined by p′i = (x1 := ‘nil)&&& . . .&&&(xn :=
‘nil)&&&pi.

For example, the translation of [x :: (p1 y :: (p2?)) y :: p3; ‘nil; ‘nil] is
[(x&&&p1)(x&&&y&&&p2)?(y&&&p3); p′; p′] with p′ = (x := ‘nil)&&&(y := ‘nil)&&&‘nil (we
could take x&&&y&&&‘nil which is equivalent to p′).

Let us see now how to translate [R0; p1; p2] when R0 does not contain any
sequence capture variable. We define this translation with the function Ψ, by
induction on the structure of R0:

Ψ[p; p1; p2] = (p, p1)
Ψ[R1R2; p1; p2] = Ψ[R1; Ψ[R2; p1; p1]; Ψ[R2; p1; p2]]
Ψ[R1|R2; p1; p2] = Ψ[R1; p1; p2]|||Ψ[R2; p1; p2]
Ψ[R∗; p1; p2] = X|||p2 where X = Ψ[R; X|||p1; Empty]
Ψ[R∗?; p1; p2] = p2|||X where X = Ψ[R; p1|||X; Empty]
Ψ[R?; p1; p2] = Ψ[R; p1; p2]|||p2
Ψ[R??; p1; p2] = p2|||Ψ[R; p1; p2]

In these definitions, the binding X is fresh. In view of the first-match policy
for pattern matching, we see that the star ∗ has indeed a greedy behavior (it
captures as many elements has possible before moving on to the rest), and
that ∗? has a lazy behavior. Similarly, the regular expression R? first tries to
recognize R before giving up if that is impossible, and the regular expression
R?? tries to move on to the rest, before recognizing R if that is necessary.

The construction is quite classic. The only subtlety comes from the fact that
one must produce well-formed recursions, which pass through a constructor.
That is why we distinguish between the two continuations p1 and p2. If we had
only one continuation [R; p], we would have taken:

Ψ[R∗; p] = X where X = Ψ[R;X]|||p

But that would have resulted in an ill-formed recursion when R accepts the
empty sequence. For example, for R = [(p1 ∗ p2∗)∗], we would have (after
rearranging a bit):

Ψ[R; p] = X0 where

 X0 = X1|||p
X1 = (p1, X1)|||X2
X2 = (p2, X2)|||X0

which gives a recursion cycle that does not pass through any constructor. Hav-
ing two different continuations permet allows each iteration of R in [R∗] to
capture at least one element (in terms of automatons, this means eliminating
the ε-transition cycles). Our definition of Ψ does not introduce any ill-formed

186 Chapter 10. Presentation of the language

recursion (because the continuation p1 is only used under a constructor). Using
the example below, we obtain (after some cosmetic arrangements):

Ψ[R; p; p] = X0 where

 X0 = X1|||X2|||p
X1 = (p1, X0)
X2 = (p2, X2|||X0)

This recursive definition is well-formed: the recursion cycles all pass through a
constructor.

Remark 10.2 This presentation of the translation, with two continuations, is
inspired by an in-depth study [FC04] of the problem posed by "dangerous" regular
expressions, i.e. with a sub-term of the form R∗, where R accepts the empty
sequence.

Other constructors We also introduce constructors for regular expression
derivatives R+ and R+? defined by R+ = R R∗ and R+? = R R∗?. We can
also introduce a predicate constructor /p, which applies a certain pattern to the
current sequence without consuming any element. Its translation is given by:

Ψ[/p; p1; p2] = p&&&p2

This predicate can be used, for example, to position inside a variable an indicator
that indicates the choice that was made in an alternative:

[(p1 ∗ /(x := 1))|||(p2 ∗ /(x := 2))]

In this example, the variable x will be bound to 1 (resp. 2) if it is the first (resp.
second) branch that was chosen.

Example We are going to illustrate by an example how the semantics chosen
for product patterns (q1, q2) is able to capture sub-sequences (not necessarily
consecutive) when the same variable appear in both the qi.

Let us take p = [((x :: t)|||_)∗]. Applied to a a sequence, this pattern captures
in x the sub-sequence formed of all elements of type t. The translation of p is

X where X = (x&&&t, X)|||(_, X)|||(x := ‘nil)&&&‘nil

If we apply this pattern to a value [v1 v2 v3] = (v1, (v2, (v3, ‘nil))) with, for
example v1, v3 of type t and v2 of type ¬¬¬t, we get for x the result [v1 v3] =
(v1, (v3, ‘nil)).

Note that the regular expression patterns automatically benefit from the
exactness of pattern matching, including for sequence capture variables. They
also benefit from the efficient compilation of pattern matching. For example,
if the above pattern is applied to an expression of type [(¬¬¬t) t∗], and if the
factorization of the capture variables (Section 8.4) is used during compilation,
this pattern can be compiled as (_, x) (i.e. the second projection). If we apply it
to an expression of type [t1 (¬¬¬t) t2+], with t1 ≤ t, t2 ≤ t, then it can be compiled
as (x, (_, x)), and the type system will know that x has the type [t1 t2+].

10.3. Sequences, regular expressions 187

10.3.4 Decompilation of sequence types
Definition 10.3 An automaton is a quadruplet A = (Q, δ, q0, F) where Q is
a finite set of states, δ ⊆∈ Pf (Q × T̂ × Q) is the transition relation, q0 is the
initial state and F ⊆ Q is the set of final states.

The semantics JAKq of a state q ∈ Q is a set of sequence values, defined by:

‘nil ∈ JAKq ⇐⇒ q ∈ F
(v1, v2) ∈ JAKq ⇐⇒ ∃(t, q′). (q, t, q′) ∈ δ ∧ v1 ∈ JtK ∧ v2 ∈ JAKq′

(This definition is well-founded on the structure of values.) We simply write
JAK for JAKq0

.

We denote by 1seq the type [Any∗].

Theorem 10.4 Let X be a set of values. The following assertions are equiva-
lent:
(i) There exists a type t ≤ 1seq such that JtK = X.
(ii) There exists an automaton A such that JAK = X.
(iii) There exists a regular expression R, generated by the production below,

such that J[R]K = X.
R := t
| R1R2
| R1|||R2
| R∗

Proof: The implication (iii) ⇒ (i) is trivial. The implication
(ii) ⇒ (iii) is a classic result on word automatons (to formally
prove this implication, we would have to give a direct semantics
to types of the form [R], and prove that this translation preserves
that semantics). Note that the empty language is obtained with
R = Empty, and the language reduced to the empty sequence is
obtained with R = Empty∗.

Let us prove the implication (i) ⇒ (ii). Let i be a socle
that contains t (and b‘nil). Considering the automaton (Q, δ, t, F),
where:

Q = {t0 ∈ i | t0 ≤ 1seq}
δ = {(t0, t1, t2) ∈ Q× i×Q | (t1, t2) ∈ π(t0\\\b‘nil)}
F = {t0 ∈ i | b‘nil ≤ t0}

It is easy to show that JAK = JtK. Note that if t0 ≤ 1seq and if
(t1, t2) ∈ π(t0\\\b‘nil), then t2 ≤ 1seq. 2

10.3.5 Operators
Concatenation We introduce a sequence concatenation operator, denoted @@@.
The semantics of this operator is given by:

([v1 . . . vn], [vn+1 . . . vm]) @@@
;;; [v1 . . . vm]

188 Chapter 10. Presentation of the language

and
v

@@@
;;; Ω

when v is not a pair of sequences.
Given Theorem 10.4, we obtain an exact typing by taking@@@ : [R1]×××[R2]→→→[R1 R2]

and some inference rules similar to the ones that define π1 : _→→→_ (Figure 5.4).
To compute the result type given the input type, we can choose arbitrary repre-
sentatives for R1 and R2. In practice, starting from t1 and t2, we can compute
the result type for t1×××t2 without explicitly building the two regular expressions
R1,R2 with ti ' [Ri]. The idea is to construct the automaton associated with
t1, and to produce a system of equations that defines the result type result.
This system of equations can easily be deduced from the automaton (we "put
back" t2 in the final states). This algorithm can be generalized to define the
typing function for @@@ over schemas.

Flattening We also introduce a flattening operator for sequences flatten.
The semantics of this operator is given by:

[[v1 . . . vn] . . . [vm . . . vl]]
flatten
;;; [v1 . . . vl]

and
v

flatten
;;; Ω

when v is not a sequence of sequences.
An exact typing is obtained from rule flatten : [R]→→→[R] where R is defined

by replacing in R (a regular expression in the meaning of Theorem 10.4) a type
t by R′ where R′ is chosen such that t ' [R′].

Note that the operator@@@ could be defined from flatten by writing@@@((v1, v2)) =
flatten([v1 v2]).

Map The map operator applies a function to each element of a sequence. Its
semantics is given by:

(f, [v1 . . . vm]) map
;;; [(f v1) . . . (f vm)]

and
v

map
;;; Ω

when v is not a pair formed of an abstraction and a sequence.
The typing is obtained from rule map : tf×××[R]→→→[R′] where R′ is obtained

from R by replacing each type t with a type s such that app : tf×××t→→→s. As
with the concatenation operator, we can choose an arbitrary representative R
without changing the result, and even avoid computing it, by unfolding the
recursive types.

This typing is exact, provided that a function is allowed, in one way or
another, not to return the same value when applied to the same argument (i.e.
with a non-deterministic choice operator, a random generator, edge effects, . . .).
To see why that is necessary, consider the type (bc → 1)×××[bc∗] where bc is the
singleton type associated with the constant c. The type computed for the result
of map applied to a value of that type is [1∗]. However, if the functions always
return the same result for the same argument, it is not possible to reach all the

10.3. Sequences, regular expressions 189

values of this type with an argument of map of type (bc → 1)×××[bc∗]. It is easy
to see how to do this, for example with a non-deterministic choice mechanism,
or with a counter (incremented with each call to the function).

Remark 10.5 The fact that functions are seen as non-deterministic functions
is natural in a programming language, and this assumption was made in the
model definition (see the comments that follow Definition 4.2).

In a type system with ML-like parametric polymorphism, the operator map
can usually be defined as a recursive function. The reason why CDuce has a
specific operator is not only the lack of parametric polymorphism in the type
system, but also the lack of precision of an ML-like typing scheme for map.
Indeed, the specific typing for operator map gives for example:

map : ((t1→→→s1)∧∧∧(t2→→→s2))×××[t1∗ t2?]→ [s1∗ s2?]

In other words, when an overloaded function is applied to every element of a
non-uniform sequence, it acts differently on the different types present in the
sequence. Therefore, the type of the result reflects the order (and arity) of the
elements of the input sequence, whereas an ML-like type scheme of the form
∀α.∀β.(α→→→β)×××[α∗] → [β∗] would impose an approximation on the input type
by a uniform sequence type ([(t1|t2)∗] in the above example), therefore we would
lose in precision for the result ([(s1|s2)∗]). The gain in precision obtained with
our exact typing has proved itself to be useful in practice for writing XML
transformations.

Remark 10.6 In fact, the CDuce language has a specific construction for map:

map e with B

where B is a set of pattern matching branches p1 → e1 | . . . | pn → en. This
avoids having to explicitly write a function (and a pattern match), especially its
interface. To type this construction, after finding a type t for e, we choose a
regular expression for types R such that t ' [R] and we apply the typing of the
pattern macthing of B to each type that appears in R in order to produce a new
regular expression R′.

This typing depends on the choice of R, and there is no choice that provides
the most precise type in general (and no schema that captures all the possible
types). For example, suppose e has the type [0—∞], and that B = x → x + x.
We can take R = 0—∞, but also some finer regular expressions, such as R =
(0|||1||| . . . |||n|||((n+1)—∞)) (the alternation ||| is the regular expression constructor).
With such a decomposition, the branch x→ x+x will be typed n+ 2 times, and
the exact typing of the addition gives a result type 0|||2||| . . . |||2n|||((2n + 2)—∞).
We see that we can get arbitrarily accurate types, but the exact set of values
that can be obtained is not representable. It is necessary to be able to specify a
decomposition in regular expression that guarantees the expected properties for
typing (elimination of subsumption and admissibility of the intersection rule).
One way to do this is by producing the automaton associated with a subtype of
1seq, using a function π that associates to a type t ≤ 1prod the set of types
(t1, t2) such that the Cartesian product t1×××t2 is maximal among the sub-types
of t (i.e., if t1×××t2 ≤ t′1×××t′2 ≤ t, then t1 ' t′1 and t2 ' t′2), by choosing one
representative for each maximal product. This construction was mentioned after
Theorem 4.36.

190 Chapter 10. Presentation of the language

The language has other iterators that we will not present here.

10.3.6 Strings
CDuce does not have a specific base type to represent strings. Those are simply
character sequences. The String type is defined as [Char∗]. We also define
PCDATA as the regular expression Char∗.

The string [′a′ ′b′ ′c′] can be written [′abc′], or also ”abc”. A string literal
can also be seen as a singleton type.

The choice to see strings as sequences allows us to seamlessly reuse sequence
operators (concatenation, iteration), as well as regular expression types and
patterns to finely specify subtypes String, and to extract information from
strings by pattern matching.

10.4 XML
CDuce is able to represent XML documents as values of the language. An XML
element has the form:

<tag attr1=". . ." . . . attrn=". . ."> . . . </tag>

The content, between the tag < tag . . . > and the tag < /tag > is a sequence
that mixes characters and XML elements. Such an element is encoded in CDuce
by a value of the form:

<(‘tag) {attr1=". . ."; . . .; attrn=". . ."}>[...]

or more simply, with the conventions we already introduced:

<tag attr1=". . ." . . . attrn=". . ."}>[...]

For example, the XML document

<animal kind="insect">
<name>Bumble bee</name>
<comment>There are about 19 different species

of bumblebee.</comment>
</animal>

is encoded, after deleting some space characters, with:

<animal kind="insect">[
<name>[’Bumble bee’]
<comment>[’There are about ’ [’19’] ’ different species of bumblebee.’]

]

The type of all XML documents can be defined as:

type XML = <(Atom) { _ = String }>[(Char | XML)*]

In CDuce, we can write subtypes that capture an important fragment of
the constraints imposed on documents by specifications such as DTD or XML-
Schema, for example:

10.5. Derivative constructions 191

type Animals = <animals {||}>[Animal*]
type Animal = <animal {|king=String|}>[<name>String <comment>Text]
type Text = [TextItem*]
type TextItem = Char | Text

(The braces {| . . . |} prohibit the presence of attributes other than those men-
tioned.)

A utility program dtd2cduce automatically translates a DTD into such a set
of type declarations. XML-Schema specifications can also be imported; the type
of the values validated against such a specification is not necessarily a subtype
of XML. For example, if the specification indicates that a certain attribute is an
integer (type xs:int), then value of the corresponding field, in the document
obtained after validation, will be an integer CDuce (type Int) and not a string
(type String), and this is reflected in the static type associated with XML-
Schema.

There are predefined functions (in fact, operators), of type String→→→XML and
XML→→→String that read an XML document contained in a string, and recipro-
cally. In the case of a parsing error, if a string does not represent a well-formed
XML document, an exception (see below) is raised to report the error. In fact,
to improve error messages, XML documents can be loaded directly from an
external file (or URL).

10.5 Derivative constructions
Local binding The construction let p = e1 in e2 is syntactic sugar for:

match e1 with p→ e2

Type constraint The type constraint operator (_ : t), for a type t, can be
defined as syntactic sugar for the application of function

fun (t→→→t) x→ x

If we prefer to see it as an operator ot, the typing relation ot : _→→→_ is given
by ot : t1→→→t2 ⇐⇒ t1 ≤ t ≤ t2. The semantics is the identity. The typing is of
course not exact, and that is the goal: this operator makes it possible to forget
some type information, which can be useful to document some code, to develop
programs (by improving the localization of error messages), or to simplify the
task of the typechecker when the types manipulated become too complex and
uselessly accurate.

Curryfied abstractions The syntax below makes it easy to write currified
functions:

fun f(x1 : t1) . . . (xn : tn) : s = e

The identifier f is optional. For n = 1, this expression is translated into:

fun f(t1→→→s) x1 → s

For n ≥ 2, the translation is given by:

fun f(t1→→→(. . . (tn→→→s) . . .)) x1 → (fun (x2 : t2) . . . (xn : tn) : s = e)

192 Chapter 10. Presentation of the language

For example, the complete translation of fun f(x1 : t1)(x2 : t2) : s = e is:

fun f(t1→→→(t2→→→s)) x1 → (fun (t2→→→s) x2 → e)

Booleans The two atom constants ‘true and ‘false are used to represent
boolean. The type Bool est is predefined as ‘true ||| ‘false. The construction
if e then e1 else e2 is translated into:

match e with ‘true→ e1 | ‘false→ e2

The boolean operators are defined from this construction, which gives them
a lazy semantics regarding their second argument (for binary operators). For
example, the logical conjunction is defined by:

e1&&e2 ≡ if e1 then e2 else ‘false

10.6 Imperative traits
The CDuce language extends the purely functional core of Chapter 5 with some
imperative traits coming from ML. The way to extend operational semantics to
account for these constructions is classic, and we are not going to describe it.

The value [] (in other words ‘nil) and the associated singleton type are used
as the unit type in ML, to represent the argument or the result of functions
that operate with side effects.

The sequencing operator e1; e2 first evaluates e1 (whose type must be [])
then e2 and outputs the result of e2. The small-step semantics, defined in
Section 5.5 does not completely specify the evaluation order of the language;
for example, the implementation can be evaluate in arbitrary order the two
sub-expressions e1 and e2 in an expression (e1, e2). For a record expression
{l1 = e1; . . . ; ln = en;_ = e0}, the expression e0 can be evaluated an arbitrary
(finite) number of times.

We are not going to describe the usual I/O operations, accessing the oper-
ating system, . . .

References References are typed memory cells, whose content can be ex-
tracted and modified. To avoid introducing a new category of constructors, we
will define the reference type, denoted by ref t, as:

{| get = []→ t; set = t→ [] |}

In other words, a reference is seen as a two-field record (an object with
tho methods, in the terminology of oriented-object programming languages),
that correspond to the two operations can be done on references (reading and
assigning content).

We introduce an operator reft that takes a value v of type t, creates a
memory cell initialized with the value v, and outputs a record of type ref t
whose methods are "magic" functions (non-definable in the language) which
actually access the memory cell.

The assignment e1 := e2 is syntactic sugar for e1.set e2. The access !e is
syntactic sugar for e.get[].

10.7. An example 193

It should be noted that the two functions get and set of a value of type
ref t do not necessarily come (directly) from a call to the reference constructor
reft. It is possible, for example, to create values of type ref t that modify an
actual reference by printing a trace of the accesses made. We can also define
uninitialized references in the following way (for example, for the type Int):
type Int_option = Int | ‘none
type Int_ref = ref Int_option
let new_ref(_ : []) : Int_ref =

let r = ref Int_option ‘none in
{ get =

(fun (_ : []) : Int = match r.get [] with
| ‘none -> raise "Empty reference !"
| x -> x);

set = r.set
}

If we try to access the content of an uninitialized reference, an exception gets
raised (see the next paragraph). Note that in the definition of the set method,
we use the subsumption authorized by the subtyping:

Int_option→→→[] ≤ Int→→→[]

Exceptions The semantics of the exceptions of CDuce is similar to that of
ML. The content of an exception can be any value. We raise an exception v
using the construction raise v (whose type is 0) and we catch an exception by
pattern matching:

try e with p1 → e1 | . . . | pn → en

The branches of the pattern match are typed with the input type 1 (because e
can lift any exception a priori). An implicit branch x→ raise x added at the
end of the pattern match raises the exception again if no branch can catch it.

10.7 An example
Figure 10.1 gives an example of a CDuce program, that defines a unique XML
transformation function, called split.

The program starts with type declarations. The type Person represents the
genealogical tree of a person’s progeny. A person’s gender is given by the value
of an attribute. The split function transforms a value of that type into a tree
in which, at every level, the sons and daughters are grouped. The gender of
people is indicated by an element label. In addition, the names of the people,
which were contained in an XML element, are found in an attribute.

The function is a pattern match with a single branch. The pattern allows the
person’s name to be extracted in one fell swoop (in the variable n), its gender
(variable g), and the list of his children is split in two: the variable mc captures
all the sons, and the variable fc captures all the daughters. In the body of
the branch, we begin by calculating the label that corresponds to the sex of
the person. We then recursively apply split to all of the sons, and all of the
daughters, using the iterator map. Finally, we build the XML element to be
outputted.

194 Chapter 10. Presentation of the language

type Person = FPerson | MPerson
type FPerson = <person gender = "F">[Name Children]
type MPerson = <person gender = "M">[Name Children]
type Children = <children>[Person*]
type Name = <name>[PCDATA]

type Man = <man name=String>[Sons Daughters]
type Woman = <woman name=String>[Sons Daughters]
type Sons = <sons>[Man*]
type Daughters = <daughters>[Woman*]

let fun split (MPerson -> Man ; FPerson -> Woman)
<person gender=g>[

<name>n
<children>[(mc::MPerson | fc::FPerson)*]

] ->
let tag = match g with "F" -> ‘woman | "M" -> ‘man in
let s = map (split,mc) in
let d = map (split,fc) in
<(tag) name=n>[<sons>s <daughters>d]

Figure 10.1: A program CDuce

Expressive power of pattern matching This example shows the expres-
sive power of pattern matching, which is able to do a complex extraction of
information in a single pattern. We could go further, and directly compute the
tag label in the pattern, by using pattern constants:

<person gender=("F" &(tag := ‘woman)) | ("M" &(tag := ‘man))>[
<name>n
<children>[(mc::MPerson | fc::FPerson)*]

]

or, setting aside this calculation:

<person>[
<name>n
<children>[(mc::MPerson | fc::FPerson)*]

]
&((FPerson &(tag := ‘woman)) | (MPerson &(tag := ‘man)))

Typing The interface of the function shows two arrow types, which is a more
precise type than Person -> Man | Woman. This greater precision is necessary
to be able to properly type the body of the function. Indeed, when the map
operator recursively applies the function to all elements of mc, that are of type
MPerson, it outputs a sequence of elements of type Man. Similarly, starting
from fc, we obtain elements of type Woman. This shows that the contents of
the <sons> and <daughter> elements are indeed, respectively, of type [Man*

10.7. An example 195

] and [Woman*], which is necessary to obtain a value of acceptable type in
output. If we only had the type Person -> Man | Woman for function split,
the typechecker would give the type [(Man | Woman)*] to the variables s
and d, and the typing would fail.

The body of the function is typed twice: once under the assumption that
the argument is of type MPerson, once under the assumption that it is of type
FPerson. The typechecker has to check that the label of the outputted element
is indeed either ‘man or ‘woman depending on the case. This is done in the
following way. First, the exact typing of pattern matching gives a singleton
type to the variable g . Then, in the pattern matching used to compute tag,
only one of the two branches contributes to the type of the result (the pattern
matching typing rule makes it possible to ignore the branch that is not being
used). Hence we find a singleton type for tag, and thus we can check that the
label of the returned item is the one expected.

Compilation of pattern matching The pattern uses a declarative style:
it indicates how to separate the list of children in two, by using the types
MPerson and FPerson. The compiler realizes that the two types can in fact
be distinguished simply by looking at the value of the gender attribute. If the
attribute has value "F", the element is of type FPerson, otherwise it is of type
MPerson (because it is necessarily of one of the two types, given the type of the
arguments of the function). It is really the way the produced code distinguishes
between types. A naive compilation scheme would need to go through the entire
XML tree to see if the element is of type FPerson or if it is of type MPerson.

In addition, the tests on the labels of the XML elements person, name,
children are only there to simplify the rereading of the code. The compiler
knows that those tests are verified, and it does not generate any code for them.

We see on this example that the efficient compilation of the typing, that uses
static types, allows the programmer to use a programming style that is both
more declarative (with an "abstract" use of the types MPerson, FPerson, instead
of a concrete method to distinguish them), and more informative (redundant
label tests), without reducing the efficiency of the code produced.

196 Chapter 10. Presentation of the language

197

Chapter 11

Implementation techniques

In this chapter, we informally describe some techniques used in the implemen-
tation of CDuce.

11.1 Typechecker
Restriction of rule (abstr) We have introduced (Section 5.7) a notion of
schema to symbolically represent the set of types of an expression. An alter-
native solution to obtain a typing algorithm is to restrict the (abstr) typing
rule by prohibiting negative arrow types (i.e. by imposing m = 0). In the
type system obtained, the best type for an expression e for a given typing en-
vironment Γ (under certain assumptions about the type of operators) can be
easily computed. Of course, this system allows fewer programs to be typed than
the schema-based algorithm. The characteristic situation is the one where we
pattern match an abstraction with a negative arrow type:

match (fun (Int→→→Int) . . .) with ¬¬¬(Char→→→Char)→ 0

To be able to type this expression, we have to allow negative arrow types (which
gives the type ¬¬¬(Char→→→Char) to the abstraction). We have never encountered
such a situation in practice, so we have chosen to implement the system without
negative arrow types. Of course, this is only the static type system: the dynamic
semantics, which can perform dynamic type tests on values, are not affected.
In particular, the following expression, which is well-typed in the implemented
system, evaluates to 0 as expected:

match (fun (Int→→→Int) . . .) with ¬¬¬(Char→→→Char)→ 0 | _→ 1

In other words, the typing algorithm without negative arrow types is correct
with regard to the type system (and it guarantees the absence of type errors
during execution), but it is not complete.

Error localization The naive implementation of the typechecker in the form
of a top-down algorithm (which computes the type of a leaf expression up to
the root) does not accurately localize type errors. Consider for example the
following expression:

fun (t→→→s) p1 → e1 | . . . | pn → en

198 Chapter 11. Implementation techniques

A bottom-up typing algorithm will start by computing a type si for each ei,
then the type for the pattern match (the union of the types obtained for each
branche), before checking that each type is indeed a subtype of s. If that is not
the case, rule (abstr) cannot be applied, and an error is raised at the level of
the abstraction. But actually the error is inside (at least) one of the branches,
that is, the one(s) whose result type is not a subtype of s. If the expression ei
is incriminated, we can possibly identify an even more precise sub-expression
that generates the type error. For example if s = Int×××Char and ei = (1, 2), we
see that the error comes form the constant 2, and not from the expression ei
overall.

In order to accurately locate errors, we use an algorithm that synthesizes
types upwardly, but also propagates a constraint downwards. We can formal-
ize this algorithm in the form of a judgement Γ ` e : t ≤ t0, where Γ, e, t0
are inputs, and t is the output of this algorithm (the most precise type for e,
modulo the restriction on rule (abstr)). If this judgment cannot be derived, the
algorithm points out the faulty sub-expression, and if not, it returns a type t
that is necessarily more accurate than t0. Let us describe the main cases of the
algorithm, depending on the form of e.

If e = (e1, e2), then we start by checking that t′0 = t0∧∧∧1prod is non-empty.
If it is empty, which is not necessarily a typing error, then we have to check that
one of the two expressions e1 or e2 has type 0 and that the other is well-typed.
If both expressions are well-typed but none has type 0, we raise an error for e,
which is a pair expression, while the expected type does not contain any pair. If
t′0 is non-empty, we compute t1, the most precise type for e1, with the constraint
π1[t′0]. For e2, we use as a constraint the largest type t2 such that t1×××t2 ≤ t′0
(an easy calculation shows that we can take t2 = ¬¬¬π2[(t1×××1)\\\t0]). The case of
records is treated in a similar way.

If e is an abstraction µf(t1→→→s1; . . . tn→→→sn).λx.e, we start by checking that
the intersection of the arrow types of the interface is indeed a subtype of t0. We
then compute, for each of those types ti0→→→si0 , the type of the body e of the
abstraction, with the constraint si0 and with the environment extended by the
assumptions (x : ti0) and (f :

∧∧∧
ti→→→si). The type of the result can be ignored.

For pattern matching, we compute the type of the matched expression, under
the constraint t′0 that is the union

∨∨∨
*pi+ of the types accepted by the patterns of

the different branches. An alternative approach is to compute this type without
any constraint and to check after the fact that the type obtained is a subtype
of this union, which may possibly give a more explicit error message ("non-
exhaustive pattern matching"). In both cases, a type is then computed for each
branch (except those that cannot succeed), with the same constraint t0 than for
the pattern match.

For each operator, we adopt a specific strategy to compute the constraint
to be used to type the argument. We can choose not to use the most precise
constraints, so as not to introduce too complex constraints (which would give
unclear error messages). For example, to type the concatenation e1@@@e2 with a
constraint t0, we can start by computing the smallest type t′0 such that t0 ≤ [t′0∗]
and type both arguments with the constraint [t′0∗]. To type an application e1e2,
we start by computing a type t1 for e1 under the constraint 0→→→1; we then use
the type Dom(t1) to type e2 (in fact, we could do better and compute the largest
type t2 such that app : t1×××t2 ≤ t0).

11.1. Typechecker 199

Error messages When a type error is detected, it is usually a constraint
t ≤ t0 that is not verified, where t is the type computed for a sub-expression
e and t0 is the constraint that was used to type e. In the error message, we
point out that the best type we can compute for the expression is t, while the
expected type is t0, and to explain why t is not a subtype of t0, we can exhibit
a value of type t\\\t0 (as that type is non-empty, there exists such a value, and
we can in fact compute one explicitly).

The typing algorithm can detect ill-typed expressions. It can also detect
other types of potential errors, which can give rise to warnings. Here are some
examples.
— Empty-type declaration. Consider the following program:

type T = <a>[T+]
let fun f(x : T) : Int = ...

This program is well-typed, independently from the body of the function.
Indeed, the type T is empty (because the values are finite objects, and T
denotes necessarily infinite trees), and the typing rule for pattern matching
indicates that it is not necessary to type all the branches that cannot be
used (which is the case, for a function, when the argument type is empty).
We can assume that the programmer made a mistake by defining the type
T, and that he instead wanted to write:

type T = <a>[T*]

To detect such errors, the typechecker points out, in the form of a warning,
the type declarations that define an empty type.

— Unused branch or pattern. In a pattern match, a branch may not be used
(when the input type of the pattern match is disjoint from the type ac-
cepted by the pattern), and it is not typed in that case. This is useful
for typing an overloaded function, where some branches must be ignored
to check some of the constraints given in the interface (remember that
the body of an overloaded function is typed once for each arrow type of
the interface). Nevertheless, a branch that will never be typed probably
corresponds to a programming error. This situation is detected and re-
ported to the programmer. This analysis can be refined to detect unused
sub-patterns; to do so, the pattern typing algorithm can be used to detect
patterns that systematically receive an empty type as input.

— Unused capture variable. Variables and type names are not syntactically
distinguishable. An ambiguity therefore arises when interpreting an iden-
tifier x in a pattern: it may be a capture variable or a type constraint
pattern, if x is declared earlier in the program (or predefined). The fol-
lowing heuristics are used to remove ambiguity: if the type x is defined,
the identifier is interpreted as a type constraint pattern; otherwise, it is
interpreted as a capture variable. This heuristic can hide typing errors;
consider, for example, the program below:

fun ((Int | Char, Int | Char) -> Int)
| (Inte,Int) -> 0
| _ -> 1

In the first branch, the identifier is interpreted as a type, and the Inte
identifier is interpreted as a capture variable. The function is well typed

200 Chapter 11. Implementation techniques

(no warning is given for the second branch, because it is not useless).
However, it can be assumed that the identifier Inte is a typo, and that
the programmer wanted to type Int. To detect this type of error, we
simply give a warning when a capture variable does not appear in the
body of the branch (this is the case for the Inte variable above).

11.2 Representation of values
For performance reasons, in the implementation, the algebra of values is ex-
tended with a number of derived forms.

Strings In CDuce, string are conceptually sequences. Hence, the string "abc"
is in fact the value [′a′ ′b′ ′c′], that is, (′a′, (′b′, (′c′, ‘nil))). This encoding is very
costly in memory. During execution, the implementation manipulates values of
the form string(s, i, j, v) where s is an array of characters, i and j are two index
in s, and v is a sequence value. This value actually represents the sequence made
of items of s between the i and j indexes, followed by the v sequence. We then
have the equivalence:

string(s, i, j, v) ≡
{

(s[i], string(s, i+ 1, j, v)) if i < j
v if i = j

This derived form provides a compact memory representation for strings, or
more generally for consecutive character sub-sequences. Note that the array s
is not copied in the equivalence above: unfolding the compact representation
character by character is done in constant time (we simply have to increment an
integer). This representation also makes it possible to "jump" over a sequence
of characters in a sequence. Hence, if we apply the pattern [((x :: t)|_)∗] (that
captures all the elements of type t of a sequence) with t∧∧∧Char ' 0, and we end
up on string(s, i, j, v), we can jump directly to v, without considering all the
characters of s between i and j. Similarly, the result for a sequence capture
variable, when the pattern matched value is of the form string(s, i, j, v), can
be represented by using compact representations of the form string(s, i′, j′, v′).
We can use the following equivalence to regroup consecutive fragments of the
same array s:

string(s, i, j, string(s, j, k, v)) ≡ string(s, i, k, v)

Lazy concatenation The concatenation operator @@@, naively implemented,
has an execution time that is linear in the length of its first argument. In-
deed, the concatenation of the sequence [v1 . . . vn] and of the sequence v′ is
(v1, (v2, . . . , (vn, v′) . . .)), hence we have to build n nested pairs. A program
that constructs a sequence by concatenating the elements one by one at the end
thus has a quadratic complexity (only for concatenations) in the length of the
result.

We introduce a new form of value at execution, denoted by v1@@@v2, that
symbolically represents the concatenation of v1 and v2 (two sequences). This
value can be built in constant time from v1 and v2. To iterate on a value v1@@@v2,
we simply have to iterate over v1, then over v2. On the other hand, when

11.2. Representation of values 201

evaluating pattern matching, it is sometimes necessary to normalize v1@@@v2; for
this, we use the following equivalences:

‘nil@@@v ≡ v
(v1, v2)@@@v ≡ (v1, v2@@@v)

These equivalences allow the first element of a sequence to be exposed, that is, to
put it in the form (v1, v2). This is an incremental normalization. To normalize
v′@@@v, when v′ is itself a symbolic concatenation, we start by normalizing v′

before applying the above rules.
In fact, we can see any value as a binary tree whose nodes are @@@, and leafs

are values which are not of the form v1@@@v2. It is possible to normalize such a
tree in time linear in the size of the result. It is then a global normalization,
which avoids building unnecessary intermediate structures.

To avoid having to evaluate the same concatenations several times, we can
modify in place a value v1@@@v2 with its normalized form when computing it
(either incrementally, or globally).

Atom representation Atoms are pairs of symbols (made of an XML names-
pace and a local name). To reduce the memory occupied by documents, and
to speed up operations on atoms (equality and comparison used by pattern
matching decision trees), they are represented internally with optimal sharing
(obtained by hash-consing) and a unique digital identifier.

Comparison with other works The Xtatic project independently proposed
the same kind of techniques [GLPS04] to lazily evaluate the concatenation of
sequences, and to represent strings in a compact way.

A completely different approach was adopted to represent values in the
XHaskell project [LS04a, LS04b]. XDuce, CDuce and Xtatic use a uniform
representation for the value algebra; it means that a value is represented inde-
pendently from its static type. In that case, the subsumption rule is transparent
during execution: we can indeed see a value of type t as a value of type s when
t ≤ s, without applying any transformation to it. XHaskell proposes to as-
sociate to a regular expression type a concrete representation of the values of
this type. Thus, each regular expression type is associated with a Haskell type,
in a compositional way. For example, the Kleene star of regular expressions is
translated into Haskell’s list constructor, and the choice operator ||| is translated
into a sum type with two constructors. The concrete representation of the re-
sult of a language expression then depends on its static type. The subsumption
rule therefore requires changing the representation of values, and to do this, we
have to make use of the subtyping algorithm to extract from the proof of an
instance t ≤ s a coercion function between the representation of t and that of s
(in XHaskell, this is done by encoding the subtyping algorithm in an extensive
system of Haskell type classes).

The Xen/Cω language [MS03] is an extension of C# with structural types
that represent XML documents. Again, each XML type of the language is
associated with a type in the implementation architecture (Microsoft .NET’s
virtual machine CLR), and coercions have to be introduced to account for
subtyping. Unlike XHaskell, however, Xen is not trying to implement a set-
theoretic-inspired subtyping between regular expression types.

202 Chapter 11. Implementation techniques

The choice between a uniform representation as in XDuce, CDuce, Xtatic and
a specialized-by-types representation as in XHaskell is delicate. In addition to its
simplicity, the uniform representation allows for subsumption to be implemented
"for free" between subtypes, while a specialized representation may require to
completely copy the values. The specialized representation, on the other hand,
allows faster access to data within complex structures (direct addressing); it is
also more compact, because part of the structure of values is stored implicitly in
their static type, and allows better integration with general-purpose languages.

11.3 Representation of Boolean combinations
Many algorithms presented in that thesis work in a given socle i. Even though
we have formally studied the complexity of those algorithms, it depends crucially
on the size of the socle, that is, in the number of different types that can
be obtained from the types given in the problem, by saturation with boolean
combinations and by decomposition of the atoms inside of types. To ensure
that this number is always finite, we have introduced in Section 3.1 a certain
representation of Boolean combinations (normal disjunctive form).

In this section, we propose alternative techniques to optimize this repre-
sentation, in order to decrease the number of different types considered in the
algorithms, and therefore their complexity.

11.3.1 Simplification by boolean tautologies
The representation of boolean combinations can be optimized by taking into ac-
count a number of boolean tautologies. For example, representation in normal
disjunctive form already takes into account the commutativity and associativity
of union and intersection. We can go further and impose stronger normalization
constraints. Formally, we consider a rewriting relation ; on the BX such that
for every set-theoretic interpretation of BX into a set D, if t; t′, then JtK = Jt′K
(the interpretation does not change when simplifying the boolean combination).
The simplifications considered reduce the size of boolean combinations, which
ensures their termination. All manipulated boolean combinations can be nor-
malized, reducing their size, and also their number, as more combinations can
be identified with each other. We give some examples of possible simplifications.

In a normal disjunctive form, any "line" that contains the same atom in
positive form and in negative form at the same time can be removed. This
translates into the simplification rule:

P ∩N 6= ∅
{(P,N)} ∪ t; t

Another simplification consists in noting that if in a disjunctive normal form
we can go from a line to another by adding literals, then the obtained line is
useless (because its set-theoretic interpretation is included in the original line):

P ′ ⊆ P N ′ ⊆ N
{(P,N), (P ′, N ′)} ∪ t; {(P ′, N ′)} ∪ t

We can merge two lines that are equal except for an atom that appears
in positive form in one and negative in the other. This corresponds to the

11.3. Representation of Boolean combinations 203

tautology: (x ∧A) ∨ (¬x ∧A) ' A. We write:

{(P ∪ {x}, N), (P,N ∪ {x})} ∪ t; {(P,N)} ∪ t

A last example of a simplification consists in deleting the literal ¬x in (x ∧
B) ∨ (¬x ∧A ∧B):

P ′ ⊆ P N ′ ⊆ N
{(P,N ∪ {x}), (P ′ ∪ {x}, N ′)} ∪ t; {(P,N), (P ′ ∪ {x}, N ′)} ∪ t

and symmetrically:

P ⊆ P ′ N ⊆ N ′
{(P,N ∪ {x}), (P ′ ∪ {x}, N ′)} ∪ t; {(P,N ∪ {x}), (P ′, N ′)} ∪ t

The more simplifications we can detect, the more we reduce the size and
number of the boolean combinations manipulated. Algorithms that manipulate
types are then more efficient. But detecting these simplifications can be costly
in itself. So there is a trade-off to be made in the implementation.

11.3.2 Disjoint atoms
Assuming as given an orthogonality relation between atom types, denoted ⊥,
such that two orthogonal atoms are necessarily disjoint (x⊥y ⇒ x∧∧∧y ' 0).
Additional simplifications can then be considered. For example, a line in a
normal disjunctive form can be removed if it contains two orthogonal atoms in
positive position:

x⊥y
{({x, y} ∪ P,N)} ∪ t; t

Similarly, we can remove from a line any negative literal whose atom is
orthogonal to a positive atom of the same line:

x⊥y
{({x} ∪ P, {y} ∪N)} ∪ t; {({x} ∪ P,N)} ∪ t

What remains to be done is to define the binary relation ⊥. Of course, we
can already establish that two atoms of different kinds (e.g. an arrow atom and
a product atom) are orthogonal, and the same for two disjoint base types (for
the representation of the combinations of base types, see Section 11.3.4). We
can also unfold the product types. For example, we know that t1×××t2 and t′1×××t′2
will be disjoint as soon as t1 and t′1 (or t2 and t′2) are disjoint. The subtyping
algorithm can also be used to detect disjoint types: obviously, this has a cost
and a circularity appears (because the subtyping algorithm must be able to
compute boolean combinations, hence we have to be careful not to get into a
loop).

11.3.3 Alternative representation: decision trees
Binary decision trees Rather than trying to simplify boolean combinations
represented in normal disjunctive form, other representations that may some-
times be more compact can be used directly.

204 Chapter 11. Implementation techniques

A classic technique is to represent boolean combinations with binary decision
trees. Formally, these are the objects generated by the following grammar:

t := 0 | 1 | (a?t1 : t2)

We modify the definition of a set-theoretic interpretation; the interesting
condition is:

J(a?t1 : t2)K = (JaK ∩ Jt1K) ∪ (D\JaK ∩ Jt2K)

In general, we make sure that each atom appears at most once on each
branch, which can be achieved in practice by choosing a total order � on the
atoms and requiring that the atoms on each branch appear in strict increasing
order. This ensures that if the number of atoms is finite, then so is the number
of boolean combinations. We can define the union, intersection and complement
operators directly on this representation. For example, if t = (a?t1 : t2) and
t′ = (a′?t′1 : t′2), we define t∨∨∨t′ by: (a?t1∨∨∨t′1 : t2∨∨∨t′2) if a = a′

(a?t1∨∨∨t′ : t2∨∨∨t′) if a � a′
(a′?t∨∨∨t′1 : t∨∨∨t′2) if a′ � a

If the atom at the root of t′ is larger than all of the atoms of t, for example, we
see that t′ is "copied" in each leaf of t; hence, the size of the representation of
the result of operator ∨∨∨ is not linear in the size of its arguments anymore.

Here are the rules to compute t∧∧∧t′: (a?t1∧∧∧t′1 : t2∧∧∧t′2) if a = a′

(a?t1∧∧∧t′ : t2∧∧∧t′) if a � a′
(a′?t∧∧∧t′1 : t∧∧∧t′2) if a′ � a

Various simplifications can be introduced for the binary decision tree repre-
sentation, for example: (a?t : t) ; t.

It is easy to return to a normal disjunctive form representation from a binary
decision tree (each branch that ends on a 1 leaf gives a "line"). This allows this
alternative representation to be used internally for storage and computations on
boolean combinations, while maintaining a common interface to observe these
objects.

Ternary decision trees A problem with binary decision trees is that the size
of trees can grow exponentially while computing the boolean union operator.
One solution is to use ternary decision trees:

t := 0 | 1 | (a?t1 : t2 : t3)

The interesting condition in the definition of a set-theoretic interpretation
is then:

J(a?t1 : t2 : t3)K = (JaK ∩ Jt1K) ∪ Jt2K ∪ (D\JaK ∩ Jt3K)

It is then possible to define the boolean operators on this representation,
and the size of the tree that represents the union of two trees becomes linear in

11.4. Interface with Objective Caml 205

the sum of the sizes of these trees. If t = (a?t1 : t2 : t3) and t′ = (a′?t′1 : t′2 : t′3),
we define indeed t∨∨∨t′ by: (a?t1∨∨∨t′1 : t2∨∨∨t′2 : t3∨∨∨t′3) if a = a′

(a?t1 : t2∨∨∨t′ : t3) if a � a′
(a′?t′1 : t∨∨∨t′2 : t′3) if a′ � a

Here are the rules to compute t∧∧∧t′: (a?(t1∨∨∨t2)∧∧∧(t′1∨∨∨t2) : 0 : (t3∨∨∨t2)∧∧∧(t′3∨∨∨t2)) if a = a′

(a?t1∧∧∧t′ : t2∧∧∧t′ : t3∧∧∧t′) if a � a′
(a′?t∧∧∧t′1 : t∧∧∧t′2 : t∧∧∧t′3) if a′ � a

(Termination is guaranteed because the representation of t1∨∨∨t2 is smaller than
that of t.) We see that it is necessary, in a case, to go back to a binary represen-
tation to compute the intersection (that is, to have 0 as a neutral component);
this is done by using the equivalence (a?t1 : t2 : t3) ' (a?t1∨∨∨t2 : 0 : t3∨∨∨t2).
Similarly, to compute the complement ¬¬¬t where t = (a?t1 : t2 : t3), we take

(a?¬¬¬(t3∨∨∨t2) : 0 : ¬¬¬(t1∨∨∨t2))

We can consider several simplifications, such as (a?t1 : t2 : t3) ; t1|t2 if
t1 = t3, or (a?t1 : 1 : t3) ; 1.

11.3.4 Representation of base types
We use specific representations for boolean combinations of basic types. Thus,
any boolean combination of integer or character types (intervals) can be rep-
resented in a unique way in the form of a union of maximal intervals (thus
disjoint). Boolean combinations of atom types are represented in a unique way
using one of the forms a1∨∨∨ . . .∨∨∨an or ¬¬¬(a1∨∨∨ . . .∨∨∨an), each ai being of the form
ns : ln or ns : ∗ and two-to-two disjoint (meaning we cannot have ns : ln and
ns : ∗ simultaneously for the same namespace ns).

These finite unions are represented as sets (not sequences), which ensures the
uniqueness of the representation (hence the number of types considered is mini-
mized). Boolean operations can be computed directly on these representations,
and the emptiness test is trivial.

11.4 Interface with Objective Caml
The implementation of CDuce has an interface system with the Objective Caml
language. This interface allows:
— to reuse from CDuce programs most of the existing OCaml libraries;
— to developed hybrid projects, in which some OCaml and CDuce modules

cohabit.
The choice of Objective Caml is natural since it is the implementation lan-

guage for CDuce (in particular, CDuce programs use Ocaml’s memory man-
agement system). The two languages also have a certain number of common
traits: they are both higher-order functional languages, with the same kind of
semantics - strict, with mutable-in-place values, and exceptions. Many OCaml
libraries encapsulate lower-level libraries (usually written in C), and offer them

206 Chapter 11. Implementation techniques

an interface that is abstract enough for CDuce (for example, they handle mem-
ory management, exception error reporting, and present enough information in
the types, which is not the case with C headers). The interface with OCaml
indirectly allows these libraries to be used (for example, to access databases,
digital computing libraries, system libraries, . . .).

Due to the implementation of CDuce in OCaml, their memory management
is common, hence there is no problem on that side; for example, there is no
need to have two different garbage collectors interacting.

One of the major challenges in interfacing two strongly-typed languages is
linking the two type systems. Consider the abstract situation of having two
languages L1 and L2, each using an implicit and transparent subtyping relation
in their semantics. Consider also a translation t 7→ t̃ from the types of L1 to
the types of L2. The idea is that a value of the L1 language, of type t, can be
automatically translated into a value of type t̃ to be used in L2. This relation
has to be compatible with the subtyping relations: if t1 ≤ t2, then any value of
type t1 can be seen as a value of type t2, and therefore automatically translated
into a value of type t̃2. This value can also be directly translated into a value
of type t̃1. Then, to preserve the semantic transparency of subsomption, we
need to have t̃1 ≤ t̃2 as soon as t1 ≤ t2. As a result, since OCaml does not have
implicit subtyping (apart from the identity), a function translating CDuce types
to OCaml types is necessarily constant. This function is a uniform translation
that forgets any type information, meaning that seen from OCaml, all CDuce
values have the same type, say CDuce.value. In fact, the implementation of
CDuce naturally uses such an OCaml type to represent values during execution,
and this representation is visible from OCaml programs. However, it is hardly a
typed interface, since any type information is lost in this representation. Instead,
we are going to define a translation the other way, from OCaml types to CDuce
types. Since there is no implicit subtyping in OCaml, the constraint mentioned
above is empty, and we have a lot of freedom to define this translation.

The translation of base types does not pose any problem: for example,
OCaml’s int type is translated into an interval type i—j where i (resp. j)
is the smallest (resp. the largest) representable integer in OCaml. Similarly,
OCaml’s char type is translated into the subtype of Char that corresponds to
the character set iso-8859-1 (the initial segment of Unicode consisting of 256
characters). OCaml’s structural types (arrows, products, records) are trans-
lated using the similar constructions of CDuce. An OCaml sum type declared
by:

type t = A1 of t1 | . . . | An of tn

is translated into the CDuce type

(‘A1,t̃1) | . . . | (‘An,t̃1)

Recursive OCaml types are of course translated into recursive CDuce types. A
special treatment is reserved for the abstract types of OCaml: these are added
to the type algebra of CDuce. If t is an abstract type of OCaml, a value of type
t̃ is, from CDuce’s point of view, a black box with the label t, and its actual
content (an OCaml value of type t) remains inaccessible. Keeping the label t
on the value is necessary to be able to do pattern matching on types in CDuce.
We do not handle parametric abstract types.

11.4. Interface with Objective Caml 207

If the OCaml type t is associated with the CDuce type t̃, with the rules
above, we have natural translation functions from OCaml values of type t into
CDuce values of type t̃, and reciprocally. These translation functions allow us
to set up the interface system between the two languages.

OCaml to CDuce The CDuce programmer can use an OCaml value M.v (M
is the name of the OCaml module in which the value v is defined) in a CDuce
program. The CDuce compiler searches in the compiled interface of M the OCaml
type of M.v, which is t, and produces the code that translates it into a CDuce
value of type t̃, which is the type given to the expression M.v in the CDuce
program.

If the value has a polymorphic OCaml type scheme (a polymorphic function,
usually), the programmer has to explicitly instantiate the variables used with
CDuce types. For example, the type scheme of List.map in OCaml standard
library is:

∀α.∀β.(α→ β)→ α list→ β list

To use this value in CDuce, by instantiating α with the type Int and β with
the type [Int∗], the programmer has to write

List.map{Int; [Int∗]}

(Schemes are defined modulo alpha-renaming, we give instantiations in the order
in which the variables appear in the type scheme, from left to right.) The
translation functions at the value level for OCaml type variables instantiated
with CDuce types are identities.

CDuce to OCaml A CDuce value v can be seen from OCaml as a value of
OCaml type t, as soon as v is indeed of type t̃. There is no canonical choice for
t. For example, if v has type (‘A, 0—10)|(‘B, 0—20), we can see it as a value of
OCaml type t defined by:

type t = A of int | B of int

But we do not want to declare such a type (recall that two concrete OCaml
types, even if they textually have the same definition, are incompatible). For
example, if the OCaml already uses a type s defined by:

type s = A of int | B of int | C of string

we may want to see v as a value of that type.
The interface system asks the programmer to explicitly give an OCaml type

to the CDuce values that he wants to use from CDuce modules. This is done
by associating to a CDuce compilation unit an OCaml interface module. The
CDuce compiler checks that the CDuce values exported by this compilation unit
are indeed compatible with the OCaml types that the interface file gives them,
and it produces an OCaml module that does the translation from CDuce values
to OCaml values.

208 Chapter 11. Implementation techniques

11.5 Performance
We have not studied the complexity of the algorithms presented in this thesis.
In particular, the subtyping algorithm solves the problem of the inclusion of
regular tree languages (given as automatons), which is EXPTIME-complete.
Since types actually represent alternating tree automatons, with complement,
we should expect a larger theoretical lower bound. The precise study of the
complexity of the algorithm obviously depends on the choice of the algorithm
that computes inductive predicates (with or without backtracking, see Chapter
7), and the way to represent and compute boolean connectors (see Chapter 3
and Section 11.3).

In practice, on realistic (although relatively small) CDuce programs, all the
algorithms involved in compiling CDuce programs seem to be performing well
enough. For example, the program used to generate CDuce’s web site from an
XML description takes less than two tenth of a second to compile, on a Pentium 4
at 2.7 Ghz. About half of that time is spent in the subtyping algorithm, which
is called 19956 times (for a total of 70999 internal iterations). The program
consists of about 450 lines of CDuce code, plus about 300 lines that correspond to
the DTD XHTML 1.0 Strict, represented in CDuce types. About 3500 internal
type nodes are introduced. Other examples confirm the fact, noted by Hosoya
[Hos01], that despite the large theoretical complexity of the subtyping algorithm,
the various implementation techniques allow us to obtain an efficient algorithm,
at least for the XML types encountered in practice.

The performance of CDuce programs during execution seems quite satis-
factory, in particular thanks to the efficient pattern matching compilation al-
gorithm, and to the techniques used for representing values during execution
presented in this chapter.

We have deliberately chosen not to present any performance metrics (or, a
fortiori, comparisons with other "competing" languages). Such metrics assess
both the quality of the implementation and of the implementation language,
as well as the efficiency of algorithms. For example, we have observed gains
or losses of a factor 2 in efficiency by simply playing with the parameters of
Objective Caml’s garbage collector. Similarly, the removal of dead code resulted
in a loss of efficiency of around 20% (probably due to code alignment issues). We
believe that performance metrics or comparisons are of little scientific interest.
However, we refer the interested reader to a previous publication [BCF03] or to
the CDuce website to see these kind of metrics.

209

Conclusion

211

Chapter 12

Conclusion and outlook

The work presented in this thesis establishes the theoretical basis for the CDuce
language. In parallel to these theoretical works, I have developed an implemen-
tation of the CDuce language. A first prototype was made at the beginning
of the thesis, and was not released. It tested the feasibility of the algorithms
involved. It was completely rewritten, and CDuce 0.1 was made public in June
2003, allowing us to introduce the language to a small community of users.

It seems to me that the goal of this thesis, which was to propose a functional
programming language adapted to XML, with general-purpose traits and a us-
able implementation, has been reached. I have proposed solutions to several of
the open questions outlined in Hosoya’s thesis [Hos01] (Records, Higher-Order
Functions, Improvement of the Type Inference Algorithm, Non-linear patterns,
Pattern Optimization), as well as other extensions to XDuce.

There have been very strong interactions between the implementation work
and the directions taken by the theoretical work. Sometimes the implemen-
tation even preceded formalization, and a formalization effort after the fact
made it possible to better understand and improve the implementation in re-
turn. Implementation has played an essential role in the formalism of type
algebras (Chapter 3) and it is relatively low-level considerations (sharing of
internal structures) that led to the establishment of the theory of Chapter 2.
Of course, all the results related to implementation techniques and algorithmic
work were motivated by the implementation, and developed in parallel. This
thesis is therefore the result of a continuous back and forth between theory and
practical implementation.

The implementation was done in the Objective Caml language. This lan-
guage proved to be a great help in the development of CDuce and has kept
its promises perfectly as the code evolved consistently and therefore required
general changes. Of course, the philosophy of OCaml could only permeate the
design of CDuce; there are important syntactic and semantic similarities, as well
as the presence of an interface (Section 11.4) that allows the languages to inter-
operate. The implementation of the version 0.2 of CDuce, which was released in
July 2004, consists in about 20 000 lines of code. It rests on a certain amount
of libraries developed by the OCaml user community.

This thesis presents the CDuce language itself only briefly and informally
(Chapter 10). It is not intended to replace a reference manual or a tutorial for
the language. In addition, the language keeps evolving. Interested readers will

212 Chapter 12. Conclusion and outlook

refer themselves to other sources of information about CDuce [BCF03, Ftct04b,
Ftct04a] and its implementation.

12.1 Perspectives
Polymorphism The question of polymorphism, mentioned in Hosoya’s thesis,
is still relevant today. The aim is to integrate the kind of parametric polymor-
phism found in ML into the formalism of the types of XDuce or CDuce. One
of the technical difficulties is to extend the subtyping relation to polymorphic
types, while preserving both the set-theoretic approach and an efficient practi-
cal algorithm. Another difficulty is the inference of type variables instantiated
during the call of a polymorphic function. Finally, there is a semantic choice
to be made, namely whether type variables can be used in a pattern (in which
case the semantics of a polymorphic function may depend on the instantiation
of type variables, which poses problems for the inference of these instantiations,
and which can also have an impact on the representation of values at execution).
Preliminary work [HFC05] studying the addition of parametric polymorphism
to XDuce was conducted, with Hosoya and Castagna.

Reconciliation with ML The approach presented in this thesis and pursued
by project CDuce was to define a language adapted to the manipulation of
XML documents, with specific constructions, but which nevertheless possesses
general-purpose characteristics coming from existing languages, such as first-
class functions. Another possible direction would have been to integrate the
specific characteristics required by XML into a general-purpose language (types
and regular expression patterns, in the first place). A natural "target" would
be a language of the ML family. The problem would then be to figure out
how to bring closer the type system of XDuce/CDuce (propagation of types
that represent automatons), and the one of ML (inference by unification). A
possible starting point would be the HM(X) [OSW99] type system, that extends
the one of ML with constraints. Another approach would be to introduce a
unique XML type in a ML language, and to "refine" that type (with a regular
expression type), using a formalism similar to Dependent ML [Xi98, Xi99].

Inference In CDuce, functions have to be explicitly annotated with their type.
Since these annotations can in fact change the semantics of programs (because
patterns are able to test the declared type of a function), it is not possible to
remove them completely. However, we may try to infer them in some cases, if
we can verify that these functions will not be pattern matched with a type test,
or if we accept that the inference algorithm influences program semantics (by
making a certain choice). In particular, it would be nice for the programmer
not to have to specify the type of "anonymous" abstractions, which are used as
arguments to higher-order functionals. Even without considering the fact that
annotations change the semantics of functions, it seems inconceivable to achieve
"total" inference. One reason is that a function can have an infinite number of
different and incomparable arrow types (in addition, in the presence of singleton
types, the set of types of a function often completely characterizes the semantics
of the function, for example with λx.x+ 1, or a function of the kind of map on
sequences). Local inference techniques [PT98, PT00, OZZ01] are a reasonable

12.1. Perspectives 213

starting point. In fact, the structure of the typing algorithm implemented for
CDuce - and described in the "Error localization" paragraph of Section 11.1 - is
close to the bidirectional type propagation used in local inference: it propagates
a constraint downwards in the syntax tree. In its current version, it simply
uses this constraint (an upper bound on the type of the expression) to better
locate type errors (and in the absence of error, it returns a finer type). It could
easily be modified to use this constraint to "fill" the annotations to be inferred
for abstractions. Thus, the programmer could often avoid having to specify the
type of anonymous abstractions used as arguments to higher-order functionals.

A representation for values depending on type and context The im-
plementation of CDuce uses a uniform representation for all values manipulated
during execution. This means that the machine representation of the value
determines it entirely without having any information about its static type.
XHaskell [LS04b], on the other hand, translates the static XML types of ex-
pressions into host language types (Haskell, in this case). Each XML type has
its own concrete representation, and in order to be able to use a value of a
certain type where a value of a supertype is expected, it is necessary to apply
a coercion on the value. This may have a significant cost, but in return, the
representation is more compact, and it allows direct access to the middle of
sequences, where with the uniform representation, it would be necessary to go
through the elements one by one. One approach that would be interesting to
consider is to make representation dependent not only on the static type, but
also on the context where the value is used. Thus, if we be foresee that a co-
ercion will have to be applied to the value, we can avoid it directly using the
expected representation. If there is nothing to predict about the value, a uni-
form representation can be used as a defect. Obviously, this approach requires
a fairly accurate information flow analysis (hopefully we can reuse the work of
Benzaken, Burelle and Castagna [BBC03] on the analysis of information flow
for safety in CDuce).

Optimal sharing of cyclical structures The formalism of Chapter 2 al-
lows us to develop the rest of the theory without worrying about the question of
sharing between structurally "isomorphic" types. Of course, the type algorithms
(especially the subtyping algorithm) are all the more effective as the number of
different types manipulated is reduced. It is therefore in our interest to share as
many types as possible, as long as this sharing is less expensive than the gain
obtained. In the implementation, types are shared during the translation be-
tween external syntax types and the internal type algebra, modulo α-renaming.
Types X where X = (X,X)|||Int and X ′ where X ′ = (X ′, X ′)|||Int are there-
fore translated into (physically) equal types in the implementation, whereas the
three recursive types X where X = (X,X)|||Int, Y where Y = Int|||(Y, Y) and
Z where Z = ((Z,Z)|||Int, (Z,Z)|||Int)|||Int produce three different types inter-
nally, although it would be reasonable to share them. Techniques of optimal
sharing for recursive terms [Mau99, Mau00, Con00] would make it possible to
identify X and Z (that differ only by unfolding), but not X and Y , that can be
made equal by using a commutativity property in the internal algebra. It would
be interesting to adapt these works to take into account these kind of properties
(associativity, commutativity, idempotence).

214 Chapter 12. Conclusion and outlook

We can easily describe the predicate that detects structural equivalence be-
tween two types in the internal algebra in a coinductive form; we use the fact
that two sets A and B are equal if and only if:

(∀x ∈ A. ∃y ∈ B. x = y) ∧ (∀y ∈ B. ∃x ∈ A. x = y)

The negation of this structural equivalence predicate is, as for subtyping, an
inductive property, and we can therefore use the algorithms of Chapter 7 to
implement if efficiently. This sharing technique should be formalized and its
concrete impact on the typechecker’s performance assessed.

Combinator algebra: iterators, XML paths, pattern matches CDuce
has predefined iterators, to work on sequences (Section 10.3.5) or XML trees.
The typing of these operators is much more precise than what can be obtained
with ML-like parametric polymorphism. It is disappointing not to be able to
define these kind of operators in the language. Hosoya [Hos04] introduced an
operation that at the same time generalizes pattern matching and iteration on
sequences. It would be interesting to extend this approach to allow the program-
mer to also integrate XML paths (as in XPath[XPA]), and to specify iterators
that do not necessarily preserve the order of the elements of the sequences. One
way would be to introduce an algebra of combinators that makes it possible to
express in a uniform framework all these constructions, then to use it to study
the issues of typing and evaluation, and finally to propose agreeable syntaxes to
define these combinators. The typing of combinators would occur at the time
of their application, when the type of the input expression is completely known
(which makes it possible to iterate on it). Efficiency issues for the implemen-
tation could lead to developments similar to those of Chapter 8, to take into
account static types.

Heuristics and cost models for pattern matching The formalism of
Chapter 8 makes it possible to consider several strategies for compiling pat-
tern matching. We described a sequential left-right strategy, and an iterative
strategy. The current implementation of CDuce uses a sequential left-right strat-
egy.

A compilation scheme that aims at producing globally sequential code for
pattern matching must choose between a left-right or right-left strategy for
each query. Levin and Pierce [LP04] suggest a "maximum connection factor"
heuristic. It can be adapted to our formalism to suggest, for each query, either
a left-right strategy or a right-left strategy. Here is how to do it. We use
the Section 8.3.8 construction to compute the left-hand sub-request (in a left-
right strategy), and similarly, the right-hand sub-request if a right-left strategy
is used. The connection factor for a query is the maximum size of a disjoint
partition of that query, that is, a partition where two atomic queries that accept
a common value are necessarily in the same class (the corresponding partition
is given by the transitive closure of the "accept a common value" relation). This
heuristic advises to start with the side that maximizes this connection factor.
It would be interesting to measure the impact of such a heuristic.

We could also seek to extend these kind of heuristics to non-iterative strate-
gies. One way to do this, inspired by the optimization of queries in databases, is
to define a cost model, that is, to associate a numerical cost with any strategy.

12.2. Around CDuce 215

We could then seek to optimize this cost, either exactly (possibly by listing all
possible strategies, as there are only a finite number that do not perform the
same atomic sub-request several times), or using an approximation. Defining
the cost of strategies is not easy: we would have to take into account the cost
of a sub-request, which itself may depend on the cost of the current query that
is being calculated, in case of a recursion.

12.2 Around CDuce
in parallel to my thesis, other work has been initiated around the CDuce lan-
guage.

Safety analysis for CDuce The thesis of Marwan Burelle, directed by Véronique
Benzaken and Giuseppe Castagna, focuses on static and dynamic safety analysis
for the CDuce language. It is based on an analysis of the information flow, by
modifying the semantics of the language with labels (which represent levels of
security). Preliminary results [BBC03] have been published.

A query language for CDuce The thesis of Cédric Miachon, directed by
Giuseppe Castagna and Véronique Benzaken, studies a query language, called
CQL, built on top of the CDuce language. CQL uses the great expressive power
CDuce’s pattern matching. This work has led to the integration in CDuce of the
construction select .. from ... where Another line of research, led
by Véronique Benzaken and Ioana Manolescu, seeks to interface CDuce and CQL
with XML document physical storage systems; the aim is to avoid fully loading
potentially gigantic documents into central memory, and to use algorithms from
the database world to efficiently represent data in mass memory, with random
access, and to enable rapid evaluation of queries.

Pattern matching combinators CDuce Kim Nguyen studies in his thesis,
directed by Véronique Benzaken, a combinator algebra that makes it possi-
ble to define strongly-polymorphic combinators (see above): iterators, paths,
structural transformations. Preliminary results were obtained during his DEA
[Ngu04] internship, which I co-supervised with Giuseppe Castagna and Véronique
Benzaken.

Channel and semantic subtyping Castagna, De Nicola and Varacca [CNV04]
define, by extending the set-theoretic approach presented in this thesis, a sub-
typing relation for channels, whose goal is to type π-calculus.

216 Chapter 12. Conclusion and outlook

217

Bibliography

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive
types. ACM Transactions on Programming Languages and Sys-
tems, 15(4):575–631, September 1993. (cité page 31)

[AL91] Andrea Asperti and Giuseppe Longo. Categories, Types and Structures.
M.I.T. Press, 1991. (cité page 37)

[BBC03] Véronique Benzaken, Marwarn Burelle, and Giuseppe Castagna. Se-
curity analysis for xml transformations. In Eighth Asian Computing
Science Conference, 2003. (cité pages 213, 215)

[BCF02] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: a
white paper. In Programming Languages Technologies for XML (PLAN-
X), 2002. (cité page 5)

[BCF03] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: An
XML-centric general-purpose language. In ACM International Confer-
ence on Functional Programming (ICFP), 2003. (cité pages 5, 208, 212)

[BH97] Michael Brandt and Fritz Henglein. Coinductive axiomatization of re-
cursive type equality and subtyping. In Roger Hindley, editor, Proc. 3d
Int’l Conf. on Typed Lambda Calculi and Applications (TLCA), Nancy,
France, April 2–4, 1997, volume 1210, pages 63–81. Springer-Verlag,
1997. (cité page 32)

[CF04] Giuseppe Castagna and Alain Frisch. A gentle introduction to seman-
tic subtyping. In Second workshop on Programmable Structured Docu-
ments, 2004. (cité page 5)

[CGL95] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded func-
tions with subtyping. Information and Computation, 117(1):115–135,
February 1995. (cité page 33)

[CNV04] Giuseppe Castagna, Rocco De Nicola, and Daniele Varacca. Semantic
subtyping for the π-calculs, 2004. Unpublished. (cité page 215)

[Con00] Jeffrey Considine. Efficient hash-consing of recursive types. Technical
Report 2000-006, Boston University, January 2000. (cité pages 51, 213)

[Dam94] Flemming M. Damm. Subtyping with union types, intersection types
and recursive types. In Masami Hagiya and John C. Mitchell, editors,
Theoretical Aspects of Computer Software, volume 789, pages 687–706.
Springer-Verlag, 1994. (cité page 29)

218 BIBLIOGRAPHY

[DCFGM02] Mariangiola Dezani-Ciancaglini, Alain Frisch, Elio Giovannetti, and
Yoko Motohama. The relevance of semantic subtyping. In Intersec-
tion Types and Related Systems (ITRS). Electronic Notes in Theoretical
Computer Science, 2002. (cité page 5)

[DG84] William Dowling and Jean Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formulas. Journal of Logic Pro-
gramming, 3:267–284, 1984. (cité page 32)

[DOM] Document Object Model (DOM); http://www.w3.org/DOM/. (cité
page 21)

[FC04] Alain Frisch and Luca Cardelli. Greedy regular expression matching. In
31st International Colloquium on Automata, Languages and Program-
ming (ICALP), 2004. A preliminary version appeared in the PLAN-X
2004 workshop. (cité pages 6, 186)

[FCB02] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Seman-
tic Subtyping. In Proceedings of the 17th IEEE Symposium on Logic
in Computer Science (LICS), pages 137–146. IEEE Computer Society
Press, 2002. (cité page 6)

[Fri01] Alain Frisch. Types récursifs, combinaisons booléennes et fonctions
surchargées: application au typage de XML, 2001. Rapport de DEA
(Université Paris 7). (cité pages 5, 66)

[Fri04] Alain Frisch. Regular tree language recognition with static information.
In 3rd IFIP International Conference on Theoretical Computer Science
(TCS), 2004. A preliminary version appeared in the PLAN-X 2004
workshop. (cité pages 5, 31)

[Ftct04a] Alain Frisch and the CDuce team. CDuce: Tutorial, 2004. http://www.
cduce.org/tutorial.html. (cité page 212)

[Ftct04b] Alain Frisch and the CDuce team. CDuce: User’s manual, 2004. http:
//www.cduce.org/manual.html. (cité page 212)

[GLP00] Vladimir Gapeyev, Michael Y. Levin, and Benjamin C. Pierce. Re-
cursive subtyping revealed. In ACM SIGPLAN Notices, volume 35(9),
pages 221–231, 2000. (cité page 32)

[GLPS04] Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and Alan
Schmitt. Xml goes native: Run-time representations for xtatic, 2004.
(cité page 201)

[GP03] Vladimir Gapeyev and Benjamin Pierce. Regular object types. In Euro-
pean Conference on Object-Oriented Programming, 2003. (cité page 29)

[HFC05] Haruo Hosoya, Alain Frisch, and Giuseppe Castagna. Parametric
polymorphism for XML. In Proceedings of the 32st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 2005.
(cité pages 6, 212)

[HM02] Haruo Hosoya and Makoto Murata. Validation and boolean operations
for attribute-element constraints. In Programming Languages Technolo-
gies for XML (PLAN-X), 2002. (cité page 32)

http://www.w3.org/DOM/
http://www.cduce.org/tutorial.html
http://www.cduce.org/tutorial.html
http://www.cduce.org/manual.html
http://www.cduce.org/manual.html

BIBLIOGRAPHY 219

[HM03] Haruo Hosoya and Makoto Murata. Boolean operations and inclusion
test for attribute-element constraints. In Eighth International Con-
ference on Implementation and Application of Automata, 2003. (cité
page 32)

[Hos01] Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The
University of Tokyo, 2001. (cité pages 19, 23, 30, 67, 130, 208, 211)

[Hos03] Haruo Hosoya. Regular expression pattern matching - a simpler design,
2003. (cité page 31)

[Hos04] Haruo Hosoya. Regular expression filters for XML. 2004. (cité
page 214)

[HP00] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML process-
ing language. In Proceedings of Third International Workshop on the
Web and Databas es (WebDB2000), 2000. (cité page 23)

[HP01] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern
matching for XML. In The 25th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 2001. (cité page 23)

[HP02] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern
matching for XML. In Journal of Functional Programming, volume
13(4). 2002. (cité page 23)

[HP03] Haruo Hosoya and Benjamin C. Pierce. A typed XML processing lan-
guage. In ACM Transactions on Internet Technology, volume 3(2),
pages 117–148. 2003. (cité page 23)

[HVP00] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular ex-
pression types for XML. In ICFP ’00, volume 35(9) of SIGPLAN No-
tices, 2000. (cité pages 23, 23)

[KPMI95] Dexter Kozen, Jens Palsberg, and Schwartzbach Michael I. Efficient
recursive subtyping. In Mathematical Structures in Computer Science,
volume 5(1), pages 113–125, 1995. (cité page 32)

[Lev03] Michael Y. Levin. Matching automata for regular patterns. In Inter-
national Conference on Functional Programming (ICFP), 2003. (cité
page 31)

[LP04] Michael Y. Levin and Benjamin C. Pierce. Type-based optimization for
regular patterns. In First International Workshop on High Performance
XML Processing, 2004. (cité pages 31, 31, 163, 214)

[LS04a] Kenny Zhuo Ming Lu and Martin Sulzmann. An implementation of
subtyping among regular expression types. In ASIAN Symposium on
Programming Languages and Systems, 2004. (cité page 201)

[LS04b] Kenny Zhuo Ming Lu and Martin Sulzmann. XHaskell: Regular expres-
sion types for haskell, 2004. (cité pages 29, 201, 213)

[Mau99] Laurent Mauborgne. Representation of Sets of Trees for Abstract Inter-
pretation. PhD thesis, École Polytechnique, 1999. (cité pages 51, 213)

[Mau00] Laurent Mauborgne. An incremental unique representation for regu-
lar trees. Nordic Journal of Computing, 7(4):290–311, 2000. (cité
pages 51, 213)

220 BIBLIOGRAPHY

[MS03] Erik Meijer and Wolfram Schulte. Unifying tables, objects, and doc-
uments. In Declarative Programming in the Context of OO-Languages
(DP-COOL), 2003. (cité page 201)

[MSV00] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML trans-
formers. In Symposium on Principles of Database Systems, pages 11–22,
2000. (cité page 24)

[Nam] Namespaces in XML; http://www.w3.org/TR/REC-xml-names. (cité
page 182)

[Ngu04] Kim Nguy˜̂en. Une algèbre de filtrage pour le langage CDuce, 2004.
Rapport de DEA (Université Paris 7). (cité page 215)

[OSW99] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference
with constrained types. TAPOS, 5(1), 1999. (cité page 212)

[OZZ01] Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local
type inference. In Proc. ACM Symposium on Principles of Programming
Languages, 2001. (cité page 212)

[PT98] Benjamin C. Pierce and David N. Turner. Local type inference. In
25th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, 1998. (cité page 212)

[PT00] Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Transactions on Programming Languages and Systems (TOPLAS),
22(1), 2000. (cité page 212)

[REL] RELAX NG Specification; http://www.oasis-open.org/committees/
relax-ng/spec-20011203.html. (cité page 21)

[SCH] XML Schema Part 1: Structures; http://www.w3.org/TR/
xmlschema-1. (cité page 21)

[SH04] Tadahiro Suda and Haruo Hosoya. A non-backtracking top-down al-
gorithm for checking tree automata containment, 2004. Unpublished.
(cité page 32)

[Van04] Stijn Vansummeren. Type inference for unique pattern matching, 2004.
(cité page 184)

[VM04] Jerome Vouillon and Paul-André Melliès. Semantic types: a fresh look
at the ideal model for types. In Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 52–
63. ACM Press, 2004. (cité page 30)

[Wat94] Bruce W. Watson. A taxonomy of finite automata construction algo-
rithms. Technical Report Computing Science Note 93/43, Eindhoven
University of Technology, May 1994. (cité page 51)

[Xi98] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, 1998. (cité page 212)

[Xi99] Hongwei Xi. Dependently Typed Data Structures. In Proceedings of
Workshop of Algorithmic Aspects of Advanced Programming Languages
(WAAAPL ’99), pages 17–32, Paris, September 1999. (cité page 212)

http://www.w3.org/TR/REC-xml-names
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1

BIBLIOGRAPHY 221

[XML] Extensible Markup Language Recommendation (XML) 1.0; http://
www.w3.org/TR/REC-xml. (cité pages 19, 20)

[XPA] XML Path Language (XPath); http://www.w3.org/TR/xpath. (cité
page 214)

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath

	Abstract
	Acknowledgements
	Foreword
	Table of figures
	Notations
	Introduction
	Introduction
	Motivations, goals
	Programming languages
	XML
	Programming with XML

	XDuce
	Overview
	Internal encoding

	Quick overview of the thesis
	Theoretical and semantic foundations
	Algorithmic aspects
	The CDuce language

	Main contributions
	Higher-order functions and set-theoretic subtyping
	Typing pattern matching
	Efficient compilation of pattern-matching
	The subtyping algorithm
	XML attributes
	A calculus for overloaded functions

	I Theoretic and semantic foundations
	A formal framework for recursive syntaxes
	Motivation
	The category of F-coalgebras
	Congruences, quotients
	Regularity and recursivity
	Regularity
	Recursivity
	Application: transfer between signatures

	Constructions
	Optimal sharing
	Minimal sharing
	Sharing modulo renaming and extension

	Type algebra
	Boolean combinations
	Motivation
	Finite boolean combinations in normal disjunctive form

	Algebras with recursive types and boolean combinations
	The minimal algebra

	Semantic subtyping
	Base types
	Models
	Set-theoretic inclusions
	Subtyping analysis
	Universal model
	Non-universal models
	Notation conventions
	Semantic reasonings
	Decompositions
	Building equivalent models

	Equation systems -.4-.4

	Calculus
	Syntax
	Type system
	Syntactic properties of the typing
	Values
	Semantics
	Type safety
	Type inference
	Filters, schemas
	Typing the operators
	Typing algorithm
	Set-theoretic interpretation of schemas

	Operators
	Variant of the calculus without overloaded functions

	Pattern matching
	Patterns
	Semantics
	Typing
	Extension of the calculus
	Normalization
	Method
	Elimination of the intersection

	II Algorithmic aspects
	Subtyping algorithm
	Computation of an inductive predicate
	Formulas, systems, induction
	Cache
	Removing backtracking
	Application: emptiness checking for a tree automaton

	Subtyping algorithm
	Variant and optimization
	Other formulas
	Approximations

	Pattern matching compilation
	Naive evaluation
	Optimization ideas
	Formalization
	Queries
	Results
	Query compilation
	Target language: syntax
	Target language: semantics
	Static information
	Strategy development
	Examples of constructions

	Factorization of captures

	III The CDuce language
	Records
	Types
	Algebra of types
	Models
	Subtyping
	Decomposition, projection

	Patterns
	Calculus
	Concatenation operator
	Partial functions

	Presentation of the language
	Base types, constants
	Types, patterns
	Sequences, regular expressions
	Sequences
	Type and pattern regular expressions
	Translation of regular expressions
	Decompilation of sequence types
	Operators
	Strings

	XML
	Derivative constructions
	Imperative traits
	An example

	Implementation techniques
	Typechecker
	Representation of values
	Representation of Boolean combinations
	Simplification by boolean tautologies
	Disjoint atoms
	Alternative representation: decision trees
	Representation of base types

	Interface with Objective Caml
	Performance

	Conclusion
	Conclusion and outlook
	Perspectives
	Around CDuce

