A rewriting theory for quantum lambda-calculus CSL 2025

Claudia FAGGIAN , Benoît VALIRON , Gaëtan LOPEZ

Université Paris Cité , Université Paris Saclay

Febuary 11, 2025

Quantum λ -calculus = **quantum** functional programming language

The quantum λ -calculus by Selinger and Valiron lies arguably at the fundation of the development of higher-order quantum programming languages.

A critical point :

• non-duplicability of quantum data, which is addressed by tools from linear logic

Selinger-Valiron's language used the QRAM model : quantum data + classical control

Lambda calculus

Lambda calculus has a rich, powerful notion of reduction, whose properties are studied by a vast amount of literature.

Rewriting theory provides a sound framework for reasoning about :

- programs transformations, such as compiler optimizations or parallel implementations
- program equivalence

$$\lambda x \cdot x$$
 fn(x) -> x end

The pillars of the operational theory of λ -calculus

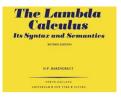
• Confluence guarantees that normal forms are unique :

• Standardization (factorization): computational steps can be reorganized.

$$M \rightarrow^*_{\beta} N \Rightarrow M \rightarrow^*_h \cdot \rightarrow^*_{\neg h} N$$

Hence normalization :

if a normal form exists, there is a strategy which is guaranteed to find it.



CALL-BY-NAME, CALL-BY-VALUE AND THE λ -CALCULUS

G. D. PLOTKIN

Department of Mashine Intelligence, School of Artificial Intelligence, University of Edinburgh, Edinburgh, United Kingdom

> Communicated by R. Milner Received 1 August 1974

Call-by-name λ -calculus "à la Barendregt"	Call-by-value λ_{v} -calculus "à la Plotkin"
General reduction: (\rightarrow_{β})	General reduction: $(\rightarrow_{\beta_{v}})$
Evaluation: head (\rightarrow_h)	Evaluation: weak-left (\rightarrow_I)
1. Head factorization (standardization):	1. Weak-left factorization (standardization):
$M o_{eta}^* N$ then $M o_h^* \cdot o_{\neg h}^* N$	$M ightarrow^*_{eta_ u} N$ then $M ightarrow^*_I \cdot ightarrow^*_{\neg I} N$
2. Head normalization:	2. Convergence to a value:
$M o_{eta}^* H$ then $M o_{eta}^* H'$	$M o_{eta_{V}}^{st} V$ then $M o_{I}^{st} V'$

As pioneered by Plotkin (74), standardization allows to bridge between

- the general reduction, where programs transformations can be studied
- an evaluation strategy, implementing execution of (idealized) programming language.

What about these results in the quantum setting ?

We move from classical to quantum computation

Classical bit :

Quantum bit (qubits), superposition of data :

Qubits are

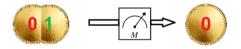
- non-duplicable
- non-erasable

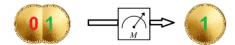
Prime example: Shor Algorithm, finding the prime factors of an integer in polynomial time.

Quantum operations

• unitary operation

measurement





Rewriting theory for quantum λ -calculus: state of the art

• Confluence:

 without measurement : studied, since early work [Dal Lago-Masini-Zorzi 2009, Arrighi-Dowek 2017]
 with measurement : studied with a sophisticated approach [Dal Lago-Masini-Zorzi 2011]

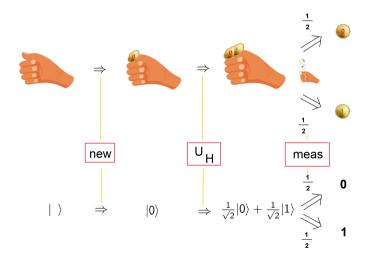
Multiply When dealing with measurement, the analysis is far more challenging

• Standardization/normalization:

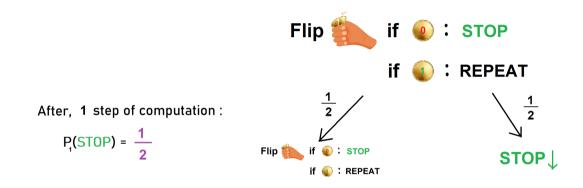
No results (like the classical ones) in the literature for the quantum setting.

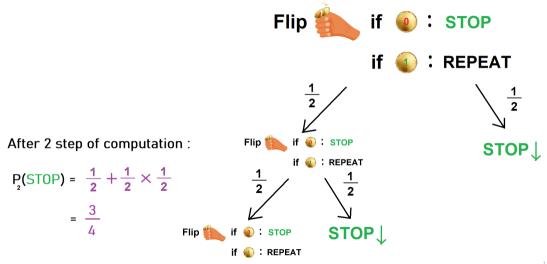
△ Challenge : dealing with probabilistic and asymptotic behavior

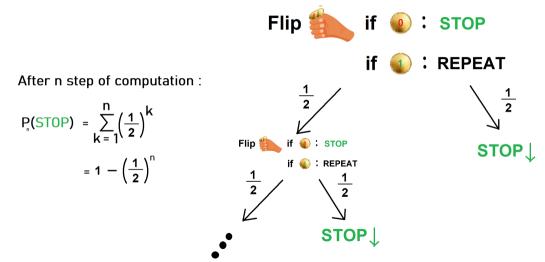
Let us flip a (fair) quantum coin



Measurement introduces probabilities.







Notice that:

- $\forall n, P_n(STOP) \neq 1$ (does not terminate in finite time)
- $\lim_{n \to +\infty} P_n(STOP) = 1$ (almost sure termination)

More challenges, induced by quantum computation :

- manage the states of the quantum memory
- control the duplication/erasability inside $\lambda\text{-terms}$

Recent advances in the theory of **probabilistic rewriting** give us a way to tackle this task with tools unavailable a decade ago **[Dal Lago-Faggian-Valiron-Yoshimizu 2017, DíazCaro-Guido Martinez 2018, Avanzini-Dal Lago-Yamada 2020, Faggian 2022]**.

□ It is time to develop such theory!

Standardization and Asymptotic Normalization: the proof technique

Quantum λ-calculus [Selinger-Valiron 2004]

- Confluence: large body of early work
- [Dal Lago et al. MSCS 2009] (measurefree): reordering of some steps to put in a "standard" form

No "standard" standardization results

Probabilistic λ-calculus

- Probabilistic rewriting
- Probabilistic λ-calculus [Faggian-Ronchi, Lics 2019]: confluence and <u>standardization</u>

Proof techniques for modularizing standardization: [Accattoli-Guerrieri-Faggian, CSL 2021]

Proof techniques for Asymptotic Normalization: [Faggian, LMCS 2022] Faggian-Guerrieri, FSCD 2022]

A rewriting theory for quantum λ -calculus (CSL 25)

In this work, we studied not only confluence but also standardization and normalization results for a quantum λ -calculus featuring measurement.

Contributions :

- an untyped quantum lambda-calculus, designed to allow for a more general reduction
- a rich operational semantics
- confluence
- standardization
- normalization result that scales to the asymptotic case

Quantum programs

Selinger and Valiron follows the paradigm :

- quantum data
- classical control

A quantum program is :

- a Quantum memory (data)
- a Term (control)

[**Q** ; **T**]

Quantum memory

[**Q** ; **T**]

Quantum memory

The state Q of a quantum memory, consisting of n qubits, is a normalized vector $\in (\mathbb{C}^2)^{\otimes n}$

Example

•
$$|+\rangle \coloneqq \frac{\sqrt{2}}{2}(|0\rangle + |1\rangle)$$

• $|\phi^+\rangle \coloneqq \frac{\sqrt{2}}{2}|00\rangle + \frac{\sqrt{2}}{2}|11$

[**Q** ; **T**]

Terms (built on Simpson Calculus)

 $M, N, P ::= x ||M| |\lambda^! x.M| MN \quad (Call-by-Push-Value \lambda-calculus)$ $| \lambda x.M || Inear abstraction (allows us to deal with qubits)$ $| r_i | U_A | new | meas(P, M, N) (quantum)$

The thunk **!M** freezes a computation, so can be duplicated and erased.

The **general reduction** is made of :

- **beta** reductions \rightarrow_{β} **unconstrained**
- quantum reductions \rightarrow_q constrained to be surface (*i.e.* not in the scope of thunk !M) to avoid duplication

q-reduction

Quantum-reductions :

• initializing a qubit in the memory

$$[\mathbb{Q}; \texttt{new}] \mapsto_{q} \{\!\!\{ [\mathbb{Q} \otimes |0\rangle; r_n] \}\!\!\}$$

• apply unitary to the memory

$$[\mathsf{Q}; U_A r_0] \mapsto_q \{\!\!\{ [(A \otimes \mathsf{Id})\mathsf{Q}; r_0] \}\!\!\}$$

 $\overline{[\mathsf{Q}; (U_A \langle r_0, r_1 \rangle] \mapsto_q \{\!\!\{[(A \otimes \mathsf{Id})\mathsf{Q}; \langle r_0, r_1 \rangle]\}\!\!\}}$

• measure the n-th qubit

$$[\texttt{Q}; \texttt{meas}(r_n, M, N)] \mapsto_q \{ \{ |\alpha_0|^2 [\texttt{Q}_0; M], |\alpha_1|^2 [\texttt{Q}_1; N] \} \}$$

Measure is probabilistic: a program reduces to a distribution of programs

Lift to rewriting on (multi)-distributions

Lifting [Avanzini Dal Lago Yamada 2020]

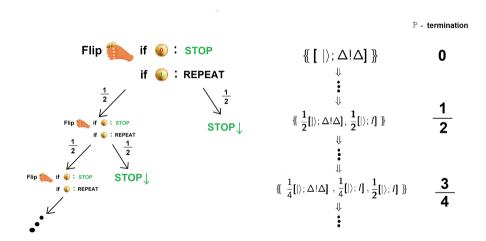
$$\frac{\mathbf{p} \to \mathbf{m}}{\{\!\!\{\mathbf{p}\}\!\!\} \Rightarrow \{\!\!\{\mathbf{p}\}\!\!\}} \quad \frac{\mathbf{p} \to \mathbf{m}}{\{\!\!\{\mathbf{p}\}\!\!\} \Rightarrow \mathbf{m}} \quad \frac{(\{\!\!\{\mathbf{p}_i\}\!\!\} \Rightarrow \mathbf{m}_i)_{i \in I}}{\{\!\!\{\mathbf{p}_i\mathbf{p}_i \mid i \in I\}\!\!\} \Rightarrow \sum_{i \in I} p_i \cdot \mathbf{m}_i\}}$$

Expressivity

Repeatedly flippling a quantum coin can be encoded as :

 $\Delta!\Delta$ where $\Delta:=\lambda^!x.meas(U_H new, I, x!x)$

Execution



Surface reduction $\Rightarrow :$

both beta and quantum steps are constrained to be surface.

Surface reduction plays similar role to head reduction (in CbN) or left-weak reduction (in CbV)

Call-by-name λ -calculus "à la Barendregt"	Call-by-value λ_{v} -calculus "à la Plotkin"
General reduction: (\rightarrow_{β})	General reduction: (\rightarrow_{β_v})
Evaluation: head (\rightarrow_h)	Evaluation: weak-left (\rightarrow_l)
1. Head factorization (standardization): $M \rightarrow^*_{\beta} N$ then $M \rightarrow^*_{h} \cdot \rightarrow^*_{\neg h} N$ 2. Head normalization: $M \rightarrow^*_{\beta} H$ then $M \rightarrow^*_{h} H'$	 Weak-left factorization (standardization): M →[*]_{β_ν} N then M →[*]_l · →[*]_{¬l} N Convergence to a value: M →[*]_{β_ν} V then M →[*]_l V'

First key results: Finitary properties

Confluence of the general reduction

Surface Standardization

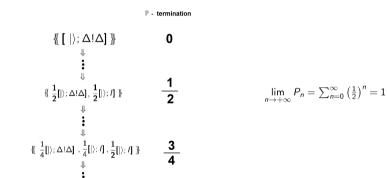
$$m \Rightarrow^* n \iff \exists m' . m \Rightarrow^* m' \Rightarrow^* n$$

Standardization allows us to prove a normalization result which scales to probabilistic termination.

Let first see what is the challenge.

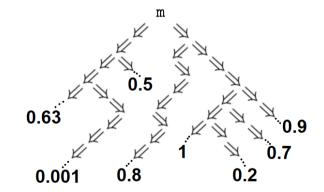
Probabilistic Termination of a reduction sequence

The **probability** that a program **reaches surface normal form** along a reduction sequence is **a limit**.



Challenge

Since reduction is general, there are many reduction sequences, thus many limits !



Main result in the paper: Surface Evaluation is a strategy for asymptotic normalization

Theorem (Asymptotic normalization)

There is a strategy \Rightarrow that is guaranteed to converge with the greatest probability.

These are the first steps, much more work to do!

Work in progress: a finer notion of asymptotic result

If quantum program computes a quantum register...

at the limit the (asymptotic) result is a distribution of quantum registers: a density matrix.

We expect the normalization results to scale.