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Chapter 0

Introduction

MUST-preorder Code refactoring is a routine task, necessary to either update or develop software. Correct
refactoring in turn requires ensuring that a (new) program ¢ can be used in place of a program p. Usually this
is tackled via refinement relations. In the setting of deterministic programming languages, the most studied
refinement is the preorder defined by Morris [29] (pag.50), by letting p < ¢ if for all contexts C, whenever C(p)
evaluates to a value v, then C'(g|) also evaluates to v. In the setting of nondeterministic client-server systems it is
natural to reformulate this preorder by replacing evaluation to a value with a suitable liveness property [30] [31].
Let p ||  denote a parallel composition in which the identities of the server p and the client r are distinguished,
and whose computations have the form p || r — p1 || r1 — p2 || 72 — ... where each step represents either
an internal computation of one of the two components, or an interaction between them. We express liveness by
saying that p must pass r if in every maximal execution of p || r, there exists a state p; || r; such that GOOD(r;),
where GOOD is a decidable predicate indicating that the client has reached a successful state. Servers are then
compared according to their capacity to satisfy clients, i.e. to lead them to successful states. This is formalised
by the MUST-preorder of De Nicola and Hennessy [32], which is defined thus:

p Capust qif Vr . p must pass r implies ¢ must pass r

The MUST-preorder, like Morris one, is contextual: to prove that p C /st ¢, a quantification over an infinite
number of clients is required, and so the definition of the preorder does not entail an effective proof method.
The solution to this problem is to devise an alternative (semantic) characterisation of the preorder C /g7, i.€.
a preorder < 47 endowed with a practical proof method and such that the equality ar7=C st i true.
On the Internet message-passing is asynchronous, because so is the standard TCP transmission. Moreover also
lock-freedom in shared-memory concurrency gives rise to asynchronous information-flow between programs.
The practical importance of asynchrony motivates pursuing results about C ;g7 in a setting where there is
a fundamental asymmetry between blocking actions and non-blocking actions. This asymmetry substantially
complicates reasoning on T /s, and a concrete example of these complications the completeness result of
Castellani and Hennessy [33], which we have proven false. The state of the art on this topic is presented by [27],
where all proofs are machine-checked, and the implementation is open-source and available at [34].

Content and input The characterization is designed for Labelled Transition System, and for a programming
language, we need a reduction semantic. Then the Harmony Lemma, that links LTS and STS, is needed. It was
sketched in many references, like in [2] or in [3], due the redundancy of arguments. Thus, COQ seems perfect to
put a final act on this mathematic folklore. Our contribution is to fully prove the Harmony Lemma for the CCS,
ACCS, VCCS and VACCS. And for each asynchronous language, prove that they are instance of each classes
from [27], to build solid basics to analyse the MUST-preorder in an asynchronous setting, in particular, that the
Axioms for Outbuffered Agents are true, which depends [27].

The main document is here to define in one paper the CCS and the proofs we called earlier. In chapter 1, we
recall the scientific background that is needed for the document. In chapter 2 and 3, we define CCS and ACCS,
with the Harmony Lemma and the Axioms from [1] In chapter 4, we introduce the value passing for CCS and
ACCS. Finally, in chapter 5, we redesigned the VCCS language to introduce the sequencing. The appendix is
here to inform about the COQ implementation.



Chapter 1

Preliminaries

1.1 Relations

A n-relation between n sets (S;,i € {1,2,...,n})is asubset R(™ of S x S x ... x S, (R C S x S X ... X Sp).
We note sRs’ for (s,s') € R. We said that R(") is a binary relation if n = 2.

Let’s take R a binary relation (C S x S).

'R is a equivalence relation if it satisfies all of this three properties :

R is a reflexive relation if for all s € 5, sRs. (1.1)
R is a symmetric relation if for all (s,s") € S x S, sRs" implies s'Rs. (1.2)
R is a transitive relation if for all (s, s’, s”) € (S x S x S), sRs" and s'Rs” implies sRs". (1.3)

Reflexive closure of R is the least relation that contains R and that is reflexive.

Symmetric closure of R is the least relation that contains R and that is symmetric.

Transitive closure of R is the least relation that contains R and that is transitive.

Any of this closure can be viewed as completion of R to obtain reflexivity, symmetry or transitivity.

Let’s take R; another binary relation, then for all s; and ss, the relation s; R. Ry is defined as , it exists some
s’ such that s; Rs’ and s’ Ry ss.

1.2 STS

Let S be the set of States of a system.
A State Transition System (or reduction semantic) is a binary relation R (C S x .5).
When (s,t) € R, we call it a step, and we write :

s —t

We note —* (resp. —>—) the transitive (resp. reflexive) closure of —.

ExamprLE (Dobble game): Let’s take 7 families of cards with 2 parents, 1 child and 1 aunt such that we have a set
of 28 cards.
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The goal of this game is to discard all of your cards.

We distribute the 28 cards between the players then we have 3 rules :
« we start our turn by taking one card from our right player
« then if we have 2 cards from the same family then we can discard it, we can repeat this action

« if no more actions can be made, we pass our turn

The reduction has the diamond property if for all s, s — s’ and s — s”, it exists t such that s’ — ¢ and
s —t.

— 5
|
|
~

Diamond property

The reduction has the confluence property if for all s, s —* s’ and s —* s”, it exists t such that s’ —* ¢
and s/ —* ¢.

Confluence property
Remark: The diamond property implies the confluence.

ExaMPLE (A-calculus): The lambda calculus A is the terms defined by the following grammar :

P,Pl,Pg :$|AJ)P‘P1P2
and by the the following reduction (under any term):

(Ax.Py )Py — Pi[z := P»] (the substitution of all z in P} by P»)

TutEorREME 1.2.1 (Church-Rosser). La relation — est confluente.

1.3 LTS

Let S be the set of States of a system, and let .4 be an alphabet of Actions.
A Labelled Transition System (LTS) on S consists of a relation :

RCSxAxS

When (s, a,t) € R, we write :

[0}

s —t

We call s the source and ¢ the target.

We note s —5 §; —2 55 for s — s1 A 81 —2 s, this can be generalized for any length. If s 2 g 22
a3 g [0 7% . .

Sg —> S3 —> ... —> 85, (n € N), then we call s,, a derivative of s under the trace oy asazay...,.

An LTS can be thought of an automaton without a start state or accepting states.

If, for any given s and a, there exists only a single tuple s —~ s’ in R then one says that « is deterministic (for

s).

If, for any given s and «, there exists at least one tuple s -2y ¢’ in R, then one says that « is executable (for s)
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or s can performs .

Let’s take an infinite set A/ of names, we shall usually denote them with letter, but we can use words too.

Then we introduce N := {@|a € N}, it’s the co-Actions.
Generally we take A as NV UN.

ExamrLE (Vending Machine): We can view the A in terms of receiving something (for \V) or giving something

(for \).

Our machine can give coffee or tea, but it can receive 1 coins. To buy a coffee, we must pay 2 coins and only 1 for

a tea.
So let’s take A := {coffee, tea, Ic}.

We can describe our machine as follow, we note s; (i € {1, 2, 3}) for the states of our machine after each actions

0= PN
\/@

cofee

ExaMPLE (A'-calculus): Let’s take the A-calculus with some black boxes (/).
We have the A'-calculus.
We have then not only the 3-reduction but we have f)-reduction too. We can include into Actions, surface (s)

reductions (s) and non-surface (—s) reduction.
Let’s take for example A := {s, —s, 3, 4} and the LTS (A', A, A'). Then, we look at this term :

Ay.y) MNe.zlz)(Na.xlz)(Az.2)w)

And we can describe it at follows :

Nz.zl2)!(Ne.xlz)(\z.2)w) BN Nz.zlz)! (Ne.zle)w BEEN Nz.zlz) ! (Ne.zle)w

Js

ANz.zlz)!(Ne.xlz)(Az.2)w)

ExampLE (Buffer): Let’s take the set S := {0, 1}* (the set of all finite sequences made with 0 and 1).
We take A := {in;|i € {0,1}} U{out; |i € {0,1}}. And we describe the LTS (S, A, S) as (for any s € S):
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ino

7
s g0 s0T s

s g1 sl L
For ¢ € {0,1}, in; puts i at the top of the sequence s, quite the opposite, out; removes 7 from the sequence s.
The action out; (for any i € {0, 1}) requires a certain model to be performed. And any sequence can perform
in; (for any i € {0,1}).
For instance, the sequence 1010 can’t performs the action out;. But it can performs outy. And 111 is a derivative
of 1010 :

1010 2% 101 2% 10 2% 1 % 11 ™ 111



Chapter 2

Calculus of Communicating Systems
(CCS)

In this chapter, we will see the Calculus of Communicating Systems (CCS) introduced by Robin Milner in 1980
[2] with few differences :

« we didn’t included the restriction of a Channel

« we added a recursion operator, like Hennessy [12] we kept the Success Process from the Characterization
[27] (predicate GOOD)

We will cover his reduction semantic and transition system, and finally the link between those point of view :
the Harmony Lemma.

2.1 Definition

The principle of CCS is that we have parallel processes that can communicate through Channels. Let’s take a
countable set as channels. We call it C.

DEFINITION 2.1.1 (Processes, Guards and ActionPrefixes): The processes Pccs are :

(Process)
P,P,P,:=P || P| X |recX.P|G

(Guards)
G,Gl,Gg :::@‘®|7T°P | Gl +G2

(ActionPrefix)

mu=c? |c!| T (ceC)

Py | P; is the parallel of two process, P; and P,. The capital X is the variables designed for the recursion
operator, it is destined to be replaced with a process. The recursion process rec X.P is the process that loop it

self.

Guards are special processes. In this family of processes, we have the inactive process : (0), the process that does
nothing, passing to the next one.

The Success Process, (1), is only here to notify that a user is happy, or in a good mood (it will be used in future
works).
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We have the summation of a guarded process G and G2, G1 + Gs. It is a process that offers the behaviors of
all his guards, like the parallele. But it will discard all of the unused guards afterwards.

And finally, the process with an action prefix, 7 ¢ P. It is like the sequencing of actions : it will make some action
7, and then behaves like P.

In terms of actions, we have three kind :
« the tau prefix : 7
« the input prefix : ¢?
« the output prefix : ¢!

The action 7 is here to notify that there is an action that can be observed.

The action ¢ 7 is here to notify that the process must receive an information before continuing his computation.
The name c is an identifier. The information is passing via the channel c.

The action ¢! is here to notify that the process must send an information before continuing his computation. It
is the counter part of the action ¢ ?, it is his co-action.

2.2 Congruence and reduction

Now we have a grammar for our terms (Definition 2.1.1), we want to mix up some process. To say, that they
behave similarly for our reduction semantic.

First of all, let’s define this relation, the structural congruence. To do that, we will need the definition of Context.
The Context is here to make the relation passing through the syntax of our grammar.

DEFINITION 2.2.1 (Context for Pccs): A Context is a Process, following the Definition 2.1.1, with one or multiple
hole(s) (noted ().

We note C(P), where the hole(s) in C are substituted by P.
Note, that a hole is in place of guards (like in the summation), then it can only be replaced by a guard G.

ExampLE: Let’s take C' = X || (X + D).
Then the X’s can only be replace by a guard.

Something like :

x Cfrec X.(0) := rec X.(0) || ((rec X.0) + D)
is impossible.
That will produce : (rec X.(0)) 4+ (1. This wouldn’t have any sense with our grammar (rec X.(0) isn’t a guard).
ExampLE: Let’s take C' = () || ¢ ? (D || ().
Then, by definition :

/@ =0 ?D®

DEFINITION 2.2.2 (Structural congruence for Pccs): The Structural Congruence over Pecs is the reflexive, sym-

metric and transitive closure of the binary relation induced by the rules in figure 2.1.

In other terms, (Pccs, +,(0)) and (Pccs, ||, () are commutative monoid. And the relation is still viable through
any viable context, defined in the Definition 2.2.1.
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[Sc-sneut] G + @ =G
[Sc-scom] G1 + G = Go + G4
[Sc-sass] G'1 + (GQ + G3> = (G1 + GQ) + G3

[Sc-enrut] P || ©=r
[Scecom] P || Q =Q || P
[Sceass] P || (Q | R)=(P|| Q) || R

[Sc-context] C(P) = C(Q) ifP=Q

Figure 2.1: Structural congruence rules for CCS

Now, let’s look the reduction semantic of CCS :

DEeFINITION 2.2.3 (Reduction semantic for CCS): The Reduction Semantic — is the binary relation over Pccs
defined in figure 2.2. It defines the STS (Pccs, —).

Brscoml ctep + Gy [ c?ePa+Ga — P | P2 B ™ repya —p

P— P
[Sts-unr] X.C(X) — C(rec X.C(X)) [Srs-ear] P|Q—P|Q

P=Q Q—0Q2 Q=P
P1—>P2

[STs-conG]

Figure 2.2: The Reduction Semantic of Pyccs
The meta-variables are ¢ € C.

Let’s investigate a bit more about this Reduction.
The rule [Sts-par] means that if I do a computation, then I can do it in parallel of any process Q.
The rule [Sts-com] means that two processes in parallel can communicate through the channel c.
The rule [Sts-unr] is here for the recursion through the context C.
ExampLE: Take the process P :
P:=recX.X || X | c? 0

Then, P = rec X.C(X)) with C := () || () || ¢? 0.
And we have :

recX.X || X || c?7e0)— P | P| c?0)
The rule [Sts-cong] is here assimilate some program with other through the structural congruence, to force them
to compute similarly.

ExampLE: Take the process P :=a! () || a? (1), we have :

als@Dla?« DO — D
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Indeed :

214D 0?0
al\ O+ a?@
=a!ld D+ a?0+ O

ale@]a?@® O

And :

OlO=0

Then, by the rule [Sts-conc], we have our reduction.

LemMma 2.2.4 (ReductionShape): V(P, Q) € Pécs, if P — @ then one of this cases occurs :
e P=cleP  + Gy ||c?ePo+ G2 || Sand Q = Py | P2 || S for some Py, Gy, Py, Go, S
e P=7eP + G| Sand Q = P, || S for some Py, G4, S
« P=recX.C(X) || Sand @Q = C(rec X.C(X]) || S for some C, S

Remark: The lemma 2.2.4 reduce the proof that went to induction on the reduction.

Proof. The main strategy is to do an induction on the reduction P — Q.

« If the reduction was made by [Sts-com], [Sts-tau] or [Sts-unr], then we conclude by taking S := (0) and using
[Sc-pnEvuT]and [Sc-pcom].

« If the reduction was made by [Sts-par], then we conclude by using [Sc-pass] and by Induction Hypothesis.

« If the reduction was made by [Sts-cong], then we can conclude by the transitivity of the Structural Con-
gruence and by Induction Hypothesis.

O

LEmMA 2.2.5 (SimplifiedTree): V(P, Q) € Pccs, if P — @, then there exists a proof tree of length 3 that deduce
P— Q.

2.3 Transition
The Reduction Semantic only focus on communication. We now focus on how to describe the process more
precisely with a Labelled Transition System.
DEFINITION 2.3.1 (Actions): We define the Actions A as :
« (the input-action) ¢ ?
« (the output-action) ¢!
« (the tau-action) 7
(cel)
Remark: The tau-action are the observable action.
Remark: There is actually no difference between action prefixes and the labels (action). It will change for VCCS.

DEFINITION 2.3.2 (LTS for Pecs): The LTS (Pecs, A, —) is defined in figure 2.3.

10
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There are many more rules in the Reduction Semantic. Indeed, we haven’t a rule like [Sts-conc] to mix-up every-
thing and amalgamate processes.

But there are still some link between the structural congruence and the LTS, as we see with the next three
lemmas.

[InpPUT] c? [OuTPUT] el
c?eP — P cleP -5 P
(Tl op T, p [UNF] ree X.C(X) - C(rec X.P)
G -5 P G — P
[Sum-L] —_— [Sum-R] _——
G1+G—>P1 G+G1—)P1
P -5 P P -5 P
[Par-L] = [PaRr-R] =
c? c! c? c!
P P P P
(Com1] L1 — P TQ1 — Q2 Comr] L — P TQ1 — Q2
Q|| Pr— Q2| P P |Q — P Q:

Figure 2.3: The LTS of CCS
The meta-variables are c € C,a € A.

LemMmA 2.3.3 (TransitionShapeForlnput): V(P, Q) € Pccs and ¢ € C, if P <4 Q,then P = (c?eP, + Gy) || S
,Q =P, || S for some P;,Gq, S.

If P is a guard then S = (0).

o
Proof. The main strategy is to go with an induction on P = Q.
Then 5 cases remain :

B if the transition was made by [InpuT] :

?
c?eP =5 P

By [Sc-sneut] and [Sc-eneut], we have ¢ ? o Py = c? P + (0) || 0 and P, = P, || (0).
B if the transition was made by [Par-L] :

We have P := P, || P’ for some P, and P’ and for some P :

P <% p,

PP 5Py P

By induction hypothesis, we have for some P, G}, S’ :

P =(c?eP{+GY) | 5
PQEP{ || S,

11
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Then by [Sc-contexT] and [Sc-pass], we have :

(P:=)P || P'=(c?eP[+G || ) || P
=(c?eP + G (S P)
And
Q=)P | P'=(PL[|S) || P
=P (5] P)
B if the transition was made by [Par-R] :

We have P := P, || P’ for some P; and P’ and for some P :

P, <5 P,

P PSP | P
By induction hypothesis, we have for some Py, G}, S’ :
P =(c?eP +GY) | S
P2 = Pll || Sl
Then by [Sc-conTEXT], [Sc-pass] and [Sc-pcom], we have :

(P:=)P" || PL=P"|| (c?eP{ + G || 5)
=P (S [ c?eP] +GY)
= (P S) I (c?eP{ +GY)
= (c?eP[+GY | (P S)

And

@Q=)P" | P, =P" || (P[] 5)

=P (5| P))
=PI S) | P
=P | (P]S)
B if the transition was made by [Sum-L] :
We have P := G + G’ for some G; and G :
G155 Q
G+ G 5

12
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By induction hypothesis, we have for some P;, G} :

G =(c?eP[+G)) || @=c?eP] + G}
Q=P O

Then by [Sc-conTEXT], [Sc-sass] and [Sc-pneuT], We have :
(P:=)G1+G = (c?eP +G)) + G

c?ePl + (G} + G
c?eP + (G} + G | ©

B if the transition was made by [Sum-R] :

We have P := G’ + G for some G; and G :

G5 Q
G/+G1C—?>Q

By induction hypothesis, we have for some P;, G} :

Gi=(c?eP +G) | @=c?P +G,
Q=P |O®

Then by [Sc-conTEXT], [Sc-scom] , [Sc-sass] and [Sc-pneuT], We have :

(P:=)G'"+G1 =G + (c?P + GY)
=G + (G] +c?eP))
=(G'+ G +c?eP|
=c?eP + (G'+ GY)
=c?eP[+ (G +G) | ©

O

LEmMA 2.3.4 (TransitionShapeForOutput): V(P, Q) € Pccs and ¢ € C, if P SN Q,then P=cleP + G || S,
Q = P, || S for some P,Gq, S.

If P is a guard then S = ().

Proof. It is the same proof as for lemma 2.3.3.

We have just to replace the action ¢ ? by the action c!. O
LEMMA 2.3.5 (TransitionShapeForTauAndGuard): V(P, Q) € Pccs and ¢ € C, if P is a guard and P — @, then
P=71eP +G1,Q = P, for some P, Gy.

Proof. The main strategy is to go with an induction on P LN Q.

Then 3 cases remain :

13
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B if the transition was made by [Tav] :

TeQ 5 Q

By [Sc-sneut], we have 7 ¢Q) = 7 () + @

B if the transition was made by [Sum-L] :

G5 Q
G1+G/L>Q

By induction hypothesis, we have for some G :

G15T0Q+G/1

Then by [Sc-contexT] and [Sc-sass], we have :

B if the transition was made by [Sum-R] :

(P:=)Gi + G

(TeQ +GY) + G
=7Q + (G) +G)

G -5 Q
G'+G = Q

By induction hypothesis, we have for some G/ :

Gi=7Q+ G}

Then by [Sc-conTEXT], [Sc-scom] and [Sc-sass], we have :

2.4 Harmony Lemma

(P:=)G +G1 =G + (1.Q + GY)

=G+ (G] +7Q)
=G+ G +7Q
=TeQ+ (G'+GY)

Before talking about the Harmony Lemma, the link between the reduction semantic and the transition system,

one important property is needed.

The property that says the structural congruence is a bisimulation for the transition —~— for any o..

LEmMMA 2.4.1 (CongruenceRespectsTransition): V(S,T) € Pécs, a € A, if S=. - T'then S % . =T.

Proof. Assume that S = T" -*+ T for some T".

The main strategy is to go with an induction on the length of S = T".

If the reduction is of length 1, then (because the structural congruence is an equivalence relation), it can be 3

cases :

14
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« the reflexivity

« the rules in figure 2.1
« the symmetry of the rules in figure 2.1

B for the reflexivity case, we have by hypothesis :

S=85-57T

Then by reflexivity for T, we have :

S-S T=T

B for [Sc-pnruT], we have by hypothesis :

P|lO=P-%T

Then by [Par-L] with P —%5 T and [Sc-eneuT] We have :

PlO->T|O=T

B for the symmetry of [Sc-pneut], we have by hypothesis :

P=P|O->T

By construction, (0) makes no transition. Then the transition o was made by a [Par-L] rule.
Hence, it exists T” such that P —*+ 7" and T = T" || (0).

Then by the symmetry of [Sc-eneut] with T” we have :

PST =17 |0:=T)

PI@Q-—=T|@=T

B for [Sc-rcom], we have by hypothesis :

PlQ=Q|P->T

To go further, we have to analyse if the transition is made by P, Q or both (like for a [Com-L] rule).
Then we have 4 cases :

e if it was made by [Par-L], then it exists Q' such that T'= Q' || P and :

15
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Q—=q
By [Par-R] and [Sc-pcom], we have :

(S =)PIQ-—=P|Q=Q | P(=T)

e if it was made by [Par-R], then it exists P’ such that T = @ || P’ and :

P-4 p

By [Par-L] and [Sc-pcom], we have :

(S=)P|Q-—=P[Q=Q|P(=T)

e if it was made by [Com-L], then it exists P’ and Q' such that T = Q' || P’ and :

PP Q)

By [Com-R] and [Sc-pcom], we have :

(S=)PQ-=P|Q=Q|P(=T)

e if it was made by [Com-R], then it exists P’ and Q' such that T = Q' || P’ and :

PP

By [Com-L] and [Sc-pcom], we have :

S =)PIQ—=P|Q=Q | P(=T)

B for [Sc-rass], we have by hypothesis :

(PIQIR=P| QIR =T

Again, we have to analyse if the transition is made by P or Q, or both (like for a [Com-L] rule).
Then we have 4 cases :

e if it was made by [Com-L], then it exists P’ such that :

c?
pP=P

16
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But then, we have to determine which process between ) and R made the ¢! transition.

1. if for some Q' :

Then by [Com-L] :

PlQ—= P

And by [Par-L] and [Sc-pass]:

S=)(PIQIR— (P IQ)IR=P[(Q | R)(=T)

2. if for some R’ :

R-L R

Then by [Par-L] :

c?
PlQ-—PQ

And by [Com-L] and [Sc-pass]:

S=PIQIR— @ QIR=P|QIR(=T)

e if it was made by [Com-R], then it exists P’ such that :

P p

But then, we have to determine which process between ) and R made the ¢ ? transition.

1. if for some Q' :

Then by [Com-R] :

PlQ— P

And by [Par-L] and [Sc-pass]:

17
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S=)(PIQIR— (P IQ)|R=P[(Q | R)(=T)

2. if for some R’ :

2

R-“5 R

Then by [Par-L] :

c!
PlQ—PQ

And by [Com-R] and [Sc-pass]:

S=)PIQIR— @ QIR=P|QIR(=T)

e if it was made by [Par-L], then it exists P’ such that :

PP

Then by [Par-L] and [Sc-pass], we have :

(PIQIR=((PIQIR=P|QIR

e if it was made by [Par-R], then we have for some T’:

QIR-=T

But to go further, we have to analyse if it Q or R, or both, that made the transition.

1. if it was made by [Com-L], then for some Q’, R', we have :

Q5 QR R

By [Par-R], we have :

PlQ-—=P|€

And by [Com-L] and [Sc-pass] we have :

(PIQIR—(PIQ)IR=P|(Q |R)

18
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2. if it was made by [Com-R], then for some Q’, R’, we have :

Q-5 QRE R

By [Par-R], we have :

c!
PlQ—P|Q

And by [Com-R] and [Sc-pass] we have :

(PIQ IR (PIQ)IR=P|(Q | R)

3. if it was made by [Par-L], then for some @', we have :

Q= qQ

By [Par-R], we have :

PlQ-—=P|

And by [Par-L] and [Sc-pass] we have :

(PIQIR—(PIQ)IR=PI(Q|R)

4. if it was made by [Par-R], then for some R/, we have :

R-% R

Then, by [Par-R] and [Sc-pass], we have :

(PIIQ IR (PIQ) IR =PI(@Q]R)

B for [Sc-snrut], we have by hypothesis some G guard :

G+0O=6-%T

By [Sum-L] and the reflexivity, we have :

G+O-5T=T
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B for the symmetry of [Sc-sneut], we have by hypothesis some G guard :

CG=G+@ 5T

@ makes no transition, then by construction, we have :

By reflexivity, we have :

GT=T

B for [Sc-scom], we have by hypothesis some G guard :

Gl—‘rGQEGQ—f—Gli)T

We have then to determine which of G; or GG makes the transition «.

e Assume that :

G -5T

Then, by [Sum-L] and reflexivity, we have :

G1+G2i>TET

e Assume that :

Gy 5T

Then, by [Sum-R] and reflexivity, we have :

G1+GQL>TET

B for [Sc-sass], we have by hypothesis some G1, G2, G3 guards such that :

G1+ (Ga+G3)= (G +Ga) + Gz - T

We have then to determine which of G1, G5 or G'3 makes the transition «.

e Assume that :
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G, -5T

Then, by [Sum-L] and reflexivity, we have :

G1+G2+G3L>TET

e Assume that :

Gy 5T

Then, by [Sum-L], we have :

G2+G3L>T

And finally, by [Sum-R] and reflexivity, we have :

G1+G2+G3L>TET

e Assume that :

Gy =T

Then, by [Sum-R], we have :

Gg—l—Ggi)T

And finally, by [Sum-R] and reflexivity, we have :

G1+G2+G3i>TET

B for [Sc-contexT], We have by hypothesis some C context and P, @) such that :

P=Q
CP)=C(Q) =T

We have then 3 cases :

e if the transition is make by C' then we have immediately :

CiP) - %T=T
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e if the transition is made by @ to @', then C(Q’) = T and by induction hypothesis it exists 7’ such
that P -5 7" and T’ = Q'.

By [Sc-conTExT], we have :

(8 :=)C(P) = C(T') = C(Q)(:=T)

o if the transition is made by () with some process in C, we have o« = 7 by communication. Then, we
have 2 cases :

1. if, we have for some @', T' = C(Q’) and :

By induction hypothesis, we have for some P’ :

PP =@

Then by [Com-L] or [Com-R], depending on the structure of C, we have :

By induction hypothesis, we have for some P’ :

PSP =@

Then by [Com-L] or [Com-R], depending on the structure of C, we have :

(§:=)C(P) — C(P) = C(Q)(=T)

The proof is done for length 1 of the structural congruence.
Transitivity remains to be proved :

By hypothesis, we have for some S, S’ :

S=8=8"-%T

By induction hypothesis, it exists 7" such that :
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ST =T

Then by induction hypothesis, it exists 7" such that :

S L T'=T'(=T)

By transitivity, we have :

S5 T'=T

LEMMA 2.4.2 (Harmony Lemma): For all (S,T) € P2us, S — T ifand only if S — . = T..

Proof. We have two side to prove :
BifS— TthenS — .=T
WifS . =TthenS — T
In the first part, the key lemmas are the lemma 2.4.1 and the lemma 2.2.4.

In the second part, the key lemmas are the lemma 2.3.3, lemma 2.3.4 and the lemma 2.3.5 and we will prove
something stronger.

Indeed, if we have already that S — 7T implies S — 7. Then we have the seconde part : Assume that
S -5 . =T, then it exists S’ such that :

S8

Then we have S — T, by what we presupposed.
But, let’s begin with the first part :
W Assume S — T
Then by lemma 2.2.4, there are 3 cases :

e We have for some P, G1, P>, G2, S :

(C!‘Pl +Gl || C?.PQ +G2) || S
(P P) || S

p
Q

We have, by [OutpuT],[Sum-L] :

cleP + Gy <5 Py

And by [Ineut],[SUM-L] :
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c?eP + G <L P

Then by [Com-R] and [Par-L], we have :

(cloPl + Gy ||c?eP+ Go) | S (P | P2) || S

By lemma 2.4.1, we have that, for some P’ :

P—=P=(PP)|S=Q)

By transitivity, we have that :

PP =Q

e We have for some P, G1, S:

PE(T‘P1+G1)HS

We have, by [Tau],[Sum-L] and [Par-L] :

(T'P1+G1) ||SL>P1 ||S

By lemma 2.4.1, we have that, for some P’ :

PP =P |S=Q)

By transitivity, we have that :

PP =Q

e We have for some C, S:

P=recX.C(X)| S
Q=CrecX.C(X)) || S

We have, by [Unr] and [Par-L] :

rec X.C(X) || S = C(rec X.C(X)) || S
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By lemma 2.4.1, we have that, for some P’ :

P - P =Crec X.C(X)) || S(= Q)

By transitivity, we have that :

PP =Q

In the other side :
B Assume S — 7.
Then we do an induction on S —s 7.

e if it is from [Tau] then we have for some P :

el 5T
S =71l

By [Sc-sneut] and [Sc-pneut], we have :

T I=(rT+©) | ©

And by [Sts-cong] we have :

Tl — T

e if it is from [Un¥] then we have for some P :

rec X.C(P) —— C(rec X.C(P))
S =recX.C(P)

And by [Sts-unr] we have :

S—T
e if it is from [Com-L] then we have for some Py, P, P{, P} :

c? /
P1—>P1
JLRny
S="P| P
T=P| P

By lemma 2.3.3, we have :
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Pr=c? 'Pll, + G4 || Q1
Pi=P ||

By lemma 2.3.4, we have :

P,=c? 'PQ/I + Go || Q2
Py =P || Q2

By [Sts-com], [STs-PaR] (With Q1 H Qg) and [Sts-cong] we have :

Py || Py — P | P

e if it is from [Com-R] then we have for some Py, P, P/, P} :

ey

c? /
P2—>P2
S=P | P
T=P| P

By lemma 2.3.3, we have :

P =c! ‘Pll, + G4 || Q1
Pl=P|Q

By lemma 2.3.4, we have :

P EC!'P2”+GQ || Q2
Py =P || Q2

By [Sts-com], [Sts-par] (With ()1 H ()2) and [STs-cong] we have :
(S=)P | PL — P || P3(:=T)

e if it is from [Par-L] then we have for some P, P;, Q:

P, -5 P
S=Pr|Q
T=PQ
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By induction hypothesis and by [Sts-par], we have that :

P|Q—P|Q

e if it is from [Par-R] then we have for some Py, P|, Q :

P, P
S=QI P
T=Q| P

By induction hypothesis and by [Sts-par] and [Sts-cong] (With [Sc-pcom]), we have that :

QlP — Q| P

e if it is from [Sum-L] then we have for some G1, G2, P :

G =T
S =G1 + Gy
By lemma 2.3.5, for some G, we have :
G1 =T ‘P —+ G
T=P
By [Sts-tavu] and [Sts-cong], we have :
G +Gy —T

e if it is from [Sum-R] then we have for some G1,Go, P :

G =T
S =Gy + Gy

By lemma 2.3.5, for some G, we have :

GlET°P—|—G
T=P

By [Sts-tavu] and [Sts-cong] (with [Sc-scom]), we have :

G +Gy —T
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Chapter 3

Asynchronous CCS (ACCS)

This chapter will introduce, like in [28], Asynchronous Calculus of Communicating Systems (ACCS). Compared
to CCS, ACCS is a sub language of it. The main differences are :

« the output process ¢! P is no longer a guard
« in the output process ¢! o P, P = (0)

Finally, we will talk about the characterization of asynchrony through the axioms of Peter Selinger from [1].

3.1 Congruence, Reduction and Transition

As discussed in the introduction of this chapter, here is the ACCS grammar :

DEFINITION 3.1.1 (Processes, Guards and ActionPrefixes): The proccesses Paccs :

(Process)
P,P,Py:=P || P| X |recX.P|c!e®]|G
(Guards)
G,G1,Go =@ | @D |c?eP | 7P |Gy + G
(Action Prefix)
mu=c? el T
(cel)

DEFINITION 3.1.2 (Context for Pccs): A Context is a Process, following the Definition 3.1.1, with one or multiple
hole(s) (noted ().

The Structural Congruence remains the same as for CCS.

DEFINITION 3.1.3 (Structural Congruence for Paccs): The Strutural Congruence over Paccs is the reflexive,
symetric and transitive closure of the binary relation induced by the rules in figure 3.1.

DEerFINITION 3.1.4 (Reduction Semantic for Paccs): The Reduction Semantic — over Paccs is defined in fig-
ure 3.2. It defines the STS (Paccs, —).

The main difference is the rule [Sts-com] :

C!'@HC?'PQ-i-GQ —)@H Py
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[Sc-sneut] G + @ =G
[Sc-scom] G1 + G = Go + G4
[Sc-sass] G'1 + (GQ + G3> = (G1 + GQ) + G3

[Sc-enrut] P || ©=r
[Scecom] P || Q =Q || P
[Sceass] P || (Q | R)=(P|| Q) || R

[Sc-context] C(P) = C(Q) ifP=Q

Figure 3.1: Structural congruence rules for ACCS

[Sts-com] ! .@ ” c?oPy + Gy —> @ H P, [Sts-TaU] m

P— P
[Sts-unr] X.C(X) — C(rec X.C(X)) [STs-paRr] PlQ—PR|Q

P=Q1 Q1 —Q2 Q=51
P — P

[STs-cong]

Figure 3.2: The STS of ACCS
The meta-variables are ¢ € C.

Indeed, compared to CCS :

C!‘P1+G1 ||C?°P2+G2—)P1 ||P2

The output process is no longer a guard, so a process like that :

x clo@)+ c?QD)
is no longer allowed.

DEFINITION 3.1.5 (LTS for Paccs): The LTS (Paccs, A, —) is defined in figure 3.3.

The Transition System is the same as for CCS, the main precision is in the rule for the Output Transition. This
is the Output Transition [Ourrut] for CCS :

clep 4 p

And we restrict ¢! o P for only P = (0), we have exactly [Ovrput] for ACCS :

BEOENG)
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[InruT] c?ep C—7> p [OuTPUT] ol .©C_l>
(Tl .p T, p [UNF] - pec X.C(X) = C(rec X.P)
G -5 P G -5 P
[Sum-l] — —— [SuM-R] — —
Gi+G-5 P G+ G =P
Ry =X J 2y =X
[Par-L] = [PaR-R] =
P c? P c! P c? P c!
Conr] Lt — P TQl — Q2 Comr] Lt — P TQl — Q2
Q|| Pr— Q| P P ||Q— P Q

Figure 3.3: The LTS of ACCS
The meta-variables are c € C,a € A.

3.2 (A)CCS Properties

In this section, we will maintain the properties that we saw in the Chapter 2, like the Output Shape and the
Harmony Lemma.

The proof will be skipped in this section, as it is the same scheme as CCS.

LemMa 3.2.1 (ReductionShape): V(P, Q) € Piccs, if P — Q then one of this cases occurs :
e P=cle0)| c?eP; + Gy || Sand Q = P, || S for some Py, Go, S
e P=7eP  + G| Sand Q = Py || S for some P, G4, S
« P=recX.C(X) || Sand Q = C(rec X.C(X]) || S for some C, S

Proof. See proof of lemma 2.2.4. O

Compared to the lemma 2.2.4, the first sentence would be :
P=c?eP+Gallc!e@| Sand Q=@ || P || S
It takes one more step for the Structural Congruence to have lemma 3.2.1 :
Q=hr| S

LEmMA 3.2.2 (SimplifiedTree): V(P, Q) € Paccs, if P — @, then there exists a proof tree of length 3 that
deduce P — Q.

LeEmMmA 3.2.3 (TransitionShapeForlnput): V(P, Q) € Paccs andc € C, if P SN Q,then P = (c?7eP + G1) || S
,Q =P, || S for some P;,Gq, S.

If P is a guard then S = (0).

Proof. See proof of lemma 2.3.3 O

LEmMA 3.2.4 (TransitionShapeForOutput): V(P,Q) € Paccs and ¢ € C, if P AN Q,then P = ¢!« | S,
@ = S for some S.
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Proof. See proof of lemma 2.3.4 O

There are 2 points to notice, compared to the lemma 2.3.4 :

« The sentence “If P is a guard then S = (0)” disappears.

Indeed, it makes no more sense, since ¢! ¢(0) is no longer a guard.

« The shape of Q is simplified as S, the parallel process that was in parallel of ¢! ¢(0). Then we have a
additional property :

P=c!sQ)| S
=cle0)|| Q (since Q=9 )
LEmMA 3.2.5 (TransitionShapeForTauAndGuard): V(P, Q) € Paccs and ¢ € C, if P is a guard and P — Q,
then P=71eP; + G1, Q = P, for some P, G;.
Proof. See proof of lemma 2.3.5 O

LEMMA 3.2.6 (CongruenceRespectsTransition): V(S,T) € Péccs, @ € A, if S=. - Tthen S - . =T.

Proof. See proof of lemma 2.4.1 O

LEmMMA 3.2.7 (Harmony Lemma): For all (S,T) € PZus, S — T if and only if S — . = T..

Proof. See proof of lemma 2.4.2 O

3.3 Asynchronicity

Peter Selinger, in [1], studies properties of asynchronous communication independently of any concrete concur-
rent process. He gives a general-purpose, mathematically rigorous definition of several notions of asynchrony
in a natural setting where an agent is asynchronous if its input and/or output is filtered through a buffer or a
queue, possibly with feedback.

We recall in this section his Axioms and connect them to the characterization of [27].
In his paper, Peter Selinger gives 5 axioms for asynchrony for outputs :

« OUTPUT-COMMUTATIVITY (FB1)

« OUTPUT-CONFLUENCE (FB2)

+ OUTPUT-DETERMINACY (FB3)

- FEEDBACK (FB4)

« OutpuT-TAU (FB5)

OuTPUT-COMMUTATIVITY (FB1) says that the output action out z can commute with any action « in the STS. In
other words, the output action can be delayed.

For the OutrPuT-CcONFLUENCE (FB2), it describe the fact that any action « (# out z and # 7) can be computed in
parallel for any output action.

OuTPUT-DETERMINACY (FB3) characterize processes that are targets for an output action.

The FEEDBACK (FB4) axiom says that an observable action 7 can be made by process that does an input action
inx and an output action out x.

Finally, OutpuT-TAU (FB5) completes OuTPUT-CONFLUENCE (FB2) for the action o = 7.
It splits in two cases :
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« 7 for any other observable action

Like Peter Selinger said in his article, their axioms are not independant.

out x 12 out x 12
t § — S § — S t
s out x S/ s out x S/ N s out x S/

« et e /A

loz = J{O& loz J/ J/ l out x = § =5
12 17 outx

¢ 1 _outw S st —1 "

s —=1 s

where o # outx and o # T

OUTPUT-COMMUTATIVITY (FB1) OUTPUT-CONFLUENCE (FB2) OUTPUT-DETERMINACY (FB3)

out x out x out x
S out x / out €T s S/ s 8/ s S/
J/T - J/T ' J/T
inz
t
8// 8// outx t S//

FEEDBACK (FB4) OvurtruT-TAU (FB5)

Figure 3.4: First-order axioms for out-buffered agents with feedback

The axioms are made for a general purpose. Then we adapted them for ACCS.
An output action out x correspond to an action x| and an output action in = correspond to an action x ?
7 remains the same.

Finally, we are reasoning up to structural equivalence. With this in mind, the lemma 3.2.6 would be our main
ally in the proofs.

With that in mind, this is the First-order axioms for out-buffered agents with feedback from Peter Selinger
adapted to ACC'S :

| !
c! / [ / 1
T p— p p . b P p———17p
J{ = l l(x “ la la c! = p/ :p//
p// p// c! q
P — g p”
where a # cland a # 7

OuTPUT-COMMUTATIVITY (FB1)

OuTPUT-CONFLUENCE (FB2)

OUTPUT-DETERMINACY (FB3)

| !
p—s p—s p———p p———7p ——
o = \ lc? lT = lT JT . %
q q p// p// c! q "

FeEDBACK (FB4) OuTtpuT-TAU (FB5)

Remark: For CCS, the process A:

cle(c?eD) +c!l e+ 70+ d! 0
makes a counter example of all this axioms.
Indeed :
« OUTPUT-COMMUTATIVITY (FB1)

We have that :
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A —s c7e(D)

Jer

)

Butc!e(c? o) + ¢! o@D + 7 +0) + d! «0) does not any Input Action c?.

« OUTPUT-CONFLUENCE (FB2)

We have that :

But (0) does no transition, especially no ¢ ! action.
« OUTPUT-DETERMINACY (FB3)

We have that :

A c! @

J-

c? o)
But ¢ ? «(1) and (1) are not in the same equivalence class.
- FEEDBACK (FB4)
We have that :

But the only 7 transition, that A does, is :
A O
And (0) and (1) are not in the same equivalence class.

« OutruTt-TAU (FB5)

p =@

©

But (0) and (1) makes no transition.
Now, let’s prove the axioms of Peter Selinger for ACCS.

OutpPUT-cCOMMUTATIVITY (FB1). Suppose that we have :

Then by lemma 3.2.4 :
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p=cle@]| p

Then by [Par-R] :

@[ p =@ g

And by lemma 3.2.6, there exists M such that :
p— M = c!+0) Il ¢
Remark, that :
c!

M=cle@|q¢g—O]q

Then by lemma 3.2.6, there exists M’ such that :
c!
M-—=M=0]1q(=q)

Finally :

LN
B Jo

M/

OuTtpUT-CONFLUENCE (FB2). Suppose that we have :

(a#clanda # 7)
By lemma 3.2.4, we have :
cle@ | p'=p

Remark that :

cle@llp'=p—p"
By the lemma 3.2.6, there exists M such that :

1@ | 5 M =y
Since « is different from 7 and ¢!, then obviously, p’ does the transition « to some Ms and we have :

cls@ || p = cle@ || Mo (= M)
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We have :

P’ =clo@ || My <5 @ || My

Then by the lemma 3.2.6, there exists M’ such that :
P M = (@] M) (= Mo)

Finally :

AN
| |-

M’ Mo

OuTPUT-DETERMINACY (FB3). Suppose that we have :

We go with an induction on p N p.
. by [OutpuT], then :
p=cld@
And p’ = p”, hence p’ = p".
« by [Par-L], then :
p="P, | Pand P, 5 P}
Remember that :
!
(p=)P1| P —p"
We have then 2 cases :
- Py makes the action ¢! to a P}’
- P, makes the action ¢! to a P/
In the first case, by induction hypothesis :
P =P/
And then :
P P=)p =p" (=P || P»)
In the second case, we have :

!
P, 55 Py
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Then by lemma 3.2.4, we have :

Py=c!«Q | P
Pr=c!e)| P

Remember that we have to show that :
@ =P | P=P| P =p")
Then by [Sc-conTEXT], We have :

Pl | P,=P | c!s@| P =ct«Q| P || P=P| Py

O
FEEDBACK (FB4). Suppose that we have :
p—=p
[
q
By lemma 3.2.4, we have :
p=cl@]p
Remark that :
c!-@p;%@etp’ C—?>q

Then by [Com-R] we have :

cle @y — Ol g
Then by [Com-R] we have :

p=cts@lp =@l q

Then by lemma 3.2.6, there exists some q’ such that :

p—=d =01 q¢=q
Finally :

p = P

I o

q = q

O

OutpuT-TAU (FB5). Suppose that :
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CHAPTER 3. ASYNCHRONOUS CCS (ACCS)

By lemma 3.2.4, we have :

cls@llp'=p

Then by lemma 3.2.6, there exists M such that :

el || p — M=yp"

We have 2 cases for the 7 action :
« it is made by only p’
« it is made by p’ and ¢! «(0), communication via ¢

In the first case, we have for some p;:

p'%plandM:c!O@le

And we have :

p=cls@|p <5 O@| p

So by lemma 3.2.6, there exists M’ such that :

c!
p'—= M =0| p1(=p1)

Finally :

AN
b |

D1

M

In the second case, the action 7 is made by p’ and ¢! ¢(0) via communication on c.

Then we have for some p5 :

p’i>p2andM:©||p2(

Finally :

i
Il
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Chapter 4

Value Passing

4.1 Definition

In this chapter, we introduce the Value Passing. In the previous chapters, we talked about how to model com-
munication. In addition, we will introduce value passing, to keep tracking the communication and the value (the
message) that is sent or receive.

We have a countable set of variables called V and a countable set of constant, we take N for the rest of the
document.

We can now introduce more specified Actions Prefixes for a process :

DEFINITION 4.1.1 (ActionPrefix): We define the Action Prefixes as follow :

mu=clx |clu|T

(celC,zeV,veVUN)

The Input prefix ¢!z is the receiving of an information, that we call x, via the channel c.
The Output prefix ¢! v is the sending of the information v via the channel c.
7 remains the same as for CCS or ACCS, it is the observable action.

DEFINITION 4.1.2 (Free Variables and Bound Variables of Data): We say that the Action Prefix ¢ 7 z bounds the
variable x in P for the process c? x o P.
If a variable isn’t bounded then it is free.

ExampLE: The operation is the same as for lambda calculus : in Az.y = z, x is bound by Ax and vy is free.
Inc?ze(c!z 0| c!y @), the variable  is bound and y is free.
Now, we take process up to the a-equivalence classes, and to avoid some comprehension problems, all bounded

variables under an input action prefix are taken differently from each input action prefix, and from each free
variables.

ExampiE: For the process :
c?zoP;c 7x el

we take the representative :
c?xoP;c TyeP

DEFINITION 4.1.3 (Substitution in Processes): The substitution of x in P by v (noted M [z := v]) is defined as for
lambda calculus with bound and free variables.
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ExampiE: For the process :

(a!z @ || bz )]z :=1] = (a'!z «@)[z := 1] || (b!1 «®)[z := 1]
=a!l1«0) | b!10)

The Value that we are passing are destined for equation to make assertions in test.
We take £ the set of our equations on V U N. The goal is to make an "If” constructor with condition in £.
ExampLE: We can make some sentences :
z=4
mark > 10

age > 18 A age < 30
With this set £ comes a truth function, that can evaluate Eq (€ &).
ExampiE: Like in programming language :

If score = 4 Then (1) Else (0)

The implementation in COQ of the substituion is discussed in the appendix.

To summarize it, we used the De Brujin notation to simplify the a-equivalence.

4.2 CCS with Value passing (VCCS)

In this section we introduce CCS with Value passing (VCCS).

In comparison of CCS, we added the action prefixes, discussed in the previous section and a If . Then . Else .
constructor to “use” the tranfered values.

DEFINITION 4.2.1 (Processes, Guards and ActionPrefixes): The processes Pyccs are :

(Process)
P,P,P, =P || P2| X |recX.P|If EqThen PElse Q | G
(Guards)
G,G17G2 ZZZ@‘®|7T°P | Gl +G2
(ActionPrefix)

mu=clx |clu|T

(ceC,xeV,ve VUN,Eqeé)

Just a reminder for the bound and free variables :

ExampLE: In the process :

c?ze(Ifz = 64 Thena!(Q@) () Else b!(@D) () || c?z «(0)

The first Input Prefix ¢ ? x bounds z in :

If z = 64 Then a!(1) «(0) Else b ! (1) «(0)

And the Input Prefix ¢ ? 2 bounds z in (0).
Then we take the repressentative :

c?ze(Ifz = 64 Thena!(@) «(0) Else b!@D) (D) || c¢?y «0)

Compared to CCS, we had :

« the constructor If . Then . Else .
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« the new action prefixes

DEFINITION 4.2.2 (Context for Pyccs): A Context is a Process, following the definition 4.2.1, with one or multiple
hole(s) (noted ())).

ExamPLE: Let’s take :
C :=1If (x = 17) Then () Else (¢ ? x «(0))

Then :
C(@) :=1If (z = 17) Then (D Else (c ? x «0))

DEFINITION 4.2.3 (Structural Congruence for Pyccs): The Structural Congruence over Pyccs is the reflexive,
symmetric and transitive closure of the binary relation induced by the rules in figure 4.1.

[Sc-sneut] G+ @ =G
[Sc-scom] G1 + G = Go + G4
[Sc-sass] G1 + (GQ + Gg) = (G1 + GQ) + G3

[Sc-pnEUT] P || @ =P
[Sc-pcom] P || Q=Q H P
[Scrass] P || (Q||R)=(P|| Q) || R

[Sc-contxt] C(P) = C(Q) ifP=Q

Figure 4.1: Structural Congruence rules for VCCS

DEFINITION 4.2.4 (Reduction Semantic for Pyccs): The Reduction Semantic is the binary relation over Pyccs is
defined in figure 4.2. It defines the STS (Pyccs, —)-

[Sts-coM] v ep 4+ Gy | c?xePy + Gy — Py || (Pofz := v]) [STs-TaU] reP+G—sP

P — P
[Sts-une] - yee X.C(X) — C(rec X.C(X)) [Sts-par] PlQ—P|Q
o(Eq) = True ¢(Eq) = False

[STs-1F-TRUE] [STs-1F-FALSE]

If Eq Then P Else Q@ — P If Eq Then PElse Q@ — Q@

PP=@1 Q1 —Q2 Q=P
[STs-conG]

PL— P

Figure 4.2: The STS of PVCCS
The meta-variablesarec€ C,xz € V,v € VUN.

There are 3 new things in the STS :
« the reduction of If Fq Then . Else . if Eq is T'rue
« the reduction of If Fq Then . Else . if Fq is False

« the communication
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The reduction of If Fq Then . Else . is quite classic.

If the truth function ¢ evaluates the Equation Eq at T'rue then we reduce the term to its first branch and if the
truth function ¢ evaluates the Equation E'q at T'rue then we reduce the term to its first branch.

ExampLE: Take the process Monday :

Ift > 20 Then (rec X.Market ! IceCream «Q0) || X) Else (rec X.Market ! Cof fee o) || X)

If I set the temperature ¢ to 27, then Fq becomes 27 > 20, Monday will reduce to :

Monday|t := 27] — rec X.(Market! IceCream (0) || X)

We call this term IceCreamDay.

The rule [Sts-com], compared to CCS, now transfers the value from the output prefix and send it to the sub process
of the input.

We can now continue our previous example.

ExampirE: Take the processes :

thermometer 7t e Monday
V := thermometer! 27 «(0)
Clients := rec X.(Market ?y oD || 7 ¢ X)

Then I put then all in parallel :

thermometer 7t «Monday | thermometer |27 o0) || Clients

Let’s reduce this term.

I open the shop on Monday. Let’s look at the temperature, to see what I will sell. Then makes some food, and
wait for some clients to come.

(thermometer 7t e« Monday) || (thermometer!27 «(0)) || Clients

— Monday[t := 27] || © || Clients

— IceCreamDay || Clients

— (Market ! IceCream «0)) || IceCreamDay || Clients

— (Market ! IceCream «0)) || IceCreamDay || Market ?y Q) || T «Clients
— @ || IceCreamDay || D || T *Clients

— IceCreamDay || Clients || D

For the LTS, we have to redefine the set of Actions.
DEFINITION 4.2.5 (Actions): We define the Actions A with :

« (the input-action) ¢? 2z
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« (the output-action) ¢! z
« (the tau-action) 7

(ceC,z€e VUN)

We added the description of which data the process input ou output.

DEFINITION 4.2.6 (LTS for Pyccs): The LTS (Pyccs, A, —) is defined in figure 4.3.

[InpuT]

[Tau]

c?mOPﬂ)P[x::v] TeP 5 P
[Oureu] clyepP S8 p [ONF] e X.C(X) > C(rec X.P)
e G-*%P
[Sum-L] — [SumR]
G+G %P G+G-5rp
P-%Q P-%Q
[Par-L] — [Par-R] ~
P|P —Q| P PP —QIP
c?vy ; cly ’ c?v ; cly ’
CoeL] P—qQ TP —Q (ComR] P—Q TP —Q
PlQ—Q|Q PP—Q|Q
¢(Eq) = True ¢(Eq) = False
[IF-TRUE] [Ir-FALSE]

If Eq Then P Else Q — P If Eq Then P Else Q — Q

Figure 4.3: The LTS of Pyccs
The meta-variablesare c € C,v € VUN, a € A.

Like in the Reduction Semantic, the main additions are :
« value-passing for the [Inrut] rule

« reduction [Ir-True] and [Ir-Faise] for the If . Then . Else . constructor

: clv
c?ep 5 p c?x-P#P[ac::v}

CCS = VCCS

To maintain the properties that we had in CCS, we have introduce another lemma :
LEMMA 4.2.7 (SubstitionRespectsCongruence): V(P, Q) € Pyccs, Vo € Vand Vv € VUN,
if P = Q@ then Pz := v] = Q[z =]

Proof. Let’s take (P, Q) € Pyccs, * € Vandv € VUN.

Assume that we have :

P=qQ
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We go by induction on

P=qQ
e [Sc-sNEUT]
We have :
G+0O=a
By definition:

(G + @)z =] =Gz :=v] + @

Then by [Sc-sneut]:
Glr :=v] +0) = Gz = v]
e [Sc-scom]

We have :
Gi+G =G+ Gy

By definition:
(G1 + Go)[z :=v] = Gz :=v] + G2z := 1]

Then by [Sc-scom]:
Gi[z :=v] + Gax :=v] = G|z := v] + G|z := ]

And by definition :
Galx :=v] + Gi[x :=v] = (G2 + Gy)[z := v]
¢ [Sc-sass]
We have :
Gi1+ (G2 + Gs) = (G1 + G2) + Gs
By definition:

(G1 + (G2 + G3)) [z :=v] = Gi[z :=v] + (G2[x :=v] + G|z :=v))

Then by [Sc-sass]:

Gilz :=v] + (Gz2[x := v] + G3[x :=v]) = (G1[z := v] + G2z :=v]) + G3[z := 1]
And by definition :
(Gi[z :==v] + Ga[z :=v]) + Gs|z :==v] = ((G1 + G2) + G3)[x := V]

e [Sc-PNEUT]

We have :

Pl@=P

By definition:

(P @)z :=v] = Plz =] | @

Then by [Sc-pnEUT]:
Plz:=v] || 0 = P[z := v
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¢ [Sc-rcom]

We have :
PlQ=Q|P

By definition:
(P | @)z :=v] = Pz :=v] || Q[z := v]

Then by [Sc-pcom]:
Plz :=v] || Qlz :=v] = Q[z := ] | Plz := 9]

And by definition :
Qlr =] || Pl :=v] = (Q || P)[x := o]
o [Sc-pass]
We have :
PriP(QR)=(P Q) R
By definition:
(P Q| B)[z :=v] = Plz:==v] | (Q[x := ] || R[z :=v])
Then by [Sc-pass]:

Pla:=] || (Qla := o] | Rl :=v]) = (Pla := o] || Qlx :=]) || Rz := ]

And by definition :

(Pl =] || Q[z :=v]) | Rlz := o] = (P [| Q) || R)[z := v]

¢ [Sc-CONTEXT]

We have :
c(p)=c(aQ)
Obtained by :
P=qQ
By definition :

Then by [Sc-conTexT] :

And by definition :

Then we have our properties from CCS :
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LemMma 4.2.8 (ReductionShape): V(P, Q) € Pi-cs, if P — @ then one of this cases occurs :

e P=c?xeP, + Gy ||clvePa+ Gy || Sand Q = Py || Po[x :=v] || S for some Py, Gy, Py, Go, S, x,v
e P=7eP + G || Sand Q = P, || S for some P;,G1, S

« P=recX.C(X) || Sand Q = C(rec X.C(X]) || S for some C, S

« P=IfEqThen P, Else P, || S,Q = P || S and ¢(Eq) = True for some Eq, P, Py, S

« P=IfEqThen P Else P, || S,Q = P, || S and ¢(Fq) = False for some Eq, P, P, S

Proof. For all constructors from CCS, see the proof of lemma 2.2.4.
Otherwise, it is the same proof for the new constructors :

« For [Sts-com], we have :

clveP + Gy || c?axoePy+ Gy — Py || (Palz :=1])
We have by [Sc-pnEUT]:
C!’U‘Pl —|—G1 || C?$°P2+GQEC!U°P1 —|—G1 || C?I‘P2+G2 ||©

And:

Py || (Palz:=v]) = Py || (P2lz = ]) [| @

« For [Sts-1r-TruE], we have :
#(Eq) = True
If Eq Then P; Else P, — P,

We have by [Sc-pnEUT]:

If Eq Then P, Else P, = If Eq Then P, Else P, || (O

And:

P=p O

« For [Sts-1r-FaLse], we have :
¢(Eq) = False
If Eq Then P, Else P, — Ps

We have by [Sc-pnruT]:

If Eq Then P, Else P, = If Eq Then P, Else P, || (0)

And:

PQEPQ H@

O

LEMMA 4.2.9 (SimplifiedTree): V(P, Q) € Pyccs, if P — @, then there exists a proof tree of length 3 that
deduce P — Q.
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LEMMA 4.2.10 (TransitionShapeForInput): V(P, Q) € Pyccs, ¢ € Candv € VUN, if P oy Q, then P =
(c?xePL+G1) || S,Q= Pz :=v] | S for some P;,Gq, S.

If P is a guard then S = (0).

Proof. For all constructors from CCS, see the proof of lemma 2.3.3.
Otherwise, it is the same proof for the new constructor :

« For [InruT]

c?zeP &8 Plz := v]

By [Sc-sneut] and [Sc-pnruT], We have :

c?zeP=c?zP+0)|©

O
LEmMA 4.2.11 (TransitionShapeForOutput): V(P, Q) € Pyccs, ¢ € Candv € VUN, if P <y Q, then P =
(clzeP, +G1) || S,Q= P, || S for some P;,Gq, S.
If P is a guard then S = (0).
Proof. See the proof of lemma 2.2.4. O

LEMMA 4.2.12 (TransitionShapeForTauAndGuard): V(P, Q) € Pyccs and ¢ € C, if P is a guard and P — Q,
then P =7 eP; + G1, Q = P, for some P;,Gy.

Proof. The constructor If . Then . Else . isn’t a guard.
Then, see the proof of lemma 2.3.5. O

LEMMA 4.2.13 (CongruenceRespectsTransition): V(S,T) € Pccs, a € A, if S=. -5 T'then S = . =T.

Proof. We follow the proof of lemma 2.4.1.
The only case that is different from lemma 2.4.1 is when the context C' = ¢ ? v ¢() for the rule [Sc-conText].
We need one step further, we have it by the lemma 4.2.7 :
Assume that we have :

clxeP=clx P, e’y Pz := v
by P1 = Pg.
Then by [Ineut], We have :

c?xeP £ Py[z := 0]

and by lemma 4.2.7, we have :

Pz :=v] = Pz := )

We can talk a bit about the context C' = If Eq'Then () Else P, or C' = If Eq'Then P; Else (), since the the Structural
Congruence doesn’t modify the equation Eq, we have :
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« Assume that we have :

If Eq Then P; Else P, = If Eq Then P; Else PQ/ P
by P, = Pj and ¢(FEq) = True.
Then by [Ir-True] and reflexivity, we have :
If Eq Then P; Else P» Zsp=P

« Assume that we have :

If Eq Then P; Else P, = If Eq Then P Else P, LN P,
by P, = Pj and ¢(FEq) = False.
Then by [Ir-True] and hypothesis, we have :
If Eq Then P; Else P s Py = PQ/

« Assume that we have :

If Eq Then P; Else P, = If Eq Then P Else P, LN P
by P, = P and ¢(FEq) = True.
Then by [Ir-Truz] and hypothesis, we have :
If Eq Then P; Else Py s p = Pll

« Assume that we have :

If Eq Then P; Else P, = If Eq Then P Else P, Py

by P, = P and ¢(FEq) = False.

Then by [Ir-True] and reflexivity, we have :

If Eq Then P; Else Py s Py = PQ/

LEMMA 4.2.14 (Harmony Lemma): For all (S,T) € P25, S — T ifand only if S — . = T,

Proof. We have two side to prove :
BifS— TthenS — .=T
BifS- . =TthenS — T

In each side, we follow the same schema as for the lemma 2.4.2, but let’s precise the proof for the new construc-
tors, reductions and transitions.

B For the first side, we remember that we used lemma 4.2.8, to reason by case analysis.

So:
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- We have for some Fq, P;, P>, S:

P = (If EqThen P, Else P») || S

by ¢(Eq) = True.

Then by [Ir-Trur] and [Par-L], we have :

(If Eq Then P, Else ) || S — Py || S

And by lemma 4.2.13, it exists M such that :
P M=P | SE=Q)
- We have for some Fq, P;, P, S:

P = (If EqThen P, Else P») || S

by ¢(Eq) = False.

Then by [Ir-Farse] and [Par-L], we have :

(If Eq Then P Else ) || S —— P> || S

And by lemma 4.2.13, it exists M’ such that :
P M=p I S(E=Q)
- We have for some Py, P, G1,Gs, x,v,S:

P=c?zeP + G| clveP, + Go || S
Q=Pl=2| P8

Then by [Sum-L], [Com-L] and [Par-L], we have :

ctxeP + Gy || clveP, + Gy || SL>P1[J) I:U} || Py || S

And by lemma 4.2.13, it exists M” such that :
P M =Pz =9 ||P||SEQ
B For the second side,
— We have for some Eq, Py, Ps:

If Eq Then P; Else P ActTou P

for ¢(Eq) = True.

By [Sts-1r-True] and reflexivity, we have :

If Eq Then P, Else P, — P, = P,
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- We have for some Eq, P, Ps:

If Eq Then P, Else P, “<Z¢" p,

for ¢(Eq) = False.

By [Sts-1r-True] and reflexivity, we have :

If Eq Then P, Else P, — P| = P,
— We have for some ¢, z,v, Py, P2, P{, Py :
P | PP | P

by :

c?v

Pl—)Pl/

!
P, =3 Py

By lemma 4.2.10 and lemma 4.2.11, we have for some G, G2, 51,57 :

Pl = C?fE'Ql + G1 || Sl
Pl =Q[xr =] || S

Py=clzeQs + Go || S2
P2/EQ2 H 52

By [Sts-com] and [Sts-par] with S || S2, we have :

c?xe@Q + G || clxe@Qs + Go || S || Sy — Ql[.’lﬁ = U] H Q2 || S H Sy
But we have :

Pl || PQ Ec?x'Ql +G1 || C!x'QQ +G2 H Sl H SQ
Pl || Py=Qufz:=2] || Q2 || Sy S2

Then by [Sts-cong], we have :

Py Py — P | P

4.3 ACCS with Value passing (VACCS)

In this chapter, we introduce VACCS.
The idea from CCS to ACCS remains the same from VCCS to VACCS :

« the output process ¢! v P is no longer a guard
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« in the output process c¢!v eP, P = (0)

DEeFINITION 4.3.1 (Processes, Guards and ActionPrefixes): The processes Pyaccs are :

(Process)
P,P,Py::=P | P,| X |recX.P|IfCThen PElse Q | G
(Guards)
G,G1,Gy =@ || meP |G + G>
(ActionPrefix)

mu=clz |clo|T

(ceC,xeV,veVUN)

DEFINITION 4.3.2 (Context for Pyaccs): A Context is a Process, following the definition 4.3.1, with one or mul-
tiple hole(s) (noted ())).

We note C(P), where the hole(s) in C are substituted by P.

Note, that a hole can be in place for guards (example in the summation), then it can only be replaced by a guard
G.

ExaMPLE: Let’s take C' := If (z = 17) Then ()) Else (¢ ? z «(0)).
Then C (D)) := If (x = 17) Then (D Else (¢ ? z «(0)).

DEFINITION 4.3.3 (Structural Congruence for Pyaccs): The Structural Congruence over Pyaccs is the reflexive,
symetric and transitive closure of the binary relation induced by the rules in figure 4.4.

[Sc-sneut] G+ @ =G
[Sc-scom] G + G = Go + G4
[Sc-sass] G'1 + (Gz + Gg) = (G1 + GQ) + G3

[Sc-enruT] P || @ =P
[Scecom] P || Q@ =Q || P
[scrass] P [ (Q | R) = (P [ Q) | B

[Sc-conTEXT] C(]P[) = C(]QD ifP=Q

Figure 4.4: Structural congruence rules for VACCS

DEFINITION 4.3.4 (STS for Pyaccs): The STS (Pyaccs, —) is defined in figure 4.5.
DEFINITION 4.3.5 (LTS for Pyaccs): The LTS (Pyaccs, A, —) is defined in figure 4.6.

LEmMA 4.3.6 (ReductionShape): V(P, Q) € P2 ccs, if P — Q then one of this cases occurs :
e P=clve@) | c?zeP, + Gy || Sand Q = P, || S for some Py, Gy, S, x,v
e P=7eP + G, || Sand Q = Py || S for some P;,Gq, S
« P=recX.C(X) || Sand @Q = C(rec X.C(X]) || S for some C, S
« P=1fEqThen P, Else P, || S,Q = P, || S and ¢(Eq) = True for some Eq, P, P, S
« P=IfEqThen P, Else P, || S,Q = P» || S and ¢(Fq) = False for some Eq, P, P, S

Proof. See the proof of lemma 3.2.1 and for the substitution cases, the proof of lemma 4.2.8. O
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[Sts-com] .y O || c?z P + Gy —> Py || (Po]a :=v)) [Sts-TAU] reP+G—P

P1 — P2
R X.C(X) — C(rec X.C(X)) [Sts-par] PlQ—P|Q
¢(Eq) = True ¢(Eq) = False

[STs-1F-TRUE] [STs-1F-FALSE]

If Eq Then P Else Q — P If Eq Then P Else Q — Q

P=@Q1 Q1—Q2 Q=58
[STs-cong]

P— P

Figure 4.5: The STS of PVACCS
The meta-variablesarec € C,z € V,v € VUN.

LEMMA 4.3.7 (SubstitionRespectsCongruence): V(P, Q) € Pyaccs, Vx € Vand Vv € VUN,
if P = Q then Plz :=v] = Qx := 1]

Proof. See the proof of lemma 4.2.7 O

LEMMA 4.3.8 (TransitionShapeForInput): V(P,Q) € Pyaccs, ¢ € Candv € VUN, if P e’y Q, then P
(c?zeP,+G1) || S,Q= Pz :=v] | S for some P;,Gy, S.

If P is a guard then S = (0).

Proof. See the proof of lemma 2.3.3 and for the substitution cases, the proof of lemma 4.2.10. O

LEMMA 4.3.9 (TransitionShapeForOutput): V(P, Q) € Pyaccs, ¢ € Candv € VUN, if P el Q, then P =
(c!z0) || S,Q =S for some S.

Proof. See the proof of lemma 4.2.10. O

LEMMA 4.3.10 (TransitionShapeForTauAndGuard): V(P, Q) € Pyaccs and ¢ € C, if P is a guard and P — Q,
then P=71eP; + G1,Q = P; for some P, G;.

Proof. See the proof of lemma 4.2.12 and lemma 3.2.5. O

LEMMA 4.3.11 (CongruenceRespectsTransition): V(S,T) € Psccs, @ € A, if S=. -5 Tthen S - . =T.

Proof. See proof of lemma 4.2.13 and lemma 3.2.6. O

LEMMA 4.3.12 (Harmony Lemma): For all (S, T) € PZyccss S — T if and only if S — . = T..
Proof. See proof of lemma 4.2.14 and lemma 3.2.7. O

Now we have to adapt the First-order axioms for out-buffered agents with feedback from Peter Selinger for
VACCS.

By out z, it is designed for “an output action that we call 2”.

Then out x becomes ¢! v for some c and v.

And out z = out y means for VACCS , c!v = ¢’ v/,

And by construction, ¢ = ¢ and v = v'.
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CHAPTER 4. VALUE PASSING

[InpPuT]

[Tau]

c?x-Pﬂ)P[x::v] TeP P
[OuTPUT] clv [UnF] T
clv o) <5 (0 rec X.C(X) — C(rec X.P)
G- P G->P
[Sum-L] [SumR] —
G+a %P G'+G-5P
P-*Q P-Q
[PAar-L] = [Par-R] =
PP —=Q|P PP —=Q|P
? ! ? !
PC.’U P/ c:v / PC.’U P/ c:v /
[Com-L] — @ — —Q [Com-R] —Q — — @
PlQ—Ql PP—Q|Q
d(Eq) = True ¢(Eq) = False
[Ir-TrRUE] p= [IF-FALSE] p=
If Eq Then P Else Q — P If Eq Then PElse Q — @

Figure 4.6: The LTS of Pyaccs
The meta-variablesare c € C,v € VUN,a € A.

Finally we have :

p

clv o p % 4
J{a = la loz
q p// clo q

p clo p/ p clv p/
o = la J"‘
p// p// clv q

where a # clvand a # 7

OUTPUT-COMMUTATIVITY (FB1)

OuTPUT-CONFLUENCE (FB2)

» clv p/
clv = p/:p”
p//

OUTPUT-DETERMINACY (FB3)

clv

p -5y p—>7
lc?v = \le?v
q q

c!

p v
T

1 clv
—

p

FEEDBACK (FB4)

! P
JT or l,
q p

OuTtruTt-TAU (FB5)

The proofs follow exactly the same schema as the proofs in ACCS.

OurtpUT-cOMMUTATIVITY (FB1). See the proof in section 3.3.

OuTtpUT-CONFLUENCE (FB2). See the proof in section 3.3.

OuTPUT-DETERMINACY (FB3). See the proof in section 3.3.

FEEDBACK (FB4). See the proof in section 3.3.

OutpuT-TAU (FB5). See the proof in section 3.3.
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Chapter 5

CCS and Sequencing

In this chapter, we added the notion of Program Sequencing and we modify a bit the aspect of the processes.

Our objective is to build a asynchronous programming language with enough expressiveness.
The 2 things we have to implement are :

« the notion of sequencing

« the notion of skipping to the next instruction for (0)

And then verify that the Harmony Lemma and the Axioms of Output Buffered agents are still good.

5.1 Definition

We have already a notion of sequencing, indeed with the action prefix :

c?x or o7 o7 oc!v (D)

But the 7 is only here to say "you have a computation”.

It says nothing about how it is computed, with enough 7-action like for the recursion or the If . Then . Else .
constructor we would like to suppress this Action Prefix.

A start was to add the "If” constructor with his 7 transition.
But now, we would like a prefix to say more that output, input or *something” is computed.
We want a more explicit grammar than “something”.

We would like something like :

And then the example above becomes :

c?xoP; Py; Py: Pyiclv (D)

The sequencing would function like a parallel, but only on the left side, similar to a [Par-L] rule.

But then if P is an output process, like P = c!v «(0), it would block the action of Q in :
P;Q
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and would be a counter example of OUTPUT-COMMUTATIVITY (FB1).

So a rule like [Par-R] would be needed for an output process in the first part of a sequencing process and a
computation like this would be possible :

clve(0); I L clve(0); I A clve0); Iy s

We would like to “discard” the instructions in our sequencing.

Then we introduce a notion of a MailBox in "parallel” of the Processes, that stores the outputs and distribute
them when needed by an input.

We first introduce our definition of Processes.

DEFINITION 5.1.1 (Processes, Guards and ActionPrefixes): The processes Psyccs are :

(Process)
P, P,Py::=P || P,| X |recX.P |IfC Then P, Else P, | (0) | G
(Guards)
G,Gq, Gy 2225‘®|7T°P|G1+G2|P1;P2
(ActionPrefix)

mu=clz |clo|T

(x €V,v € VUN)

Compared to VCCS, we added a few things :
« the process (0) is no longer a guard
« the deadlock process §
« the sequencing process P ; @
(0) don’t block the sequencing but & blocks everything in sequence.

The actions prefixes remain the same at one exception point of view : the “output” process is no longer viewed
as an output for process : you can’t communicate though it, or not directly.
We will see more about this in the transition part for the States (Mailbox with Process).

DEeFINITION 5.1.2 (Context): A Context is a Process, following the definition 5.1.1, with one or multiple hole(s)

(noted ()).

ExAMPLE: Let’s take C'= () || ¢?z *d || ().

Then C(@) =@ || c?z 6 || ©.
DEFINITION 5.1.3 (Actions): Actions (noted .A) is defined as below :

(Actions)
Auz=c?v |clv|T

(ceC,veVUN)

The action ¢! v is now viewed as storing in a MailBox.

DEFINITION 5.1.4 (Structural Congruence for Process): The Structural Congruence over the Processes is the
reflexive, symetric and transitive closure of the binary relation induced by the rules in figure 5.1.
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[Sc-sneur]) G+ 0 = G
[Sc-scom] G1 + G = Go + G4
[Sc-sass] G'1 + (GQ + Gg) = (G1 + Gg) + G3

[Scecom] P || Q=Q || P
(Scrass] P | (Q | R) = (P Q) | R

[Sc-context] C(P) = C(Q) ifP=Q
[Sc-sassoc] P; (Q, R) = ( ) Q) i R
[Sc-p1-assoc] (7T OP); Q= '(P; ) (7T S {7’7 c!v})
[Sc-input-assoc] (c?x oP); Q =c?xzo(P; Q) (x ¢ FV(Q))

[Sc-sspisT] (Gl + Gg); Q = (G1; Q) + (G2§ Q)

Figure 5.1: Structural congruence rules

The first six rules are pretty similar to the previous VCCS but with a few differences :

We avoided the rules :

Pl@=P

to keep the moral of a guard is equivalent to a guard.

(0) is no longer a guard, so we added the ¢ in the rule [Sc-sneut] :
G+6=G

to keep some nice properties of transition/reduction shape.
Let’s talk about the new rules :

« The rule [Sc-sassoc] is the associativity of the sequencing :

P;(Q;R)=(P;Q); R

what is quite fair for the sequencing.

+ The next two rules are here for considering that the action-prefixing are in sense like sequencing then the
associativity rules remains, [Sc-piassoc] :

(reP); Q=me(P; Q) (me{r,clv})

Nothing special to say about those two prefixe : they don’t capture free variable.

But let’s look a a bit more about [Sc-inpuT-assoc] :
(c?zeP); Q=c?z+(P; Q) (z ¢FV(Q))

The process ¢ ? x » P has nothing to do with @, then if we don’t put a restriction like (z ¢ FV(Q)), this
will change the fundamental role of the whole process.
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Capturing the variable x in ), and then by communication, rewriting on the 2’s in Q and will destroy our
lemma for congruence as bisimulation (lemma 4.2.13).

If we consider the rule as a relation left to right, the relation is always “possible”.
Take the process :
(c?xealz o0); If (x > 10) Then (D Else &

With the a-equivalence, we can take the representative :

(c?yealy«0); If (x > 10) Then (1) Else &

We just have to take one variable that doesn’t belong in FV(Q) and this is always possible, like in the
example. And :

(c?yealy«0); If (x> 10) Then D Else 6 = c?y *(a!y «0); If (x > 10) Then (1) Else )

In the other hand, if we take this rule right to left, the relation isn’t always possible, if the input captures
a variable in Q.

Take the process :
c?xe(a!y «0); If (x > 10) Then (1) Else )
Then we can’t disassemble the process “If (z > 10) Then (1) Else §” from the input prefix ¢ ? x.

Indeed, if we do that :

(c?z ea!y *0); If (x > 10) Then (1) Else §

the variable x in "If (z > 10)Then(1Else5” won’t be able to be substituted, and we will lose the lemma 4.2.13.

« the last rule, [Sc-sspistT], is a rule from CSP([23]), that is needed to keep some nice properties (in a certain
way), which follows in the document (like lemma 4.2.10).

Before talking about the LTS for Process, and right after, the States and Mailboxes, we introduce a predicate :
SKIP(.).

That define the processes that will pass to the next instruction in the Sequencing, the reasonnable definition is
the process (0) or multiple (0) in parallel.

Like if we start multiple tasks in parallel (like Merge sort), then when all tasks are finished ((0)), we skip to the
next step.

DEFINITION 5.1.5 (SK I P): We said that a process P skips to the next instruction if is in the form
- ©
-OIO] - I1®

DEFINITION 5.1.6 (LTS for Process): The LTS (Psyccs, A, i>) is defined in figure 5.2.

There is no more communication. The communication disapears : it will be done later with the MailBox.
We just send the information to the Mailbox via ¢! v.
And there are the two new rules for the Sequencing :

SKIP(P) J Ry =X

[SKIP] —————— [Skq] =
P;Q—Q P;Q— P Q

As we talked before, the [SKIP] rule is here to pass to the next instruction.
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[InpPuT] [Tau]

c?x-Pﬂ)P[x::v] TeP 5 P
[Oureu] clzepP &3 p [ONF] e X.C(X) - C(rec X.P)
G- P G - Py
[Soml] ————————— [SomR] ———
G1+G—>P1 G+G1—>P1
P -5 P P -5 Py
[PAar-L] = [Par-R] =
d(Eq) = True ¢(Eq) = False
[Ir-TRUE] = [Ir-FALSE] p=
If Eq Then P Else Q — P If Eq Then PElse Q — @
J Sy SKIP(P)
[SeQ] = [SKIP] @——F——
Pl;Q—>P2;Q PaQ—>Q

Figure 5.2: The LTS of Process
The meta-variablesare c € C,z € VUN,a € A4,C € £.

The rule [Sro] permits computing at the left of the symbol ; of the Sequencing.
With the Structural Congruence and the LTS, we can check nice properties like in the previous chapter.
LEMMA 5.1.7 (SubstitionRespectsCongruence): V(P, Q) € Psvces, Vo € Vand Vv € VUN,

if P = Q@ then Pz := v] = Q[z :=1]

Proof. For the constructors from VCCS, we can see the proof of lemma 4.2.7.
Otherwise :
« for [Sc-sassoc], we have :

By definition :

Then by [Sc-sassoc] :
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Then by [Sc-p1assoc] :

((w]z :=v]) o Plx :=v]); Qlx :=v] = ww[x := v] o(P[z :=v]; Q[z :=v)])

And by definition :

« for [Sc-inpuT-assoc], we have :
(c?yeP); @=c?y~(P; Q) (y ¢FV(Q))

We take the representative with y # = and y # v to avoid some misunderstandings.

By definition :
((c?yeP); Q) :=v] = (c?y Pz :=v]); Qz := 1]

Then by [Sc-inpuT-assoc], we have :

(c?yePlz:=]); Qlz:=v]=c?y Pz :=v]; Q[x := v

And by definition :
c?tyePlz:=v]; Qr:=v] = (c?y*P; Q)[x :=1]

« for [Sc-sspist], we have :

(G1+ G2); Q= (G1; Q) + (G2; Q)

By definition :

Then by [Sc-sspisT] :
(Gl = o] + Gale == 0]); Qla += 0] = (Gafw = 0] Qe 1= v]) + (Gale = v]; Qla = v])
And by definition :

(Grlz == v]; Qz :=]) + (Galz == v]; Qz :=v]) = ((G1; Q) + (G2; Q))[x := v]

LEmMMA 5.1.8 (CongruenceRespectsTransition): V(S,T) € Pyccs, @ € A, if S =. - T'then S %5 . = T.
Proof. We suppose that we have for some S :

SESli)T

We recall, that we went for an induction on S = S in the proof of the lemma 4.2.13.
We can see the proof of the lemma 4.2.13 for the transition rules from VCCS.
Otherwise:

B for [Sc-sassoc], we have by hypothesis :

P;(Q;R)=(P;Q); R-T
Then we have 2 cases :
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— if the reduction is made by a SKIP, then we have SKTP(P) and :
P;(Q;R)=(P;Q); R—Q;R

By [SKIP] and reflexivity we have :
P;(Q:R) QR
- in the second case, we have for some P/, P - P’ and :
P;(Q;R)=(P;Q); R (P;Q);R
By [Sro] and [Sc-sassoc] we have :
P;(Q;R) =P (Q:R)=(P; Q)R
B for the symmetry of [Sc-sassoc], we have by hypothesis for some P/, P -+ P’
(P;Q); R=P; (Q; R) = P'; (Q; R)
Then by [Seq] and [Sc-sassoc] :
(P;Q); R (P';Q); R=P'; (Q; R)
B for [Sc-passoc], we have by hypothesis for some (7 € {7, ¢!v}), 7 P -+ P and:
(meP); Q=me(P; Q) — P; Q
Then by [Seq] and reflexivity, plus [Outrur] or [Tau] depending on 7
(TeP); Q == P;Q=P:Q
B for the symmetry of [Sc-piassoc], we have by hypothesis for some (7 € {7, c!v}), 7 P -+ P and:
me(P; Q)= (reP); Q > P; Q
Then by [Seq] and reflexivity, plus [Ourrut] Or [Tau] depending on 7:
Te(P;Q) = P;Q=P;Q
B for [Sc-mvut-assoc], we have by hypothesis, (z ¢ FV(Q)) and :
(c?xeP); Q=c?zs(P; Q) <3 (P; Q)lz := ]

By definition, and by (z ¢ FV(Q)), we have :

(P; @)z =] = Pl
= Plx:

Then we have by [Inrut] and reflexivity :

(c?m-P);QﬂP[m:zv];QzP[w::v];Q
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B for the symmetry of [Sc-ineut-assoc], we have by hypothesis, (x ¢ FV(Q)) and :
c?xe(P; Q)= (c?xz*P); Q oy Plz:=]; Q

By definition, and by (z ¢ FV(Q)), we have :

Plz :=v]; Q = Plx :=v]; Qz :=1]
= (P; Q) := v

Then we have by [Inrut] and reflexivity :
c?we(P; Q) =3 (c?2eP); Q= Pl i=1]; Q
B for [Sc-sspist], we have by hypothesis :
(G1+G2); Q= (Gr1; Q)+ (G2; Q) = S

Then we have 2 cases :

— if the transition is made by G, we have G; 25 P and:
(G1+G2); Q= (G15 Q) + (G2; Q) = P15 Q
Then by [Sum-L] and [Seq], we have :
(G1+G2);Q=P1;Q == P1;Q
— if the transition is made by G2, we have G4 25 Pyand:
(G1 4 G2); Q= (G5 Q) + (G2; Q) = 3 Q
Then by [Sum-R] and [Seg], we have :
(Gr+G2); Q=Py; Q = P Q
B for symmetry of [Sc-sspist], we have by hypothesis :

(G1;Q)+ (G2; Q)= (G1 +G2); Q = S

Then we have 2 cases :

— if the transition is made by G1, we have G, 25 P and:
(G1; Q) + (Ga; Q)= (G1 + G2); Q = P15 Q
Then by [Seq] and [Sum-L], we have :
(G1;Q)+ (G2; Q)= P1;Q = P1; Q
— if the transition is made by G2, we have G4 2y Pyand:
(G1;Q) +(G2; Q)= (G1 +G2); Q — P25 Q
Then by [Seq] and [Sum-L], we have :

(G1;Q)+ (G2; Q) =P; Q -5 P23 Q
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B for [Sc-context], for C' = () ; R, we have by hypothesis P = @ and :

P:R=Q;R 2.9
Then we have 2 cases :
— if the reduction is a SKIP by Q, we have :

P;:R=Q;R-5R

By construction of SKIP and P = (), we have that P is skipping, then :

P:R-*“R=R

— if the reduction is made by Q, we have Q — @’ and :

P;R=Q;R->Q;R

Then we have :
P=Q-%Q

By induction hypothesis, there exists M such that :
PS5 M=Q
And by [Seq] and [Sc-conTexT], We have :

P;RM;R=Q;R

B for [Sc-context], for C' = R; (), we have by hypothesis P = @ and :
R:P=R;Q %S
Then we have 2 cases :
— if the reduction is a SKIP by R, we have :
R:P=R;Q-5Q
Then by [SKIP] :
R:P-5P=Q
- if Risn’t skipping, then we have R’ such that R -+ R’ and by [Srq] and [Sc-conexT] :

R:P-%R:P=R:Q

Now we can introduce our MailBox, that will store our values with the addressee, with his State.

DEFINITION 5.1.9 (Mailbox): A mailbox (€ M) is a multiset of ¢! v for ¢ € C and v € Data.
We note {c!v}} as the singleton-multiset that contains ¢! v.

DEFINITION 5.1.10 (States): A State S (€ S) is a pair of a Mailbox and a Process. We note (M, P).

DEFINITION 5.1.11 (Structural Congruence for States): The Structural Congruence over S is the binary relation
defined by :
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(I ] F C_?K @ [Tau] i Q
(M, P) <% (M, Q) (M, P) " (M, Q)
[SEnD] PQ [OuTpuT] !
(M,P) =5 (M w {c'v},Q) (M@ {clo}, P) = (M, P)

(M, P) <% (M, P") (N,Q) <% (N, Q")
(N,P) = (N, P)

[Com]

Figure 5.3: The LTS of States
The meta-variables are c € C,v € V UN.

if P = @ then for any M, (M, P) = (M, Q)
DEFINITION 5.1.12 (LTS for States): The LTS (S, A, —~) is defined in figure 5.3.

We inherit all the transition from (Psyccs, A, —), at one exception, the output of the LTS of the Processes are
now T7-actions.

It’s the sending of the message to mailbox.
The rule [Com] is the communication between the MailBox and any Process that can receive via the same channel.
The c! v-transition is now quite clear, in fact, it only checks that the output ¢! v is in the MailBox.

LEmMA 5.1.13 (CongruenceRespectsTransition): V(S’,S”) € S?, a € A, if then S’ %5 . = §”.
Proof. Take (5',5") € 8%, a € A. Suppose that it exists S; such that :
S'=8 25"

We proceed by induction on S; —*+ S,

B for [Inrur], we have :
(M', Py = (M, P)) <5 (M, P")

Which means, by definition of = and ﬂ) on States :
p'=p <8 pr

By lemma 5.1.8, it exists P| such that :
p c?y p = p
— P/ =

And then, by [InpuT] :
(M, P') <8 (M', P)) = (M',P")

B for [Ourrur], we have :
(M @ {clv}, P)) = (M & {clo}), Pr) <5 (M, Py)
Then by [Outeut] and reflexivity :

(M'w {clo}, P') &3 (M, P') = (M, P)
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B for [Tau], we have :

(M/aP/) = (M/7P1) ;> (M/aPN)
Which means, by definition of = and — by [Tau] on States :
P=p 5P

By lemma 5.1.8, it exists P such that :
P P =P
| =

And then, by [Tau] :
(M',P") == (M', P}) = (M', P")

M for [Senp], we have :
(M', Py = (M, P) " (MW {c'v}, P’

Which means, by definition of = and — by [Senp] on States :
P =p Z5p"
By lemma 5.1.8, it exists P| such that :
p &8 pl=p
=

And then, by [Tau] :
(M',P") == (M"& {c!o}}, P) = (MW {clo}, P")

B for [Com], we have :
(M'& e}, P)= (M w{c!v}, P) = (M, P")

by :
c?y
P1—>P//

Then by definition of =, we have :
P'=p <Y P

By lemma 5.1.8, it exists P such that :
p <8 pl=p
| =
And by [Outrut], we have :

(M'w {clol, P') &3 (M, P')

Finally, by [Cow] :
(M" {{clo}}, P) — (M', P]) = (M', P")

O

In our LTS of States, we don’t have a concrete rule of [Par-L] , [Par-R] or [Seq], but we inherit all the transition
sources and targets of the LTS over Psyccs by the rules [Senp], [Tav] and [Input], we can use the same rule for our
LTS over States.

LEMMA 5.1.14: V(Ml, Pl) € Sand P € Psvces,
if (M, Pr) 5 (M, P) then (My, Py || P) - (M, Py | P)
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Proof. Take (M1, P;) € S and P € Psyccs,

Suppose that :
(M, Py) = (Ma, P)
We go for an induction on (M, Py) = (M, Py).

B for [Inrur], we have :
c?v
(My, P1) — (M, P»)

by
P8P,
Then by [Par-L] :
c?v

Finally, by [Ineut] :
c?y
(My, Py || P) — (My, P, || P)

B for [Tau], we have :
(My, P1) 5 (M, P»)
by
PP

Then by [Par-L] :

c?v

Finally, by [Tav] :
(M, Py || P) <58 (My, Py || P)
B for [Tau], we have :
(M, P1) — (My, Py)
by

PP

Then by [Par-L] :
P || PSPy || P

Finally, by [Tau] :
c?y
(My, Py || P) — (My, P || P)

B for [Senp], we have :
(My, ) == (My & fc! o}, P)
by

cly

P — P

Then by [Par-L] :
P || PSS Py|| P

Finally, by [Senp] :
(M1, Py || P) <% (My w {{c! o}, P> || P)
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B for [Com], we have :

(M2 O] {{C!U}},Pl) ;> (MQ,PQ)

by
P 8P,
Then by [Par-L] :
c?v

Finally, by [Cow] :
(Mo W f{cto}y, Pr || P) == (Ma, Py || P)

O
LEMMA 5.1.15: V(Ml, Pl) € S and P € Psycces,
if (My, P) - (My, Py) then (M, Py ; P) - (My, P> ; P)
Proof. We can see the proof of lemma 5.1.14, but for the rule [Sro] instead of [Par-L]. O

LEMMA 5.1.16: V (M1, G1) € S and G € Psyecs such G, G are guards,
if (Ml,Gl) L> (MQ,PQ) then (Ml,Gl + Gg) L) (MQ,PQ)

Proof. Take (M1,G1) € S and G5 € Psyces such G, Go are guards.
Suppose that :

(Mi,Gh) = (Ma, Py)
We go for an induction on (My, G1) — (Ma, Py).

B for [Tau], we have :
(My,G1) == (M1, P,)

by G1 L) P2.
Then by [Sum-L], we have :

G1+G2L>P2

Finally, by [Tav] :
(M1, Gy + Ga) — (My, P»)

B for [Senp], we have :
(My,Gr) = (My W {{c! v}, P)
by G1 ﬁ) P2.
Then by [Sum-L], we have :
G1 + Go SN Py

Finally, by [Tav] :
(]\417 G+ GQ) ;> (M1 H {{C!’U}}, PQ)
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B for [Com], we have :

(Myw {c!v},Gr) > (Mo, Py)

by Gl C—7v> PQ.
Then by [Sum-L], we have :
G1 + Go C—Mj> Py

Finally, by [Conm] :
(Myw {clo}, Gy + Gy) &3 (M,, P)

Those three lemmas will be usefull for the Harmony Lemma.
Now we can look at the STS and another usefull lemma.

DEFINITION 5.1.17 (STS for States): The STS (S, —) is defined in figure 5.4.

(Sts-coml(Arw f{clol,c?zeP + G) — (M, Pz :=v]) 5™l (A clyeP + G) — (Mw{clv}, P)

(Sts-mavl (A1, 7P + G) — (M, P) [Sts-unel (A1 vee X.C(X)) — (M, Crec X.C(X)))
d(Eq) = True ¢(FEq) = False

[Sts-1r-TRUE] [STs-1r-FALSE]

(M,If Eq Then P Else Q) — (M, P) (M,If Eq Then P Else Q) — (M, Q)

(M, P) — (M',P") (M, P) — (M', P")
[STs-PAR] P [STs-sEQ] P
SKIP(P) S1=8] S1— S, S,=95

[STs-SKIP] [STs-conNG]

(M, P; Q+G) — (M, Q) 51— 52

Figure 5.4: The STS of States
The meta-variablesare c € C,v € VUN,a € A, C € €£.

And we have like the [Sum-L] rule but for the STS :
LEMMA 5.1.18: V (M1, G1) € S and G2 € Psycces such that Gy and G4 are guards,
if (Mla Gl) — (MQ’ P2> then (Mla Gl + G2) — (M27P2)

Proof. Take (M;,G1) € S and G5 € Psyccs such that G; and G2 are guards.

Suppose that :
(M1, Gr) — (M2, Py)

We go for an induction on (M1, G1) — (Ma, Ps).

B for [Sts-com], we have :

(My & {c!v},c?zoP + G) — (Ms, Plx :=v])
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By [Sts-com] we have :

(M {c1 0}, ez P + (G + Ga)) — (Mo, Plz := u])

Then by [STs-cong] :

(My W {{c!vl}, (c?zoP + G) + Ga) — (My, Plx :=v))

B for [Sts-senp], we have :
(My,clvePy + G) — (MW {c!v}}, Ps)

By [Sts-senp], we have :

(Ml,C!U P+ (G + GQ)) — (M1 G} {{C!U}},PQ)

Then by [STs-cong] :
(]\417 (C!U P+ G) + GQ) — (Ml G} {{C!U },PQ)

B for [Sts-tau], we have :

(Ml,T°P2 + G) — (Ml,PQ)

By [STs-Tavu], we have :
(Ml,T 'PQ + (G + Gg)) — (Ml,Pg)

Then by [STs-conG] :
(My, (1 ePy + G) + G2) — (M1, P)

B for [Sts-seq], we have :
by (M, P) — (M', P").

By [Sts-seq], we have :
(M,(P; Q) + (G + G2)) — (M',P'; Q)

by (M,P) — (M', P").
Then by [STs-cong] :
(M,((P; Q)+ G) + G2) — (M',P'; Q)
B for [Sts-SKIP], we have :
(Mg, (P; P2) + G) — (M2, %)
by SKIP(P).
By [Sts-seq], we have :

(Ma, (P; P2) + (G + Gz2)) — (M2, P»)

Then by [STs-cong] :
(Ma, (P P2) + G) + G2) — (M2, P»)

B for [Sts-cong], we have :
(Mi1,G1) — (Mo, Pr)

by (My,Gy) = (My,GY) — (Ma, Py) = (Ma, P).

Then by induction hypothesis, we have :

(M1,G] + G2) — (M3, Py)
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By [Sc-conTExT], We have :

G1+GQEG/1+G2

Finally, by [Sts-conc], we have :
(M1, Gy + G2) — (M2, P2)

5.2 Harmony Lemma and Asynchrony

We don’t have the lemma 4.2.8. Indeed we can alternate the sequencing and the parallel for a reduction.
So, we can’t use it for the proof of the Harmony Lemma.
LEMMA 5.2.1 (Harmony Lemma): V(S,T) € S2,

S — Tifandonlyif S — . =T

Proof. Take (S,T) € 82, We have two side to prove :
WifS—TthenS — . =T
WifS— . =TthenS — 7T

We go for an induction on the reduction/transition depending on each side.
B For the first side, we go for an induction on S — 7.

— for [Sts-com], we have :

(My{clvl},c?zeP + G) — (M, Plx := v))

By [Input], we have :
c?xeP £8 Plx :=v]

And by [Sum-L] :

c?xeP + G — Plz =]
Then by [Com] and reflexivity, we have :

(Mw{c!v},c?xeP + G) > (M, Plx :=v]) = (M, P[x :=v])

— for [Sts-senp], we have :
(M,clveP + G) — (M y {c!v}, P)

By [Outrut], we have :
clveP £% p

And by [Sum-L] :

cly

clzxeP+G— P

Then by [Senp] and reflexivity, we have :

(M,clzoP +G) = (Mw{c!v},P)=(Mu{clv},P)
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— for [Sts-sexp], we have :

(M,clveP + G) — (MY {c!v}}, P)

By [Outrut], we have :
clveP S8 p

And by [Sum-L] :

cly

clzeP+G— P

Then by [Senp] and reflexivity, we have :

(M,clzoP +G) - (Mw{c!v},P)=(Mu{clv},P)

— for [Sts-tau], we have :

(M,7eP +G) — (M, P)

By [Tau], we have :
TeP 5 P

And by [Sum-L] :
TeP+G - P

Then by [Tau] and reflexivity, we have :

(M, 7P+ G) - (M, P) = (M, P)

— for [Sts-unF], we have :

(M,rec X.C(X)) — (M, C(rec X.C(X)))

By [Unr], we have :
rec X.C(X) — C(rec X.C(X))

Then by [Tau] and reflexivity, we have :

(M, rec X.C(X)) — (M, C(rec X.C(X))) = (M, C(rec X.C(X)))

— for [Sts-1r-TrUE], we have :

(M,If Eq Then P Else Q) — (M, P)
by ¢(Eq) = True.

By [Ir-Trug], we have :
If Eq Then P Else Q — P

Then by [Tau] and reflexivity, we have :

(M,If Eq Then P Else Q) — (M, P) = (M, P)

— for [Sts-1F-FaLse], we have :
(M,If Eq Then P Else Q) — (M, Q)
by ¢(Eq) = False.

By [Ir-Faise], we have :

If Eq Then P Else Q — Q

Then by [Tau] and reflexivity, we have :

(M,If Eq Then P Else Q) — (M, Q) = (M, Q)
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— for [Sts-rar], we have :

(M, P Q) — (M, P'|| Q)
by (M, P) — (M', P").

By induction hypothesis, it exists P” such that :
(M, P) s (M, P") = (M, P')
By the lemma 5.1.14, we have :

(M, P[|Q) — (M',P" ]| Q)= (M, P"| Q)

— for [STs-SKIP], we have :
by P skipping.
By [SKIP], we have :
P;Q—Q
By [Sum-L], we have :
P:.Q+G-5Q

Then by [Tau] and reflexivity, we have :

(M,P; Q+G) > (M,Q)

— for [Sts-seg], we have :

by (M, P) — (M', P").

By induction hypothesis, it exists P” such that :

(M, P) 1 (M',P")= (M, P)
Then by lemma 5.1.15, we have :
(M,P; Q) = (M',P"; Q)
Finally by lemma 5.1.16, we have :

(M,(P; Q)+ G) — (M',P"; Q)

— for [Sts-cong], we have :
Sl — SQ

by S;1 =85] — S, =5,

By induction hypothesis, it exists S” such that :
Sy 1 8" =8}
Then by the lemma 5.1.13, it exists S3 such that :

S 5 S3(= 8" =55 =5,
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B For the second side, we go for an induction on S ST
Then we have 3 cases :

X for [Tau], we have :

(M, P) = (M, Q)
by P 5 Q.
We have then to reason with an induction on P — Q :

« for 7 «QQ — @, we have by [Sts-tav] :

(M,7Q+6) — (M, Q)

And by [Sts-cong] :
(MvT.Q) — (MaQ)

« for [Unr], we have by [Sts-unr] :

(M,rec X.C(X)) — (M, C(rec X.P))

« for [Ir-Trur] and ¢(Eq) = True, we have by [Sts-1r-Trug]:

(M,If Eq Then Q Else P;) —— (M, Q)

« for [Ir-Faise] and ¢(FEq) = False, we have by [Sts-1r-Farse]:

(M,If Eq Then Py Else Q) — (M, Q)

« for [Srg], we have by [Sts-seq] :

(M,Pl;P2+6) —>(M,P1/, PQ)

And by [Sts-cong] :
(M,Pl ; Pg) — (M,Pll, Pg)
« for [Par-L], we conclude by induction hypothesis.
« for [Par-R], then by [Sts-cong] with [Sc-pcom] and induction hypothesis, we conclude.
« for [Sum-L], we use the result from lemma 5.1.16 and conclude by induction hypothesis.

» for [Sum-R], we use the result from lemma 5.1.16 and conclude by induction hypothesis and
[Sts-cong] With [Sc-scom].

= for [SKIP], we conclude with [Sts-SKIP] and [STs-cong] via [Sc-sNEuT].

X for [Senp] we have :
(M, P) = (M & {c!v}},Q)

by P <5 Q.

We have then to reason with an induction on P <% Q:
» for [Ourput], we have our result by [Sts-senp] and [Sts-cong] with [Sc-sneuT].
« for [Par-L], we conclude by [Sts-par] and induction hypothesis.

« for [Par-R], we conclude by [Sts-par] and [Sts-cong] via [Sc-pcom] with induction hypothesis.

« for [Sum-L], we use the result from lemma 5.1.16 and conclude by induction hypothesis.

71



5.2. HARMONY LEMMA AND ASYNCHRONY CHAPTER 5. CCS AND SEQUENCING

« for [Sum-R], we use the result from lemma 5.1.16 and conclude by induction hypothesis and
[STs-cong] With [Sc-scom].

« for [Sro], we have our result by [Sts-seo] and [Sts-cone] With [Sc-sneuT].
X for [Com] we have :
(N'w{c?v},P) = (N, P)

by P <58 P,

We have then to reason with an induction on P 2% P’ :
« for [Inrut], we have our result by [Sts-com] and [Sts-conc] with [Sc-snruT].
« for [Par-L], we conclude by [Sts-par] and induction hypothesis.
« for [Par-R], we conclude by [Sts-par] and [Sts-cong] via [Sc-pcom] with induction hypothesis.
« for [Sum-L], we use the result from lemma 5.1.16 and conclude by induction hypothesis.

« for [Sum-R], we use the result from lemma 5.1.16 and conclude by induction hypothesis and
[Sts-cong] with [Sc-scom].

« for [Sro], we have our result by [Sts-seq] and [Sts-cone] With [Sc-snEuT].
O

We’ll see now the one of the advantages by taking a Mailbox (multiset) to store the output. All of the proof of
the axioms for out buffered agents with feedback become more simple.

clv / clv /
| ! § ——— s § ——— s !
g <Yy ¢ g —= Yy 4 _ g clvy o
« « « p—l
J/oc = J{a loz l l J, clv = §$ =5
" 17 clv
t PUECU AN 5 3 ¢ s”
where a # clvand o # 7
OUTPUT-COMMUTATIVITY (FB1) OUTPUT-CONFLUENCE (FB2) OUTPUT-DETERMINACY (FB3)
! ! ! ! !
s clv 8/ s clv S, s clo Sl S clo S/ s clv 3/
J,C Tv = T J{c Tv l‘r = l‘r T or lT
c?v
t ¢ $" §" € ‘v ¢ $"
FEEDBACK (FB4) OurtruT-TAU (FB5)

OuTPUT-COMMUTATIVITY (FB1). Assume that we have :

s clo S/
la
t
Then by definition we have :

(M@ {c!o}}, P) —<“ (M, P)

|o

(M/l P//)

Then :
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(MW {clv}), P) —*— (M, P)

J» J»

(M" & {c!v}, P") -2 (M”, P")

O
OuTtPUT-CONFLUENCE (FB2). Suppose that a # ¢! v, @ # 7 and
s clo S/
S//
By definition, we have :
(M {clolf, P) —= (M, P)
(M//’ P//)
« if o = ¢/ v, then we have :
(M" g ety {1}, P) —= (M" ¢ {1}, P)
(M"y {c!v}}, P)
Then :
(M" g f{ctopy {1}, P) —= (M" ¢ {1}, P)
(M" @ {clv}, P) ———s (M, P)
« if @« = ¢? v, then we have P/ — <% Pl and :
(Mw{{c!v}, P) —— (M, P’
(M {c!v}}, P")
Then :
(My{{clv}, P) —— (M, P')
(M@ {c!v}}, P") -2 (M, P")
O

OUTPUT-DETERMINACY (FB3). Assume that we have :
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By definition :

My {clo}w{clo}, P)

clv

(M {clv}}, P) = (M@ {clo}, P)

O
FEEDBACK (FB4). Assume that we have :
s clo S/
lc? v
t
By definition, we have P Iy pr,
(M {clo}}, P) =2 (M, P)
la 70
(M, P")
Then by [Com], we have :
(M fc!vh, P) < (M, P)
\ lc 70
(M, P")
O

OuTtpPUT-TAU (FB5). Assume that we have :

Then by definition, we have :

(M w {c!v}, P) % (M, P)

|

(]\4’//7 P//)

Then we have 3 cases for 7 :

« if the reduction is made by [Tav], we have P — P” and :
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(M@ {clo}}, P) = (M, P)
(M {c!v}}, P")
Then we have :

(M felv}, P) == (M, P)
(M@ {c!v}}, P") -2 (M, P")
. if the reduction is made by [Senp], we have P M P" and :
(M {c!v}, P) ——s (M, P)
(M u {ctvfw {1}, P")

Then we have :

(M@ {c!v}), P) clv (M, P)

I |

(M fclow{{c W}, P") -2 (Mw{c '}, P")
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r?

r!

T o131 (0)
Toerer 1 (0

rec X.(Client! Glace «(0) + X)

rec X.c?z oIf 0 < 4 Then Printer! hello «(0) || X Else (0) || c!0ec!1ec!2ec!3 «(0)

clv D)
JO)

c?x eInstructionSuivante(x)
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Appendix A

Coq implementation

As said, all the theory has been implemented in COQ.
It is available at https://github.com/GLmaths/testing-theory.git.
We will talk here more what was made for the COQ implementation like the De Brujin indices for processes.

We will take the file VACCS_SEQ_Instance.v as an example.

A.1 De Brujin indices

To use free and bound variable we use the De Brujin indices.
It bounds a variable to an input abstraction, through his depth.

44 Inductive Data :=
45 | cst : Value -> Data
46 | bvar : nat -> Data. (* variable as De Bruijn indices *)
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85 (* Definition of processes#)
86 Inductive proc : Type :=
87 (* To parallele two processes*)
88 | pr_par : proc -> proc -> proc
89 (* Variable in a process, for recursion and substitution#*)
98 | pr_var : nat -> proc
91 (* recursion for process#)
92 | pr_rec : nat -> proc -> proc
g3 (* If test *NEW term in comparison of CCS* *)
94 | pr_if then else : Equation Data -> proc -= proc -> proc
95 (* The Process that does nothing without blocking state*)
96 | pr_nil : proc
97 (*The Guards#)
98 | g : gproc -> proc
99
100 with gproc : Type :=
101 (* Deadlock, no more computation #)
162 | gpr_deadlock : gproc
183 (* The Success operation#)
104 | gpr success : gproc
185 (*An input is a name of a channel, an input variable, followed by a process#)
166 | gpr_input : Channel -> proc -> gproc
187 (*An output is a name of a channel, an ouput value, followed by a process#*)
108 | gpr _output : Channel -> Data -> proc -> gproc
109 (*A tau action : does nothing *)
118 | gpr_tau : proc -> gproc
111 (* To choose between two processes#)
112 | gpr_choice : gproc -= gproc -=> gproc
113 (*Sequentiality for process#*)
114 | gpr_seq : proc -> proc -> gproc
115 .|

The “cst” constructor is essentially here to take a set of concrete data, to do not use an encoded number like
Church numbers.

If we take the term :
c?y oIf z > 50 Then § Else (1)

Then we can take it for the Input constructor :

c?x ec?yoIf z > 50 Then § Else (1)

And the ”x” is automatically bound.

But with the Brujin Indices, we have to take care which natural we attribute to the constructor “bvar”, to take
care of the right depth.

Indeed we can’t take the term, for example :

If (bvar 0) > 50 Then § Else (D

Because it will link the "bvar 0” to the first input abstraction.
So unlike the term with a-equivalence. We have to take care how we will link all the Input ”in advance”.

Before defining the substitution, we have to introduce a function that will lift a "bvar” wil it will cross a Input
abstraction.

For example, if we have, with a-equivalence :

P :=c?yeIfz > 10 Then 6 Else Dy := 2]
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Then, we have :

P = c?yeIf 2 > 10 Then 6 Else (1)

But with De Brujin indices, if we do not lift the ”z” variable, assume it is bvar 0 with De Brujin Indices, then we
have :
P := ¢? eIf buar 0 > 10 Then § Else (1)

And now the variable “bvar 0” in the If-condition, is bound to ¢ 7.

It should be :
c? oIf bvar 1 > 10 Then 6 Else (1)

We have to lift it through each Input we crossed.

143 Fixpoint NewVar_in Equation (k : nat) (E : Equation Data) : Equation Data :=
144 match E with

145 | tt == tt

146 | ff == ff

147 | D1 € D2 == (NewVar _in Data k D1) £ (NewVar in Data k D2)

148 | el v e2 == (NewVar_in Equation k el) v (NewVar_in Equation k e2)
149 | non e => non (NewVar_in_Equation k e)

158 end.

151

152 Fixpoint NewVar (k : nat) (p : proc) {struct p} : proc :=

153 match p with

154 | P || Q == (NewVar k P) || (NewVar k Q)

155 | pr var 1 => pr var i

156 | rec x « P == rec x * (NewVar k P)

157 | If C Then P Else Q => If (NewVar_in Equation k C) Then (NewVar k P) Else (NewVar k Q)
158 I m== 0

159 | g M => gNewVar k M

168 end

161

162 with gNewVar k M {struct M} : gproc :=

163 match M with

164 | 6 => B

165 | @ == @

166 | ¢ 2 x » p=>c 7 x =« (Newar (S k) p)

167 | ¢ ' v« p=>c ! (Newar in Data k v] « (NewVar k p)

168 | t » p=>t » (Newvar k p)

169 | pl + p2 == (gNewvar k pl) + (gNewvar k p2)

178 | P ; Q == (NewVar k P} ; (NewVar k Q)

171 end.

And now we can define the substitution :
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212 (*Definition of the Substitution *)

213 pefinition subst Data (k : nat) (X : Data) (Y : Data) : Data :=

214 match Y with

215 | cst v == cst v

216 | bvar 1 == if (decide(i = k}) then X else if (decide(i = k}) then bvar 1
217 else bvar (Nat.pred i)
218 end.

219

220 Definition Succ_bvar (X : Data) : Dpta :=

221 match X with

222 | cst v == cs5t v

223 | bvar 1 => bvar (5 i)

224 end,

225

226 Fixpoint subst_in Equation (k : nat) (X : Data) (E : Equation Data) : Equation Data :=
227 match E with

228 | tt = tt

229 | ff = ff

230 | D1 £ D2 == (subst_Data k X D1) < (subst Data k X D2)

231 | el v e2 == (subst_in Equation k X el) v {subst_in Equation k X e2)

232 | non e == non {subst_in Equation k X e)

233 end.

234

235 Fixpoint subst_in_proc (k : nat) (X : Data) (p : proc) {struct p} : proc :=
236 match p with

237 | Pl @ == (subst_in_proc k X P} || (subst_in_proc k X Q)

238 | pr var 1 == pr var 1

239 | rec x * P == rec ¥ *+ (subst_in proc k X P}

240 | If C Then P Else Q@ == If (subst_in_Equation k X C) Then (subst_in_proc k X P} Else (subst_in_proc k X Q)
21| 0 =0

242 | g M == subst_in_gproc k X M

243 end

244

245 with subst_in gproc k X M {struct M} : gproc :=

246 match M with

247 | 6 =6

248 | © = @D

249 | c P x * p==o¢C ? x * (subst in proc (S k) (NewVar in Data @ X) p)

250 | ¢ ! v » p=>c ! (subst Data k X v) * (subst_in proc k X p)

251 | t « p==1t * (subst_in proc k X p)

252 | pl + p2 = (subst_in gproc k X pl) + (subst_in_gproc k X p2)

253 | P ; Q == (subst in proc k X P} ; (subst in proc k X Q)

254 end,

255

256 Notation "t1 ™ x1" := (subst_in_proc @ x1 t1).

The interesting part is the *subst_Data”.

We lift the variable that we substituted to match his link, but when we did the substitution, we destroyed a Input
¢ ? abstractor.

Then we have to check if the Input ¢ 7 abstractor that we destroyed was needed in any bvar in the sub-term of
c?:

if (decide(i = k)) then bvar i
else bvar (Nat.pred i)

We decide to duplicate the rules of the congruence in the definition to "gain” symmetry by definition and then
to simplify the proofs.
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420 In
421 (*
122 |
423
424 (*
425 |
126
427 |
128
429 |
430
431
432 (*
433 |
434
435 |
436
437 |
438
439 |
440
441 |
442
443

ductive cgr_step : proc -> proc -> Prop :=
Reflexivity of the Relation = *)
cgr_refl _step : forall p, p=p

Rules for the Paralléle *)

cgr_par_com_step : ferall p q,
plla=glp

cgr_par_assoc_step : forall pqr,
(pllgdhr=pll@alin

cgr_par_assoc_rev step @ forallpgr,
pllfg Ir)=dplla)lr

Rules for the Summation *)

cgr_choice_nil_step : forall p,
cgr_step (p + 6) p

cgr_choice_nil_rev_step : forall p,
cgr_step (g p) (p + 6)

cgr_choice_com_step : forall p g,
cgr_step (p + q} (g + p)

cgr_choice assoc step : forall pqr,
cgr step ({p+gq) +r) (p+ (g+r))

cgr_choice assoc_rev step : forall pgq r,
cgr step (p+ (g +r)) {{(p+q)+r)

444 (*The reduction is given to certain terms...*¥)

145 |
146
447 |
448
449
450 |
451
452
453 |
454
455
456 |
457
458
459 |
460
461
162 |
463

465
466 (*
467 |
468
469
470 |
an
472
473 |
474

476
477 (*
478 (*
479 |
480 |
481
482 |
483
484
485 (*

cgr_recursion step : forall x p q,

cgr step p q -> {rec x * p) = {rec x * q)
cgr_tau step : forall p g,

cgr step p q ->

cgr_step (t = p) (t » q)
cgr_input_step : forall c p q,

cgr step p q ->

cgr step (c ? x + p) (c ? x * q)
cgr_output_step : forall c v p q,

cgr step p q ->

cgr step (c ! v+ p) (c! ve+aq)
cgr_par_step : forallpgqgr,

cqr step p g ->

pllr=glr
cgr_if left step : forall Cpqaq',

cgr_step q q' -=

(If C Then p Else q) = (If C Then p Else q')
cgr_if_right_step : forall C p p' q,

cgr_step p p' -=

(If C Then p Else q) = (If C Then p' Else q)

...and sums (only for guards (by sanity))}*)
cgr_choice step : forall pl ql p2,
cgr_step (g pl) (g gl) ->
cgr step (pl + p2) (gl + p2)
cgr_seq_left step : forallpgr,
cgr_step p q -=
{gilp;rlh=(gig;r}l
cgr_seq_right step : forall pqr,
cgr_step p q -=
{g (r; pl) =1(g(r;q)l

Rules for sequentiation *)
| cgr_seq nil_step : forall P, cgr step (6 ; P) @
cgr_seq nil rev step : forall P, cgr step 6 (6 ; P)*)
cgr_seq_assoc_step : forall pq r,

cgr_step ((p ; q) ; r) {p; (g; r))
cgr_seq_assoc_rev step @ forallpgr,

cgrstep (p; (g r)) (piaq);r)

Rules for sequentiation-analysis *)
cgr_seq_choice step : forall G G' P, cgr_step ({G + G') ; P} ({G ; P) + (G'; P))

cgr_seq_choice rev_step : forall 6 G' P, cgr_step (({g G) ; P} + {({g G'); P)} ({G +G') ; P)

cgr_seq_tau_step : forall P Q, cgr_step ((t « P) ; Q) {t « (P ; Q)
cgr_seq_tau_rev step : forall P Q, cgr_step (t = (P ; Q}) ({t = P) ; Q)

cgr_seq_input_step : forall c P @ , cgr_step ({c ? x « P) ; Q) (c ? x « (P ; NewVar 6 Q))
cgr_seq input_rev step : forall ¢ P O, cgr step (c ? x + (P ; NewVar 0 Q})) ({c ? x = P) ; Q)

cgr_seq output_step : forall c v P Q, cgr step ((c ! v =+ P} ; Q) (c ! v+ (P; Q)
cgr_seq output_rev step : forall c v P Q, cgr step (c ! v« (P ; Q})) ({c ! v=P); Q)

Then we take his transitive closure :

513 (* Defining the transitive closure of = *)
514 pefinition cgr := (clos_trans proc cgr_step).
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A.2. WELL DEFINED APPENDIX A. COQ IMPLEMENTATION
The most interesting rule is the rule (with a-equivalence) :

(c?2eP); Q=clao(P; Q) (x ¢ FV(Q))

In COQ :
490 | cgr seq input step : forall c P O , cgr step ({c ? x = P} ; Q) {c ? x « (P ; NewNar 0 Q))

The role of "NewVar” is to lift the variable in the process that are bounded with a outside Input from the actual
Input in the rule.

This is needed because the congruence is closed by context

For example, take the process :

¢ 7 e(c? oIf buar 0 > 50 Then § Else (1); ¢! bvar 0 «0))

The bvar 0, in "If bvar 0 > 50 Then ¢ Else @”, is linked to ¢ ? and the bvar 0, in "¢! bvar 0 -@”, is linked to ¢’ 7.

If we apply the congruence rule for :

c? oIf bvar 0 > 50 Then 6 Else D) ; ¢! bvar 0 «(0)

We have to adapt the second bvar 0, it has be linked after the congruence rule with the same Input :

c? o(If bvar 0 > 50 Then § Else (D); ¢! bvar 1 «(0))

And then with the context C' = ¢’ 7 () :

' ?7ec? o(If buar 0 > 50 Then & Else (D; ¢! bvar 1 «0))

The location of the bvar is still linked to ¢ 7.

Like we said in the main document, we proved the Harmony Lemma :

1626 Theorem HarmonyLemmaForCCSwWithValuePassing : forall P Q, (LltsM then sc P 1 Q) <-> (sts P Q).
1627 Proof.

1628 intros. split.

1629 * apply TausAndCong_Implies Reduction.

1630 * apply Reduction Implies TausAndCong.
1631 Qed.

A.2 Well Defined

With De Brujin indices, we introduced a Well-Defined abstraction ("closed terms”) :
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1634 Inductive Well Defined Data : nat -» Data -» Prop :=

1635 | bvar_is_defined_up_to k: forall k x, (x < k) -» well_Defined Data k (bvar x)

1636 | cst is always defined : forall k v, Well Defined Data k (cst v).

1637

1638 Inductive Well_Defined Condition : nat -> Equation Data -» Prop :=

1639 | tt is WD : forall k, Well Defined Condition k tt

1640 | ff_is WD : forall k, Well _Defined Condition k ff

1641 | Inequality is WD : forall k x y, Well Defined Data k x -> Well Defined Data k y -> Well Defined Condition k (x £ y)
1642 | Or_is WD : forall k e e', Well Defined Condition k e -= Well Defined Condition k e' -> Well Defined Condition k (e v e')
1643 | Mot is WD : forall k e, Well Defined Condition k e -> Well Defined Condition k (non e).

1644

1645 Inductive Well Defined Input in : nat -> proc -> Prop :=

1646 | WD par : forall k pl p2, Well Defined Input in k pl -> Well Defined Input in k p2

1647 -= Well Defined Input_in k (pl || p2)

1648 | WD var : forall k i, Well Defined Input in k (pr var i)

1649 | WD_rec : forall k x pl, Well Defined Input_in k pl -> Well Defined Input_in k (rec x « pl)

1650 | WD _if then else : forall k pl p2 C, Well Defined Condition k C -> Well Defined Input in k pl

1651 -= Well_Defined Input_in k p2
1652 -> Well Defined Input in k (If C Then pl Else p2)
1653 | WD_deadlock : forall k, Well Defined Input_in k (&)

1654 | WD success : forall k, Well Defined Input in k (@)

1655 | WD nil : forall k, Well Defined Input in k (o)

1656 | WD_input : forall k ¢ p, Well Defined Input_in (5 k) p

1657 -> Well Defined Input in k (c 7 x + p)

1658 | WD_output : forall k ¢ v p, Well Defined Data k v -> Well Defined Input_in k p
1659 -> Well Defined Input_in k (c ! v « p)

1660 | WD_tau : forall k p, Well Defined Input_in k p -= Well Defined Input_in k (t + p)
1661 | WD _choice : forall k pl p2, Well Defined Input_in k (g pl) -» Well Defined Input in k (g p2)

1662 -=> Well Defined Input in k (pl + p2)

1663 | WD_seq : forall k pl p2, Well Defined Input_in k pl -> Well Defined Input_in k p2
1664 -> Well_Defined Input_in k (pl ; p2).

1665

1666

1667

1668 Inductive Well Defined Input in MultiSet : nat -> gmultiset TypeOfActions -> Prop :=

1669 | WD_gmset_empty : forall k, Well Defined Input_in MultiSet k @

1670 | WD _gmset base : forall k M d ¢, Well Defined Input in MultiSet k M -= Well Defined Data k d ->
1671 Well Defined Input_in MultiSet k (M uw {[+ c - d +1}).

1672

1673 Inductive Well Defined Input in State : nat -» States -> Prop :=

1674 | WD_state base : forall k M P, Well Defined Input_in MultiSet k M -> Well Defined Input_in k P -=
1675 Well Defined Input in State k ([ M, P ).

Indeed we can produce bvar that are not linked, like in :

c!bvar 0 «(0)

And our objective for programming language are closed terms.

And we verified that the LTS and the STS we produced for States propagate the closed terms.
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2076 Lemma STS Respects WD : forall S S', Well Defined Input in State 8 S -> sts S §' -> Well Defined Input in State 0 S5'.
2077 Proof.

2078 intros. revert H. rename H® into Reduction. dependent induction Reduction.

2079 * intros. dependent destruction H.

2080 dependent destruction HO. dependent destruction HO .

2081 constructor.

2082 - eapply Well Def Subset with (M v {[+ ¢ ~ v +]}). assumption. multiset solver.

2083 - assert (Well Defined Input_in MultiSet @ {[+ ¢ -~ v +]}).

2084 eapply Well Def Subset with (M W {[+ ¢ ~ v +]}). assumption. multiset solver.

2085 eapply Well Def Singleton in HB.

2086 eapply Well Def Data_Is a value in HO. destruct HB. subst.

2087 eapply ForSTS. assumption.

2088 * intros. dependent destruction H. constructor.

2089 - constructor. assumption. dependent destruction H@. dependent destruction H@ . assumption.
2090 - dependent destruction HO. dependent destruction HG . assumption.

2091 * intros. dependent destruction H. dependent destruction HO. dependent destruction H@ . constructor; assumption.
2092 * intros. dependent destruction H. constructor. assumption. apply RecursionOverReduction is WD. assumption.

2093 * intros. dependent destruction HO. dependent destruction H1l. constructor; assumption.

2094 * intros. dependent destruction HO. dependent destruction H1l. constructor; assumption.

2095 * intros. dependent destruction H. dependent destruction HO. assert (Well Defined Input in State @ [ M1, P1 j).

2096 constructor; assumption. apply IHReduction in HO. dependent destruction HO.

2097 constructor. assumption. constructor; assumption.

2098 * intros. dependent destruction H. dependent destruction HO. dependent destruction HO .
2099 assert (Well Defined Input in State 0@ [ M1, P1 ]).

2100  constructor; assumption. apply IHReduction in HO. dependent destruction HO.

2101  constructor. assumption. constructor; assumption.

2102 * intros. dependent destruction HB. dependent destruction H1l. dependent destruction H1 .
2163 constructor; assumption.

2104 * intros. apply CongruenceM Respects WD with 52'. apply IHReduction. eapply CongruenceM Respects WD with 51.
21805 assumption. assumption. assumption.

2106 Ded.

2108 Inductive Well Defined Action: (Act TypeOfActions) -> Prop :#

2189 | ActionQuput with value is always defined : forall c v, Well Defined Action {ActOut ({c - {cst w)))
2118 | ActionInput with value is always defined : forall c v, Well Defined Action {ActIn {c - {cst wv)))
2111 | Tau is always defined : Well Defined Action (T).

2143 Lemma LTS Respects WD : forall S 5' a, Well Defined Input_in State 8 5 -> Well Defined Action a -> ltsM S a §'
2144 -> Well Defined Input in State 0 S'.

2145 Proof.

2146 intros. dependent induction HI1.

2147 - dependent destruction H.

2148 assert (Well _Defined Input_in @ gq). eapply (PreLTS_Respects WD p q (ActIn (c -~ w})); assumption.
2149 constructor; assumption.

2150 - dependent destruction H. constructor.

2151 eapply Well Def Subset with (M & {[+ c ~ v +]}). assumption. multiset solver.

2152  assumption.

2153 = constructor.

2154 ¥ dependent destruction H. assumption.

2155  # dependent destruction H. eapply (PreLTS_Respects WD p q t); assumption.

2156 - dependent destruction H. constructor.

2157 * constructor. assumption. eapply Output_are good in HO®. instantiate (1 := w) in HO.

2158 destruct HO. subst. constructor. exact H2.

2159 * eapply (PrelLTS_Respects WD p q (ActOut (c - v})).

2160 assumption. eapply Output_are good in HO. instantiate (1 := v} in HB. destruct HO. subst. econstructor.
2161 eassumption. exact H2.

2162 - dependent destruction H1 . dependent destruction H1 0. dependent destruction H.

2163 = constructor.

2164  # eapply Well Def Subset with (M2 w {[+ c -~ v +]1}). assumption. multiset_solver.

2165 * eapply PreLTS Respects WD. exact HO.

2166 assert (Well_Defined Data @ v). eapply Well Def Singleton. eapply Well_Def Subset.

2167 instantiate (1 := (M2 W {[+ ¢ ~ v +]}}). assumption.

2168 instantiate {1 := c}. multiset_solver.

2169 instantiate (1 := ActExt (ActIn (c - v))). eapply Well Def Data Is a walue in H3.
2170 destruct H3. subst. constructor. assumption.

2171 Qed.
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A.3 LTS classes

Our main objective was to build a start to analyse the Must Pre-order Characterization from [27] with a enough
expressive language.
So we proved that (S, A, —%+) was an instance of each classes from [27].

3091 #[global] Pregram Instance VACCS Label : Label TypeOfActions.
3892 (* {] label eqdec := TypeOfActions dec ;

3893 bbel_cnﬂntable := TypeDfActions_countable
36094 [ |} %)
3095

3086 #[global] Pregram Instance VACCS Lts : Lts States TypeOfActions.

3097 Next Obligation. intros. exact (LtsM X X0 X1). Defined. (* lts step x f y := UtsM x f y *)

3098 Next Obligation. intros. exact (LtsM dec a @ b). Defined. (* lts state egdec := proc_dec *)

3699 Next Obligation. intros. exact {outputs of State X). Defined. (* lts outputs 5 := outputs of State S *)

3180 Next Obligation. intros. apply (outputsM of specl pl x p2). apply H. Defined. (* lts outputsM specl pl x p2 := outputs of specl pl x p2 *)
3101 Next Obligation. intros. apply {outputs_of specZ pl x). assumption. Defined. (* lts outputs spec2 pl x := outputs_of spec2 pl x *)

3182 Next Obligation. intros. exact {states_stable X XB). Defined. (* lts stable p o := states stable p o *)

3183 Next Obligation. intros. exact (states stable dec p o). Defined. (* 1ts stable decidable p a := states stable dec p a *)

31684 Next Obligatien. intres p [[a]a]|]; unfold VACCS Lts ebligation 6 in *; unfold VACCS Lts obligation 1 in *;

3185 intro hs;eapply gset_nempty ex in hs as (r & 1); eapply LtsM set_spec® in 1;

3106 exists r; assumption. Defined.

3187 Next Obligation.

3188 intros p [[a|a]|]; intros (g & mem); intro eq; eapply 1tsM set specl in mem; set solver.
3189 Qed.

311e

3111 #[global] Pregram Instance VACCS LtsEq : LtsEq States TypeOfActicns.

3112 Next Obligation. exact cgr_states. Defimed. (* eq rel x y := cgr x y *)

3113 Next Obligation. apply cgr states refl. Qed. (* eq rel refl p := cgr refl p *)

3114 Next Obligation. apply cgr_states symm. Qed. (* eq symm p g := cgr symm p g *)

3115 Next Obligation. eapply cgr states trans. Qed. (* eq trans x y z:= cgr_trans x y z *)

3116 Next Obligation. eapply CongruenceStates Respects Transition. Qed. (* eq spec p q o := CongruenceStates Respects Transition p g o *)
3117

3118 #[global] Pregram Instance VACCS LtsOba : LtsOba States TypeODfActions.

3119 Next Obligation. exact moutputs_of State. Defined. (* 1ts oba mo p := moutputs of p *)

3120 Next Obligation.

3121 intros. simpl. unfold VACCS LtsOba obligation 1. unfold VACCS Lts obligatien 3. unfold outputs of State.

3122 now rewrite gmultiset elem of_dom.

3123 | Qed.

3124 Next Obligation.

3125 intros. unfold VACCS LtsOba obligation 1. simpl. unfold outputs of State.

3126 now eapply mo_spec.

3127 | Qed.

3128 Next Obligation. exact OBA with FB First Axiom. Qed. (* lts oba output commutativity p q r a o := OBA with FB First Axiom pq r a a *)
3129 Next Obligation. exact OBA with_FB Second Axiom. Qed. (* Lts oba output confluence p gl g2 a p := OBA with FB Second Axiom p gl g2 a p *)
3136 Mext Obligation. exact OBA with_FB Fifth_Axiom. Qed. (* lts oba output tau p gl g2 a := 0BA with FB_Fifth Axiom p gl g2 a *)

3131 Next Obligation. exact OBA with FB Third Axiom. Qed. (* lts oba output deter pl p2 p3 a := 0BA with FB Third Axiom pl p2 p3 a *)
3132 Next Obligation. exact ExtraAxiom. Qed. (* lts oba output deter inwv pl p2 gl g2 a := ExtraAxiom pl p2 gl g2 a *)

3133

3134 #[global] Program Instance VACCS LtsObaFB : LtsObaFE States TypeQfActions :=

3135 {| lts_oba fb feedback pl p2 p3 a := OBA with FB Fourth Axiom pl p2 p3 a |}.
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